diff --git a/.ci/update_windows/update.py b/.ci/update_windows/update.py index 51a263203..fe646a6ed 100755 --- a/.ci/update_windows/update.py +++ b/.ci/update_windows/update.py @@ -53,6 +53,16 @@ try: repo.stash(ident) except KeyError: print("nothing to stash") # noqa: T201 +except: + print("Could not stash, cleaning index and trying again.") # noqa: T201 + repo.state_cleanup() + repo.index.read_tree(repo.head.peel().tree) + repo.index.write() + try: + repo.stash(ident) + except KeyError: + print("nothing to stash.") # noqa: T201 + backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S')) print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201 try: @@ -66,8 +76,10 @@ if branch is None: try: ref = repo.lookup_reference('refs/remotes/origin/master') except: - print("pulling.") # noqa: T201 - pull(repo) + print("fetching.") # noqa: T201 + for remote in repo.remotes: + if remote.name == "origin": + remote.fetch() ref = repo.lookup_reference('refs/remotes/origin/master') repo.checkout(ref) branch = repo.lookup_branch('master') @@ -149,3 +161,4 @@ try: shutil.copy(stable_update_script, stable_update_script_to) except: pass + diff --git a/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt b/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt index 96a500be2..2cbb00d99 100755 --- a/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt +++ b/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt @@ -1,5 +1,5 @@ -As of the time of writing this you need this preview driver for best results: -https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html +As of the time of writing this you need this driver for best results: +https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html HOW TO RUN: @@ -25,3 +25,4 @@ In the ComfyUI directory you will find a file: extra_model_paths.yaml.example Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor. + diff --git a/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat b/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat new file mode 100644 index 000000000..ed00583b6 --- /dev/null +++ b/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat @@ -0,0 +1,3 @@ +..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +pause diff --git a/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat b/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat index 274d7c948..4898a424f 100755 --- a/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat +++ b/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat @@ -1,2 +1,3 @@ .\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. pause diff --git a/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat b/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat index 38f06ecb2..32611e4af 100644 --- a/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat +++ b/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat @@ -1,2 +1,3 @@ .\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. pause diff --git a/.github/ISSUE_TEMPLATE/bug-report.yml b/.github/ISSUE_TEMPLATE/bug-report.yml index 3cf2717b7..6556677e0 100644 --- a/.github/ISSUE_TEMPLATE/bug-report.yml +++ b/.github/ISSUE_TEMPLATE/bug-report.yml @@ -8,13 +8,15 @@ body: Before submitting a **Bug Report**, please ensure the following: - **1:** You are running the latest version of ComfyUI. - - **2:** You have looked at the existing bug reports and made sure this isn't already reported. + - **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report. - **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing - `--disable-all-custom-nodes` command line argument. + `--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version. - **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen. - If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first. + ## Very Important + + Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored. - type: checkboxes id: custom-nodes-test attributes: diff --git a/.github/PULL_REQUEST_TEMPLATE/api-node.md b/.github/PULL_REQUEST_TEMPLATE/api-node.md new file mode 100644 index 000000000..c1f1bafb1 --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE/api-node.md @@ -0,0 +1,21 @@ + + +## API Node PR Checklist + +### Scope +- [ ] **Is API Node Change** + +### Pricing & Billing +- [ ] **Need pricing update** +- [ ] **No pricing update** + +If **Need pricing update**: +- [ ] Metronome rate cards updated +- [ ] Auto‑billing tests updated and passing + +### QA +- [ ] **QA done** +- [ ] **QA not required** + +### Comms +- [ ] Informed **Kosinkadink** diff --git a/.github/workflows/api-node-template.yml b/.github/workflows/api-node-template.yml new file mode 100644 index 000000000..fdb81c0c5 --- /dev/null +++ b/.github/workflows/api-node-template.yml @@ -0,0 +1,58 @@ +name: Append API Node PR template + +on: + pull_request_target: + types: [opened, reopened, synchronize, ready_for_review] + paths: + - 'comfy_api_nodes/**' # only run if these files changed + +permissions: + contents: read + pull-requests: write + +jobs: + inject: + runs-on: ubuntu-latest + steps: + - name: Ensure template exists and append to PR body + uses: actions/github-script@v7 + with: + script: | + const { owner, repo } = context.repo; + const number = context.payload.pull_request.number; + const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md'; + const marker = ''; + + const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number }); + + let templateText; + try { + const res = await github.rest.repos.getContent({ + owner, + repo, + path: templatePath, + ref: pr.base.ref + }); + const buf = Buffer.from(res.data.content, res.data.encoding || 'base64'); + templateText = buf.toString('utf8'); + } catch (e) { + core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`); + return; + } + + // Enforce the presence of the marker inside the template (for idempotence) + if (!templateText.includes(marker)) { + core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`); + return; + } + + // If the PR already contains the marker, do not append again. + const body = pr.body || ''; + if (body.includes(marker)) { + core.info('Template already present in PR body; nothing to inject.'); + return; + } + + const newBody = (body ? body + '\n\n' : '') + templateText + '\n'; + await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody }); + core.notice('API Node template appended to PR description.'); diff --git a/.github/workflows/release-stable-all.yml b/.github/workflows/release-stable-all.yml index 5c1024599..d72ece2ce 100644 --- a/.github/workflows/release-stable-all.yml +++ b/.github/workflows/release-stable-all.yml @@ -14,13 +14,13 @@ jobs: contents: "write" packages: "write" pull-requests: "read" - name: "Release NVIDIA Default (cu129)" + name: "Release NVIDIA Default (cu130)" uses: ./.github/workflows/stable-release.yml with: git_tag: ${{ inputs.git_tag }} - cache_tag: "cu129" + cache_tag: "cu130" python_minor: "13" - python_patch: "6" + python_patch: "9" rel_name: "nvidia" rel_extra_name: "" test_release: true @@ -43,16 +43,33 @@ jobs: test_release: true secrets: inherit + release_nvidia_cu126: + permissions: + contents: "write" + packages: "write" + pull-requests: "read" + name: "Release NVIDIA cu126" + uses: ./.github/workflows/stable-release.yml + with: + git_tag: ${{ inputs.git_tag }} + cache_tag: "cu126" + python_minor: "12" + python_patch: "10" + rel_name: "nvidia" + rel_extra_name: "_cu126" + test_release: true + secrets: inherit + release_amd_rocm: permissions: contents: "write" packages: "write" pull-requests: "read" - name: "Release AMD ROCm 6.4.4" + name: "Release AMD ROCm 7.1.1" uses: ./.github/workflows/stable-release.yml with: git_tag: ${{ inputs.git_tag }} - cache_tag: "rocm644" + cache_tag: "rocm711" python_minor: "12" python_patch: "10" rel_name: "amd" diff --git a/.github/workflows/test-ci.yml b/.github/workflows/test-ci.yml index 418dca0ab..adfc5dd32 100644 --- a/.github/workflows/test-ci.yml +++ b/.github/workflows/test-ci.yml @@ -5,6 +5,7 @@ on: push: branches: - master + - release/** paths-ignore: - 'app/**' - 'input/**' @@ -21,14 +22,15 @@ jobs: fail-fast: false matrix: # os: [macos, linux, windows] - os: [macos, linux] - python_version: ["3.9", "3.10", "3.11", "3.12"] + # os: [macos, linux] + os: [linux] + python_version: ["3.10", "3.11", "3.12"] cuda_version: ["12.1"] torch_version: ["stable"] include: - - os: macos - runner_label: [self-hosted, macOS] - flags: "--use-pytorch-cross-attention" + # - os: macos + # runner_label: [self-hosted, macOS] + # flags: "--use-pytorch-cross-attention" - os: linux runner_label: [self-hosted, Linux] flags: "" @@ -73,14 +75,15 @@ jobs: strategy: fail-fast: false matrix: - os: [macos, linux] + # os: [macos, linux] + os: [linux] python_version: ["3.11"] cuda_version: ["12.1"] torch_version: ["nightly"] include: - - os: macos - runner_label: [self-hosted, macOS] - flags: "--use-pytorch-cross-attention" + # - os: macos + # runner_label: [self-hosted, macOS] + # flags: "--use-pytorch-cross-attention" - os: linux runner_label: [self-hosted, Linux] flags: "" diff --git a/.github/workflows/test-execution.yml b/.github/workflows/test-execution.yml index 00ef07ebf..9012633d8 100644 --- a/.github/workflows/test-execution.yml +++ b/.github/workflows/test-execution.yml @@ -2,9 +2,9 @@ name: Execution Tests on: push: - branches: [ main, master ] + branches: [ main, master, release/** ] pull_request: - branches: [ main, master ] + branches: [ main, master, release/** ] jobs: test: diff --git a/.github/workflows/test-launch.yml b/.github/workflows/test-launch.yml index 1735fd83b..fd70aff23 100644 --- a/.github/workflows/test-launch.yml +++ b/.github/workflows/test-launch.yml @@ -2,9 +2,9 @@ name: Test server launches without errors on: push: - branches: [ main, master ] + branches: [ main, master, release/** ] pull_request: - branches: [ main, master ] + branches: [ main, master, release/** ] jobs: test: diff --git a/.github/workflows/test-unit.yml b/.github/workflows/test-unit.yml index 00caf5b8a..d05179cd3 100644 --- a/.github/workflows/test-unit.yml +++ b/.github/workflows/test-unit.yml @@ -2,9 +2,9 @@ name: Unit Tests on: push: - branches: [ main, master ] + branches: [ main, master, release/** ] pull_request: - branches: [ main, master ] + branches: [ main, master, release/** ] jobs: test: diff --git a/.github/workflows/update-version.yml b/.github/workflows/update-version.yml index d9d488974..c2343cc39 100644 --- a/.github/workflows/update-version.yml +++ b/.github/workflows/update-version.yml @@ -6,6 +6,7 @@ on: - "pyproject.toml" branches: - master + - release/** jobs: update-version: diff --git a/.github/workflows/windows_release_dependencies.yml b/.github/workflows/windows_release_dependencies.yml index f1e2946e6..f61ee21a2 100644 --- a/.github/workflows/windows_release_dependencies.yml +++ b/.github/workflows/windows_release_dependencies.yml @@ -17,7 +17,7 @@ on: description: 'cuda version' required: true type: string - default: "129" + default: "130" python_minor: description: 'python minor version' @@ -29,7 +29,7 @@ on: description: 'python patch version' required: true type: string - default: "6" + default: "9" # push: # branches: # - master diff --git a/CODEOWNERS b/CODEOWNERS index b7aca9b26..4d5448636 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -1,3 +1,2 @@ # Admins -* @comfyanonymous -* @kosinkadink +* @comfyanonymous @kosinkadink @guill diff --git a/QUANTIZATION.md b/QUANTIZATION.md new file mode 100644 index 000000000..1693e13f3 --- /dev/null +++ b/QUANTIZATION.md @@ -0,0 +1,168 @@ +# The Comfy guide to Quantization + + +## How does quantization work? + +Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware. + +When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues: +- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values +- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused" + +By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling. + +``` +absmax = max(abs(tensor)) +scale = amax / max_dynamic_range_low_precision + +# Quantization +tensor_q = (tensor / scale).to(low_precision_dtype) + +# De-Quantization +tensor_dq = tensor_q.to(fp16) * scale + +tensor_dq ~ tensor +``` + +Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes. + + +## Quantization in Comfy + +``` +QuantizedTensor (torch.Tensor subclass) + ↓ __torch_dispatch__ +Two-Level Registry (generic + layout handlers) + ↓ +MixedPrecisionOps + Metadata Detection +``` + +### Representation + +To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py` + +A `Layout` class defines how a specific quantization format behaves: +- Required parameters +- Quantize method +- De-Quantize method + +```python +from comfy.quant_ops import QuantizedLayout + +class MyLayout(QuantizedLayout): + @classmethod + def quantize(cls, tensor, **kwargs): + # Convert to quantized format + qdata = ... + params = {'scale': ..., 'orig_dtype': tensor.dtype} + return qdata, params + + @staticmethod + def dequantize(qdata, scale, orig_dtype, **kwargs): + return qdata.to(orig_dtype) * scale +``` + +To then run operations using these QuantizedTensors we use two registry systems to define supported operations. +The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`). + +The second registry is layout-specific and allows to implement fast-paths like nn.Linear. +```python +from comfy.quant_ops import register_layout_op + +@register_layout_op(torch.ops.aten.linear.default, MyLayout) +def my_linear(func, args, kwargs): + # Extract tensors, call optimized kernel + ... +``` +When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation. +For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation. + + +### Mixed Precision + +The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how. + +**Architecture:** + +```python +class MixedPrecisionOps(disable_weight_init): + _layer_quant_config = {} # Maps layer names to quantization configs + _compute_dtype = torch.bfloat16 # Default compute / dequantize precision +``` + +**Key mechanism:** + +The custom `Linear._load_from_state_dict()` method inspects each layer during model loading: +- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype` +- If the layer name **is** in `_layer_quant_config`: + - Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`) + - Load associated quantization parameters (scales, block_size, etc.) + +**Why it's needed:** + +Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality. + +The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode. + + +## Checkpoint Format + +Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme. + +The quantized checkpoint will contain the same layers as the original checkpoint but: +- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8. +- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe. +- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used. + +### Scaling Parameters details +We define 4 possible scaling parameters that should cover most recipes in the near-future: +- **weight_scale**: quantization scalers for the weights +- **weight_scale_2**: global scalers in the context of double scaling +- **pre_quant_scale**: scalers used for smoothing salient weights +- **input_scale**: quantization scalers for the activations + +| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale | +|--------|---------------|--------------|----------------|-----------------|-------------| +| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) | + +You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS). + +### Quantization Metadata + +The metadata stored alongside the checkpoint contains: +- **format_version**: String to define a version of the standard +- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`. + +Example: +```json +{ + "_quantization_metadata": { + "format_version": "1.0", + "layers": { + "model.layers.0.mlp.up_proj": "float8_e4m3fn", + "model.layers.0.mlp.down_proj": "float8_e4m3fn", + "model.layers.1.mlp.up_proj": "float8_e4m3fn" + } + } +} +``` + + +## Creating Quantized Checkpoints + +To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`. + +### Weight Quantization + +Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter. + +### Calibration (for Activation Quantization) + +Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**: + +1. **Collect statistics**: Run inference on N representative samples +2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer +3. **Compute scales**: Derive `input_scale` from collected statistics +4. **Store in checkpoint**: Save `input_scale` parameters alongside weights + +The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters. \ No newline at end of file diff --git a/README.md b/README.md index 4a5a17cda..6d09758c0 100644 --- a/README.md +++ b/README.md @@ -67,6 +67,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith - [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/) - [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/) - [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/) + - [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/) + - [Z Image](https://comfyanonymous.github.io/ComfyUI_examples/z_image/) - Image Editing Models - [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/) - [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model) @@ -79,6 +81,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith - [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/) - [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/) - [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/) + - [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5) - Audio Models - [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/) - [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/) @@ -112,10 +115,14 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git ## Release Process -ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories: +ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories: 1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)** - - Releases a new stable version (e.g., v0.7.0) + - Releases a new stable version (e.g., v0.7.0) roughly every week. + - Starting from v0.4.0 patch versions will be used for fixes backported onto the current stable release. + - Minor versions will be used for releases off the master branch. + - Patch versions may still be used for releases on the master branch in cases where a backport would not make sense. + - Commits outside of the stable release tags may be very unstable and break many custom nodes. - Serves as the foundation for the desktop release 2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)** @@ -172,15 +179,19 @@ There is a portable standalone build for Windows that should work for running on ### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z) -Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints +Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\ If you have trouble extracting it, right click the file -> properties -> unblock +Update your Nvidia drivers if it doesn't start. + #### Alternative Downloads: [Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z) -[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z) (Supports Nvidia 10 series and older GPUs). +[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z). + +[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs). #### How do I share models between another UI and ComfyUI? @@ -197,7 +208,13 @@ comfy install ## Manual Install (Windows, Linux) -Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12 +Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies. + +Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12 + +torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old. + +### Instructions: Git clone this repo. @@ -214,7 +231,7 @@ AMD users can install rocm and pytorch with pip if you don't have it already ins This is the command to install the nightly with ROCm 7.0 which might have some performance improvements: -```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.0``` +```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1``` ### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only. @@ -235,7 +252,7 @@ RDNA 4 (RX 9000 series): ### Intel GPUs (Windows and Linux) -(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html) +Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html) 1. To install PyTorch xpu, use the following command: @@ -245,15 +262,11 @@ This is the command to install the Pytorch xpu nightly which might have some per ```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu``` -(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance. - -1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information. - ### NVIDIA Nvidia users should install stable pytorch using this command: -```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129``` +```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu130``` This is the command to install pytorch nightly instead which might have performance improvements. @@ -312,6 +325,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step 1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536) 2. Launch ComfyUI by running `python main.py` + +## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4) + +**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI. + +### Setup + +1. Install the manager dependencies: + ```bash + pip install -r manager_requirements.txt + ``` + +2. Enable the manager with the `--enable-manager` flag when running ComfyUI: + ```bash + python main.py --enable-manager + ``` + +### Command Line Options + +| Flag | Description | +|------|-------------| +| `--enable-manager` | Enable ComfyUI-Manager | +| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) | +| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) | + + # Running ```python main.py``` diff --git a/api_server/routes/internal/internal_routes.py b/api_server/routes/internal/internal_routes.py index 613b0f7c7..b224306da 100644 --- a/api_server/routes/internal/internal_routes.py +++ b/api_server/routes/internal/internal_routes.py @@ -58,8 +58,13 @@ class InternalRoutes: return web.json_response({"error": "Invalid directory type"}, status=400) directory = get_directory_by_type(directory_type) + + def is_visible_file(entry: os.DirEntry) -> bool: + """Filter out hidden files (e.g., .DS_Store on macOS).""" + return entry.is_file() and not entry.name.startswith('.') + sorted_files = sorted( - (entry for entry in os.scandir(directory) if entry.is_file()), + (entry for entry in os.scandir(directory) if is_visible_file(entry)), key=lambda entry: -entry.stat().st_mtime ) return web.json_response([entry.name for entry in sorted_files], status=200) diff --git a/app/frontend_management.py b/app/frontend_management.py index cce0c117d..bdaa85812 100644 --- a/app/frontend_management.py +++ b/app/frontend_management.py @@ -10,7 +10,8 @@ import importlib from dataclasses import dataclass from functools import cached_property from pathlib import Path -from typing import TypedDict, Optional +from typing import Dict, TypedDict, Optional +from aiohttp import web from importlib.metadata import version import requests @@ -257,7 +258,54 @@ comfyui-frontend-package is not installed. sys.exit(-1) @classmethod - def templates_path(cls) -> str: + def template_asset_map(cls) -> Optional[Dict[str, str]]: + """Return a mapping of template asset names to their absolute paths.""" + try: + from comfyui_workflow_templates import ( + get_asset_path, + iter_templates, + ) + except ImportError: + logging.error( + f""" +********** ERROR *********** + +comfyui-workflow-templates is not installed. + +{frontend_install_warning_message()} + +********** ERROR *********** +""".strip() + ) + return None + + try: + template_entries = list(iter_templates()) + except Exception as exc: + logging.error(f"Failed to enumerate workflow templates: {exc}") + return None + + asset_map: Dict[str, str] = {} + try: + for entry in template_entries: + for asset in entry.assets: + asset_map[asset.filename] = get_asset_path( + entry.template_id, asset.filename + ) + except Exception as exc: + logging.error(f"Failed to resolve template asset paths: {exc}") + return None + + if not asset_map: + logging.error("No workflow template assets found. Did the packages install correctly?") + return None + + return asset_map + + + @classmethod + def legacy_templates_path(cls) -> Optional[str]: + """Return the legacy templates directory shipped inside the meta package.""" try: import comfyui_workflow_templates @@ -276,6 +324,7 @@ comfyui-workflow-templates is not installed. ********** ERROR *********** """.strip() ) + return None @classmethod def embedded_docs_path(cls) -> str: @@ -392,3 +441,17 @@ comfyui-workflow-templates is not installed. logging.info("Falling back to the default frontend.") check_frontend_version() return cls.default_frontend_path() + @classmethod + def template_asset_handler(cls): + assets = cls.template_asset_map() + if not assets: + return None + + async def serve_template(request: web.Request) -> web.StreamResponse: + rel_path = request.match_info.get("path", "") + target = assets.get(rel_path) + if target is None: + raise web.HTTPNotFound() + return web.FileResponse(target) + + return serve_template diff --git a/app/subgraph_manager.py b/app/subgraph_manager.py new file mode 100644 index 000000000..dbe404541 --- /dev/null +++ b/app/subgraph_manager.py @@ -0,0 +1,112 @@ +from __future__ import annotations + +from typing import TypedDict +import os +import folder_paths +import glob +from aiohttp import web +import hashlib + + +class Source: + custom_node = "custom_node" + +class SubgraphEntry(TypedDict): + source: str + """ + Source of subgraph - custom_nodes vs templates. + """ + path: str + """ + Relative path of the subgraph file. + For custom nodes, will be the relative directory like /subgraphs/.json + """ + name: str + """ + Name of subgraph file. + """ + info: CustomNodeSubgraphEntryInfo + """ + Additional info about subgraph; in the case of custom_nodes, will contain nodepack name + """ + data: str + +class CustomNodeSubgraphEntryInfo(TypedDict): + node_pack: str + """Node pack name.""" + +class SubgraphManager: + def __init__(self): + self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None + + async def load_entry_data(self, entry: SubgraphEntry): + with open(entry['path'], 'r') as f: + entry['data'] = f.read() + return entry + + async def sanitize_entry(self, entry: SubgraphEntry | None, remove_data=False) -> SubgraphEntry | None: + if entry is None: + return None + entry = entry.copy() + entry.pop('path', None) + if remove_data: + entry.pop('data', None) + return entry + + async def sanitize_entries(self, entries: dict[str, SubgraphEntry], remove_data=False) -> dict[str, SubgraphEntry]: + entries = entries.copy() + for key in list(entries.keys()): + entries[key] = await self.sanitize_entry(entries[key], remove_data) + return entries + + async def get_custom_node_subgraphs(self, loadedModules, force_reload=False): + # if not forced to reload and cached, return cache + if not force_reload and self.cached_custom_node_subgraphs is not None: + return self.cached_custom_node_subgraphs + # Load subgraphs from custom nodes + subfolder = "subgraphs" + subgraphs_dict: dict[SubgraphEntry] = {} + + for folder in folder_paths.get_folder_paths("custom_nodes"): + pattern = os.path.join(folder, f"*/{subfolder}/*.json") + matched_files = glob.glob(pattern) + for file in matched_files: + # replace backslashes with forward slashes + file = file.replace('\\', '/') + info: CustomNodeSubgraphEntryInfo = { + "node_pack": "custom_nodes." + file.split('/')[-3] + } + source = Source.custom_node + # hash source + path to make sure id will be as unique as possible, but + # reproducible across backend reloads + id = hashlib.sha256(f"{source}{file}".encode()).hexdigest() + entry: SubgraphEntry = { + "source": Source.custom_node, + "name": os.path.splitext(os.path.basename(file))[0], + "path": file, + "info": info, + } + subgraphs_dict[id] = entry + self.cached_custom_node_subgraphs = subgraphs_dict + return subgraphs_dict + + async def get_custom_node_subgraph(self, id: str, loadedModules): + subgraphs = await self.get_custom_node_subgraphs(loadedModules) + entry: SubgraphEntry = subgraphs.get(id, None) + if entry is not None and entry.get('data', None) is None: + await self.load_entry_data(entry) + return entry + + def add_routes(self, routes, loadedModules): + @routes.get("/global_subgraphs") + async def get_global_subgraphs(request): + subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules) + # NOTE: we may want to include other sources of global subgraphs such as templates in the future; + # that's the reasoning for the current implementation + return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True)) + + @routes.get("/global_subgraphs/{id}") + async def get_global_subgraph(request): + id = request.match_info.get("id", None) + subgraph = await self.get_custom_node_subgraph(id, loadedModules) + return web.json_response(await self.sanitize_entry(subgraph)) diff --git a/app/user_manager.py b/app/user_manager.py index a2d376c0c..e2c00dab2 100644 --- a/app/user_manager.py +++ b/app/user_manager.py @@ -59,6 +59,9 @@ class UserManager(): user = "default" if args.multi_user and "comfy-user" in request.headers: user = request.headers["comfy-user"] + # Block System Users (use same error message to prevent probing) + if user.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise KeyError("Unknown user: " + user) if user not in self.users: raise KeyError("Unknown user: " + user) @@ -66,15 +69,16 @@ class UserManager(): return user def get_request_user_filepath(self, request, file, type="userdata", create_dir=True): - user_directory = folder_paths.get_user_directory() - if type == "userdata": - root_dir = user_directory + root_dir = folder_paths.get_user_directory() else: raise KeyError("Unknown filepath type:" + type) user = self.get_request_user_id(request) - path = user_root = os.path.abspath(os.path.join(root_dir, user)) + user_root = folder_paths.get_public_user_directory(user) + if user_root is None: + return None + path = user_root # prevent leaving /{type} if os.path.commonpath((root_dir, user_root)) != root_dir: @@ -101,7 +105,11 @@ class UserManager(): name = name.strip() if not name: raise ValueError("username not provided") + if name.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise ValueError("System User prefix not allowed") user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name) + if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise ValueError("System User prefix not allowed") user_id = user_id + "_" + str(uuid.uuid4()) self.users[user_id] = name @@ -132,7 +140,10 @@ class UserManager(): if username in self.users.values(): return web.json_response({"error": "Duplicate username."}, status=400) - user_id = self.add_user(username) + try: + user_id = self.add_user(username) + except ValueError as e: + return web.json_response({"error": str(e)}, status=400) return web.json_response(user_id) @routes.get("/userdata") @@ -424,7 +435,7 @@ class UserManager(): return source dest = get_user_data_path(request, check_exists=False, param="dest") - if not isinstance(source, str): + if not isinstance(dest, str): return dest overwrite = request.query.get("overwrite", 'true') != "false" diff --git a/comfy/cldm/cldm.py b/comfy/cldm/cldm.py index ec01665e2..c93c2e909 100644 --- a/comfy/cldm/cldm.py +++ b/comfy/cldm/cldm.py @@ -413,7 +413,8 @@ class ControlNet(nn.Module): out_middle = [] if self.num_classes is not None: - assert y.shape[0] == x.shape[0] + if y is None: + raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?") emb = emb + self.label_emb(y) h = x diff --git a/comfy/cli_args.py b/comfy/cli_args.py index cc1f12482..dae9a895d 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -97,6 +97,13 @@ class LatentPreviewMethod(enum.Enum): Latent2RGB = "latent2rgb" TAESD = "taesd" + @classmethod + def from_string(cls, value: str): + for member in cls: + if member.value == value: + return member + return None + parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction) parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.") @@ -105,6 +112,7 @@ cache_group = parser.add_mutually_exclusive_group() cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.") cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.") cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.") +cache_group.add_argument("--cache-ram", nargs='?', const=4.0, type=float, default=0, help="Use RAM pressure caching with the specified headroom threshold. If available RAM drops below the threhold the cache remove large items to free RAM. Default 4GB") attn_group = parser.add_mutually_exclusive_group() attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") @@ -120,6 +128,12 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.") +parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.") +manager_group = parser.add_mutually_exclusive_group() +manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.") +manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager") + + vram_group = parser.add_mutually_exclusive_group() vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") @@ -130,7 +144,8 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.") -parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.") +parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.") +parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.") parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.") @@ -145,7 +160,9 @@ class PerformanceFeature(enum.Enum): CublasOps = "cublas_ops" AutoTune = "autotune" -parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature)))) +parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature)))) + +parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.") parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.") parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.") @@ -157,13 +174,14 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.") parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.") parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.") -parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.") +parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.") parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.") parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level') parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).") + # The default built-in provider hosted under web/ DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest" diff --git a/comfy/clip_model.py b/comfy/clip_model.py index 7c0cadab5..e88872728 100644 --- a/comfy/clip_model.py +++ b/comfy/clip_model.py @@ -2,6 +2,25 @@ import torch from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.ops +def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): + image = image[:, :, :, :3] if image.shape[3] > 3 else image + mean = torch.tensor(mean, device=image.device, dtype=image.dtype) + std = torch.tensor(std, device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + if not (image.shape[2] == size and image.shape[3] == size): + if crop: + scale = (size / min(image.shape[2], image.shape[3])) + scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) + else: + scale_size = (size, size) + + image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) + class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): super().__init__() diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 447b1ce4a..d5fc53497 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -1,6 +1,5 @@ from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace import os -import torch import json import logging @@ -17,24 +16,7 @@ class Output: def __setitem__(self, key, item): setattr(self, key, item) -def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): - image = image[:, :, :, :3] if image.shape[3] > 3 else image - mean = torch.tensor(mean, device=image.device, dtype=image.dtype) - std = torch.tensor(std, device=image.device, dtype=image.dtype) - image = image.movedim(-1, 1) - if not (image.shape[2] == size and image.shape[3] == size): - if crop: - scale = (size / min(image.shape[2], image.shape[3])) - scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) - else: - scale_size = (size, size) - - image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) - h = (image.shape[2] - size)//2 - w = (image.shape[3] - size)//2 - image = image[:,:,h:h+size,w:w+size] - image = torch.clip((255. * image), 0, 255).round() / 255.0 - return (image - mean.view([3,1,1])) / std.view([3,1,1]) +clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually IMAGE_ENCODERS = { "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection, @@ -73,7 +55,7 @@ class ClipVisionModel(): def encode_image(self, image, crop=True): comfy.model_management.load_model_gpu(self.patcher) - pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() + pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2) outputs = Output() diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 041f380f9..2f82d51da 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -51,32 +51,43 @@ class ContextHandlerABC(ABC): class IndexListContextWindow(ContextWindowABC): - def __init__(self, index_list: list[int], dim: int=0): + def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0): self.index_list = index_list self.context_length = len(index_list) self.dim = dim + self.total_frames = total_frames + self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames) - def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor: + def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor: if dim is None: dim = self.dim if dim == 0 and full.shape[dim] == 1: return full - idx = [slice(None)] * dim + [self.index_list] - return full[idx].to(device) + idx = tuple([slice(None)] * dim + [self.index_list]) + window = full[idx] + if retain_index_list: + idx = tuple([slice(None)] * dim + [retain_index_list]) + window[idx] = full[idx] + return window.to(device) def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor: if dim is None: dim = self.dim - idx = [slice(None)] * dim + [self.index_list] + idx = tuple([slice(None)] * dim + [self.index_list]) full[idx] += to_add return full + def get_region_index(self, num_regions: int) -> int: + region_idx = int(self.center_ratio * num_regions) + return min(max(region_idx, 0), num_regions - 1) + class IndexListCallbacks: EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows" COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results" EXECUTE_START = "execute_start" EXECUTE_CLEANUP = "execute_cleanup" + RESIZE_COND_ITEM = "resize_cond_item" def init_callbacks(self): return {} @@ -94,7 +105,8 @@ class ContextFuseMethod: ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window']) class IndexListContextHandler(ContextHandlerABC): - def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0): + def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, + closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False): self.context_schedule = context_schedule self.fuse_method = fuse_method self.context_length = context_length @@ -103,13 +115,18 @@ class IndexListContextHandler(ContextHandlerABC): self.closed_loop = closed_loop self.dim = dim self._step = 0 + self.freenoise = freenoise + self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else [] + self.split_conds_to_windows = split_conds_to_windows self.callbacks = {} def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool: # for now, assume first dim is batch - should have stored on BaseModel in actual implementation if x_in.size(self.dim) > self.context_length: - logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.") + logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.") + if self.cond_retain_index_list: + logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}") return True return False @@ -123,6 +140,11 @@ class IndexListContextHandler(ContextHandlerABC): return None # reuse or resize cond items to match context requirements resized_cond = [] + # if multiple conds, split based on primary region + if self.split_conds_to_windows and len(cond_in) > 1: + region = window.get_region_index(len(cond_in)) + logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}") + cond_in = [cond_in[region]] # cond object is a list containing a dict - outer list is irrelevant, so just loop through it for actual_cond in cond_in: resized_actual_cond = actual_cond.copy() @@ -145,13 +167,38 @@ class IndexListContextHandler(ContextHandlerABC): new_cond_item = cond_item.copy() # when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor) for cond_key, cond_value in new_cond_item.items(): + # Allow callbacks to handle custom conditioning items + handled = False + for callback in comfy.patcher_extension.get_all_callbacks( + IndexListCallbacks.RESIZE_COND_ITEM, self.callbacks + ): + result = callback(cond_key, cond_value, window, x_in, device, new_cond_item) + if result is not None: + new_cond_item[cond_key] = result + handled = True + break + if handled: + continue if isinstance(cond_value, torch.Tensor): - if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim): + if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \ + (cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)): new_cond_item[cond_key] = window.get_tensor(cond_value, device) + # Handle audio_embed (temporal dim is 1) + elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + audio_cond = cond_value.cond + if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim): + new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1)) + # Handle vace_context (temporal dim is 3) + elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + vace_cond = cond_value.cond + if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim): + sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list) + new_cond_item[cond_key] = cond_value._copy_with(sliced_vace) # if has cond that is a Tensor, check if needs to be subset elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): - if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim): - new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device)) + if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \ + (cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)): + new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list)) elif cond_key == "num_video_frames": # for SVD new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond) new_cond_item[cond_key].cond = window.context_length @@ -164,7 +211,7 @@ class IndexListContextHandler(ContextHandlerABC): return resized_cond def set_step(self, timestep: torch.Tensor, model_options: dict[str]): - mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001) + mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001) matches = torch.nonzero(mask) if torch.numel(matches) == 0: raise Exception("No sample_sigmas matched current timestep; something went wrong.") @@ -173,7 +220,7 @@ class IndexListContextHandler(ContextHandlerABC): def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]: full_length = x_in.size(self.dim) # TODO: choose dim based on model context_windows = self.context_schedule.func(full_length, self, model_options) - context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows] + context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows] return context_windows def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]): @@ -250,8 +297,8 @@ class IndexListContextHandler(ContextHandlerABC): prev_weight = (bias_total / (bias_total + bias)) new_weight = (bias / (bias_total + bias)) # account for dims of tensors - idx_window = [slice(None)] * self.dim + [idx] - pos_window = [slice(None)] * self.dim + [pos] + idx_window = tuple([slice(None)] * self.dim + [idx]) + pos_window = tuple([slice(None)] * self.dim + [pos]) # apply new values conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight biases_final[i][idx] = bias_total + bias @@ -287,6 +334,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher): ) +def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs): + model_options = extra_args.get("model_options", None) + if model_options is None: + raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.") + handler: IndexListContextHandler = model_options.get("context_handler", None) + if handler is None: + raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.") + if not handler.freenoise: + return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs) + noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"]) + + return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs) + + +def create_sampler_sample_wrapper(model: ModelPatcher): + model.add_wrapper_with_key( + comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE, + "ContextWindows_sampler_sample", + _sampler_sample_wrapper + ) + + def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor: total_dims = len(x_in.shape) weights_tensor = torch.Tensor(weights).to(device=device) @@ -538,3 +607,29 @@ def shift_window_to_end(window: list[int], num_frames: int): for i in range(len(window)): # 2) add end_delta to each val to slide windows to end window[i] = window[i] + end_delta + + +# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465 +def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int): + logging.info("Context windows: Applying FreeNoise") + generator = torch.Generator(device='cpu').manual_seed(seed) + latent_video_length = noise.shape[dim] + delta = context_length - context_overlap + + for start_idx in range(0, latent_video_length - context_length, delta): + place_idx = start_idx + context_length + + actual_delta = min(delta, latent_video_length - place_idx) + if actual_delta <= 0: + break + + list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx + + source_slice = [slice(None)] * noise.ndim + source_slice[dim] = list_idx + target_slice = [slice(None)] * noise.ndim + target_slice[dim] = slice(place_idx, place_idx + actual_delta) + + noise[tuple(target_slice)] = noise[tuple(source_slice)] + + return noise diff --git a/comfy/controlnet.py b/comfy/controlnet.py index f08ff4b36..0b5e30f52 100644 --- a/comfy/controlnet.py +++ b/comfy/controlnet.py @@ -310,11 +310,13 @@ class ControlLoraOps: self.bias = None def forward(self, input): - weight, bias = comfy.ops.cast_bias_weight(self, input) + weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True) if self.up is not None: - return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias) + x = torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias) else: - return torch.nn.functional.linear(input, weight, bias) + x = torch.nn.functional.linear(input, weight, bias) + comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream) + return x class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp): def __init__( @@ -350,12 +352,13 @@ class ControlLoraOps: def forward(self, input): - weight, bias = comfy.ops.cast_bias_weight(self, input) + weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True) if self.up is not None: - return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups) + x = torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups) else: - return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups) - + x = torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups) + comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream) + return x class ControlLora(ControlNet): def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 0e2cda291..0949dee44 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -74,6 +74,9 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.): def default_noise_sampler(x, seed=None): if seed is not None: + if x.device == torch.device("cpu"): + seed += 1 + generator = torch.Generator(device=x.device) generator.manual_seed(seed) else: @@ -1557,10 +1560,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None @torch.no_grad() -def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5): +def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"): """SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2. arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023) """ + if solver_type not in {"phi_1", "phi_2"}: + raise ValueError("solver_type must be 'phi_1' or 'phi_2'") + extra_args = {} if extra_args is None else extra_args seed = extra_args.get("seed", None) noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler @@ -1600,8 +1606,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args) # Step 2 - denoised_d = torch.lerp(denoised, denoised_2, fac) - x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d + if solver_type == "phi_1": + denoised_d = torch.lerp(denoised, denoised_2, fac) + x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d + elif solver_type == "phi_2": + b2 = ei_h_phi_2(-h_eta) / r + b1 = ei_h_phi_1(-h_eta) - b2 + x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2) + if inject_noise: segment_factor = (r - 1) * h * eta sde_noise = sde_noise * segment_factor.exp() @@ -1609,6 +1621,17 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non x = x + sde_noise * sigmas[i + 1] * s_noise return x +@torch.no_grad() +def sample_exp_heun_2_x0(model, x, sigmas, extra_args=None, callback=None, disable=None, solver_type="phi_2"): + """Deterministic exponential Heun second order method in data prediction (x0) and logSNR time.""" + return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None, r=1.0, solver_type=solver_type) + + +@torch.no_grad() +def sample_exp_heun_2_x0_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type="phi_2"): + """Stochastic exponential Heun second order method in data prediction (x0) and logSNR time.""" + return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=1.0, solver_type=solver_type) + @torch.no_grad() def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3): @@ -1756,7 +1779,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F # Predictor if sigmas[i + 1] == 0: # Denoising step - x = denoised + x_pred = denoised else: tau_t = tau_func(sigmas[i + 1]) curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1] @@ -1777,7 +1800,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F if tau_t > 0 and s_noise > 0: noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise x_pred = x_pred + noise - return x + return x_pred @torch.no_grad() diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 77e642a94..f1ca0151e 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -6,6 +6,7 @@ class LatentFormat: latent_dimensions = 2 latent_rgb_factors = None latent_rgb_factors_bias = None + latent_rgb_factors_reshape = None taesd_decoder_name = None def process_in(self, latent): @@ -178,6 +179,54 @@ class Flux(SD3): def process_out(self, latent): return (latent / self.scale_factor) + self.shift_factor +class Flux2(LatentFormat): + latent_channels = 128 + + def __init__(self): + self.latent_rgb_factors =[ + [0.0058, 0.0113, 0.0073], + [0.0495, 0.0443, 0.0836], + [-0.0099, 0.0096, 0.0644], + [0.2144, 0.3009, 0.3652], + [0.0166, -0.0039, -0.0054], + [0.0157, 0.0103, -0.0160], + [-0.0398, 0.0902, -0.0235], + [-0.0052, 0.0095, 0.0109], + [-0.3527, -0.2712, -0.1666], + [-0.0301, -0.0356, -0.0180], + [-0.0107, 0.0078, 0.0013], + [0.0746, 0.0090, -0.0941], + [0.0156, 0.0169, 0.0070], + [-0.0034, -0.0040, -0.0114], + [0.0032, 0.0181, 0.0080], + [-0.0939, -0.0008, 0.0186], + [0.0018, 0.0043, 0.0104], + [0.0284, 0.0056, -0.0127], + [-0.0024, -0.0022, -0.0030], + [0.1207, -0.0026, 0.0065], + [0.0128, 0.0101, 0.0142], + [0.0137, -0.0072, -0.0007], + [0.0095, 0.0092, -0.0059], + [0.0000, -0.0077, -0.0049], + [-0.0465, -0.0204, -0.0312], + [0.0095, 0.0012, -0.0066], + [0.0290, -0.0034, 0.0025], + [0.0220, 0.0169, -0.0048], + [-0.0332, -0.0457, -0.0468], + [-0.0085, 0.0389, 0.0609], + [-0.0076, 0.0003, -0.0043], + [-0.0111, -0.0460, -0.0614], + ] + + self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851] + self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2) + + def process_in(self, latent): + return latent + + def process_out(self, latent): + return latent + class Mochi(LatentFormat): latent_channels = 12 latent_dimensions = 3 @@ -382,6 +431,7 @@ class HunyuanVideo(LatentFormat): ] latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761] + taesd_decoder_name = "taehv" class Cosmos1CV8x8x8(LatentFormat): latent_channels = 16 @@ -445,7 +495,7 @@ class Wan21(LatentFormat): ]).view(1, self.latent_channels, 1, 1, 1) - self.taesd_decoder_name = None #TODO + self.taesd_decoder_name = "lighttaew2_1" def process_in(self, latent): latents_mean = self.latents_mean.to(latent.device, latent.dtype) @@ -516,6 +566,7 @@ class Wan22(Wan21): def __init__(self): self.scale_factor = 1.0 + self.taesd_decoder_name = "lighttaew2_2" self.latents_mean = torch.tensor([ -0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557, -0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825, @@ -611,6 +662,67 @@ class HunyuanImage21Refiner(LatentFormat): latent_dimensions = 3 scale_factor = 1.03682 + def process_in(self, latent): + out = latent * self.scale_factor + out = torch.cat((out[:, :, :1], out), dim=2) + out = out.permute(0, 2, 1, 3, 4) + b, f_times_2, c, h, w = out.shape + out = out.reshape(b, f_times_2 // 2, 2 * c, h, w) + out = out.permute(0, 2, 1, 3, 4).contiguous() + return out + + def process_out(self, latent): + z = latent / self.scale_factor + z = z.permute(0, 2, 1, 3, 4) + b, f, c, h, w = z.shape + z = z.reshape(b, f, 2, c // 2, h, w) + z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w) + z = z.permute(0, 2, 1, 3, 4) + z = z[:, :, 1:] + return z + +class HunyuanVideo15(LatentFormat): + latent_rgb_factors = [ + [ 0.0568, -0.0521, -0.0131], + [ 0.0014, 0.0735, 0.0326], + [ 0.0186, 0.0531, -0.0138], + [-0.0031, 0.0051, 0.0288], + [ 0.0110, 0.0556, 0.0432], + [-0.0041, -0.0023, -0.0485], + [ 0.0530, 0.0413, 0.0253], + [ 0.0283, 0.0251, 0.0339], + [ 0.0277, -0.0372, -0.0093], + [ 0.0393, 0.0944, 0.1131], + [ 0.0020, 0.0251, 0.0037], + [-0.0017, 0.0012, 0.0234], + [ 0.0468, 0.0436, 0.0203], + [ 0.0354, 0.0439, -0.0233], + [ 0.0090, 0.0123, 0.0346], + [ 0.0382, 0.0029, 0.0217], + [ 0.0261, -0.0300, 0.0030], + [-0.0088, -0.0220, -0.0283], + [-0.0272, -0.0121, -0.0363], + [-0.0664, -0.0622, 0.0144], + [ 0.0414, 0.0479, 0.0529], + [ 0.0355, 0.0612, -0.0247], + [ 0.0147, 0.0264, 0.0174], + [ 0.0438, 0.0038, 0.0542], + [ 0.0431, -0.0573, -0.0033], + [-0.0162, -0.0211, -0.0406], + [-0.0487, -0.0295, -0.0393], + [ 0.0005, -0.0109, 0.0253], + [ 0.0296, 0.0591, 0.0353], + [ 0.0119, 0.0181, -0.0306], + [-0.0085, -0.0362, 0.0229], + [ 0.0005, -0.0106, 0.0242] + ] + + latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644] + latent_channels = 32 + latent_dimensions = 3 + scale_factor = 1.03682 + taesd_decoder_name = "lighttaehy1_5" + class Hunyuan3Dv2(LatentFormat): latent_channels = 64 latent_dimensions = 1 diff --git a/comfy/ldm/ace/vae/music_dcae_pipeline.py b/comfy/ldm/ace/vae/music_dcae_pipeline.py index af81280eb..3c8830c17 100644 --- a/comfy/ldm/ace/vae/music_dcae_pipeline.py +++ b/comfy/ldm/ace/vae/music_dcae_pipeline.py @@ -23,8 +23,6 @@ class MusicDCAE(torch.nn.Module): else: self.source_sample_rate = source_sample_rate - # self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100) - self.transform = transforms.Compose([ transforms.Normalize(0.5, 0.5), ]) @@ -37,10 +35,6 @@ class MusicDCAE(torch.nn.Module): self.scale_factor = 0.1786 self.shift_factor = -1.9091 - def load_audio(self, audio_path): - audio, sr = torchaudio.load(audio_path) - return audio, sr - def forward_mel(self, audios): mels = [] for i in range(len(audios)): @@ -73,10 +67,8 @@ class MusicDCAE(torch.nn.Module): latent = self.dcae.encoder(mel.unsqueeze(0)) latents.append(latent) latents = torch.cat(latents, dim=0) - # latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long() latents = (latents - self.shift_factor) * self.scale_factor return latents - # return latents, latent_lengths @torch.no_grad() def decode(self, latents, audio_lengths=None, sr=None): @@ -91,9 +83,7 @@ class MusicDCAE(torch.nn.Module): wav = self.vocoder.decode(mels[0]).squeeze(1) if sr is not None: - # resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype) wav = torchaudio.functional.resample(wav, 44100, sr) - # wav = resampler(wav) else: sr = 44100 pred_wavs.append(wav) @@ -101,7 +91,6 @@ class MusicDCAE(torch.nn.Module): if audio_lengths is not None: pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)] return torch.stack(pred_wavs) - # return sr, pred_wavs def forward(self, audios, audio_lengths=None, sr=None): latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr) diff --git a/comfy/ldm/chroma/layers.py b/comfy/ldm/chroma/layers.py index fc7110cce..2d5684348 100644 --- a/comfy/ldm/chroma/layers.py +++ b/comfy/ldm/chroma/layers.py @@ -1,15 +1,15 @@ import torch from torch import Tensor, nn -from comfy.ldm.flux.math import attention from comfy.ldm.flux.layers import ( MLPEmbedder, RMSNorm, - QKNorm, - SelfAttention, ModulationOut, ) +# TODO: remove this in a few months +SingleStreamBlock = None +DoubleStreamBlock = None class ChromaModulationOut(ModulationOut): @@ -48,124 +48,6 @@ class Approximator(nn.Module): return x -class DoubleStreamBlock(nn.Module): - def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None): - super().__init__() - - mlp_hidden_dim = int(hidden_size * mlp_ratio) - self.num_heads = num_heads - self.hidden_size = hidden_size - self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) - - self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) - - self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) - - self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) - self.flipped_img_txt = flipped_img_txt - - def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}): - (img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec - - # prepare image for attention - img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img)) - img_qkv = self.img_attn.qkv(img_modulated) - img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) - img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) - - # prepare txt for attention - txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt)) - txt_qkv = self.txt_attn.qkv(txt_modulated) - txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) - txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) - - # run actual attention - attn = attention(torch.cat((txt_q, img_q), dim=2), - torch.cat((txt_k, img_k), dim=2), - torch.cat((txt_v, img_v), dim=2), - pe=pe, mask=attn_mask, transformer_options=transformer_options) - - txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] - - # calculate the img bloks - img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn)) - img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img)))) - - # calculate the txt bloks - txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn)) - txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt)))) - - if txt.dtype == torch.float16: - txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) - - return img, txt - - -class SingleStreamBlock(nn.Module): - """ - A DiT block with parallel linear layers as described in - https://arxiv.org/abs/2302.05442 and adapted modulation interface. - """ - - def __init__( - self, - hidden_size: int, - num_heads: int, - mlp_ratio: float = 4.0, - qk_scale: float = None, - dtype=None, - device=None, - operations=None - ): - super().__init__() - self.hidden_dim = hidden_size - self.num_heads = num_heads - head_dim = hidden_size // num_heads - self.scale = qk_scale or head_dim**-0.5 - - self.mlp_hidden_dim = int(hidden_size * mlp_ratio) - # qkv and mlp_in - self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) - # proj and mlp_out - self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) - - self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) - - self.hidden_size = hidden_size - self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - - self.mlp_act = nn.GELU(approximate="tanh") - - def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor: - mod = vec - x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x)) - qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) - - q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) - q, k = self.norm(q, k, v) - - # compute attention - attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) - # compute activation in mlp stream, cat again and run second linear layer - output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) - x.addcmul_(mod.gate, output) - if x.dtype == torch.float16: - x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) - return x - - class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): super().__init__() diff --git a/comfy/ldm/chroma/model.py b/comfy/ldm/chroma/model.py index ad1c523fe..2e8ef0687 100644 --- a/comfy/ldm/chroma/model.py +++ b/comfy/ldm/chroma/model.py @@ -11,12 +11,12 @@ import comfy.ldm.common_dit from comfy.ldm.flux.layers import ( EmbedND, timestep_embedding, + DoubleStreamBlock, + SingleStreamBlock, ) from .layers import ( - DoubleStreamBlock, LastLayer, - SingleStreamBlock, Approximator, ChromaModulationOut, ) @@ -40,7 +40,8 @@ class ChromaParams: out_dim: int hidden_dim: int n_layers: int - + txt_ids_dims: list + vec_in_dim: int @@ -90,6 +91,7 @@ class Chroma(nn.Module): self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, + modulation=False, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) @@ -98,7 +100,7 @@ class Chroma(nn.Module): self.single_blocks = nn.ModuleList( [ - SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations) for _ in range(params.depth_single_blocks) ] ) @@ -178,7 +180,10 @@ class Chroma(nn.Module): pe = self.pe_embedder(ids) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if i not in self.skip_mmdit: double_mod = ( self.get_modulations(mod_vectors, "double_img", idx=i), @@ -221,7 +226,10 @@ class Chroma(nn.Module): img = torch.cat((txt, img), 1) + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if i not in self.skip_dit: single_mod = self.get_modulations(mod_vectors, "single", idx=i) if ("single_block", i) in blocks_replace: diff --git a/comfy/ldm/chroma_radiance/model.py b/comfy/ldm/chroma_radiance/model.py index 47aa11b04..70d173889 100644 --- a/comfy/ldm/chroma_radiance/model.py +++ b/comfy/ldm/chroma_radiance/model.py @@ -10,12 +10,10 @@ from torch import Tensor, nn from einops import repeat import comfy.ldm.common_dit -from comfy.ldm.flux.layers import EmbedND +from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock from comfy.ldm.chroma.model import Chroma, ChromaParams from comfy.ldm.chroma.layers import ( - DoubleStreamBlock, - SingleStreamBlock, Approximator, ) from .layers import ( @@ -39,7 +37,7 @@ class ChromaRadianceParams(ChromaParams): nerf_final_head_type: str # None means use the same dtype as the model. nerf_embedder_dtype: Optional[torch.dtype] - + use_x0: bool class ChromaRadiance(Chroma): """ @@ -89,7 +87,6 @@ class ChromaRadiance(Chroma): dtype=dtype, device=device, operations=operations ) - self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( @@ -97,6 +94,7 @@ class ChromaRadiance(Chroma): self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, + modulation=False, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) @@ -109,6 +107,7 @@ class ChromaRadiance(Chroma): self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, + modulation=False, dtype=dtype, device=device, operations=operations, ) for _ in range(params.depth_single_blocks) @@ -160,6 +159,9 @@ class ChromaRadiance(Chroma): self.skip_dit = [] self.lite = False + if params.use_x0: + self.register_buffer("__x0__", torch.tensor([])) + @property def _nerf_final_layer(self) -> nn.Module: if self.params.nerf_final_head_type == "linear": @@ -189,15 +191,15 @@ class ChromaRadiance(Chroma): nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size) nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P] + # Reshape for per-patch processing + nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size) + nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2) + if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size: # Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than # the tile size. - img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params) + img_dct = self.forward_tiled_nerf(nerf_hidden, nerf_pixels, B, C, num_patches, patch_size, params) else: - # Reshape for per-patch processing - nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size) - nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2) - # Get DCT-encoded pixel embeddings [pixel-dct] img_dct = self.nerf_image_embedder(nerf_pixels) @@ -240,17 +242,8 @@ class ChromaRadiance(Chroma): end = min(i + tile_size, num_patches) # Slice the current tile from the input tensors - nerf_hidden_tile = nerf_hidden[:, i:end, :] - nerf_pixels_tile = nerf_pixels[:, i:end, :] - - # Get the actual number of patches in this tile (can be smaller for the last tile) - num_patches_tile = nerf_hidden_tile.shape[1] - - # Reshape the tile for per-patch processing - # [B, NumPatches_tile, D] -> [B * NumPatches_tile, D] - nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size) - # [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C] - nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2) + nerf_hidden_tile = nerf_hidden[i * batch:end * batch] + nerf_pixels_tile = nerf_pixels[i * batch:end * batch] # get DCT-encoded pixel embeddings [pixel-dct] img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile) @@ -286,6 +279,12 @@ class ChromaRadiance(Chroma): params_dict |= overrides return params.__class__(**params_dict) + def _apply_x0_residual(self, predicted, noisy, timesteps): + + # non zero during training to prevent 0 div + eps = 0.0 + return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps) + def _forward( self, x: Tensor, @@ -326,4 +325,11 @@ class ChromaRadiance(Chroma): transformer_options, attn_mask=kwargs.get("attention_mask", None), ) - return self.forward_nerf(img, img_out, params)[:, :, :h, :w] + + out = self.forward_nerf(img, img_out, params)[:, :, :h, :w] + + # If x0 variant → v-pred, just return this instead + if hasattr(self, "__x0__"): + out = self._apply_x0_residual(out, img, timestep) + return out + diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py index ef21b416b..60f2bdae2 100644 --- a/comfy/ldm/flux/layers.py +++ b/comfy/ldm/flux/layers.py @@ -48,15 +48,44 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10 return embedding class MLPEmbedder(nn.Module): - def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): + def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None): super().__init__() - self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device) + self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device) self.silu = nn.SiLU() - self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device) + self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) +class YakMLP(nn.Module): + def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None): + super().__init__() + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) + self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) + self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device) + self.act_fn = nn.SiLU() + + def forward(self, x: Tensor) -> Tensor: + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + +def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None): + if yak_mlp: + return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations) + if mlp_silu_act: + return nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), + SiLUActivation(), + operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), + ) + else: + return nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) class RMSNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): @@ -80,14 +109,14 @@ class QKNorm(torch.nn.Module): class SelfAttention(nn.Module): - def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): + def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) - self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) + self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device) @dataclass @@ -98,11 +127,11 @@ class ModulationOut: class Modulation(nn.Module): - def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): + def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 - self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) + self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device) def forward(self, vec: Tensor) -> tuple: if vec.ndim == 2: @@ -129,77 +158,107 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None): return tensor +class SiLUActivation(nn.Module): + def __init__(self): + super().__init__() + self.gate_fn = nn.SiLU() + + def forward(self, x: Tensor) -> Tensor: + x1, x2 = x.chunk(2, dim=-1) + return self.gate_fn(x1) * x2 + + class DoubleStreamBlock(nn.Module): - def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size - self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.modulation = modulation + + if self.modulation: + self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations) self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) - self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) + + if self.modulation: + self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations) self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + + self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) + self.flipped_img_txt = flipped_img_txt def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}): - img_mod1, img_mod2 = self.img_mod(vec) - txt_mod1, txt_mod2 = self.txt_mod(vec) + if self.modulation: + img_mod1, img_mod2 = self.img_mod(vec) + txt_mod1, txt_mod2 = self.txt_mod(vec) + else: + (img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec # prepare image for attention img_modulated = self.img_norm1(img) img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img) img_qkv = self.img_attn.qkv(img_modulated) + del img_modulated img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + del img_qkv img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt) txt_qkv = self.txt_attn.qkv(txt_modulated) + del txt_modulated txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + del txt_qkv txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) if self.flipped_img_txt: + q = torch.cat((img_q, txt_q), dim=2) + del img_q, txt_q + k = torch.cat((img_k, txt_k), dim=2) + del img_k, txt_k + v = torch.cat((img_v, txt_v), dim=2) + del img_v, txt_v # run actual attention - attn = attention(torch.cat((img_q, txt_q), dim=2), - torch.cat((img_k, txt_k), dim=2), - torch.cat((img_v, txt_v), dim=2), + attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) + del q, k, v img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:] else: + q = torch.cat((txt_q, img_q), dim=2) + del txt_q, img_q + k = torch.cat((txt_k, img_k), dim=2) + del txt_k, img_k + v = torch.cat((txt_v, img_v), dim=2) + del txt_v, img_v # run actual attention - attn = attention(torch.cat((txt_q, img_q), dim=2), - torch.cat((txt_k, img_k), dim=2), - torch.cat((txt_v, img_v), dim=2), + attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) + del q, k, v txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] # calculate the img bloks - img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img) - img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img) + img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img) + del img_attn + img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img) # calculate the txt bloks txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt) + del txt_attn txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt) if txt.dtype == torch.float16: @@ -220,6 +279,10 @@ class SingleStreamBlock(nn.Module): num_heads: int, mlp_ratio: float = 4.0, qk_scale: float = None, + modulation=True, + mlp_silu_act=False, + bias=True, + yak_mlp=False, dtype=None, device=None, operations=None @@ -231,30 +294,55 @@ class SingleStreamBlock(nn.Module): self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) + + self.mlp_hidden_dim_first = self.mlp_hidden_dim + self.yak_mlp = yak_mlp + if mlp_silu_act: + self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2) + self.mlp_act = SiLUActivation() + else: + self.mlp_act = nn.GELU(approximate="tanh") + + if self.yak_mlp: + self.mlp_hidden_dim_first *= 2 + self.mlp_act = nn.SiLU() + # qkv and mlp_in - self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) + self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device) # proj and mlp_out - self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) + self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.hidden_size = hidden_size self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.mlp_act = nn.GELU(approximate="tanh") - self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) + if modulation: + self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) + else: + self.modulation = None def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor: - mod, _ = self.modulation(vec) - qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) + if self.modulation: + mod, _ = self.modulation(vec) + else: + mod = vec + + qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1) q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + del qkv q, k = self.norm(q, k, v) # compute attention attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) + del q, k, v # compute activation in mlp stream, cat again and run second linear layer - output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) + if self.yak_mlp: + mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2] + else: + mlp = self.mlp_act(mlp) + output = self.linear2(torch.cat((attn, mlp), 2)) x += apply_mod(output, mod.gate, None, modulation_dims) if x.dtype == torch.float16: x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) @@ -262,11 +350,11 @@ class SingleStreamBlock(nn.Module): class LastLayer(nn.Module): - def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): + def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) - self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) + self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device) + self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device)) def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor: if vec.ndim == 2: diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 8deda0d4a..6a22df8bc 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -7,15 +7,8 @@ import comfy.model_management def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: - q_shape = q.shape - k_shape = k.shape - if pe is not None: - q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2) - k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2) - q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v) - k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v) - + q, k = apply_rope(q, k, pe) heads = q.shape[1] x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py index 14f90cea5..f40c2a7a9 100644 --- a/comfy/ldm/flux/model.py +++ b/comfy/ldm/flux/model.py @@ -15,6 +15,8 @@ from .layers import ( MLPEmbedder, SingleStreamBlock, timestep_embedding, + Modulation, + RMSNorm ) @dataclass @@ -33,6 +35,14 @@ class FluxParams: patch_size: int qkv_bias: bool guidance_embed: bool + txt_ids_dims: list + global_modulation: bool = False + mlp_silu_act: bool = False + ops_bias: bool = True + default_ref_method: str = "offset" + ref_index_scale: float = 1.0 + yak_mlp: bool = False + txt_norm: bool = False class Flux(nn.Module): @@ -58,13 +68,22 @@ class Flux(nn.Module): self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) - self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) - self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) - self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) + self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device) + self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) + if params.vec_in_dim is not None: + self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) + else: + self.vector_in = None + self.guidance_in = ( - MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() + MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() ) - self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) + self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device) + + if params.txt_norm: + self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations) + else: + self.txt_norm = None self.double_blocks = nn.ModuleList( [ @@ -73,6 +92,10 @@ class Flux(nn.Module): self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, + modulation=params.global_modulation is False, + mlp_silu_act=params.mlp_silu_act, + proj_bias=params.ops_bias, + yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) @@ -81,13 +104,30 @@ class Flux(nn.Module): self.single_blocks = nn.ModuleList( [ - SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations) for _ in range(params.depth_single_blocks) ] ) if final_layer: - self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) + self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) + + if params.global_modulation: + self.double_stream_modulation_img = Modulation( + self.hidden_size, + double=True, + bias=False, + dtype=dtype, device=device, operations=operations + ) + self.double_stream_modulation_txt = Modulation( + self.hidden_size, + double=True, + bias=False, + dtype=dtype, device=device, operations=operations + ) + self.single_stream_modulation = Modulation( + self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations + ) def forward_orig( self, @@ -103,9 +143,6 @@ class Flux(nn.Module): attn_mask: Tensor = None, ) -> Tensor: - if y is None: - y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) - patches = transformer_options.get("patches", {}) patches_replace = transformer_options.get("patches_replace", {}) if img.ndim != 3 or txt.ndim != 3: @@ -118,9 +155,19 @@ class Flux(nn.Module): if guidance is not None: vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) - vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) + if self.vector_in is not None: + if y is None: + y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) + vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) + + if self.txt_norm is not None: + txt = self.txt_norm(txt) txt = self.txt_in(txt) + vec_orig = vec + if self.params.global_modulation: + vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig)) + if "post_input" in patches: for p in patches["post_input"]: out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids}) @@ -136,7 +183,10 @@ class Flux(nn.Module): pe = None blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -177,7 +227,13 @@ class Flux(nn.Module): img = torch.cat((txt, img), 1) + if self.params.global_modulation: + vec, _ = self.single_stream_modulation(vec_orig) + + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if ("single_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -207,10 +263,10 @@ class Flux(nn.Module): img = img[:, txt.shape[1] :, ...] - img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) + img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels) return img - def process_img(self, x, index=0, h_offset=0, w_offset=0): + def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}): bs, c, h, w = x.shape patch_size = self.patch_size x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) @@ -222,10 +278,22 @@ class Flux(nn.Module): h_offset = ((h_offset + (patch_size // 2)) // patch_size) w_offset = ((w_offset + (patch_size // 2)) // patch_size) - img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) + steps_h = h_len + steps_w = w_len + + rope_options = transformer_options.get("rope_options", None) + if rope_options is not None: + h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0 + w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0 + + index += rope_options.get("shift_t", 0.0) + h_offset += rope_options.get("shift_y", 0.0) + w_offset += rope_options.get("shift_x", 0.0) + + img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32) img_ids[:, :, 0] = img_ids[:, :, 1] + index - img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) + img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1) + img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0) return img, repeat(img_ids, "h w c -> b (h w) c", b=bs) def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs): @@ -241,16 +309,16 @@ class Flux(nn.Module): h_len = ((h_orig + (patch_size // 2)) // patch_size) w_len = ((w_orig + (patch_size // 2)) // patch_size) - img, img_ids = self.process_img(x) + img, img_ids = self.process_img(x, transformer_options=transformer_options) img_tokens = img.shape[1] if ref_latents is not None: h = 0 w = 0 index = 0 - ref_latents_method = kwargs.get("ref_latents_method", "offset") + ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method) for ref in ref_latents: if ref_latents_method == "index": - index += 1 + index += self.params.ref_index_scale h_offset = 0 w_offset = 0 elif ref_latents_method == "uxo": @@ -274,7 +342,12 @@ class Flux(nn.Module): img = torch.cat([img, kontext], dim=1) img_ids = torch.cat([img_ids, kontext_ids], dim=1) - txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) + txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32) + + if len(self.params.txt_ids_dims) > 0: + for i in self.params.txt_ids_dims: + txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32) + out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) out = out[:, :img_tokens] - return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig] + return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig] diff --git a/comfy/ldm/hunyuan_video/model.py b/comfy/ldm/hunyuan_video/model.py index 5132e6c07..55ab550f8 100644 --- a/comfy/ldm/hunyuan_video/model.py +++ b/comfy/ldm/hunyuan_video/model.py @@ -6,7 +6,6 @@ import comfy.ldm.flux.layers import comfy.ldm.modules.diffusionmodules.mmdit from comfy.ldm.modules.attention import optimized_attention - from dataclasses import dataclass from einops import repeat @@ -42,6 +41,9 @@ class HunyuanVideoParams: guidance_embed: bool byt5: bool meanflow: bool + use_cond_type_embedding: bool + vision_in_dim: int + meanflow_sum: bool class SelfAttentionRef(nn.Module): @@ -157,7 +159,10 @@ class TokenRefiner(nn.Module): t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype)) # m = mask.float().unsqueeze(-1) # c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise - c = x.sum(dim=1) / x.shape[1] + if x.dtype == torch.float16: + c = x.float().sum(dim=1) / x.shape[1] + else: + c = x.sum(dim=1) / x.shape[1] c = t + self.c_embedder(c.to(x.dtype)) x = self.input_embedder(x) @@ -196,11 +201,15 @@ class HunyuanVideo(nn.Module): def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): super().__init__() self.dtype = dtype + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + params = HunyuanVideoParams(**kwargs) self.params = params self.patch_size = params.patch_size self.in_channels = params.in_channels self.out_channels = params.out_channels + self.use_cond_type_embedding = params.use_cond_type_embedding + self.vision_in_dim = params.vision_in_dim if params.hidden_size % params.num_heads != 0: raise ValueError( f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" @@ -266,6 +275,18 @@ class HunyuanVideo(nn.Module): if final_layer: self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations) + # HunyuanVideo 1.5 specific modules + if self.vision_in_dim is not None: + from comfy.ldm.wan.model import MLPProj + self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings) + else: + self.vision_in = None + if self.use_cond_type_embedding: + # 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature + self.cond_type_embedding = nn.Embedding(3, self.hidden_size) + else: + self.cond_type_embedding = None + def forward_orig( self, img: Tensor, @@ -276,6 +297,7 @@ class HunyuanVideo(nn.Module): timesteps: Tensor, y: Tensor = None, txt_byt5=None, + clip_fea=None, guidance: Tensor = None, guiding_frame_index=None, ref_latent=None, @@ -296,7 +318,7 @@ class HunyuanVideo(nn.Module): timesteps_r = transformer_options['sample_sigmas'][w[0] + 1] timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype) vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype)) - vec = (vec + vec_r) / 2 + vec = (vec + vec_r) if self.params.meanflow_sum else (vec + vec_r) / 2 if ref_latent is not None: ref_latent_ids = self.img_ids(ref_latent) @@ -331,12 +353,31 @@ class HunyuanVideo(nn.Module): txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options) + if self.cond_type_embedding is not None: + self.cond_type_embedding.to(txt.device) + cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long)) + txt = txt + cond_emb.to(txt.dtype) + if self.byt5_in is not None and txt_byt5 is not None: txt_byt5 = self.byt5_in(txt_byt5) + if self.cond_type_embedding is not None: + cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long)) + txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype) + txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5 + else: + txt = torch.cat((txt, txt_byt5), dim=1) txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype) - txt = torch.cat((txt, txt_byt5), dim=1) txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1) + if clip_fea is not None: + txt_vision_states = self.vision_in(clip_fea) + if self.cond_type_embedding is not None: + cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device)) + txt_vision_states = txt_vision_states + cond_emb + txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1) + extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype) + txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1) + ids = torch.cat((img_ids, txt_ids), dim=1) pe = self.pe_embedder(ids) @@ -349,7 +390,10 @@ class HunyuanVideo(nn.Module): attn_mask = None blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -371,7 +415,10 @@ class HunyuanVideo(nn.Module): img = torch.cat((img, txt), 1) + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if ("single_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -430,14 +477,14 @@ class HunyuanVideo(nn.Module): img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) return repeat(img_ids, "h w c -> b (h w) c", b=bs) - def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): + def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( self._forward, self, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) - ).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs) + ).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs) - def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): + def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): bs = x.shape[0] if len(self.patch_size) == 3: img_ids = self.img_ids(x) @@ -445,5 +492,5 @@ class HunyuanVideo(nn.Module): else: img_ids = self.img_ids_2d(x) txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype) - out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options) + out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options) return out diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py new file mode 100644 index 000000000..85f515f67 --- /dev/null +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -0,0 +1,121 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d +from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm +import model_management, model_patcher + +class SRResidualCausalBlock3D(nn.Module): + def __init__(self, channels: int): + super().__init__() + self.block = nn.Sequential( + VideoConv3d(channels, channels, kernel_size=3), + nn.SiLU(inplace=True), + VideoConv3d(channels, channels, kernel_size=3), + nn.SiLU(inplace=True), + VideoConv3d(channels, channels, kernel_size=3), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x + self.block(x) + +class SRModel3DV2(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + hidden_channels: int = 64, + num_blocks: int = 6, + global_residual: bool = False, + ): + super().__init__() + self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3) + self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)]) + self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3) + self.global_residual = bool(global_residual) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + residual = x + y = self.in_conv(x) + for blk in self.blocks: + y = blk(y) + y = self.out_conv(y) + if self.global_residual and (y.shape == residual.shape): + y = y + residual + return y + + +class Upsampler(nn.Module): + def __init__( + self, + z_channels: int, + out_channels: int, + block_out_channels: tuple[int, ...], + num_res_blocks: int = 2, + ): + super().__init__() + self.num_res_blocks = num_res_blocks + self.block_out_channels = block_out_channels + self.z_channels = z_channels + + ch = block_out_channels[0] + self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3) + + self.up = nn.ModuleList() + + for i, tgt in enumerate(block_out_channels): + stage = nn.Module() + stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + temb_channels=0, + conv_shortcut=False, + conv_op=VideoConv3d, norm_op=RMS_norm) + for j in range(num_res_blocks + 1)]) + ch = tgt + self.up.append(stage) + + self.norm_out = RMS_norm(ch) + self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3) + + def forward(self, z): + """ + Args: + z: (B, C, T, H, W) + target_shape: (H, W) + """ + # z to block_in + repeats = self.block_out_channels[0] // (self.z_channels) + x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1) + + # upsampling + for stage in self.up: + for blk in stage.block: + x = blk(x) + + out = self.conv_out(F.silu(self.norm_out(x))) + return out + +UPSAMPLERS = { + "720p": SRModel3DV2, + "1080p": Upsampler, +} + +class HunyuanVideo15SRModel(): + def __init__(self, model_type, config): + self.load_device = model_management.vae_device() + offload_device = model_management.vae_offload_device() + self.dtype = model_management.vae_dtype(self.load_device) + self.model_class = UPSAMPLERS.get(model_type) + self.model = self.model_class(**config).eval() + + self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + + def load_sd(self, sd): + return self.model.load_state_dict(sd, strict=True) + + def get_sd(self): + return self.model.state_dict() + + def resample_latent(self, latent): + model_management.load_model_gpu(self.patcher) + return self.model(latent.to(self.load_device)) diff --git a/comfy/ldm/hunyuan_video/vae_refiner.py b/comfy/ldm/hunyuan_video/vae_refiner.py index c2a0b507d..ddf77cd0e 100644 --- a/comfy/ldm/hunyuan_video/vae_refiner.py +++ b/comfy/ldm/hunyuan_video/vae_refiner.py @@ -1,11 +1,13 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize +from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed import comfy.ops import comfy.ldm.models.autoencoder +import comfy.model_management ops = comfy.ops.disable_weight_init + class RMS_norm(nn.Module): def __init__(self, dim): super().__init__() @@ -14,10 +16,10 @@ class RMS_norm(nn.Module): self.gamma = nn.Parameter(torch.empty(shape)) def forward(self, x): - return F.normalize(x, dim=1) * self.scale * self.gamma + return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) class DnSmpl(nn.Module): - def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d): + def __init__(self, ic, oc, tds, refiner_vae, op): super().__init__() fct = 2 * 2 * 2 if tds else 1 * 2 * 2 assert oc % fct == 0 @@ -27,11 +29,12 @@ class DnSmpl(nn.Module): self.tds = tds self.gs = fct * ic // oc - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): r1 = 2 if self.tds else 1 - h = self.conv(x) + h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) + + if self.tds and self.refiner_vae and conv_carry_in is None: - if self.tds and self.refiner_vae: hf = h[:, :, :1, :, :] b, c, f, ht, wd = hf.shape hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2) @@ -39,14 +42,7 @@ class DnSmpl(nn.Module): hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2) hf = torch.cat([hf, hf], dim=1) - hn = h[:, :, 1:, :, :] - b, c, frms, ht, wd = hn.shape - nf = frms // r1 - hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2) - hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6) - hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2) - - h = torch.cat([hf, hn], dim=2) + h = h[:, :, 1:, :, :] xf = x[:, :, :1, :, :] b, ci, f, ht, wd = xf.shape @@ -54,38 +50,36 @@ class DnSmpl(nn.Module): xf = xf.permute(0, 4, 6, 1, 2, 3, 5) xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2) B, C, T, H, W = xf.shape - xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2) + xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2) - xn = x[:, :, 1:, :, :] - b, ci, frms, ht, wd = xn.shape - nf = frms // r1 - xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2) - xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6) - xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2) - B, C, T, H, W = xn.shape - xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2) - sc = torch.cat([xf, xn], dim=2) - else: - b, c, frms, ht, wd = h.shape + x = x[:, :, 1:, :, :] - nf = frms // r1 - h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2) - h = h.permute(0, 3, 5, 7, 1, 2, 4, 6) - h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2) + if h.shape[2] == 0: + return hf + xf - b, ci, frms, ht, wd = x.shape - nf = frms // r1 - sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2) - sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6) - sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2) - B, C, T, H, W = sc.shape - sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2) + b, c, frms, ht, wd = h.shape + nf = frms // r1 + h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2) + h = h.permute(0, 3, 5, 7, 1, 2, 4, 6) + h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2) - return h + sc + b, ci, frms, ht, wd = x.shape + nf = frms // r1 + x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2) + x = x.permute(0, 3, 5, 7, 1, 2, 4, 6) + x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2) + B, C, T, H, W = x.shape + x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2) + + if self.tds and self.refiner_vae and conv_carry_in is None: + h = torch.cat([hf, h], dim=2) + x = torch.cat([xf, x], dim=2) + + return h + x class UpSmpl(nn.Module): - def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d): + def __init__(self, ic, oc, tus, refiner_vae, op): super().__init__() fct = 2 * 2 * 2 if tus else 1 * 2 * 2 self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1) @@ -94,11 +88,11 @@ class UpSmpl(nn.Module): self.tus = tus self.rp = fct * oc // ic - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): r1 = 2 if self.tus else 1 - h = self.conv(x) + h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) - if self.tus and self.refiner_vae: + if self.tus and self.refiner_vae and conv_carry_in is None: hf = h[:, :, :1, :, :] b, c, f, ht, wd = hf.shape nc = c // (2 * 2) @@ -107,14 +101,7 @@ class UpSmpl(nn.Module): hf = hf.reshape(b, nc, f, ht * 2, wd * 2) hf = hf[:, : hf.shape[1] // 2] - hn = h[:, :, 1:, :, :] - b, c, frms, ht, wd = hn.shape - nc = c // (r1 * 2 * 2) - hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd) - hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3) - hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2) - - h = torch.cat([hf, hn], dim=2) + h = h[:, :, 1:, :, :] xf = x[:, :, :1, :, :] b, ci, f, ht, wd = xf.shape @@ -125,29 +112,26 @@ class UpSmpl(nn.Module): xf = xf.permute(0, 3, 4, 5, 1, 6, 2) xf = xf.reshape(b, nc, f, ht * 2, wd * 2) - xn = x[:, :, 1:, :, :] - xn = xn.repeat_interleave(repeats=self.rp, dim=1) - b, c, frms, ht, wd = xn.shape - nc = c // (r1 * 2 * 2) - xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd) - xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3) - xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2) - sc = torch.cat([xf, xn], dim=2) - else: - b, c, frms, ht, wd = h.shape - nc = c // (r1 * 2 * 2) - h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd) - h = h.permute(0, 4, 5, 1, 6, 2, 7, 3) - h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2) + x = x[:, :, 1:, :, :] - sc = x.repeat_interleave(repeats=self.rp, dim=1) - b, c, frms, ht, wd = sc.shape - nc = c // (r1 * 2 * 2) - sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd) - sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3) - sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2) + b, c, frms, ht, wd = h.shape + nc = c // (r1 * 2 * 2) + h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd) + h = h.permute(0, 4, 5, 1, 6, 2, 7, 3) + h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2) - return h + sc + x = x.repeat_interleave(repeats=self.rp, dim=1) + b, c, frms, ht, wd = x.shape + nc = c // (r1 * 2 * 2) + x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd) + x = x.permute(0, 4, 5, 1, 6, 2, 7, 3) + x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2) + + if self.tus and self.refiner_vae and conv_carry_in is None: + h = torch.cat([hf, h], dim=2) + x = torch.cat([xf, x], dim=2) + + return h + x class Encoder(nn.Module): def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks, @@ -160,7 +144,7 @@ class Encoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = VideoConv3d + conv_op = CarriedConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -188,9 +172,9 @@ class Encoder(nn.Module): self.down.append(stage) self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.norm_out = norm_op(ch) self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1) @@ -201,31 +185,48 @@ class Encoder(nn.Module): if not self.refiner_vae and x.shape[2] == 1: x = x.expand(-1, -1, self.ffactor_temporal, -1, -1) - x = self.conv_in(x) + if self.refiner_vae: + xl = [x[:, :, :1, :, :]] + if x.shape[2] > self.ffactor_temporal: + xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2) + x = xl + else: + x = [x] + out = [] - for stage in self.down: - for blk in stage.block: - x = blk(x) - if hasattr(stage, 'downsample'): - x = stage.downsample(x) + conv_carry_in = None - x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x))) + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + + x1 = [ x1 ] + x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) + + for stage in self.down: + for blk in stage.block: + x1 = blk(x1, None, conv_carry_in, conv_carry_out) + if hasattr(stage, 'downsample'): + x1 = stage.downsample(x1, conv_carry_in, conv_carry_out) + + out.append(x1) + conv_carry_in = conv_carry_out + + out = torch_cat_if_needed(out, dim=2) + + x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out))) + del out b, c, t, h, w = x.shape grp = c // (self.z_channels << 1) skip = x.view(b, c // grp, grp, t, h, w).mean(2) - out = self.conv_out(F.silu(self.norm_out(x))) + skip + out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip if self.refiner_vae: out = self.regul(out)[0] - out = torch.cat((out[:, :, :1], out), dim=2) - out = out.permute(0, 2, 1, 3, 4) - b, f_times_2, c, h, w = out.shape - out = out.reshape(b, f_times_2 // 2, 2 * c, h, w) - out = out.permute(0, 2, 1, 3, 4).contiguous() - return out class Decoder(nn.Module): @@ -239,7 +240,7 @@ class Decoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = VideoConv3d + conv_op = CarriedConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -249,9 +250,9 @@ class Decoder(nn.Module): self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1) self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.up = nn.ModuleList() depth = (ffactor_spatial >> 1).bit_length() @@ -275,27 +276,38 @@ class Decoder(nn.Module): self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1) def forward(self, z): - if self.refiner_vae: - z = z.permute(0, 2, 1, 3, 4) - b, f, c, h, w = z.shape - z = z.reshape(b, f, 2, c // 2, h, w) - z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w) - z = z.permute(0, 2, 1, 3, 4) - z = z[:, :, 1:] - - x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1) + x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1) x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x))) - for stage in self.up: - for blk in stage.block: - x = blk(x) - if hasattr(stage, 'upsample'): - x = stage.upsample(x) + if self.refiner_vae: + x = torch.split(x, 2, dim=2) + else: + x = [ x ] + out = [] - out = self.conv_out(F.silu(self.norm_out(x))) + conv_carry_in = None + + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + for stage in self.up: + for blk in stage.block: + x1 = blk(x1, None, conv_carry_in, conv_carry_out) + if hasattr(stage, 'upsample'): + x1 = stage.upsample(x1, conv_carry_in, conv_carry_out) + + x1 = [ F.silu(self.norm_out(x1)) ] + x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out) + out.append(x1) + conv_carry_in = conv_carry_out + del x + + out = torch_cat_if_needed(out, dim=2) if not self.refiner_vae: if z.shape[-3] == 1: out = out[:, :, -1:] return out + diff --git a/comfy/ldm/kandinsky5/model.py b/comfy/ldm/kandinsky5/model.py new file mode 100644 index 000000000..1509de2f8 --- /dev/null +++ b/comfy/ldm/kandinsky5/model.py @@ -0,0 +1,413 @@ +import torch +from torch import nn +import math + +import comfy.ldm.common_dit +from comfy.ldm.modules.attention import optimized_attention +from comfy.ldm.flux.math import apply_rope1 +from comfy.ldm.flux.layers import EmbedND + +def attention(q, k, v, heads, transformer_options={}): + return optimized_attention( + q.transpose(1, 2), + k.transpose(1, 2), + v.transpose(1, 2), + heads=heads, + skip_reshape=True, + transformer_options=transformer_options + ) + +def apply_scale_shift_norm(norm, x, scale, shift): + return torch.addcmul(shift, norm(x), scale + 1.0) + +def apply_gate_sum(x, out, gate): + return torch.addcmul(x, gate, out) + +def get_shift_scale_gate(params): + shift, scale, gate = torch.chunk(params, 3, dim=-1) + return tuple(x.unsqueeze(1) for x in (shift, scale, gate)) + +def get_freqs(dim, max_period=10000.0): + return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim) + + +class TimeEmbeddings(nn.Module): + def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None): + super().__init__() + assert model_dim % 2 == 0 + self.model_dim = model_dim + self.max_period = max_period + self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False) + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.activation = nn.SiLU() + self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, timestep, dtype): + args = torch.outer(timestep, self.freqs.to(device=timestep.device)) + time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype) + time_embed = self.out_layer(self.activation(self.in_layer(time_embed))) + return time_embed + + +class TextEmbeddings(nn.Module): + def __init__(self, text_dim, model_dim, operation_settings=None): + super().__init__() + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, text_embed): + text_embed = self.in_layer(text_embed) + return self.norm(text_embed).type_as(text_embed) + + +class VisualEmbeddings(nn.Module): + def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None): + super().__init__() + self.patch_size = patch_size + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, x): + x = x.movedim(1, -1) # B C T H W -> B T H W C + B, T, H, W, dim = x.shape + pt, ph, pw = self.patch_size + + x = x.view( + B, + T // pt, pt, + H // ph, ph, + W // pw, pw, + dim, + ).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7) + + return self.in_layer(x) + + +class Modulation(nn.Module): + def __init__(self, time_dim, model_dim, num_params, operation_settings=None): + super().__init__() + self.activation = nn.SiLU() + self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, x): + return self.out_layer(self.activation(x)) + + +class SelfAttention(nn.Module): + def __init__(self, num_channels, head_dim, operation_settings=None): + super().__init__() + assert num_channels % head_dim == 0 + self.num_heads = num_channels // head_dim + self.head_dim = head_dim + + operations = operation_settings.get("operations") + self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.num_chunks = 2 + + def _compute_qk(self, x, freqs, proj_fn, norm_fn): + result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1) + return apply_rope1(norm_fn(result), freqs) + + def _forward(self, x, freqs, transformer_options={}): + q = self._compute_qk(x, freqs, self.to_query, self.query_norm) + k = self._compute_qk(x, freqs, self.to_key, self.key_norm) + v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1) + out = attention(q, k, v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + def _forward_chunked(self, x, freqs, transformer_options={}): + def process_chunks(proj_fn, norm_fn): + x_chunks = torch.chunk(x, self.num_chunks, dim=1) + freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1) + chunks = [] + for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks): + chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn)) + return torch.cat(chunks, dim=1) + + q = process_chunks(self.to_query, self.query_norm) + k = process_chunks(self.to_key, self.key_norm) + v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1) + out = attention(q, k, v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + def forward(self, x, freqs, transformer_options={}): + if x.shape[1] > 8192: + return self._forward_chunked(x, freqs, transformer_options=transformer_options) + else: + return self._forward(x, freqs, transformer_options=transformer_options) + + +class CrossAttention(SelfAttention): + def get_qkv(self, x, context): + q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1) + k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1) + v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1) + return q, k, v + + def forward(self, x, context, transformer_options={}): + q, k, v = self.get_qkv(x, context) + out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + +class FeedForward(nn.Module): + def __init__(self, dim, ff_dim, operation_settings=None): + super().__init__() + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.activation = nn.GELU() + self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.num_chunks = 4 + + def _forward(self, x): + return self.out_layer(self.activation(self.in_layer(x))) + + def _forward_chunked(self, x): + chunks = torch.chunk(x, self.num_chunks, dim=1) + output_chunks = [] + for chunk in chunks: + output_chunks.append(self._forward(chunk)) + return torch.cat(output_chunks, dim=1) + + def forward(self, x): + if x.shape[1] > 8192: + return self._forward_chunked(x) + else: + return self._forward(x) + + +class OutLayer(nn.Module): + def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None): + super().__init__() + self.patch_size = patch_size + self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings) + operations = operation_settings.get("operations") + self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, visual_embed, time_embed): + B, T, H, W, _ = visual_embed.shape + shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1) + scale = scale[:, None, None, None, :] + shift = shift[:, None, None, None, :] + visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift) + x = self.out_layer(visual_embed) + + out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2]) + x = x.view( + B, T, H, W, + out_dim, + self.patch_size[0], self.patch_size[1], self.patch_size[2] + ) + return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5) + + +class TransformerEncoderBlock(nn.Module): + def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None): + super().__init__() + self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings) + operations = operation_settings.get("operations") + + self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings) + + def forward(self, x, time_embed, freqs, transformer_options={}): + self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1) + shift, scale, gate = get_shift_scale_gate(self_attn_params) + out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift) + out = self.self_attention(out, freqs, transformer_options=transformer_options) + x = apply_gate_sum(x, out, gate) + + shift, scale, gate = get_shift_scale_gate(ff_params) + out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift) + out = self.feed_forward(out) + x = apply_gate_sum(x, out, gate) + return x + + +class TransformerDecoderBlock(nn.Module): + def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None): + super().__init__() + self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings) + + operations = operation_settings.get("operations") + self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings) + + def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}): + self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1) + # self attention + shift, scale, gate = get_shift_scale_gate(self_attn_params) + visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift) + visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + # cross attention + shift, scale, gate = get_shift_scale_gate(cross_attn_params) + visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift) + visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + # feed forward + shift, scale, gate = get_shift_scale_gate(ff_params) + visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift) + visual_out = self.feed_forward(visual_out) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + return visual_embed + + +class Kandinsky5(nn.Module): + def __init__( + self, + in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512, + model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32, + axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0), + dtype=None, device=None, operations=None, **kwargs + ): + super().__init__() + head_dim = sum(axes_dims) + self.rope_scale_factor = rope_scale_factor + self.in_visual_dim = in_visual_dim + self.model_dim = model_dim + self.patch_size = patch_size + self.visual_embed_dim = visual_embed_dim + self.dtype = dtype + self.device = device + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + + self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings) + self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings) + self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings) + self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings) + + self.text_transformer_blocks = nn.ModuleList( + [TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)] + ) + + self.visual_transformer_blocks = nn.ModuleList( + [TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)] + ) + + self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings) + + self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims) + self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim]) + + def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}): + steps = seq_len if steps is None else steps + seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype) + seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1) + freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2) + return freqs + + def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}): + + patch_size = self.patch_size + t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) + h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) + w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) + + if steps_t is None: + steps_t = t_len + if steps_h is None: + steps_h = h_len + if steps_w is None: + steps_w = w_len + + h_start = 0 + w_start = 0 + rope_options = transformer_options.get("rope_options", None) + if rope_options is not None: + t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0 + h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0 + w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0 + + t_start += rope_options.get("shift_t", 0.0) + h_start += rope_options.get("shift_y", 0.0) + w_start += rope_options.get("shift_x", 0.0) + else: + rope_scale_factor = self.rope_scale_factor + if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions + if h * w >= 14080: + rope_scale_factor = (1.0, 3.16, 3.16) + + t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0 + h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0 + w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0 + + img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype) + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1) + img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1) + img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1) + img_ids = img_ids.reshape(1, -1, img_ids.shape[-1]) + + freqs = self.rope_embedder_3d(img_ids).movedim(1, 2) + return freqs + + def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs): + patches_replace = transformer_options.get("patches_replace", {}) + context = self.text_embeddings(context) + time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y) + + for block in self.text_transformer_blocks: + context = block(context, time_embed, freqs_text, transformer_options=transformer_options) + + visual_embed = self.visual_embeddings(x) + visual_shape = visual_embed.shape[:-1] + visual_embed = visual_embed.flatten(1, -2) + + blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.visual_transformer_blocks) + transformer_options["block_type"] = "double" + for i, block in enumerate(self.visual_transformer_blocks): + transformer_options["block_index"] = i + if ("double_block", i) in blocks_replace: + def block_wrap(args): + return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options")) + visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"] + else: + visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options) + + visual_embed = visual_embed.reshape(*visual_shape, -1) + return self.out_layer(visual_embed, time_embed) + + def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + original_dims = x.ndim + if original_dims == 4: + x = x.unsqueeze(2) + bs, c, t_len, h, w = x.shape + x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) + + if time_dim_replace is not None: + time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size) + x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace + + freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options) + freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options) + + out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + if original_dims == 4: + out = out.squeeze(2) + return out + + def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + return comfy.patcher_extension.WrapperExecutor.new_class_executor( + self._forward, + self, + comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) + ).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs) diff --git a/comfy/ldm/lightricks/model.py b/comfy/ldm/lightricks/model.py index def365ba7..593f7940f 100644 --- a/comfy/ldm/lightricks/model.py +++ b/comfy/ldm/lightricks/model.py @@ -3,12 +3,11 @@ from torch import nn import comfy.patcher_extension import comfy.ldm.modules.attention import comfy.ldm.common_dit -from einops import rearrange import math from typing import Dict, Optional, Tuple from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords - +from comfy.ldm.flux.math import apply_rope1 def get_timestep_embedding( timesteps: torch.Tensor, @@ -238,20 +237,6 @@ class FeedForward(nn.Module): return self.net(x) -def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one - cos_freqs = freqs_cis[0] - sin_freqs = freqs_cis[1] - - t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) - t1, t2 = t_dup.unbind(dim=-1) - t_dup = torch.stack((-t2, t1), dim=-1) - input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") - - out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs - - return out - - class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None): super().__init__() @@ -281,8 +266,8 @@ class CrossAttention(nn.Module): k = self.k_norm(k) if pe is not None: - q = apply_rotary_emb(q, pe) - k = apply_rotary_emb(k, pe) + q = apply_rope1(q.unsqueeze(1), pe).squeeze(1) + k = apply_rope1(k.unsqueeze(1), pe).squeeze(1) if mask is None: out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options) @@ -306,12 +291,17 @@ class BasicTransformerBlock(nn.Module): def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2) - x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa + attn1_input = comfy.ldm.common_dit.rms_norm(x) + attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa) + attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options) + x.addcmul_(attn1_input, gate_msa) + del attn1_input x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options) - y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp - x += self.ff(y) * gate_mlp + y = comfy.ldm.common_dit.rms_norm(x) + y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp) + x.addcmul_(self.ff(y), gate_mlp) return x @@ -327,41 +317,35 @@ def get_fractional_positions(indices_grid, max_pos): def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]): - dtype = torch.float32 #self.dtype + dtype = torch.float32 + device = indices_grid.device + # Get fractional positions and compute frequency indices fractional_positions = get_fractional_positions(indices_grid, max_pos) + indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2 - start = 1 - end = theta - device = fractional_positions.device + # Compute frequencies and apply cos/sin + freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2) + cos_vals = freqs.cos().repeat_interleave(2, dim=-1) + sin_vals = freqs.sin().repeat_interleave(2, dim=-1) - indices = theta ** ( - torch.linspace( - math.log(start, theta), - math.log(end, theta), - dim // 6, - device=device, - dtype=dtype, - ) - ) - indices = indices.to(dtype=dtype) - - indices = indices * math.pi / 2 - - freqs = ( - (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) - .transpose(-1, -2) - .flatten(2) - ) - - cos_freq = freqs.cos().repeat_interleave(2, dim=-1) - sin_freq = freqs.sin().repeat_interleave(2, dim=-1) + # Pad if dim is not divisible by 6 if dim % 6 != 0: - cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) - sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) - cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) - sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) - return cos_freq.to(out_dtype), sin_freq.to(out_dtype) + padding_size = dim % 6 + cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1) + sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1) + + # Reshape and extract one value per pair (since repeat_interleave duplicates each value) + cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2] + sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2] + + # Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension + freqs_cis = torch.stack([ + torch.stack([cos_vals, -sin_vals], dim=-1), + torch.stack([sin_vals, cos_vals], dim=-1) + ], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2] + + return freqs_cis class LTXVModel(torch.nn.Module): @@ -501,7 +485,7 @@ class LTXVModel(torch.nn.Module): shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] x = self.norm_out(x) # Modulation - x = x * (1 + scale) + shift + x = torch.addcmul(x, x, scale).add_(shift) x = self.proj_out(x) x = self.patchifier.unpatchify( diff --git a/comfy/ldm/lumina/controlnet.py b/comfy/ldm/lumina/controlnet.py new file mode 100644 index 000000000..8e2de7977 --- /dev/null +++ b/comfy/ldm/lumina/controlnet.py @@ -0,0 +1,160 @@ +import torch +from torch import nn + +from .model import JointTransformerBlock + +class ZImageControlTransformerBlock(JointTransformerBlock): + def __init__( + self, + layer_id: int, + dim: int, + n_heads: int, + n_kv_heads: int, + multiple_of: int, + ffn_dim_multiplier: float, + norm_eps: float, + qk_norm: bool, + modulation=True, + block_id=0, + operation_settings=None, + ): + super().__init__(layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, modulation, z_image_modulation=True, operation_settings=operation_settings) + self.block_id = block_id + if block_id == 0: + self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, c, x, **kwargs): + if self.block_id == 0: + c = self.before_proj(c) + x + c = super().forward(c, **kwargs) + c_skip = self.after_proj(c) + return c_skip, c + +class ZImage_Control(torch.nn.Module): + def __init__( + self, + dim: int = 3840, + n_heads: int = 30, + n_kv_heads: int = 30, + multiple_of: int = 256, + ffn_dim_multiplier: float = (8.0 / 3.0), + norm_eps: float = 1e-5, + qk_norm: bool = True, + n_control_layers=6, + control_in_dim=16, + additional_in_dim=0, + broken=False, + refiner_control=False, + dtype=None, + device=None, + operations=None, + **kwargs + ): + super().__init__() + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + + self.broken = broken + self.additional_in_dim = additional_in_dim + self.control_in_dim = control_in_dim + n_refiner_layers = 2 + self.n_control_layers = n_control_layers + self.control_layers = nn.ModuleList( + [ + ZImageControlTransformerBlock( + i, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + block_id=i, + operation_settings=operation_settings, + ) + for i in range(self.n_control_layers) + ] + ) + + all_x_embedder = {} + patch_size = 2 + f_patch_size = 1 + x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * (self.control_in_dim + self.additional_in_dim), dim, bias=True, device=device, dtype=dtype) + all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder + + self.refiner_control = refiner_control + + self.control_all_x_embedder = nn.ModuleDict(all_x_embedder) + if self.refiner_control: + self.control_noise_refiner = nn.ModuleList( + [ + ZImageControlTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + block_id=layer_id, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) + else: + self.control_noise_refiner = nn.ModuleList( + [ + JointTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + modulation=True, + z_image_modulation=True, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) + + def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input): + patch_size = 2 + f_patch_size = 1 + pH = pW = patch_size + B, C, H, W = control_context.shape + control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) + + x_attn_mask = None + if not self.refiner_control: + for layer in self.control_noise_refiner: + control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input) + + return control_context + + def forward_noise_refiner_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input): + if self.refiner_control: + if self.broken: + if layer_id == 0: + return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) + if layer_id > 0: + out = None + for i in range(1, len(self.control_layers)): + o, control_context = self.control_layers[i](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) + if out is None: + out = o + + return (out, control_context) + else: + return self.control_noise_refiner[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) + else: + return (None, control_context) + + def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input): + return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index f87d98ac0..afbab2ac7 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -11,6 +11,7 @@ import comfy.ldm.common_dit from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder from comfy.ldm.modules.attention import optimized_attention_masked from comfy.ldm.flux.layers import EmbedND +from comfy.ldm.flux.math import apply_rope import comfy.patcher_extension @@ -21,6 +22,10 @@ def modulate(x, scale): # Core NextDiT Model # ############################################################################# +def clamp_fp16(x): + if x.dtype == torch.float16: + return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) + return x class JointAttention(nn.Module): """Multi-head attention module.""" @@ -31,6 +36,7 @@ class JointAttention(nn.Module): n_heads: int, n_kv_heads: Optional[int], qk_norm: bool, + out_bias: bool = False, operation_settings={}, ): """ @@ -59,7 +65,7 @@ class JointAttention(nn.Module): self.out = operation_settings.get("operations").Linear( n_heads * self.head_dim, dim, - bias=False, + bias=out_bias, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"), ) @@ -70,35 +76,6 @@ class JointAttention(nn.Module): else: self.q_norm = self.k_norm = nn.Identity() - @staticmethod - def apply_rotary_emb( - x_in: torch.Tensor, - freqs_cis: torch.Tensor, - ) -> torch.Tensor: - """ - Apply rotary embeddings to input tensors using the given frequency - tensor. - - This function applies rotary embeddings to the given query 'xq' and - key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The - input tensors are reshaped as complex numbers, and the frequency tensor - is reshaped for broadcasting compatibility. The resulting tensors - contain rotary embeddings and are returned as real tensors. - - Args: - x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings. - freqs_cis (torch.Tensor): Precomputed frequency tensor for complex - exponentials. - - Returns: - Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor - and key tensor with rotary embeddings. - """ - - t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2) - t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1] - return t_out.reshape(*x_in.shape) - def forward( self, x: torch.Tensor, @@ -134,8 +111,7 @@ class JointAttention(nn.Module): xq = self.q_norm(xq) xk = self.k_norm(xk) - xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis) - xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis) + xq, xk = apply_rope(xq, xk, freqs_cis) n_rep = self.n_local_heads // self.n_local_kv_heads if n_rep >= 1: @@ -197,7 +173,7 @@ class FeedForward(nn.Module): # @torch.compile def _forward_silu_gating(self, x1, x3): - return F.silu(x1) * x3 + return clamp_fp16(F.silu(x1) * x3) def forward(self, x): return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) @@ -215,6 +191,8 @@ class JointTransformerBlock(nn.Module): norm_eps: float, qk_norm: bool, modulation=True, + z_image_modulation=False, + attn_out_bias=False, operation_settings={}, ) -> None: """ @@ -235,10 +213,10 @@ class JointTransformerBlock(nn.Module): super().__init__() self.dim = dim self.head_dim = dim // n_heads - self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings) + self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, out_bias=attn_out_bias, operation_settings=operation_settings) self.feed_forward = FeedForward( dim=dim, - hidden_dim=4 * dim, + hidden_dim=dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, operation_settings=operation_settings, @@ -252,16 +230,27 @@ class JointTransformerBlock(nn.Module): self.modulation = modulation if modulation: - self.adaLN_modulation = nn.Sequential( - nn.SiLU(), - operation_settings.get("operations").Linear( - min(dim, 1024), - 4 * dim, - bias=True, - device=operation_settings.get("device"), - dtype=operation_settings.get("dtype"), - ), - ) + if z_image_modulation: + self.adaLN_modulation = nn.Sequential( + operation_settings.get("operations").Linear( + min(dim, 256), + 4 * dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + else: + self.adaLN_modulation = nn.Sequential( + nn.SiLU(), + operation_settings.get("operations").Linear( + min(dim, 1024), + 4 * dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) def forward( self, @@ -288,27 +277,27 @@ class JointTransformerBlock(nn.Module): scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( - self.attention( + clamp_fp16(self.attention( modulate(self.attention_norm1(x), scale_msa), x_mask, freqs_cis, transformer_options=transformer_options, - ) + )) ) x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( - self.feed_forward( + clamp_fp16(self.feed_forward( modulate(self.ffn_norm1(x), scale_mlp), - ) + )) ) else: assert adaln_input is None x = x + self.attention_norm2( - self.attention( + clamp_fp16(self.attention( self.attention_norm1(x), x_mask, freqs_cis, transformer_options=transformer_options, - ) + )) ) x = x + self.ffn_norm2( self.feed_forward( @@ -323,7 +312,7 @@ class FinalLayer(nn.Module): The final layer of NextDiT. """ - def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}): + def __init__(self, hidden_size, patch_size, out_channels, z_image_modulation=False, operation_settings={}): super().__init__() self.norm_final = operation_settings.get("operations").LayerNorm( hidden_size, @@ -340,10 +329,15 @@ class FinalLayer(nn.Module): dtype=operation_settings.get("dtype"), ) + if z_image_modulation: + min_mod = 256 + else: + min_mod = 1024 + self.adaLN_modulation = nn.Sequential( nn.SiLU(), operation_settings.get("operations").Linear( - min(hidden_size, 1024), + min(hidden_size, min_mod), hidden_size, bias=True, device=operation_settings.get("device"), @@ -373,12 +367,17 @@ class NextDiT(nn.Module): n_heads: int = 32, n_kv_heads: Optional[int] = None, multiple_of: int = 256, - ffn_dim_multiplier: Optional[float] = None, + ffn_dim_multiplier: float = 4.0, norm_eps: float = 1e-5, qk_norm: bool = False, cap_feat_dim: int = 5120, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512), + rope_theta=10000.0, + z_image_modulation=False, + time_scale=1.0, + pad_tokens_multiple=None, + clip_text_dim=None, image_model=None, device=None, dtype=None, @@ -390,6 +389,8 @@ class NextDiT(nn.Module): self.in_channels = in_channels self.out_channels = in_channels self.patch_size = patch_size + self.time_scale = time_scale + self.pad_tokens_multiple = pad_tokens_multiple self.x_embedder = operation_settings.get("operations").Linear( in_features=patch_size * patch_size * in_channels, @@ -411,6 +412,7 @@ class NextDiT(nn.Module): norm_eps, qk_norm, modulation=True, + z_image_modulation=z_image_modulation, operation_settings=operation_settings, ) for layer_id in range(n_refiner_layers) @@ -434,7 +436,7 @@ class NextDiT(nn.Module): ] ) - self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings) + self.t_embedder = TimestepEmbedder(min(dim, 1024), output_size=256 if z_image_modulation else None, **operation_settings) self.cap_embedder = nn.Sequential( operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear( @@ -446,6 +448,31 @@ class NextDiT(nn.Module): ), ) + self.clip_text_pooled_proj = None + + if clip_text_dim is not None: + self.clip_text_dim = clip_text_dim + self.clip_text_pooled_proj = nn.Sequential( + operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), + operation_settings.get("operations").Linear( + clip_text_dim, + clip_text_dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.time_text_embed = nn.Sequential( + nn.SiLU(), + operation_settings.get("operations").Linear( + min(dim, 1024) + clip_text_dim, + min(dim, 1024), + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.layers = nn.ModuleList( [ JointTransformerBlock( @@ -457,18 +484,25 @@ class NextDiT(nn.Module): ffn_dim_multiplier, norm_eps, qk_norm, + z_image_modulation=z_image_modulation, + attn_out_bias=False, operation_settings=operation_settings, ) for layer_id in range(n_layers) ] ) - self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) - self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings) + # This norm final is in the lumina 2.0 code but isn't actually used for anything. + # self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings) + + if self.pad_tokens_multiple is not None: + self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype)) + self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype)) assert (dim // n_heads) == sum(axes_dims) self.axes_dims = axes_dims self.axes_lens = axes_lens - self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims) + self.rope_embedder = EmbedND(dim=dim // n_heads, theta=rope_theta, axes_dim=axes_dims) self.dim = dim self.n_heads = n_heads @@ -503,96 +537,63 @@ class NextDiT(nn.Module): bsz = len(x) pH = pW = self.patch_size device = x[0].device - dtype = x[0].dtype + orig_x = x - if cap_mask is not None: - l_effective_cap_len = cap_mask.sum(dim=1).tolist() - else: - l_effective_cap_len = [num_tokens] * bsz + if self.pad_tokens_multiple is not None: + pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple + cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype, copy=True).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1) - if cap_mask is not None and not torch.is_floating_point(cap_mask): - cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max + cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device) + cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0 - img_sizes = [(img.size(1), img.size(2)) for img in x] - l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes] + B, C, H, W = x.shape + x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) - max_seq_len = max( - (cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len)) - ) - max_cap_len = max(l_effective_cap_len) - max_img_len = max(l_effective_img_len) + rope_options = transformer_options.get("rope_options", None) + h_scale = 1.0 + w_scale = 1.0 + h_start = 0 + w_start = 0 + if rope_options is not None: + h_scale = rope_options.get("scale_y", 1.0) + w_scale = rope_options.get("scale_x", 1.0) - position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device) + h_start = rope_options.get("shift_y", 0.0) + w_start = rope_options.get("shift_x", 0.0) - for i in range(bsz): - cap_len = l_effective_cap_len[i] - img_len = l_effective_img_len[i] - H, W = img_sizes[i] - H_tokens, W_tokens = H // pH, W // pW - assert H_tokens * W_tokens == img_len + H_tokens, W_tokens = H // pH, W // pW + x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device) + x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1 + x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten() + x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten() - position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device) - position_ids[i, cap_len:cap_len+img_len, 0] = cap_len - row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten() - col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten() - position_ids[i, cap_len:cap_len+img_len, 1] = row_ids - position_ids[i, cap_len:cap_len+img_len, 2] = col_ids + if self.pad_tokens_multiple is not None: + pad_extra = (-x.shape[1]) % self.pad_tokens_multiple + x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1) + x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra)) - freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype) + freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2) - # build freqs_cis for cap and image individually - cap_freqs_cis_shape = list(freqs_cis.shape) - # cap_freqs_cis_shape[1] = max_cap_len - cap_freqs_cis_shape[1] = cap_feats.shape[1] - cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) - - img_freqs_cis_shape = list(freqs_cis.shape) - img_freqs_cis_shape[1] = max_img_len - img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) - - for i in range(bsz): - cap_len = l_effective_cap_len[i] - img_len = l_effective_img_len[i] - cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len] - img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len] + patches = transformer_options.get("patches", {}) # refine context for layer in self.context_refiner: - cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options) + cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options) - # refine image - flat_x = [] - for i in range(bsz): - img = x[i] - C, H, W = img.size() - img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1) - flat_x.append(img) - x = flat_x - padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype) - padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device) - for i in range(bsz): - padded_img_embed[i, :l_effective_img_len[i]] = x[i] - padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max - - padded_img_embed = self.x_embedder(padded_img_embed) - padded_img_mask = padded_img_mask.unsqueeze(1) - for layer in self.noise_refiner: - padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options) - - if cap_mask is not None: - mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device) - mask[:, :max_cap_len] = cap_mask[:, :max_cap_len] - else: - mask = None - - padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype) - for i in range(bsz): - cap_len = l_effective_cap_len[i] - img_len = l_effective_img_len[i] - - padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len] - padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len] + padded_img_mask = None + x_input = x + for i, layer in enumerate(self.noise_refiner): + x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options) + if "noise_refiner" in patches: + for p in patches["noise_refiner"]: + out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": freqs_cis[:, cap_pos_ids.shape[1]:], "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"}) + if "img" in out: + x = out["img"] + padded_full_embed = torch.cat((cap_feats, x), dim=1) + mask = None + img_sizes = [(H, W)] * bsz + l_effective_cap_len = [cap_feats.shape[1]] * bsz return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs): @@ -603,7 +604,7 @@ class NextDiT(nn.Module): ).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs) # def forward(self, x, t, cap_feats, cap_mask): - def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs): + def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, transformer_options={}, **kwargs): t = 1.0 - timesteps cap_feats = context cap_mask = attention_mask @@ -615,21 +616,41 @@ class NextDiT(nn.Module): y: (N,) tensor of text tokens/features """ - t = self.t_embedder(t, dtype=x.dtype) # (N, D) + t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D) adaln_input = t cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute - transformer_options = kwargs.get("transformer_options", {}) + if self.clip_text_pooled_proj is not None: + pooled = kwargs.get("clip_text_pooled", None) + if pooled is not None: + pooled = self.clip_text_pooled_proj(pooled) + else: + pooled = torch.zeros((x.shape[0], self.clip_text_dim), device=x.device, dtype=x.dtype) + + adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1)) + + patches = transformer_options.get("patches", {}) x_is_tensor = isinstance(x, torch.Tensor) - x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) - freqs_cis = freqs_cis.to(x.device) + img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options) + freqs_cis = freqs_cis.to(img.device) - for layer in self.layers: - x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + transformer_options["total_blocks"] = len(self.layers) + transformer_options["block_type"] = "double" + img_input = img + for i, layer in enumerate(self.layers): + transformer_options["block_index"] = i + img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + if "double_block" in patches: + for p in patches["double_block"]: + out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options}) + if "img" in out: + img[:, cap_size[0]:] = out["img"] + if "txt" in out: + img[:, :cap_size[0]] = out["txt"] - x = self.final_layer(x, adaln_input) - x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w] + img = self.final_layer(img, adaln_input) + img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w] - return -x + return -img diff --git a/comfy/ldm/mmaudio/vae/__init__.py b/comfy/ldm/mmaudio/vae/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/comfy/ldm/mmaudio/vae/activations.py b/comfy/ldm/mmaudio/vae/activations.py new file mode 100644 index 000000000..db9192e3e --- /dev/null +++ b/comfy/ldm/mmaudio/vae/activations.py @@ -0,0 +1,120 @@ +# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license. +# LICENSE is in incl_licenses directory. + +import torch +from torch import nn, sin, pow +from torch.nn import Parameter +import comfy.model_management + +class Snake(nn.Module): + ''' + Implementation of a sine-based periodic activation function + Shape: + - Input: (B, C, T) + - Output: (B, C, T), same shape as the input + Parameters: + - alpha - trainable parameter + References: + - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: + https://arxiv.org/abs/2006.08195 + Examples: + >>> a1 = snake(256) + >>> x = torch.randn(256) + >>> x = a1(x) + ''' + def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False): + ''' + Initialization. + INPUT: + - in_features: shape of the input + - alpha: trainable parameter + alpha is initialized to 1 by default, higher values = higher-frequency. + alpha will be trained along with the rest of your model. + ''' + super(Snake, self).__init__() + self.in_features = in_features + + # initialize alpha + self.alpha_logscale = alpha_logscale + if self.alpha_logscale: + self.alpha = Parameter(torch.empty(in_features)) + else: + self.alpha = Parameter(torch.empty(in_features)) + + self.alpha.requires_grad = alpha_trainable + + self.no_div_by_zero = 0.000000001 + + def forward(self, x): + ''' + Forward pass of the function. + Applies the function to the input elementwise. + Snake ∶= x + 1/a * sin^2 (xa) + ''' + alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] + if self.alpha_logscale: + alpha = torch.exp(alpha) + x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2) + + return x + + +class SnakeBeta(nn.Module): + ''' + A modified Snake function which uses separate parameters for the magnitude of the periodic components + Shape: + - Input: (B, C, T) + - Output: (B, C, T), same shape as the input + Parameters: + - alpha - trainable parameter that controls frequency + - beta - trainable parameter that controls magnitude + References: + - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: + https://arxiv.org/abs/2006.08195 + Examples: + >>> a1 = snakebeta(256) + >>> x = torch.randn(256) + >>> x = a1(x) + ''' + def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False): + ''' + Initialization. + INPUT: + - in_features: shape of the input + - alpha - trainable parameter that controls frequency + - beta - trainable parameter that controls magnitude + alpha is initialized to 1 by default, higher values = higher-frequency. + beta is initialized to 1 by default, higher values = higher-magnitude. + alpha will be trained along with the rest of your model. + ''' + super(SnakeBeta, self).__init__() + self.in_features = in_features + + # initialize alpha + self.alpha_logscale = alpha_logscale + if self.alpha_logscale: + self.alpha = Parameter(torch.empty(in_features)) + self.beta = Parameter(torch.empty(in_features)) + else: + self.alpha = Parameter(torch.empty(in_features)) + self.beta = Parameter(torch.empty(in_features)) + + self.alpha.requires_grad = alpha_trainable + self.beta.requires_grad = alpha_trainable + + self.no_div_by_zero = 0.000000001 + + def forward(self, x): + ''' + Forward pass of the function. + Applies the function to the input elementwise. + SnakeBeta ∶= x + 1/b * sin^2 (xa) + ''' + alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] + beta = comfy.model_management.cast_to(self.beta, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) + if self.alpha_logscale: + alpha = torch.exp(alpha) + beta = torch.exp(beta) + x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) + + return x diff --git a/comfy/ldm/mmaudio/vae/alias_free_torch.py b/comfy/ldm/mmaudio/vae/alias_free_torch.py new file mode 100644 index 000000000..35c70b897 --- /dev/null +++ b/comfy/ldm/mmaudio/vae/alias_free_torch.py @@ -0,0 +1,157 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import math +import comfy.model_management + +if 'sinc' in dir(torch): + sinc = torch.sinc +else: + # This code is adopted from adefossez's julius.core.sinc under the MIT License + # https://adefossez.github.io/julius/julius/core.html + # LICENSE is in incl_licenses directory. + def sinc(x: torch.Tensor): + """ + Implementation of sinc, i.e. sin(pi * x) / (pi * x) + __Warning__: Different to julius.sinc, the input is multiplied by `pi`! + """ + return torch.where(x == 0, + torch.tensor(1., device=x.device, dtype=x.dtype), + torch.sin(math.pi * x) / math.pi / x) + + +# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License +# https://adefossez.github.io/julius/julius/lowpass.html +# LICENSE is in incl_licenses directory. +def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size] + even = (kernel_size % 2 == 0) + half_size = kernel_size // 2 + + #For kaiser window + delta_f = 4 * half_width + A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95 + if A > 50.: + beta = 0.1102 * (A - 8.7) + elif A >= 21.: + beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.) + else: + beta = 0. + window = torch.kaiser_window(kernel_size, beta=beta, periodic=False) + + # ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio + if even: + time = (torch.arange(-half_size, half_size) + 0.5) + else: + time = torch.arange(kernel_size) - half_size + if cutoff == 0: + filter_ = torch.zeros_like(time) + else: + filter_ = 2 * cutoff * window * sinc(2 * cutoff * time) + # Normalize filter to have sum = 1, otherwise we will have a small leakage + # of the constant component in the input signal. + filter_ /= filter_.sum() + filter = filter_.view(1, 1, kernel_size) + + return filter + + +class LowPassFilter1d(nn.Module): + def __init__(self, + cutoff=0.5, + half_width=0.6, + stride: int = 1, + padding: bool = True, + padding_mode: str = 'replicate', + kernel_size: int = 12): + # kernel_size should be even number for stylegan3 setup, + # in this implementation, odd number is also possible. + super().__init__() + if cutoff < -0.: + raise ValueError("Minimum cutoff must be larger than zero.") + if cutoff > 0.5: + raise ValueError("A cutoff above 0.5 does not make sense.") + self.kernel_size = kernel_size + self.even = (kernel_size % 2 == 0) + self.pad_left = kernel_size // 2 - int(self.even) + self.pad_right = kernel_size // 2 + self.stride = stride + self.padding = padding + self.padding_mode = padding_mode + filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size) + self.register_buffer("filter", filter) + + #input [B, C, T] + def forward(self, x): + _, C, _ = x.shape + + if self.padding: + x = F.pad(x, (self.pad_left, self.pad_right), + mode=self.padding_mode) + out = F.conv1d(x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device), + stride=self.stride, groups=C) + + return out + + +class UpSample1d(nn.Module): + def __init__(self, ratio=2, kernel_size=None): + super().__init__() + self.ratio = ratio + self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size + self.stride = ratio + self.pad = self.kernel_size // ratio - 1 + self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2 + self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2 + filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio, + half_width=0.6 / ratio, + kernel_size=self.kernel_size) + self.register_buffer("filter", filter) + + # x: [B, C, T] + def forward(self, x): + _, C, _ = x.shape + + x = F.pad(x, (self.pad, self.pad), mode='replicate') + x = self.ratio * F.conv_transpose1d( + x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device), stride=self.stride, groups=C) + x = x[..., self.pad_left:-self.pad_right] + + return x + + +class DownSample1d(nn.Module): + def __init__(self, ratio=2, kernel_size=None): + super().__init__() + self.ratio = ratio + self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size + self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio, + half_width=0.6 / ratio, + stride=ratio, + kernel_size=self.kernel_size) + + def forward(self, x): + xx = self.lowpass(x) + + return xx + +class Activation1d(nn.Module): + def __init__(self, + activation, + up_ratio: int = 2, + down_ratio: int = 2, + up_kernel_size: int = 12, + down_kernel_size: int = 12): + super().__init__() + self.up_ratio = up_ratio + self.down_ratio = down_ratio + self.act = activation + self.upsample = UpSample1d(up_ratio, up_kernel_size) + self.downsample = DownSample1d(down_ratio, down_kernel_size) + + # x: [B,C,T] + def forward(self, x): + x = self.upsample(x) + x = self.act(x) + x = self.downsample(x) + + return x diff --git a/comfy/ldm/mmaudio/vae/autoencoder.py b/comfy/ldm/mmaudio/vae/autoencoder.py new file mode 100644 index 000000000..cbb9de302 --- /dev/null +++ b/comfy/ldm/mmaudio/vae/autoencoder.py @@ -0,0 +1,156 @@ +from typing import Literal + +import torch +import torch.nn as nn + +from .distributions import DiagonalGaussianDistribution +from .vae import VAE_16k +from .bigvgan import BigVGANVocoder +import logging + +try: + import torchaudio +except: + logging.warning("torchaudio missing, MMAudio VAE model will be broken") + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, *, norm_fn): + return norm_fn(torch.clamp(x, min=clip_val) * C) + + +def spectral_normalize_torch(magnitudes, norm_fn): + output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) + return output + +class MelConverter(nn.Module): + + def __init__( + self, + *, + sampling_rate: float, + n_fft: int, + num_mels: int, + hop_size: int, + win_size: int, + fmin: float, + fmax: float, + norm_fn, + ): + super().__init__() + self.sampling_rate = sampling_rate + self.n_fft = n_fft + self.num_mels = num_mels + self.hop_size = hop_size + self.win_size = win_size + self.fmin = fmin + self.fmax = fmax + self.norm_fn = norm_fn + + # mel = librosa_mel_fn(sr=self.sampling_rate, + # n_fft=self.n_fft, + # n_mels=self.num_mels, + # fmin=self.fmin, + # fmax=self.fmax) + # mel_basis = torch.from_numpy(mel).float() + mel_basis = torch.empty((num_mels, 1 + n_fft // 2)) + hann_window = torch.hann_window(self.win_size) + + self.register_buffer('mel_basis', mel_basis) + self.register_buffer('hann_window', hann_window) + + @property + def device(self): + return self.mel_basis.device + + def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor: + waveform = waveform.clamp(min=-1., max=1.).to(self.device) + + waveform = torch.nn.functional.pad( + waveform.unsqueeze(1), + [int((self.n_fft - self.hop_size) / 2), + int((self.n_fft - self.hop_size) / 2)], + mode='reflect') + waveform = waveform.squeeze(1) + + spec = torch.stft(waveform, + self.n_fft, + hop_length=self.hop_size, + win_length=self.win_size, + window=self.hann_window, + center=center, + pad_mode='reflect', + normalized=False, + onesided=True, + return_complex=True) + + spec = torch.view_as_real(spec) + spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) + spec = torch.matmul(self.mel_basis, spec) + spec = spectral_normalize_torch(spec, self.norm_fn) + + return spec + +class AudioAutoencoder(nn.Module): + + def __init__( + self, + *, + # ckpt_path: str, + mode=Literal['16k', '44k'], + need_vae_encoder: bool = True, + ): + super().__init__() + + assert mode == "16k", "Only 16k mode is supported currently." + self.mel_converter = MelConverter(sampling_rate=16_000, + n_fft=1024, + num_mels=80, + hop_size=256, + win_size=1024, + fmin=0, + fmax=8_000, + norm_fn=torch.log10) + + self.vae = VAE_16k().eval() + + bigvgan_config = { + "resblock": "1", + "num_mels": 80, + "upsample_rates": [4, 4, 2, 2, 2, 2], + "upsample_kernel_sizes": [8, 8, 4, 4, 4, 4], + "upsample_initial_channel": 1536, + "resblock_kernel_sizes": [3, 7, 11], + "resblock_dilation_sizes": [ + [1, 3, 5], + [1, 3, 5], + [1, 3, 5], + ], + "activation": "snakebeta", + "snake_logscale": True, + } + + self.vocoder = BigVGANVocoder( + bigvgan_config + ).eval() + + @torch.inference_mode() + def encode_audio(self, x) -> DiagonalGaussianDistribution: + # x: (B * L) + mel = self.mel_converter(x) + dist = self.vae.encode(mel) + + return dist + + @torch.no_grad() + def decode(self, z): + mel_decoded = self.vae.decode(z) + audio = self.vocoder(mel_decoded) + + audio = torchaudio.functional.resample(audio, 16000, 44100) + return audio + + @torch.no_grad() + def encode(self, audio): + audio = audio.mean(dim=1) + audio = torchaudio.functional.resample(audio, 44100, 16000) + dist = self.encode_audio(audio) + return dist.mean diff --git a/comfy/ldm/mmaudio/vae/bigvgan.py b/comfy/ldm/mmaudio/vae/bigvgan.py new file mode 100644 index 000000000..3a24337f6 --- /dev/null +++ b/comfy/ldm/mmaudio/vae/bigvgan.py @@ -0,0 +1,219 @@ +# Copyright (c) 2022 NVIDIA CORPORATION. +# Licensed under the MIT license. + +# Adapted from https://github.com/jik876/hifi-gan under the MIT license. +# LICENSE is in incl_licenses directory. + +import torch +import torch.nn as nn +from types import SimpleNamespace +from . import activations +from .alias_free_torch import Activation1d +import comfy.ops +ops = comfy.ops.disable_weight_init + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + +class AMPBlock1(torch.nn.Module): + + def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): + super(AMPBlock1, self).__init__() + self.h = h + + self.convs1 = nn.ModuleList([ + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0])), + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1])), + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2])) + ]) + + self.convs2 = nn.ModuleList([ + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1)), + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1)), + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1)) + ]) + + self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers + + if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing + self.activations = nn.ModuleList([ + Activation1d( + activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) + for _ in range(self.num_layers) + ]) + elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing + self.activations = nn.ModuleList([ + Activation1d( + activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) + for _ in range(self.num_layers) + ]) + else: + raise NotImplementedError( + "activation incorrectly specified. check the config file and look for 'activation'." + ) + + def forward(self, x): + acts1, acts2 = self.activations[::2], self.activations[1::2] + for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): + xt = a1(x) + xt = c1(xt) + xt = a2(xt) + xt = c2(xt) + x = xt + x + + return x + + +class AMPBlock2(torch.nn.Module): + + def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): + super(AMPBlock2, self).__init__() + self.h = h + + self.convs = nn.ModuleList([ + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0])), + ops.Conv1d(channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1])) + ]) + + self.num_layers = len(self.convs) # total number of conv layers + + if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing + self.activations = nn.ModuleList([ + Activation1d( + activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) + for _ in range(self.num_layers) + ]) + elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing + self.activations = nn.ModuleList([ + Activation1d( + activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) + for _ in range(self.num_layers) + ]) + else: + raise NotImplementedError( + "activation incorrectly specified. check the config file and look for 'activation'." + ) + + def forward(self, x): + for c, a in zip(self.convs, self.activations): + xt = a(x) + xt = c(xt) + x = xt + x + + return x + + +class BigVGANVocoder(torch.nn.Module): + # this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks. + def __init__(self, h): + super().__init__() + if isinstance(h, dict): + h = SimpleNamespace(**h) + self.h = h + + self.num_kernels = len(h.resblock_kernel_sizes) + self.num_upsamples = len(h.upsample_rates) + + # pre conv + self.conv_pre = ops.Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3) + + # define which AMPBlock to use. BigVGAN uses AMPBlock1 as default + resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 + + # transposed conv-based upsamplers. does not apply anti-aliasing + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): + self.ups.append( + nn.ModuleList([ + ops.ConvTranspose1d(h.upsample_initial_channel // (2**i), + h.upsample_initial_channel // (2**(i + 1)), + k, + u, + padding=(k - u) // 2) + ])) + + # residual blocks using anti-aliased multi-periodicity composition modules (AMP) + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = h.upsample_initial_channel // (2**(i + 1)) + for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): + self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) + + # post conv + if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing + activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale) + self.activation_post = Activation1d(activation=activation_post) + elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing + activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) + self.activation_post = Activation1d(activation=activation_post) + else: + raise NotImplementedError( + "activation incorrectly specified. check the config file and look for 'activation'." + ) + + self.conv_post = ops.Conv1d(ch, 1, 7, 1, padding=3) + + + def forward(self, x): + # pre conv + x = self.conv_pre(x) + + for i in range(self.num_upsamples): + # upsampling + for i_up in range(len(self.ups[i])): + x = self.ups[i][i_up](x) + # AMP blocks + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + + # post conv + x = self.activation_post(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x diff --git a/comfy/ldm/mmaudio/vae/distributions.py b/comfy/ldm/mmaudio/vae/distributions.py new file mode 100644 index 000000000..df987c5ec --- /dev/null +++ b/comfy/ldm/mmaudio/vae/distributions.py @@ -0,0 +1,92 @@ +import torch +import numpy as np + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape, device=self.parameters.device) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.]) + else: + if other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + + self.var - 1.0 - self.logvar, + dim=[1, 2, 3]) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var - 1.0 - self.logvar + other.logvar, + dim=[1, 2, 3]) + + def nll(self, sample, dims=[1,2,3]): + if self.deterministic: + return torch.Tensor([0.]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/comfy/ldm/mmaudio/vae/vae.py b/comfy/ldm/mmaudio/vae/vae.py new file mode 100644 index 000000000..62f24606c --- /dev/null +++ b/comfy/ldm/mmaudio/vae/vae.py @@ -0,0 +1,358 @@ +import logging +from typing import Optional + +import torch +import torch.nn as nn + +from .vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D, + Upsample1D, nonlinearity) +from .distributions import DiagonalGaussianDistribution + +import comfy.ops +ops = comfy.ops.disable_weight_init + +log = logging.getLogger() + +DATA_MEAN_80D = [ + -1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927, + -1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728, + -1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131, + -1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280, + -1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643, + -1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436, + -2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282, + -2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673 +] + +DATA_STD_80D = [ + 1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263, + 0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194, + 0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043, + 0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973, + 0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939, + 0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604, + 1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070 +] + +DATA_MEAN_128D = [ + -3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597, + -2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033, + -2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157, + -3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782, + -3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647, + -3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795, + -3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121, + -4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960, + -4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712, + -5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120, + -6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663, + -7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628, + -9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861 +] + +DATA_STD_128D = [ + 2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659, + 2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557, + 2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182, + 2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991, + 2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900, + 2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817, + 2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609, + 2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812, + 2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451, + 2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877, + 2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164 +] + + +class VAE(nn.Module): + + def __init__( + self, + *, + data_dim: int, + embed_dim: int, + hidden_dim: int, + ): + super().__init__() + + if data_dim == 80: + self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32)) + self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32)) + elif data_dim == 128: + self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32)) + self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32)) + + self.data_mean = self.data_mean.view(1, -1, 1) + self.data_std = self.data_std.view(1, -1, 1) + + self.encoder = Encoder1D( + dim=hidden_dim, + ch_mult=(1, 2, 4), + num_res_blocks=2, + attn_layers=[3], + down_layers=[0], + in_dim=data_dim, + embed_dim=embed_dim, + ) + self.decoder = Decoder1D( + dim=hidden_dim, + ch_mult=(1, 2, 4), + num_res_blocks=2, + attn_layers=[3], + down_layers=[0], + in_dim=data_dim, + out_dim=data_dim, + embed_dim=embed_dim, + ) + + self.embed_dim = embed_dim + # self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1) + # self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1) + + self.initialize_weights() + + def initialize_weights(self): + pass + + def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution: + if normalize: + x = self.normalize(x) + moments = self.encoder(x) + posterior = DiagonalGaussianDistribution(moments) + return posterior + + def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor: + dec = self.decoder(z) + if unnormalize: + dec = self.unnormalize(dec) + return dec + + def normalize(self, x: torch.Tensor) -> torch.Tensor: + return (x - comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)) / comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device) + + def unnormalize(self, x: torch.Tensor) -> torch.Tensor: + return x * comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device) + comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device) + + def forward( + self, + x: torch.Tensor, + sample_posterior: bool = True, + rng: Optional[torch.Generator] = None, + normalize: bool = True, + unnormalize: bool = True, + ) -> tuple[torch.Tensor, DiagonalGaussianDistribution]: + + posterior = self.encode(x, normalize=normalize) + if sample_posterior: + z = posterior.sample(rng) + else: + z = posterior.mode() + dec = self.decode(z, unnormalize=unnormalize) + return dec, posterior + + def load_weights(self, src_dict) -> None: + self.load_state_dict(src_dict, strict=True) + + @property + def device(self) -> torch.device: + return next(self.parameters()).device + + def get_last_layer(self): + return self.decoder.conv_out.weight + + def remove_weight_norm(self): + return self + + +class Encoder1D(nn.Module): + + def __init__(self, + *, + dim: int, + ch_mult: tuple[int] = (1, 2, 4, 8), + num_res_blocks: int, + attn_layers: list[int] = [], + down_layers: list[int] = [], + resamp_with_conv: bool = True, + in_dim: int, + embed_dim: int, + double_z: bool = True, + kernel_size: int = 3, + clip_act: float = 256.0): + super().__init__() + self.dim = dim + self.num_layers = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.in_channels = in_dim + self.clip_act = clip_act + self.down_layers = down_layers + self.attn_layers = attn_layers + self.conv_in = ops.Conv1d(in_dim, self.dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + + in_ch_mult = (1, ) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + # downsampling + self.down = nn.ModuleList() + for i_level in range(self.num_layers): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = dim * in_ch_mult[i_level] + block_out = dim * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock1D(in_dim=block_in, + out_dim=block_out, + kernel_size=kernel_size, + use_norm=True)) + block_in = block_out + if i_level in attn_layers: + attn.append(AttnBlock1D(block_in)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level in down_layers: + down.downsample = Downsample1D(block_in, resamp_with_conv) + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock1D(in_dim=block_in, + out_dim=block_in, + kernel_size=kernel_size, + use_norm=True) + self.mid.attn_1 = AttnBlock1D(block_in) + self.mid.block_2 = ResnetBlock1D(in_dim=block_in, + out_dim=block_in, + kernel_size=kernel_size, + use_norm=True) + + # end + self.conv_out = ops.Conv1d(block_in, + 2 * embed_dim if double_z else embed_dim, + kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + + self.learnable_gain = nn.Parameter(torch.zeros([])) + + def forward(self, x): + + # downsampling + h = self.conv_in(x) + for i_level in range(self.num_layers): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](h) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + h = h.clamp(-self.clip_act, self.clip_act) + if i_level in self.down_layers: + h = self.down[i_level].downsample(h) + + # middle + h = self.mid.block_1(h) + h = self.mid.attn_1(h) + h = self.mid.block_2(h) + h = h.clamp(-self.clip_act, self.clip_act) + + # end + h = nonlinearity(h) + h = self.conv_out(h) * (self.learnable_gain + 1) + return h + + +class Decoder1D(nn.Module): + + def __init__(self, + *, + dim: int, + out_dim: int, + ch_mult: tuple[int] = (1, 2, 4, 8), + num_res_blocks: int, + attn_layers: list[int] = [], + down_layers: list[int] = [], + kernel_size: int = 3, + resamp_with_conv: bool = True, + in_dim: int, + embed_dim: int, + clip_act: float = 256.0): + super().__init__() + self.ch = dim + self.num_layers = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.in_channels = in_dim + self.clip_act = clip_act + self.down_layers = [i + 1 for i in down_layers] # each downlayer add one + + # compute in_ch_mult, block_in and curr_res at lowest res + block_in = dim * ch_mult[self.num_layers - 1] + + # z to block_in + self.conv_in = ops.Conv1d(embed_dim, block_in, kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True) + self.mid.attn_1 = AttnBlock1D(block_in) + self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_layers)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = dim * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True)) + block_in = block_out + if i_level in attn_layers: + attn.append(AttnBlock1D(block_in)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level in self.down_layers: + up.upsample = Upsample1D(block_in, resamp_with_conv) + self.up.insert(0, up) # prepend to get consistent order + + # end + self.conv_out = ops.Conv1d(block_in, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + self.learnable_gain = nn.Parameter(torch.zeros([])) + + def forward(self, z): + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h) + h = self.mid.attn_1(h) + h = self.mid.block_2(h) + h = h.clamp(-self.clip_act, self.clip_act) + + # upsampling + for i_level in reversed(range(self.num_layers)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + h = h.clamp(-self.clip_act, self.clip_act) + if i_level in self.down_layers: + h = self.up[i_level].upsample(h) + + h = nonlinearity(h) + h = self.conv_out(h) * (self.learnable_gain + 1) + return h + + +def VAE_16k(**kwargs) -> VAE: + return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs) + + +def VAE_44k(**kwargs) -> VAE: + return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs) + + +def get_my_vae(name: str, **kwargs) -> VAE: + if name == '16k': + return VAE_16k(**kwargs) + if name == '44k': + return VAE_44k(**kwargs) + raise ValueError(f'Unknown model: {name}') + diff --git a/comfy/ldm/mmaudio/vae/vae_modules.py b/comfy/ldm/mmaudio/vae/vae_modules.py new file mode 100644 index 000000000..3ad05134b --- /dev/null +++ b/comfy/ldm/mmaudio/vae/vae_modules.py @@ -0,0 +1,121 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from comfy.ldm.modules.diffusionmodules.model import vae_attention +import math +import comfy.ops +ops = comfy.ops.disable_weight_init + +def nonlinearity(x): + # swish + return torch.nn.functional.silu(x) / 0.596 + +def mp_sum(a, b, t=0.5): + return a.lerp(b, t) / math.sqrt((1 - t)**2 + t**2) + +def normalize(x, dim=None, eps=1e-4): + if dim is None: + dim = list(range(1, x.ndim)) + norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32) + norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel())) + return x / norm.to(x.dtype) + +class ResnetBlock1D(nn.Module): + + def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True): + super().__init__() + self.in_dim = in_dim + out_dim = in_dim if out_dim is None else out_dim + self.out_dim = out_dim + self.use_conv_shortcut = conv_shortcut + self.use_norm = use_norm + + self.conv1 = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + self.conv2 = ops.Conv1d(out_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + if self.in_dim != self.out_dim: + if self.use_conv_shortcut: + self.conv_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False) + else: + self.nin_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=1, padding=0, bias=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + + # pixel norm + if self.use_norm: + x = normalize(x, dim=1) + + h = x + h = nonlinearity(h) + h = self.conv1(h) + + h = nonlinearity(h) + h = self.conv2(h) + + if self.in_dim != self.out_dim: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return mp_sum(x, h, t=0.3) + + +class AttnBlock1D(nn.Module): + + def __init__(self, in_channels, num_heads=1): + super().__init__() + self.in_channels = in_channels + + self.num_heads = num_heads + self.qkv = ops.Conv1d(in_channels, in_channels * 3, kernel_size=1, padding=0, bias=False) + self.proj_out = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False) + self.optimized_attention = vae_attention() + + def forward(self, x): + h = x + y = self.qkv(h) + y = y.reshape(y.shape[0], -1, 3, y.shape[-1]) + q, k, v = normalize(y, dim=1).unbind(2) + + h = self.optimized_attention(q, k, v) + h = self.proj_out(h) + + return mp_sum(x, h, t=0.3) + + +class Upsample1D(nn.Module): + + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = ops.Conv1d(in_channels, in_channels, kernel_size=3, padding=1, bias=False) + + def forward(self, x): + x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T) + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample1D(nn.Module): + + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv1 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False) + self.conv2 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False) + + def forward(self, x): + + if self.with_conv: + x = self.conv1(x) + + x = F.avg_pool1d(x, kernel_size=2, stride=2) + + if self.with_conv: + x = self.conv2(x) + + return x diff --git a/comfy/ldm/models/autoencoder.py b/comfy/ldm/models/autoencoder.py index 611d36a1b..4f50810dc 100644 --- a/comfy/ldm/models/autoencoder.py +++ b/comfy/ldm/models/autoencoder.py @@ -9,6 +9,8 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri from comfy.ldm.util import get_obj_from_str, instantiate_from_config from comfy.ldm.modules.ema import LitEma import comfy.ops +from einops import rearrange +import comfy.model_management class DiagonalGaussianRegularizer(torch.nn.Module): def __init__(self, sample: bool = False): @@ -179,6 +181,21 @@ class AutoencodingEngineLegacy(AutoencodingEngine): self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim + if ddconfig.get("batch_norm_latent", False): + self.bn_eps = 1e-4 + self.bn_momentum = 0.1 + self.ps = [2, 2] + self.bn = torch.nn.BatchNorm2d(math.prod(self.ps) * ddconfig["z_channels"], + eps=self.bn_eps, + momentum=self.bn_momentum, + affine=False, + track_running_stats=True, + ) + self.bn.eval() + else: + self.bn = None + + def get_autoencoder_params(self) -> list: params = super().get_autoencoder_params() return params @@ -201,11 +218,36 @@ class AutoencodingEngineLegacy(AutoencodingEngine): z = torch.cat(z, 0) z, reg_log = self.regularization(z) + + if self.bn is not None: + z = rearrange(z, + "... c (i pi) (j pj) -> ... (c pi pj) i j", + pi=self.ps[0], + pj=self.ps[1], + ) + + z = torch.nn.functional.batch_norm(z, + comfy.model_management.cast_to(self.bn.running_mean, dtype=z.dtype, device=z.device), + comfy.model_management.cast_to(self.bn.running_var, dtype=z.dtype, device=z.device), + momentum=self.bn_momentum, + eps=self.bn_eps) + if return_reg_log: return z, reg_log return z def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: + if self.bn is not None: + s = torch.sqrt(comfy.model_management.cast_to(self.bn.running_var.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + self.bn_eps) + m = comfy.model_management.cast_to(self.bn.running_mean.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + z = z * s + m + z = rearrange( + z, + "... (c pi pj) i j -> ... c (i pi) (j pj)", + pi=self.ps[0], + pj=self.ps[1], + ) + if self.max_batch_size is None: dec = self.post_quant_conv(z) dec = self.decoder(dec, **decoder_kwargs) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 7437e0567..ccf690945 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -30,6 +30,13 @@ except ImportError as e: raise e exit(-1) +SAGE_ATTENTION3_IS_AVAILABLE = False +try: + from sageattn3 import sageattn3_blackwell + SAGE_ATTENTION3_IS_AVAILABLE = True +except ImportError: + pass + FLASH_ATTENTION_IS_AVAILABLE = False try: from flash_attn import flash_attn_func @@ -517,6 +524,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha @wrap_attn def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False if skip_reshape: b, _, _, dim_head = q.shape tensor_layout = "HND" @@ -541,6 +549,8 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout) except Exception as e: logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e)) + exception_fallback = True + if exception_fallback: if tensor_layout == "NHD": q, k, v = map( lambda t: t.transpose(1, 2), @@ -560,6 +570,93 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = out.reshape(b, -1, heads * dim_head) return out +@wrap_attn +def attention3_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False + if (q.device.type != "cuda" or + q.dtype not in (torch.float16, torch.bfloat16) or + mask is not None): + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + B, H, L, D = q.shape + if H != heads: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=True, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + q_s, k_s, v_s = q, k, v + N = q.shape[2] + dim_head = D + else: + B, N, inner_dim = q.shape + if inner_dim % heads != 0: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + dim_head = inner_dim // heads + + if dim_head >= 256 or N <= 1024: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if not skip_reshape: + q_s, k_s, v_s = map( + lambda t: t.view(B, -1, heads, dim_head).permute(0, 2, 1, 3).contiguous(), + (q, k, v), + ) + B, H, L, D = q_s.shape + + try: + out = sageattn3_blackwell(q_s, k_s, v_s, is_causal=False) + except Exception as e: + exception_fallback = True + logging.error("Error running SageAttention3: %s, falling back to pytorch attention.", e) + + if exception_fallback: + if not skip_reshape: + del q_s, k_s, v_s + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + if not skip_output_reshape: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + else: + if skip_output_reshape: + pass + else: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + + return out try: @torch.library.custom_op("flash_attention::flash_attn", mutates_args=()) @@ -647,6 +744,8 @@ optimized_attention_masked = optimized_attention # register core-supported attention functions if SAGE_ATTENTION_IS_AVAILABLE: register_attention_function("sage", attention_sage) +if SAGE_ATTENTION3_IS_AVAILABLE: + register_attention_function("sage3", attention3_sage) if FLASH_ATTENTION_IS_AVAILABLE: register_attention_function("flash", attention_flash) if model_management.xformers_enabled(): diff --git a/comfy/ldm/modules/diffusionmodules/mmdit.py b/comfy/ldm/modules/diffusionmodules/mmdit.py index 42f406f1a..0dc8fe789 100644 --- a/comfy/ldm/modules/diffusionmodules/mmdit.py +++ b/comfy/ldm/modules/diffusionmodules/mmdit.py @@ -211,12 +211,14 @@ class TimestepEmbedder(nn.Module): Embeds scalar timesteps into vector representations. """ - def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): + def __init__(self, hidden_size, frequency_embedding_size=256, output_size=None, dtype=None, device=None, operations=None): super().__init__() + if output_size is None: + output_size = hidden_size self.mlp = nn.Sequential( operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), - operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), + operations.Linear(hidden_size, output_size, bias=True, dtype=dtype, device=device), ) self.frequency_embedding_size = frequency_embedding_size diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 4245eedca..681a55db5 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -13,6 +13,12 @@ if model_management.xformers_enabled_vae(): import xformers import xformers.ops +def torch_cat_if_needed(xl, dim): + if len(xl) > 1: + return torch.cat(xl, dim) + else: + return xl[0] + def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: @@ -43,6 +49,37 @@ def Normalize(in_channels, num_groups=32): return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) +class CarriedConv3d(nn.Module): + def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs): + super().__init__() + self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) + + def forward(self, x): + return self.conv(x) + + +def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None): + + x = xl[0] + xl.clear() + + if isinstance(op, CarriedConv3d): + if conv_carry_in is None: + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate') + else: + carry_len = conv_carry_in[0].shape[2] + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate') + x = torch.cat([conv_carry_in.pop(0), x], dim=2) + + if conv_carry_out is not None: + to_push = x[:, :, -2:, :, :].clone() + conv_carry_out.append(to_push) + + out = op(x) + + return out + + class VideoConv3d(nn.Module): def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs): super().__init__() @@ -89,29 +126,24 @@ class Upsample(nn.Module): stride=1, padding=1) - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): scale_factor = self.scale_factor if isinstance(scale_factor, (int, float)): scale_factor = (scale_factor,) * (x.ndim - 2) if x.ndim == 5 and scale_factor[0] > 1.0: - t = x.shape[2] - if t > 1: - a, b = x.split((1, t - 1), dim=2) - del x - b = interpolate_up(b, scale_factor) - else: - a = x - - a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2) - if t > 1: - x = torch.cat((a, b), dim=2) - else: - x = a + results = [] + if conv_carry_in is None: + first = x[:, :, :1, :, :] + results.append(interpolate_up(first.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)) + x = x[:, :, 1:, :, :] + if x.shape[2] > 0: + results.append(interpolate_up(x, scale_factor)) + x = torch_cat_if_needed(results, dim=2) else: x = interpolate_up(x, scale_factor) if self.with_conv: - x = self.conv(x) + x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) return x @@ -127,17 +159,20 @@ class Downsample(nn.Module): stride=stride, padding=0) - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): if self.with_conv: - if x.ndim == 4: + if isinstance(self.conv, CarriedConv3d): + x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) + elif x.ndim == 4: pad = (0, 1, 0, 1) mode = "constant" x = torch.nn.functional.pad(x, pad, mode=mode, value=0) + x = self.conv(x) elif x.ndim == 5: pad = (1, 1, 1, 1, 2, 0) mode = "replicate" x = torch.nn.functional.pad(x, pad, mode=mode) - x = self.conv(x) + x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x @@ -183,23 +218,23 @@ class ResnetBlock(nn.Module): stride=1, padding=0) - def forward(self, x, temb=None): + def forward(self, x, temb=None, conv_carry_in=None, conv_carry_out=None): h = x h = self.norm1(h) - h = self.swish(h) - h = self.conv1(h) + h = [ self.swish(h) ] + h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) if temb is not None: h = h + self.temb_proj(self.swish(temb))[:,:,None,None] h = self.norm2(h) h = self.swish(h) - h = self.dropout(h) - h = self.conv2(h) + h = [ self.dropout(h) ] + h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) if self.in_channels != self.out_channels: if self.use_conv_shortcut: - x = self.conv_shortcut(x) + x = conv_carry_causal_3d([x], self.conv_shortcut, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) else: x = self.nin_shortcut(x) @@ -279,6 +314,7 @@ def pytorch_attention(q, k, v): orig_shape = q.shape B = orig_shape[0] C = orig_shape[1] + oom_fallback = False q, k, v = map( lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), (q, k, v), @@ -289,6 +325,8 @@ def pytorch_attention(q, k, v): out = out.transpose(2, 3).reshape(orig_shape) except model_management.OOM_EXCEPTION: logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") + oom_fallback = True + if oom_fallback: out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) return out @@ -517,9 +555,14 @@ class Encoder(nn.Module): self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels + self.carried = False if conv3d: - conv_op = VideoConv3d + if not attn_resolutions: + conv_op = CarriedConv3d + self.carried = True + else: + conv_op = VideoConv3d mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d @@ -532,6 +575,7 @@ class Encoder(nn.Module): stride=1, padding=1) + self.time_compress = 1 curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult @@ -558,10 +602,15 @@ class Encoder(nn.Module): if time_compress is not None: if (self.num_resolutions - 1 - i_level) > math.log2(time_compress): stride = (1, 2, 2) + else: + self.time_compress *= 2 down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op) curr_res = curr_res // 2 self.down.append(down) + if time_compress is not None: + self.time_compress = time_compress + # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, @@ -587,15 +636,42 @@ class Encoder(nn.Module): def forward(self, x): # timestep embedding temb = None - # downsampling - h = self.conv_in(x) - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](h, temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - if i_level != self.num_resolutions-1: - h = self.down[i_level].downsample(h) + + if self.carried: + xl = [x[:, :, :1, :, :]] + if x.shape[2] > self.time_compress: + tc = self.time_compress + xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // tc) * tc, :, :], tc * 2, dim = 2) + x = xl + else: + x = [x] + out = [] + + conv_carry_in = None + + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + + # downsampling + x1 = [ x1 ] + h1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) + + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h1 = self.down[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out) + if len(self.down[i_level].attn) > 0: + assert i == 0 #carried should not happen if attn exists + h1 = self.down[i_level].attn[i_block](h1) + if i_level != self.num_resolutions-1: + h1 = self.down[i_level].downsample(h1, conv_carry_in, conv_carry_out) + + out.append(h1) + conv_carry_in = conv_carry_out + + h = torch_cat_if_needed(out, dim=2) + del out # middle h = self.mid.block_1(h, temb) @@ -604,15 +680,15 @@ class Encoder(nn.Module): # end h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) + h = [ nonlinearity(h) ] + h = conv_carry_causal_3d(h, self.conv_out) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + resolution, z_channels, tanh_out=False, use_linear_attn=False, conv_out_op=ops.Conv2d, resnet_op=ResnetBlock, attn_op=AttnBlock, @@ -626,12 +702,18 @@ class Decoder(nn.Module): self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels - self.give_pre_end = give_pre_end self.tanh_out = tanh_out + self.carried = False if conv3d: - conv_op = VideoConv3d - conv_out_op = VideoConv3d + if not attn_resolutions and resnet_op == ResnetBlock: + conv_op = CarriedConv3d + conv_out_op = CarriedConv3d + self.carried = True + else: + conv_op = VideoConv3d + conv_out_op = VideoConv3d + mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d @@ -706,29 +788,43 @@ class Decoder(nn.Module): temb = None # z to block_in - h = self.conv_in(z) + h = conv_carry_causal_3d([z], self.conv_in) # middle h = self.mid.block_1(h, temb, **kwargs) h = self.mid.attn_1(h, **kwargs) h = self.mid.block_2(h, temb, **kwargs) + if self.carried: + h = torch.split(h, 2, dim=2) + else: + h = [ h ] + out = [] + + conv_carry_in = None + # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb, **kwargs) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h, **kwargs) - if i_level != 0: - h = self.up[i_level].upsample(h) + for i, h1 in enumerate(h): + conv_carry_out = [] + if i == len(h) - 1: + conv_carry_out = None + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h1 = self.up[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out, **kwargs) + if len(self.up[i_level].attn) > 0: + assert i == 0 #carried should not happen if attn exists + h1 = self.up[i_level].attn[i_block](h1, **kwargs) + if i_level != 0: + h1 = self.up[i_level].upsample(h1, conv_carry_in, conv_carry_out) - # end - if self.give_pre_end: - return h + h1 = self.norm_out(h1) + h1 = [ nonlinearity(h1) ] + h1 = conv_carry_causal_3d(h1, self.conv_out, conv_carry_in, conv_carry_out) + if self.tanh_out: + h1 = torch.tanh(h1) + out.append(h1) + conv_carry_in = conv_carry_out - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h, **kwargs) - if self.tanh_out: - h = torch.tanh(h) - return h + out = torch_cat_if_needed(out, dim=2) + + return out diff --git a/comfy/ldm/qwen_image/controlnet.py b/comfy/ldm/qwen_image/controlnet.py index 92ac3cf0a..a6d408104 100644 --- a/comfy/ldm/qwen_image/controlnet.py +++ b/comfy/ldm/qwen_image/controlnet.py @@ -44,7 +44,7 @@ class QwenImageControlNetModel(QwenImageTransformer2DModel): txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2)) txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3) ids = torch.cat((txt_ids, img_ids), dim=1) - image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype) + image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous() del ids, txt_ids, img_ids hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index b9f60c2b7..00c597535 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -10,6 +10,7 @@ from comfy.ldm.modules.attention import optimized_attention_masked from comfy.ldm.flux.layers import EmbedND import comfy.ldm.common_dit import comfy.patcher_extension +from comfy.ldm.flux.math import apply_rope1 class GELU(nn.Module): def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None): @@ -60,7 +61,7 @@ def apply_rotary_emb(x, freqs_cis): class QwenTimestepProjEmbeddings(nn.Module): - def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None): + def __init__(self, embedding_dim, pooled_projection_dim, use_additional_t_cond=False, dtype=None, device=None, operations=None): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000) self.timestep_embedder = TimestepEmbedding( @@ -71,9 +72,19 @@ class QwenTimestepProjEmbeddings(nn.Module): operations=operations ) - def forward(self, timestep, hidden_states): + self.use_additional_t_cond = use_additional_t_cond + if self.use_additional_t_cond: + self.addition_t_embedding = operations.Embedding(2, embedding_dim, device=device, dtype=dtype) + + def forward(self, timestep, hidden_states, addition_t_cond=None): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) + + if self.use_additional_t_cond: + if addition_t_cond is None: + addition_t_cond = torch.zeros((timesteps_emb.shape[0]), device=timesteps_emb.device, dtype=torch.long) + timesteps_emb += self.addition_t_embedding(addition_t_cond, out_dtype=timesteps_emb.dtype) + return timesteps_emb @@ -134,33 +145,34 @@ class Attention(nn.Module): image_rotary_emb: Optional[torch.Tensor] = None, transformer_options={}, ) -> Tuple[torch.Tensor, torch.Tensor]: + batch_size = hidden_states.shape[0] + seq_img = hidden_states.shape[1] seq_txt = encoder_hidden_states.shape[1] - img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1)) - img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1)) - img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1)) + # Project and reshape to BHND format (batch, heads, seq, dim) + img_query = self.to_q(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous() + img_key = self.to_k(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous() + img_value = self.to_v(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2) - txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1)) - txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1)) - txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1)) + txt_query = self.add_q_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous() + txt_key = self.add_k_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous() + txt_value = self.add_v_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2) img_query = self.norm_q(img_query) img_key = self.norm_k(img_key) txt_query = self.norm_added_q(txt_query) txt_key = self.norm_added_k(txt_key) - joint_query = torch.cat([txt_query, img_query], dim=1) - joint_key = torch.cat([txt_key, img_key], dim=1) - joint_value = torch.cat([txt_value, img_value], dim=1) + joint_query = torch.cat([txt_query, img_query], dim=2) + joint_key = torch.cat([txt_key, img_key], dim=2) + joint_value = torch.cat([txt_value, img_value], dim=2) - joint_query = apply_rotary_emb(joint_query, image_rotary_emb) - joint_key = apply_rotary_emb(joint_key, image_rotary_emb) + joint_query = apply_rope1(joint_query, image_rotary_emb) + joint_key = apply_rope1(joint_key, image_rotary_emb) - joint_query = joint_query.flatten(start_dim=2) - joint_key = joint_key.flatten(start_dim=2) - joint_value = joint_value.flatten(start_dim=2) - - joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options) + joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, + attention_mask, transformer_options=transformer_options, + skip_reshape=True) txt_attn_output = joint_hidden_states[:, :seq_txt, :] img_attn_output = joint_hidden_states[:, seq_txt:, :] @@ -216,9 +228,24 @@ class QwenImageTransformerBlock(nn.Module): operations=operations, ) - def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + def _apply_gate(self, x, y, gate, timestep_zero_index=None): + if timestep_zero_index is not None: + return y + torch.cat((x[:, :timestep_zero_index] * gate[0], x[:, timestep_zero_index:] * gate[1]), dim=1) + else: + return torch.addcmul(y, gate, x) + + def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor, timestep_zero_index=None) -> Tuple[torch.Tensor, torch.Tensor]: shift, scale, gate = torch.chunk(mod_params, 3, dim=-1) - return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1) + if timestep_zero_index is not None: + actual_batch = shift.size(0) // 2 + shift, shift_0 = shift[:actual_batch], shift[actual_batch:] + scale, scale_0 = scale[:actual_batch], scale[actual_batch:] + gate, gate_0 = gate[:actual_batch], gate[actual_batch:] + reg = torch.addcmul(shift.unsqueeze(1), x[:, :timestep_zero_index], 1 + scale.unsqueeze(1)) + zero = torch.addcmul(shift_0.unsqueeze(1), x[:, timestep_zero_index:], 1 + scale_0.unsqueeze(1)) + return torch.cat((reg, zero), dim=1), (gate.unsqueeze(1), gate_0.unsqueeze(1)) + else: + return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1) def forward( self, @@ -227,17 +254,22 @@ class QwenImageTransformerBlock(nn.Module): encoder_hidden_states_mask: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + timestep_zero_index=None, transformer_options={}, ) -> Tuple[torch.Tensor, torch.Tensor]: img_mod_params = self.img_mod(temb) + + if timestep_zero_index is not None: + temb = temb.chunk(2, dim=0)[0] + txt_mod_params = self.txt_mod(temb) img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) - img_normed = self.img_norm1(hidden_states) - img_modulated, img_gate1 = self._modulate(img_normed, img_mod1) - txt_normed = self.txt_norm1(encoder_hidden_states) - txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1) + img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1, timestep_zero_index) + del img_mod1 + txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1) + del txt_mod1 img_attn_output, txt_attn_output = self.attn( hidden_states=img_modulated, @@ -246,16 +278,20 @@ class QwenImageTransformerBlock(nn.Module): image_rotary_emb=image_rotary_emb, transformer_options=transformer_options, ) + del img_modulated + del txt_modulated - hidden_states = hidden_states + img_gate1 * img_attn_output + hidden_states = self._apply_gate(img_attn_output, hidden_states, img_gate1, timestep_zero_index) encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output + del img_attn_output + del txt_attn_output + del img_gate1 + del txt_gate1 - img_normed2 = self.img_norm2(hidden_states) - img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2) - hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2)) + img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2, timestep_zero_index) + hidden_states = self._apply_gate(self.img_mlp(img_modulated2), hidden_states, img_gate2, timestep_zero_index) - txt_normed2 = self.txt_norm2(encoder_hidden_states) - txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2) + txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2) encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2)) return encoder_hidden_states, hidden_states @@ -294,10 +330,11 @@ class QwenImageTransformer2DModel(nn.Module): num_attention_heads: int = 24, joint_attention_dim: int = 3584, pooled_projection_dim: int = 768, - guidance_embeds: bool = False, axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), + default_ref_method="index", image_model=None, final_layer=True, + use_additional_t_cond=False, dtype=None, device=None, operations=None, @@ -308,12 +345,14 @@ class QwenImageTransformer2DModel(nn.Module): self.in_channels = in_channels self.out_channels = out_channels or in_channels self.inner_dim = num_attention_heads * attention_head_dim + self.default_ref_method = default_ref_method self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope)) self.time_text_embed = QwenTimestepProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim, + use_additional_t_cond=use_additional_t_cond, dtype=dtype, device=device, operations=operations @@ -335,6 +374,9 @@ class QwenImageTransformer2DModel(nn.Module): for _ in range(num_layers) ]) + if self.default_ref_method == "index_timestep_zero": + self.register_buffer("__index_timestep_zero__", torch.tensor([])) + if final_layer: self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations) self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device) @@ -344,27 +386,33 @@ class QwenImageTransformer2DModel(nn.Module): patch_size = self.patch_size hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size)) orig_shape = hidden_states.shape - hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) - hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5) - hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) + hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-3], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) + hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6) + hidden_states = hidden_states.reshape(orig_shape[0], orig_shape[-3] * (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) + t_len = t h_len = ((h + (patch_size // 2)) // patch_size) w_len = ((w + (patch_size // 2)) // patch_size) h_offset = ((h_offset + (patch_size // 2)) // patch_size) w_offset = ((w_offset + (patch_size // 2)) // patch_size) - img_ids = torch.zeros((h_len, w_len, 3), device=x.device) - img_ids[:, :, 0] = img_ids[:, :, 1] + index - img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2) - img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2) - return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape + img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device) - def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs): + if t_len > 1: + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(1) + else: + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + index + + img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(0) - (h_len // 2) + img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0).unsqueeze(0) - (w_len // 2) + return hidden_states, repeat(img_ids, "t h w c -> b (t h w) c", b=bs), orig_shape + + def forward(self, x, timestep, context, attention_mask=None, ref_latents=None, additional_t_cond=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( self._forward, self, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) - ).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs) + ).execute(x, timestep, context, attention_mask, ref_latents, additional_t_cond, transformer_options, **kwargs) def _forward( self, @@ -372,8 +420,8 @@ class QwenImageTransformer2DModel(nn.Module): timesteps, context, attention_mask=None, - guidance: torch.Tensor = None, ref_latents=None, + additional_t_cond=None, transformer_options={}, control=None, **kwargs @@ -385,16 +433,24 @@ class QwenImageTransformer2DModel(nn.Module): hidden_states, img_ids, orig_shape = self.process_img(x) num_embeds = hidden_states.shape[1] + timestep_zero_index = None if ref_latents is not None: h = 0 w = 0 index = 0 - index_ref_method = kwargs.get("ref_latents_method", "index") == "index" + ref_method = kwargs.get("ref_latents_method", self.default_ref_method) + index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero") + negative_ref_method = ref_method == "negative_index" + timestep_zero = ref_method == "index_timestep_zero" for ref in ref_latents: if index_ref_method: index += 1 h_offset = 0 w_offset = 0 + elif negative_ref_method: + index -= 1 + h_offset = 0 + w_offset = 0 else: index = 1 h_offset = 0 @@ -409,35 +465,35 @@ class QwenImageTransformer2DModel(nn.Module): kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset) hidden_states = torch.cat([hidden_states, kontext], dim=1) img_ids = torch.cat([img_ids, kontext_ids], dim=1) + if timestep_zero: + if index > 0: + timestep = torch.cat([timestep, timestep * 0], dim=0) + timestep_zero_index = num_embeds txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2)) txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3) ids = torch.cat((txt_ids, img_ids), dim=1) - image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype) + image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous() del ids, txt_ids, img_ids hidden_states = self.img_in(hidden_states) encoder_hidden_states = self.txt_norm(encoder_hidden_states) encoder_hidden_states = self.txt_in(encoder_hidden_states) - if guidance is not None: - guidance = guidance * 1000 - - temb = ( - self.time_text_embed(timestep, hidden_states) - if guidance is None - else self.time_text_embed(timestep, guidance, hidden_states) - ) + temb = self.time_text_embed(timestep, hidden_states, additional_t_cond) patches_replace = transformer_options.get("patches_replace", {}) patches = transformer_options.get("patches", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.transformer_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.transformer_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} - out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"]) + out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], timestep_zero_index=timestep_zero_index, transformer_options=args["transformer_options"]) return out out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap}) hidden_states = out["img"] @@ -449,6 +505,7 @@ class QwenImageTransformer2DModel(nn.Module): encoder_hidden_states_mask=encoder_hidden_states_mask, temb=temb, image_rotary_emb=image_rotary_emb, + timestep_zero_index=timestep_zero_index, transformer_options=transformer_options, ) @@ -465,9 +522,12 @@ class QwenImageTransformer2DModel(nn.Module): if add is not None: hidden_states[:, :add.shape[1]] += add + if timestep_zero_index is not None: + temb = temb.chunk(2, dim=0)[0] + hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) - hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2) - hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5) + hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-3], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2) + hidden_states = hidden_states.permute(0, 4, 1, 2, 5, 3, 6) return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]] diff --git a/comfy/ldm/wan/model.py b/comfy/ldm/wan/model.py index 90c347d3d..4216ce831 100644 --- a/comfy/ldm/wan/model.py +++ b/comfy/ldm/wan/model.py @@ -232,6 +232,7 @@ class WanAttentionBlock(nn.Module): # assert e[0].dtype == torch.float32 # self-attention + x = x.contiguous() # otherwise implicit in LayerNorm y = self.self_attn( torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)), freqs, transformer_options=transformer_options) @@ -567,7 +568,10 @@ class WanModel(torch.nn.Module): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -588,7 +592,7 @@ class WanModel(torch.nn.Module): x = self.unpatchify(x, grid_sizes) return x - def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None): + def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}): patch_size = self.patch_size t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) @@ -601,10 +605,22 @@ class WanModel(torch.nn.Module): if steps_w is None: steps_w = w_len + h_start = 0 + w_start = 0 + rope_options = transformer_options.get("rope_options", None) + if rope_options is not None: + t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0 + h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0 + w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0 + + t_start += rope_options.get("shift_t", 0.0) + h_start += rope_options.get("shift_y", 0.0) + w_start += rope_options.get("shift_x", 0.0) + img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype) img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1) - img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1) - img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1) + img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1) + img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1) img_ids = img_ids.reshape(1, -1, img_ids.shape[-1]) freqs = self.rope_embedder(img_ids).movedim(1, 2) @@ -630,7 +646,7 @@ class WanModel(torch.nn.Module): if self.ref_conv is not None and "reference_latent" in kwargs: t_len += 1 - freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype) + freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options) return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w] def unpatchify(self, x, grid_sizes): @@ -750,7 +766,10 @@ class VaceWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -849,7 +868,10 @@ class CameraWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -1313,16 +1335,19 @@ class WanModel_S2V(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} - out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"]) + out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], transformer_options=args["transformer_options"]) return out - out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) + out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap}) x = out["img"] else: - x = block(x, e=e0, freqs=freqs, context=context) + x = block(x, e=e0, freqs=freqs, context=context, transformer_options=transformer_options) if audio_emb is not None: x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len) # head @@ -1561,7 +1586,10 @@ class HumoWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} diff --git a/comfy/ldm/wan/model_animate.py b/comfy/ldm/wan/model_animate.py index 7c87835d4..84d7adec4 100644 --- a/comfy/ldm/wan/model_animate.py +++ b/comfy/ldm/wan/model_animate.py @@ -523,7 +523,10 @@ class AnimateWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} diff --git a/comfy/ldm/wan/vae.py b/comfy/ldm/wan/vae.py index ccbb25822..08315f1a8 100644 --- a/comfy/ldm/wan/vae.py +++ b/comfy/ldm/wan/vae.py @@ -227,6 +227,7 @@ class Encoder3d(nn.Module): def __init__(self, dim=128, z_dim=4, + input_channels=3, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], @@ -245,7 +246,7 @@ class Encoder3d(nn.Module): scale = 1.0 # init block - self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) + self.conv1 = CausalConv3d(input_channels, dims[0], 3, padding=1) # downsample blocks downsamples = [] @@ -331,6 +332,7 @@ class Decoder3d(nn.Module): def __init__(self, dim=128, z_dim=4, + output_channels=3, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], @@ -378,7 +380,7 @@ class Decoder3d(nn.Module): # output blocks self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), - CausalConv3d(out_dim, 3, 3, padding=1)) + CausalConv3d(out_dim, output_channels, 3, padding=1)) def forward(self, x, feat_cache=None, feat_idx=[0]): ## conv1 @@ -449,6 +451,7 @@ class WanVAE(nn.Module): num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], + image_channels=3, dropout=0.0): super().__init__() self.dim = dim @@ -460,11 +463,11 @@ class WanVAE(nn.Module): self.temperal_upsample = temperal_downsample[::-1] # modules - self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, + self.encoder = Encoder3d(dim, z_dim * 2, image_channels, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout) self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) self.conv2 = CausalConv3d(z_dim, z_dim, 1) - self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, + self.decoder = Decoder3d(dim, z_dim, image_channels, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout) def encode(self, x): diff --git a/comfy/ldm/wan/vae2_2.py b/comfy/ldm/wan/vae2_2.py index 1f6d584a2..8e1593a54 100644 --- a/comfy/ldm/wan/vae2_2.py +++ b/comfy/ldm/wan/vae2_2.py @@ -657,51 +657,51 @@ class WanVAE(nn.Module): ) def encode(self, x): - self.clear_cache() + conv_idx = [0] + feat_map = [None] * count_conv3d(self.encoder) x = patchify(x, patch_size=2) t = x.shape[2] iter_ = 1 + (t - 1) // 4 for i in range(iter_): - self._enc_conv_idx = [0] + conv_idx = [0] if i == 0: out = self.encoder( x[:, :, :1, :, :], - feat_cache=self._enc_feat_map, - feat_idx=self._enc_conv_idx, + feat_cache=feat_map, + feat_idx=conv_idx, ) else: out_ = self.encoder( x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], - feat_cache=self._enc_feat_map, - feat_idx=self._enc_conv_idx, + feat_cache=feat_map, + feat_idx=conv_idx, ) out = torch.cat([out, out_], 2) mu, log_var = self.conv1(out).chunk(2, dim=1) - self.clear_cache() return mu def decode(self, z): - self.clear_cache() + conv_idx = [0] + feat_map = [None] * count_conv3d(self.decoder) iter_ = z.shape[2] x = self.conv2(z) for i in range(iter_): - self._conv_idx = [0] + conv_idx = [0] if i == 0: out = self.decoder( x[:, :, i:i + 1, :, :], - feat_cache=self._feat_map, - feat_idx=self._conv_idx, + feat_cache=feat_map, + feat_idx=conv_idx, first_chunk=True, ) else: out_ = self.decoder( x[:, :, i:i + 1, :, :], - feat_cache=self._feat_map, - feat_idx=self._conv_idx, + feat_cache=feat_map, + feat_idx=conv_idx, ) out = torch.cat([out, out_], 2) out = unpatchify(out, patch_size=2) - self.clear_cache() return out def reparameterize(self, mu, log_var): @@ -715,12 +715,3 @@ class WanVAE(nn.Module): return mu std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) return mu + std * torch.randn_like(std) - - def clear_cache(self): - self._conv_num = count_conv3d(self.decoder) - self._conv_idx = [0] - self._feat_map = [None] * self._conv_num - # cache encode - self._enc_conv_num = count_conv3d(self.encoder) - self._enc_conv_idx = [0] - self._enc_feat_map = [None] * self._enc_conv_num diff --git a/comfy/lora.py b/comfy/lora.py index 36d26293a..2ed0acb9d 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -313,6 +313,23 @@ def model_lora_keys_unet(model, key_map={}): key_map["transformer.{}".format(key_lora)] = k key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format + if isinstance(model, comfy.model_base.Lumina2): + diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") + for k in diffusers_keys: + if k.endswith(".weight"): + to = diffusers_keys[k] + key_lora = k[:-len(".weight")] + key_map["diffusion_model.{}".format(key_lora)] = to + key_map["transformer.{}".format(key_lora)] = to + key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + + if isinstance(model, comfy.model_base.Kandinsky5): + for k in sdk: + if k.startswith("diffusion_model.") and k.endswith(".weight"): + key_lora = k[len("diffusion_model."):-len(".weight")] + key_map["{}".format(key_lora)] = k + key_map["transformer.{}".format(key_lora)] = k + return key_map diff --git a/comfy/model_base.py b/comfy/model_base.py index b0b9cde7d..c4f3c0639 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -47,6 +47,7 @@ import comfy.ldm.chroma_radiance.model import comfy.ldm.ace.model import comfy.ldm.omnigen.omnigen2 import comfy.ldm.qwen_image.model +import comfy.ldm.kandinsky5.model import comfy.model_management import comfy.patcher_extension @@ -134,10 +135,11 @@ class BaseModel(torch.nn.Module): if not unet_config.get("disable_unet_model_creation", False): if model_config.custom_operations is None: fp8 = model_config.optimizations.get("fp8", False) - operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8) + operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config) else: operations = model_config.custom_operations self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) + self.diffusion_model.eval() if comfy.model_management.force_channels_last(): self.diffusion_model.to(memory_format=torch.channels_last) logging.debug("using channels last mode for diffusion model") @@ -196,8 +198,14 @@ class BaseModel(torch.nn.Module): extra_conds[o] = extra t = self.process_timestep(t, x=x, **extra_conds) - model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() - return self.model_sampling.calculate_denoised(sigma, model_output, x) + if "latent_shapes" in extra_conds: + xc = utils.unpack_latents(xc, extra_conds.pop("latent_shapes")) + + model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds) + if len(model_output) > 1 and not torch.is_tensor(model_output): + model_output, _ = utils.pack_latents(model_output) + + return self.model_sampling.calculate_denoised(sigma, model_output.float(), x) def process_timestep(self, timestep, **kwargs): return timestep @@ -322,10 +330,6 @@ class BaseModel(torch.nn.Module): extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) unet_state_dict = self.diffusion_model.state_dict() - - if self.model_config.scaled_fp8 is not None: - unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8) - unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) if self.model_type == ModelType.V_PREDICTION: @@ -669,7 +673,6 @@ class Lotus(BaseModel): class StableCascade_C(BaseModel): def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): super().__init__(model_config, model_type, device=device, unet_model=StageC) - self.diffusion_model.eval().requires_grad_(False) def extra_conds(self, **kwargs): out = {} @@ -698,7 +701,6 @@ class StableCascade_C(BaseModel): class StableCascade_B(BaseModel): def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): super().__init__(model_config, model_type, device=device, unet_model=StageB) - self.diffusion_model.eval().requires_grad_(False) def extra_conds(self, **kwargs): out = {} @@ -885,12 +887,13 @@ class Flux(BaseModel): attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None: shape = kwargs["noise"].shape - mask_ref_size = kwargs["attention_mask_img_shape"] - # the model will pad to the patch size, and then divide - # essentially dividing and rounding up - (h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size)) - attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok)) - out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + mask_ref_size = kwargs.get("attention_mask_img_shape", None) + if mask_ref_size is not None: + # the model will pad to the patch size, and then divide + # essentially dividing and rounding up + (h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size)) + attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok)) + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) guidance = kwargs.get("guidance", 3.5) if guidance is not None: @@ -912,9 +915,19 @@ class Flux(BaseModel): out = {} ref_latents = kwargs.get("reference_latents", None) if ref_latents is not None: - out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16]) + out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))]) return out +class Flux2(Flux): + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + target_text_len = 512 + if cross_attn.shape[1] < target_text_len: + cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, target_text_len - cross_attn.shape[1], 0)) + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + return out class GenmoMochi(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): @@ -1090,9 +1103,17 @@ class Lumina2(BaseModel): if torch.numel(attention_mask) != attention_mask.sum(): out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item())) + cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + if 'num_tokens' not in out: + out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1]) + + clip_text_pooled = kwargs.get("pooled_output", None) # NewBie + if clip_text_pooled is not None: + out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) + return out class WAN21(BaseModel): @@ -1523,3 +1544,140 @@ class HunyuanImage21Refiner(HunyuanImage21): out = super().extra_conds(**kwargs) out['disable_time_r'] = comfy.conds.CONDConstant(True) return out + +class HunyuanVideo15(HunyuanVideo): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1 + if extra_channels == 0: + return None + + image = kwargs.get("concat_latent_image", None) + device = kwargs["device"] + + if image is None: + shape_image = list(noise.shape) + shape_image[1] = extra_channels + image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device) + else: + latent_dim = self.latent_format.latent_channels + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + for i in range(0, image.shape[1], latent_dim): + image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim]) + image = utils.resize_to_batch_size(image, noise.shape[0]) + + mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + if mask is None: + mask = torch.zeros_like(noise)[:, :1] + else: + mask = 1.0 - mask + mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + if mask.shape[-3] < noise.shape[-3]: + mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) + mask = utils.resize_to_batch_size(mask, noise.shape[0]) + + return torch.cat((image, mask), dim=1) + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + if torch.numel(attention_mask) != attention_mask.sum(): + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + conditioning_byt5small = kwargs.get("conditioning_byt5small", None) + if conditioning_byt5small is not None: + out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small) + + guidance = kwargs.get("guidance", 6.0) + if guidance is not None: + out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance])) + + clip_vision_output = kwargs.get("clip_vision_output", None) + if clip_vision_output is not None: + out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state) + + return out + +class HunyuanVideo15_SR_Distilled(HunyuanVideo15): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + image = kwargs.get("concat_latent_image", None) + noise_augmentation = kwargs.get("noise_augmentation", 0.0) + device = kwargs["device"] + + if image is None: + image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device()) + else: + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + #image = self.process_latent_in(image) # scaling wasn't applied in reference code + image = utils.resize_to_batch_size(image, noise.shape[0]) + lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1) + if noise_augmentation > 0: + generator = torch.Generator(device="cpu") + generator.manual_seed(kwargs.get("seed", 0) - 10) + noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device) + image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice] + else: + image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice] + return image + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + out['disable_time_r'] = comfy.conds.CONDConstant(False) + return out + +class Kandinsky5(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5) + + def encode_adm(self, **kwargs): + return kwargs["pooled_output"] + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + device = kwargs["device"] + image = torch.zeros_like(noise) + + mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + if mask is None: + mask = torch.zeros_like(noise)[:, :1] + else: + mask = 1.0 - mask + mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + if mask.shape[-3] < noise.shape[-3]: + mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) + mask = utils.resize_to_batch_size(mask, noise.shape[0]) + + return torch.cat((image, mask), dim=1) + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + time_dim_replace = kwargs.get("time_dim_replace", None) + if time_dim_replace is not None: + out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace)) + + return out + +class Kandinsky5Image(Kandinsky5): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + return None diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 46415c17a..539e296ed 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -172,30 +172,73 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys)) dit_config["guidance_embed"] = len(guidance_keys) > 0 + + # HunyuanVideo 1.5 + if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys: + dit_config["use_cond_type_embedding"] = True + else: + dit_config["use_cond_type_embedding"] = False + if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys: + dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0] + dit_config["meanflow_sum"] = True + else: + dit_config["vision_in_dim"] = None + dit_config["meanflow_sum"] = False return dit_config if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight) dit_config = {} - dit_config["image_model"] = "flux" + if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys: + dit_config["image_model"] = "flux2" + dit_config["axes_dim"] = [32, 32, 32, 32] + dit_config["num_heads"] = 48 + dit_config["mlp_ratio"] = 3.0 + dit_config["theta"] = 2000 + dit_config["out_channels"] = 128 + dit_config["global_modulation"] = True + dit_config["mlp_silu_act"] = True + dit_config["qkv_bias"] = False + dit_config["ops_bias"] = False + dit_config["default_ref_method"] = "index" + dit_config["ref_index_scale"] = 10.0 + dit_config["txt_ids_dims"] = [3] + patch_size = 1 + else: + dit_config["image_model"] = "flux" + dit_config["axes_dim"] = [16, 56, 56] + dit_config["num_heads"] = 24 + dit_config["mlp_ratio"] = 4.0 + dit_config["theta"] = 10000 + dit_config["out_channels"] = 16 + dit_config["qkv_bias"] = True + dit_config["txt_ids_dims"] = [] + patch_size = 2 + dit_config["in_channels"] = 16 - patch_size = 2 + dit_config["hidden_size"] = 3072 + dit_config["context_in_dim"] = 4096 + dit_config["patch_size"] = patch_size in_key = "{}img_in.weight".format(key_prefix) if in_key in state_dict_keys: - dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size) - dit_config["out_channels"] = 16 + w = state_dict[in_key] + dit_config["in_channels"] = w.shape[1] // (patch_size * patch_size) + dit_config["hidden_size"] = w.shape[0] + + txt_in_key = "{}txt_in.weight".format(key_prefix) + if txt_in_key in state_dict_keys: + w = state_dict[txt_in_key] + dit_config["context_in_dim"] = w.shape[1] + dit_config["hidden_size"] = w.shape[0] + vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix) if vec_in_key in state_dict_keys: dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1] - dit_config["context_in_dim"] = 4096 - dit_config["hidden_size"] = 3072 - dit_config["mlp_ratio"] = 4.0 - dit_config["num_heads"] = 24 + else: + dit_config["vec_in_dim"] = None + dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') - dit_config["axes_dim"] = [16, 56, 56] - dit_config["theta"] = 10000 - dit_config["qkv_bias"] = True if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma dit_config["image_model"] = "chroma" dit_config["in_channels"] = 64 @@ -213,11 +256,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_mlp_ratio"] = 4 dit_config["nerf_depth"] = 4 dit_config["nerf_max_freqs"] = 8 - dit_config["nerf_tile_size"] = 32 + dit_config["nerf_tile_size"] = 512 dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear" dit_config["nerf_embedder_dtype"] = torch.float32 + if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred + dit_config["use_x0"] = True + else: + dit_config["use_x0"] = False else: dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys + dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys + dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys + if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model + dit_config["txt_ids_dims"] = [1, 2] + return dit_config if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview @@ -364,14 +416,35 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["image_model"] = "lumina2" dit_config["patch_size"] = 2 dit_config["in_channels"] = 16 - dit_config["dim"] = 2304 - dit_config["cap_feat_dim"] = 2304 - dit_config["n_layers"] = 26 - dit_config["n_heads"] = 24 - dit_config["n_kv_heads"] = 8 + w = state_dict['{}cap_embedder.1.weight'.format(key_prefix)] + dit_config["dim"] = w.shape[0] + dit_config["cap_feat_dim"] = w.shape[1] + dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.') dit_config["qk_norm"] = True - dit_config["axes_dims"] = [32, 32, 32] - dit_config["axes_lens"] = [300, 512, 512] + + if dit_config["dim"] == 2304: # Original Lumina 2 + dit_config["n_heads"] = 24 + dit_config["n_kv_heads"] = 8 + dit_config["axes_dims"] = [32, 32, 32] + dit_config["axes_lens"] = [300, 512, 512] + dit_config["rope_theta"] = 10000.0 + dit_config["ffn_dim_multiplier"] = 4.0 + ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None) + if ctd_weight is not None: # NewBie + dit_config["clip_text_dim"] = ctd_weight.shape[0] + # NewBie also sets axes_lens = [1024, 512, 512] but it's not used in ComfyUI + elif dit_config["dim"] == 3840: # Z image + dit_config["n_heads"] = 30 + dit_config["n_kv_heads"] = 30 + dit_config["axes_dims"] = [32, 48, 48] + dit_config["axes_lens"] = [1536, 512, 512] + dit_config["rope_theta"] = 256.0 + dit_config["ffn_dim_multiplier"] = (8.0 / 3.0) + dit_config["z_image_modulation"] = True + dit_config["time_scale"] = 1000.0 + if '{}cap_pad_token'.format(key_prefix) in state_dict_keys: + dit_config["pad_tokens_multiple"] = 32 + return dit_config if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1 @@ -546,6 +619,29 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["image_model"] = "qwen_image" dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1] dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') + if "{}__index_timestep_zero__".format(key_prefix) in state_dict_keys: # 2511 + dit_config["default_ref_method"] = "index_timestep_zero" + if "{}time_text_embed.addition_t_embedding.weight".format(key_prefix) in state_dict_keys: # Layered + dit_config["use_additional_t_cond"] = True + dit_config["default_ref_method"] = "negative_index" + return dit_config + + if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5 + dit_config = {} + model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0] + dit_config["model_dim"] = model_dim + if model_dim in [4096, 2560]: # pro video and lite image + dit_config["axes_dims"] = (32, 48, 48) + if model_dim == 2560: # lite image + dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0) + elif model_dim == 1792: # lite video + dit_config["axes_dims"] = (16, 24, 24) + dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0] + dit_config["image_model"] = "kandinsky5" + dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0] + dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1] + dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.') + dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.') return dit_config if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: @@ -690,16 +786,11 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal if model_config is None and use_base_if_no_match: model_config = comfy.supported_models_base.BASE(unet_config) - scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix) - if scaled_fp8_key in state_dict: - scaled_fp8_weight = state_dict.pop(scaled_fp8_key) - model_config.scaled_fp8 = scaled_fp8_weight.dtype - if model_config.scaled_fp8 == torch.float32: - model_config.scaled_fp8 = torch.float8_e4m3fn - if scaled_fp8_weight.nelement() == 2: - model_config.optimizations["fp8"] = False - else: - model_config.optimizations["fp8"] = True + # Detect per-layer quantization (mixed precision) + quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix) + if quant_config: + model_config.quant_config = quant_config + logging.info("Detected mixed precision quantization") return model_config diff --git a/comfy/model_management.py b/comfy/model_management.py index c5b817b62..87baedd73 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -26,6 +26,7 @@ import importlib import platform import weakref import gc +import os class VRAMState(Enum): DISABLED = 0 #No vram present: no need to move models to vram @@ -89,6 +90,7 @@ if args.deterministic: directml_enabled = False if args.directml is not None: + logging.warning("WARNING: torch-directml barely works, is very slow, has not been updated in over 1 year and might be removed soon, please don't use it, there are better options.") import torch_directml directml_enabled = True device_index = args.directml @@ -330,13 +332,23 @@ except: SUPPORT_FP8_OPS = args.supports_fp8_compute + +AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"] +AMD_ENABLE_MIOPEN_ENV = 'COMFYUI_ENABLE_MIOPEN' + try: if is_amd(): + arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName + if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)): + if os.getenv(AMD_ENABLE_MIOPEN_ENV) != '1': + torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD + logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.") + try: rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2])) except: rocm_version = (6, -1) - arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName + logging.info("AMD arch: {}".format(arch)) logging.info("ROCm version: {}".format(rocm_version)) if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: @@ -344,11 +356,11 @@ try: if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950 ENABLE_PYTORCH_ATTENTION = True -# if torch_version_numeric >= (2, 8): -# if any((a in arch) for a in ["gfx1201"]): -# ENABLE_PYTORCH_ATTENTION = True + if rocm_version >= (7, 0): + if any((a in arch) for a in ["gfx1201"]): + ENABLE_PYTORCH_ATTENTION = True if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4): - if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx942", "gfx950"]): # TODO: more arches + if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0 SUPPORT_FP8_OPS = True except: @@ -370,6 +382,9 @@ try: except: pass +if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast: + torch.backends.cudnn.benchmark = True + try: if torch_version_numeric >= (2, 5): torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True) @@ -492,6 +507,7 @@ class LoadedModel: if use_more_vram == 0: use_more_vram = 1e32 self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights) + real_model = self.model.model if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None: @@ -676,8 +692,11 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu loaded_memory = loaded_model.model_loaded_memory() current_free_mem = get_free_memory(torch_dev) + loaded_memory - lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) - lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory) + lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) + lowvram_model_memory = lowvram_model_memory - loaded_memory + + if lowvram_model_memory == 0: + lowvram_model_memory = 0.1 if vram_set_state == VRAMState.NO_VRAM: lowvram_model_memory = 0.1 @@ -925,11 +944,7 @@ def vae_dtype(device=None, allowed_dtypes=[]): if d == torch.float16 and should_use_fp16(device): return d - # NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32 - # slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3 - # also a problem on RDNA4 except fp32 is also slow there. - # This is due to large bf16 convolutions being extremely slow. - if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device): + if d == torch.bfloat16 and should_use_bf16(device): return d return torch.float32 @@ -991,12 +1006,6 @@ def device_supports_non_blocking(device): return False return True -def device_should_use_non_blocking(device): - if not device_supports_non_blocking(device): - return False - return False - # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others - def force_channels_last(): if args.force_channels_last: return True @@ -1006,54 +1015,72 @@ def force_channels_last(): STREAMS = {} -NUM_STREAMS = 1 -if args.async_offload: - NUM_STREAMS = 2 +NUM_STREAMS = 0 +if args.async_offload is not None: + NUM_STREAMS = args.async_offload +else: + # Enable by default on Nvidia and AMD + if is_nvidia() or is_amd(): + NUM_STREAMS = 2 + +if args.disable_async_offload: + NUM_STREAMS = 0 + +if NUM_STREAMS > 0: logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS)) +def current_stream(device): + if device is None: + return None + if is_device_cuda(device): + return torch.cuda.current_stream() + elif is_device_xpu(device): + return torch.xpu.current_stream() + else: + return None + stream_counters = {} def get_offload_stream(device): stream_counter = stream_counters.get(device, 0) - if NUM_STREAMS <= 1: + if NUM_STREAMS == 0: + return None + + if torch.compiler.is_compiling(): return None if device in STREAMS: ss = STREAMS[device] - s = ss[stream_counter] + #Sync the oldest stream in the queue with the current + ss[stream_counter].wait_stream(current_stream(device)) stream_counter = (stream_counter + 1) % len(ss) - if is_device_cuda(device): - ss[stream_counter].wait_stream(torch.cuda.current_stream()) - elif is_device_xpu(device): - ss[stream_counter].wait_stream(torch.xpu.current_stream()) stream_counters[device] = stream_counter - return s + return ss[stream_counter] elif is_device_cuda(device): ss = [] for k in range(NUM_STREAMS): - ss.append(torch.cuda.Stream(device=device, priority=0)) + s1 = torch.cuda.Stream(device=device, priority=0) + s1.as_context = torch.cuda.stream + ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] - stream_counter = (stream_counter + 1) % len(ss) stream_counters[device] = stream_counter return s elif is_device_xpu(device): ss = [] for k in range(NUM_STREAMS): - ss.append(torch.xpu.Stream(device=device, priority=0)) + s1 = torch.xpu.Stream(device=device, priority=0) + s1.as_context = torch.xpu.stream + ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] - stream_counter = (stream_counter + 1) % len(ss) stream_counters[device] = stream_counter return s return None def sync_stream(device, stream): - if stream is None: + if stream is None or current_stream(device) is None: return - if is_device_cuda(device): - torch.cuda.current_stream().wait_stream(stream) - elif is_device_xpu(device): - torch.xpu.current_stream().wait_stream(stream) + current_stream(device).wait_stream(stream) def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None): if device is None or weight.device == device: @@ -1061,12 +1088,19 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str if dtype is None or weight.dtype == dtype: return weight if stream is not None: - with stream: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + with wf_context: return weight.to(dtype=dtype, copy=copy) return weight.to(dtype=dtype, copy=copy) + if stream is not None: - with stream: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + with wf_context: r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) else: @@ -1078,6 +1112,99 @@ def cast_to_device(tensor, device, dtype, copy=False): non_blocking = device_supports_non_blocking(device) return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy) + +PINNED_MEMORY = {} +TOTAL_PINNED_MEMORY = 0 +MAX_PINNED_MEMORY = -1 +if not args.disable_pinned_memory: + if is_nvidia() or is_amd(): + if WINDOWS: + MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50% + else: + MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95 + logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024))) + +PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) + +def discard_cuda_async_error(): + try: + a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + _ = a + b + torch.cuda.synchronize() + except torch.AcceleratorError: + #Dump it! We already know about it from the synchronous return + pass + +def pin_memory(tensor): + global TOTAL_PINNED_MEMORY + if MAX_PINNED_MEMORY <= 0: + return False + + if type(tensor).__name__ not in PINNING_ALLOWED_TYPES: + return False + + if not is_device_cpu(tensor.device): + return False + + if tensor.is_pinned(): + #NOTE: Cuda does detect when a tensor is already pinned and would + #error below, but there are proven cases where this also queues an error + #on the GPU async. So dont trust the CUDA API and guard here + return False + + if not tensor.is_contiguous(): + return False + + size = tensor.numel() * tensor.element_size() + if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY: + return False + + ptr = tensor.data_ptr() + if ptr == 0: + return False + + if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0: + PINNED_MEMORY[ptr] = size + TOTAL_PINNED_MEMORY += size + return True + else: + logging.warning("Pin error.") + discard_cuda_async_error() + + return False + +def unpin_memory(tensor): + global TOTAL_PINNED_MEMORY + if MAX_PINNED_MEMORY <= 0: + return False + + if not is_device_cpu(tensor.device): + return False + + ptr = tensor.data_ptr() + size = tensor.numel() * tensor.element_size() + + size_stored = PINNED_MEMORY.get(ptr, None) + if size_stored is None: + logging.warning("Tried to unpin tensor not pinned by ComfyUI") + return False + + if size != size_stored: + logging.warning("Size of pinned tensor changed") + return False + + if torch.cuda.cudart().cudaHostUnregister(ptr) == 0: + TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr) + if len(PINNED_MEMORY) == 0: + TOTAL_PINNED_MEMORY = 0 + return True + else: + logging.warning("Unpin error.") + discard_cuda_async_error() + + return False + def sage_attention_enabled(): return args.use_sage_attention @@ -1330,7 +1457,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma if is_amd(): arch = torch.cuda.get_device_properties(device).gcnArchName - if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16 + if any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH): # RDNA2 and older don't support bf16 if manual_cast: return True return False @@ -1384,6 +1511,20 @@ def extended_fp16_support(): return True +LORA_COMPUTE_DTYPES = {} +def lora_compute_dtype(device): + dtype = LORA_COMPUTE_DTYPES.get(device, None) + if dtype is not None: + return dtype + + if should_use_fp16(device): + dtype = torch.float16 + else: + dtype = torch.float32 + + LORA_COMPUTE_DTYPES[device] = dtype + return dtype + def soft_empty_cache(force=False): global cpu_state if cpu_state == CPUState.MPS: diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 1fd03d9d1..93d26c690 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -35,6 +35,7 @@ import comfy.model_management import comfy.patcher_extension import comfy.utils from comfy.comfy_types import UnetWrapperFunction +from comfy.quant_ops import QuantizedTensor from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP @@ -123,16 +124,26 @@ def move_weight_functions(m, device): return memory class LowVramPatch: - def __init__(self, key, patches): + def __init__(self, key, patches, convert_func=None, set_func=None): self.key = key self.patches = patches - def __call__(self, weight): - intermediate_dtype = weight.dtype - if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops - intermediate_dtype = torch.float32 - return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key)) + self.convert_func = convert_func # TODO: remove + self.set_func = set_func - return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) + def __call__(self, weight): + return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype) + +LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 2 + +def low_vram_patch_estimate_vram(model, key): + weight, set_func, convert_func = get_key_weight(model, key) + if weight is None: + return 0 + model_dtype = getattr(model, "manual_cast_dtype", torch.float32) + if model_dtype is None: + model_dtype = weight.dtype + + return weight.numel() * model_dtype.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR def get_key_weight(model, key): set_func = None @@ -217,13 +228,13 @@ class ModelPatcher: self.object_patches_backup = {} self.weight_wrapper_patches = {} self.model_options = {"transformer_options":{}} - self.model_size() self.load_device = load_device self.offload_device = offload_device self.weight_inplace_update = weight_inplace_update self.force_cast_weights = False self.patches_uuid = uuid.uuid4() self.parent = None + self.pinned = set() self.attachments: dict[str] = {} self.additional_models: dict[str, list[ModelPatcher]] = {} @@ -255,12 +266,18 @@ class ModelPatcher: if not hasattr(self.model, 'current_weight_patches_uuid'): self.model.current_weight_patches_uuid = None + if not hasattr(self.model, 'model_offload_buffer_memory'): + self.model.model_offload_buffer_memory = 0 + def model_size(self): if self.size > 0: return self.size self.size = comfy.model_management.module_size(self.model) return self.size + def get_ram_usage(self): + return self.model_size() + def loaded_size(self): return self.model.model_loaded_weight_memory @@ -268,7 +285,7 @@ class ModelPatcher: return self.model.lowvram_patch_counter def clone(self): - n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update) + n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update) n.patches = {} for k in self.patches: n.patches[k] = self.patches[k][:] @@ -280,6 +297,7 @@ class ModelPatcher: n.backup = self.backup n.object_patches_backup = self.object_patches_backup n.parent = self + n.pinned = self.pinned n.force_cast_weights = self.force_cast_weights @@ -436,6 +454,22 @@ class ModelPatcher: def set_model_post_input_patch(self, patch): self.set_model_patch(patch, "post_input") + def set_model_noise_refiner_patch(self, patch): + self.set_model_patch(patch, "noise_refiner") + + def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs): + rope_options = self.model_options["transformer_options"].get("rope_options", {}) + rope_options["scale_x"] = scale_x + rope_options["scale_y"] = scale_y + rope_options["scale_t"] = scale_t + + rope_options["shift_x"] = shift_x + rope_options["shift_y"] = shift_y + rope_options["shift_t"] = shift_t + + self.model_options["transformer_options"]["rope_options"] = rope_options + + def add_object_patch(self, name, obj): self.object_patches[name] = obj @@ -587,10 +621,11 @@ class ModelPatcher: if key not in self.backup: self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update) + temp_dtype = comfy.model_management.lora_compute_dtype(device_to) if device_to is not None: - temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) + temp_weight = comfy.model_management.cast_to_device(weight, device_to, temp_dtype, copy=True) else: - temp_weight = weight.to(torch.float32, copy=True) + temp_weight = weight.to(temp_dtype, copy=True) if convert_func is not None: temp_weight = convert_func(temp_weight, inplace=True) @@ -604,6 +639,21 @@ class ModelPatcher: else: set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key)) + def pin_weight_to_device(self, key): + weight, set_func, convert_func = get_key_weight(self.model, key) + if comfy.model_management.pin_memory(weight): + self.pinned.add(key) + + def unpin_weight(self, key): + if key in self.pinned: + weight, set_func, convert_func = get_key_weight(self.model, key) + comfy.model_management.unpin_memory(weight) + self.pinned.remove(key) + + def unpin_all_weights(self): + for key in list(self.pinned): + self.unpin_weight(key) + def _load_list(self): loading = [] for n, m in self.model.named_modules(): @@ -616,7 +666,22 @@ class ModelPatcher: skip = True # skip random weights in non leaf modules break if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0): - loading.append((comfy.model_management.module_size(m), n, m, params)) + module_mem = comfy.model_management.module_size(m) + module_offload_mem = module_mem + if hasattr(m, "comfy_cast_weights"): + def check_module_offload_mem(key): + if key in self.patches: + return low_vram_patch_estimate_vram(self.model, key) + model_dtype = getattr(self.model, "manual_cast_dtype", None) + weight, _, _ = get_key_weight(self.model, key) + if model_dtype is None or weight is None: + return 0 + if (weight.dtype != model_dtype or isinstance(weight, QuantizedTensor)): + return weight.numel() * model_dtype.itemsize + return 0 + module_offload_mem += check_module_offload_mem("{}.weight".format(n)) + module_offload_mem += check_module_offload_mem("{}.bias".format(n)) + loading.append((module_offload_mem, module_mem, n, m, params)) return loading def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): @@ -625,25 +690,30 @@ class ModelPatcher: mem_counter = 0 patch_counter = 0 lowvram_counter = 0 + lowvram_mem_counter = 0 loading = self._load_list() load_completely = [] + offloaded = [] + offload_buffer = 0 loading.sort(reverse=True) - for x in loading: - n = x[1] - m = x[2] - params = x[3] - module_mem = x[0] + for i, x in enumerate(loading): + module_offload_mem, module_mem, n, m, params = x lowvram_weight = False + potential_offload = max(offload_buffer, module_offload_mem + sum([ x1[1] for x1 in loading[i+1:i+1+comfy.model_management.NUM_STREAMS]])) + lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory + weight_key = "{}.weight".format(n) bias_key = "{}.bias".format(n) if not full_load and hasattr(m, "comfy_cast_weights"): - if mem_counter + module_mem >= lowvram_model_memory: + if not lowvram_fits: + offload_buffer = potential_offload lowvram_weight = True lowvram_counter += 1 + lowvram_mem_counter += module_mem if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed continue @@ -657,23 +727,28 @@ class ModelPatcher: if force_patch_weights: self.patch_weight_to_device(weight_key) else: - m.weight_function = [LowVramPatch(weight_key, self.patches)] + _, set_func, convert_func = get_key_weight(self.model, weight_key) + m.weight_function = [LowVramPatch(weight_key, self.patches, convert_func, set_func)] patch_counter += 1 if bias_key in self.patches: if force_patch_weights: self.patch_weight_to_device(bias_key) else: - m.bias_function = [LowVramPatch(bias_key, self.patches)] + _, set_func, convert_func = get_key_weight(self.model, bias_key) + m.bias_function = [LowVramPatch(bias_key, self.patches, convert_func, set_func)] patch_counter += 1 cast_weight = True + offloaded.append((module_mem, n, m, params)) else: if hasattr(m, "comfy_cast_weights"): wipe_lowvram_weight(m) - if full_load or mem_counter + module_mem < lowvram_model_memory: + if full_load or lowvram_fits: mem_counter += module_mem load_completely.append((module_mem, n, m, params)) + else: + offload_buffer = potential_offload if cast_weight and hasattr(m, "comfy_cast_weights"): m.prev_comfy_cast_weights = m.comfy_cast_weights @@ -697,7 +772,11 @@ class ModelPatcher: continue for param in params: - self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to) + key = "{}.{}".format(n, param) + self.unpin_weight(key) + self.patch_weight_to_device(key, device_to=device_to) + if comfy.model_management.is_device_cuda(device_to): + torch.cuda.synchronize() logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) m.comfy_patched_weights = True @@ -705,11 +784,17 @@ class ModelPatcher: for x in load_completely: x[2].to(device_to) + for x in offloaded: + n = x[1] + params = x[3] + for param in params: + self.pin_weight_to_device("{}.{}".format(n, param)) + if lowvram_counter > 0: - logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter)) + logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) self.model.model_lowvram = True else: - logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) + logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) self.model.model_lowvram = False if full_load: self.model.to(device_to) @@ -718,6 +803,7 @@ class ModelPatcher: self.model.lowvram_patch_counter += patch_counter self.model.device = device_to self.model.model_loaded_weight_memory = mem_counter + self.model.model_offload_buffer_memory = offload_buffer self.model.current_weight_patches_uuid = self.patches_uuid for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD): @@ -746,6 +832,7 @@ class ModelPatcher: self.eject_model() if unpatch_weights: self.unpatch_hooks() + self.unpin_all_weights() if self.model.model_lowvram: for m in self.model.modules(): move_weight_functions(m, device_to) @@ -770,6 +857,7 @@ class ModelPatcher: self.model.to(device_to) self.model.device = device_to self.model.model_loaded_weight_memory = 0 + self.model.model_offload_buffer_memory = 0 for m in self.model.modules(): if hasattr(m, "comfy_patched_weights"): @@ -781,20 +869,25 @@ class ModelPatcher: self.object_patches_backup.clear() - def partially_unload(self, device_to, memory_to_free=0): + def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False): with self.use_ejected(): hooks_unpatched = False memory_freed = 0 patch_counter = 0 unload_list = self._load_list() unload_list.sort() + + offload_buffer = self.model.model_offload_buffer_memory + if len(unload_list) > 0: + NS = comfy.model_management.NUM_STREAMS + offload_weight_factor = [ min(offload_buffer / (NS + 1), unload_list[0][1]) ] * NS + for unload in unload_list: - if memory_to_free < memory_freed: + if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed: break - module_mem = unload[0] - n = unload[1] - m = unload[2] - params = unload[3] + module_offload_mem, module_mem, n, m, params = unload + + potential_offload = module_offload_mem + sum(offload_weight_factor) lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: @@ -825,23 +918,40 @@ class ModelPatcher: module_mem += move_weight_functions(m, device_to) if lowvram_possible: if weight_key in self.patches: - m.weight_function.append(LowVramPatch(weight_key, self.patches)) - patch_counter += 1 + if force_patch_weights: + self.patch_weight_to_device(weight_key) + else: + _, set_func, convert_func = get_key_weight(self.model, weight_key) + m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func)) + patch_counter += 1 if bias_key in self.patches: - m.bias_function.append(LowVramPatch(bias_key, self.patches)) - patch_counter += 1 + if force_patch_weights: + self.patch_weight_to_device(bias_key) + else: + _, set_func, convert_func = get_key_weight(self.model, bias_key) + m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func)) + patch_counter += 1 cast_weight = True - if cast_weight: + if cast_weight and hasattr(m, "comfy_cast_weights"): m.prev_comfy_cast_weights = m.comfy_cast_weights m.comfy_cast_weights = True m.comfy_patched_weights = False memory_freed += module_mem + offload_buffer = max(offload_buffer, potential_offload) + offload_weight_factor.append(module_mem) + offload_weight_factor.pop(0) logging.debug("freed {}".format(n)) + for param in params: + self.pin_weight_to_device("{}.{}".format(n, param)) + + self.model.model_lowvram = True self.model.lowvram_patch_counter += patch_counter self.model.model_loaded_weight_memory -= memory_freed + self.model.model_offload_buffer_memory = offload_buffer + logging.info("Unloaded partially: {:.2f} MB freed, {:.2f} MB remains loaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(memory_freed / (1024 * 1024), self.model.model_loaded_weight_memory / (1024 * 1024), offload_buffer / (1024 * 1024), self.model.lowvram_patch_counter)) return memory_freed def partially_load(self, device_to, extra_memory=0, force_patch_weights=False): @@ -854,6 +964,9 @@ class ModelPatcher: extra_memory += (used - self.model.model_loaded_weight_memory) self.patch_model(load_weights=False) + if extra_memory < 0 and not unpatch_weights: + self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights) + return 0 full_load = False if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0: self.apply_hooks(self.forced_hooks, force_apply=True) @@ -1241,5 +1354,6 @@ class ModelPatcher: self.clear_cached_hook_weights() def __del__(self): + self.unpin_all_weights() self.detach(unpatch_all=False) diff --git a/comfy/model_sampling.py b/comfy/model_sampling.py index b240b7f29..2a00ed819 100644 --- a/comfy/model_sampling.py +++ b/comfy/model_sampling.py @@ -21,17 +21,23 @@ def rescale_zero_terminal_snr_sigmas(sigmas): alphas_bar[-1] = 4.8973451890853435e-08 return ((1 - alphas_bar) / alphas_bar) ** 0.5 +def reshape_sigma(sigma, noise_dim): + if sigma.nelement() == 1: + return sigma.view(()) + else: + return sigma.view(sigma.shape[:1] + (1,) * (noise_dim - 1)) + class EPS: def calculate_input(self, sigma, noise): - sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + sigma = reshape_sigma(sigma, noise.ndim) return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = reshape_sigma(sigma, model_output.ndim) return model_input - model_output * sigma def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): - sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + sigma = reshape_sigma(sigma, noise.ndim) if max_denoise: noise = noise * torch.sqrt(1.0 + sigma ** 2.0) else: @@ -45,12 +51,12 @@ class EPS: class V_PREDICTION(EPS): def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = reshape_sigma(sigma, model_output.ndim) return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 class EDM(V_PREDICTION): def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = reshape_sigma(sigma, model_output.ndim) return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 class CONST: @@ -58,15 +64,15 @@ class CONST: return noise def calculate_denoised(self, sigma, model_output, model_input): - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = reshape_sigma(sigma, model_output.ndim) return model_input - model_output * sigma def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): - sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + sigma = reshape_sigma(sigma, noise.ndim) return sigma * noise + (1.0 - sigma) * latent_image def inverse_noise_scaling(self, sigma, latent): - sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1)) + sigma = reshape_sigma(sigma, latent.ndim) return latent / (1.0 - sigma) class X0(EPS): @@ -80,16 +86,16 @@ class IMG_TO_IMG(X0): class COSMOS_RFLOW: def calculate_input(self, sigma, noise): sigma = (sigma / (sigma + 1)) - sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + sigma = reshape_sigma(sigma, noise.ndim) return noise * (1.0 - sigma) def calculate_denoised(self, sigma, model_output, model_input): sigma = (sigma / (sigma + 1)) - sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = reshape_sigma(sigma, model_output.ndim) return model_input * (1.0 - sigma) - model_output * sigma def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): - sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + sigma = reshape_sigma(sigma, noise.ndim) noise = noise * sigma noise += latent_image return noise diff --git a/comfy/nested_tensor.py b/comfy/nested_tensor.py new file mode 100644 index 000000000..b700816fa --- /dev/null +++ b/comfy/nested_tensor.py @@ -0,0 +1,91 @@ +import torch + +class NestedTensor: + def __init__(self, tensors): + self.tensors = list(tensors) + self.is_nested = True + + def _copy(self): + return NestedTensor(self.tensors) + + def apply_operation(self, other, operation): + o = self._copy() + if isinstance(other, NestedTensor): + for i, t in enumerate(o.tensors): + o.tensors[i] = operation(t, other.tensors[i]) + else: + for i, t in enumerate(o.tensors): + o.tensors[i] = operation(t, other) + return o + + def __add__(self, b): + return self.apply_operation(b, lambda x, y: x + y) + + def __sub__(self, b): + return self.apply_operation(b, lambda x, y: x - y) + + def __mul__(self, b): + return self.apply_operation(b, lambda x, y: x * y) + + # def __itruediv__(self, b): + # return self.apply_operation(b, lambda x, y: x / y) + + def __truediv__(self, b): + return self.apply_operation(b, lambda x, y: x / y) + + def __getitem__(self, *args, **kwargs): + return self.apply_operation(None, lambda x, y: x.__getitem__(*args, **kwargs)) + + def unbind(self): + return self.tensors + + def to(self, *args, **kwargs): + o = self._copy() + for i, t in enumerate(o.tensors): + o.tensors[i] = t.to(*args, **kwargs) + return o + + def new_ones(self, *args, **kwargs): + return self.tensors[0].new_ones(*args, **kwargs) + + def float(self): + return self.to(dtype=torch.float) + + def chunk(self, *args, **kwargs): + return self.apply_operation(None, lambda x, y: x.chunk(*args, **kwargs)) + + def size(self): + return self.tensors[0].size() + + @property + def shape(self): + return self.tensors[0].shape + + @property + def ndim(self): + dims = 0 + for t in self.tensors: + dims = max(t.ndim, dims) + return dims + + @property + def device(self): + return self.tensors[0].device + + @property + def dtype(self): + return self.tensors[0].dtype + + @property + def layout(self): + return self.tensors[0].layout + + +def cat_nested(tensors, *args, **kwargs): + cated_tensors = [] + for i in range(len(tensors[0].tensors)): + tens = [] + for j in range(len(tensors)): + tens.append(tensors[j].tensors[i]) + cated_tensors.append(torch.cat(tens, *args, **kwargs)) + return NestedTensor(cated_tensors) diff --git a/comfy/ops.py b/comfy/ops.py index 9d7dedd37..16889bb82 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -22,15 +22,20 @@ import comfy.model_management from comfy.cli_args import args, PerformanceFeature import comfy.float import comfy.rmsnorm -import contextlib +import json +def run_every_op(): + if torch.compiler.is_compiling(): + return + + comfy.model_management.throw_exception_if_processing_interrupted() def scaled_dot_product_attention(q, k, v, *args, **kwargs): return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs) try: - if torch.cuda.is_available(): + if torch.cuda.is_available() and comfy.model_management.WINDOWS: from torch.nn.attention import SDPBackend, sdpa_kernel import inspect if "set_priority" in inspect.signature(sdpa_kernel).parameters: @@ -50,49 +55,92 @@ try: except (ModuleNotFoundError, TypeError): logging.warning("Could not set sdpa backend priority.") -cast_to = comfy.model_management.cast_to #TODO: remove once no more references +NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False +try: + if comfy.model_management.is_nvidia(): + cudnn_version = torch.backends.cudnn.version() + if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10): + #TODO: change upper bound version once it's fixed' + NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True + logging.info("working around nvidia conv3d memory bug.") +except: + pass -if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast: - torch.backends.cudnn.benchmark = True +cast_to = comfy.model_management.cast_to #TODO: remove once no more references def cast_to_input(weight, input, non_blocking=False, copy=True): return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy) -def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): + +def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False): + # NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass + # offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This + # will add async-offload support to your cast and improve performance. if input is not None: if dtype is None: - dtype = input.dtype + if isinstance(input, QuantizedTensor): + dtype = input._layout_params["orig_dtype"] + else: + dtype = input.dtype if bias_dtype is None: bias_dtype = dtype if device is None: device = input.device - offload_stream = comfy.model_management.get_offload_stream(device) - if offload_stream is not None: - wf_context = offload_stream + if offloadable and (device != s.weight.device or + (s.bias is not None and device != s.bias.device)): + offload_stream = comfy.model_management.get_offload_stream(device) else: - wf_context = contextlib.nullcontext() + offload_stream = None + + non_blocking = comfy.model_management.device_supports_non_blocking(device) + + weight_has_function = len(s.weight_function) > 0 + bias_has_function = len(s.bias_function) > 0 + + weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream) bias = None - non_blocking = comfy.model_management.device_supports_non_blocking(device) if s.bias is not None: - has_function = len(s.bias_function) > 0 - bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream) - - if has_function: - with wf_context: - for f in s.bias_function: - bias = f(bias) - - has_function = len(s.weight_function) > 0 - weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream) - if has_function: - with wf_context: - for f in s.weight_function: - weight = f(weight) + bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream) comfy.model_management.sync_stream(device, offload_stream) - return weight, bias + + bias_a = bias + weight_a = weight + + if s.bias is not None: + for f in s.bias_function: + bias = f(bias) + + if weight_has_function or weight.dtype != dtype: + weight = weight.to(dtype=dtype) + if isinstance(weight, QuantizedTensor): + weight = weight.dequantize() + for f in s.weight_function: + weight = f(weight) + + if offloadable: + return weight, bias, (offload_stream, weight_a, bias_a) + else: + #Legacy function signature + return weight, bias + + +def uncast_bias_weight(s, weight, bias, offload_stream): + if offload_stream is None: + return + os, weight_a, bias_a = offload_stream + if os is None: + return + if weight_a is not None: + device = weight_a.device + else: + if bias_a is None: + return + device = bias_a.device + os.wait_stream(comfy.model_management.current_stream(device)) + class CastWeightBiasOp: comfy_cast_weights = False @@ -105,10 +153,13 @@ class disable_weight_init: return None def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.linear(input, weight, bias) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = torch.nn.functional.linear(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -119,10 +170,13 @@ class disable_weight_init: return None def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return self._conv_forward(input, weight, bias) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = self._conv_forward(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -133,10 +187,13 @@ class disable_weight_init: return None def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return self._conv_forward(input, weight, bias) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = self._conv_forward(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -146,11 +203,23 @@ class disable_weight_init: def reset_parameters(self): return None + def _conv_forward(self, input, weight, bias, *args, **kwargs): + if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16): + out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True) + if bias is not None: + out += bias.reshape((1, -1) + (1,) * (out.ndim - 2)) + return out + else: + return super()._conv_forward(input, weight, bias, *args, **kwargs) + def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return self._conv_forward(input, weight, bias) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = self._conv_forward(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -161,10 +230,13 @@ class disable_weight_init: return None def forward_comfy_cast_weights(self, input): - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -176,13 +248,17 @@ class disable_weight_init: def forward_comfy_cast_weights(self, input): if self.weight is not None: - weight, bias = cast_bias_weight(self, input) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) else: weight = None bias = None - return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) + offload_stream = None + x = torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -195,13 +271,18 @@ class disable_weight_init: def forward_comfy_cast_weights(self, input): if self.weight is not None: - weight, bias = cast_bias_weight(self, input) + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) else: weight = None - return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated - # return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps) + bias = None + offload_stream = None + x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated + # x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -217,12 +298,15 @@ class disable_weight_init: input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation) - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.conv_transpose2d( + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = torch.nn.functional.conv_transpose2d( input, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -238,12 +322,15 @@ class disable_weight_init: input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation) - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.conv_transpose1d( + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = torch.nn.functional.conv_transpose1d( input, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation) + uncast_bias_weight(self, weight, bias, offload_stream) + return x def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -258,10 +345,14 @@ class disable_weight_init: output_dtype = out_dtype if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16: out_dtype = None - weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype) - return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype) + weight, bias, offload_stream = cast_bias_weight(self, device=input.device, dtype=out_dtype, offloadable=True) + x = torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype) + uncast_bias_weight(self, weight, bias, offload_stream) + return x + def forward(self, *args, **kwargs): + run_every_op() if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(*args, **kwargs) else: @@ -312,48 +403,33 @@ class manual_cast(disable_weight_init): def fp8_linear(self, input): + """ + Legacy FP8 linear function for backward compatibility. + Uses QuantizedTensor subclass for dispatch. + """ dtype = self.weight.dtype if dtype not in [torch.float8_e4m3fn]: return None - tensor_2d = False - if len(input.shape) == 2: - tensor_2d = True - input = input.unsqueeze(1) - - input_shape = input.shape input_dtype = input.dtype - if len(input.shape) == 3: - w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype) - w = w.t() - scale_weight = self.scale_weight - scale_input = self.scale_input - if scale_weight is None: - scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - else: - scale_weight = scale_weight.to(input.device) + if input.ndim == 3 or input.ndim == 2: + w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) + scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - if scale_input is None: - scale_input = torch.ones((), device=input.device, dtype=torch.float32) - input = torch.clamp(input, min=-448, max=448, out=input) - input = input.reshape(-1, input_shape[2]).to(dtype).contiguous() - else: - scale_input = scale_input.to(input.device) - input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous() + scale_input = torch.ones((), device=input.device, dtype=torch.float32) + input = torch.clamp(input, min=-448, max=448, out=input) + layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} + quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) - if bias is not None: - o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight) - else: - o = torch._scaled_mm(input, w, out_dtype=input_dtype, scale_a=scale_input, scale_b=scale_weight) + # Wrap weight in QuantizedTensor - this enables unified dispatch + # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! + layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype} + quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight) + o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) - if isinstance(o, tuple): - o = o[0] - - if tensor_2d: - return o.reshape(input_shape[0], -1) - - return o.reshape((-1, input_shape[1], self.weight.shape[0])) + uncast_bias_weight(self, w, bias, offload_stream) + return o return None @@ -365,7 +441,7 @@ class fp8_ops(manual_cast): return None def forward_comfy_cast_weights(self, input): - if not self.training: + if len(self.weight_function) == 0 and len(self.bias_function) == 0: try: out = fp8_linear(self, input) if out is not None: @@ -373,57 +449,10 @@ class fp8_ops(manual_cast): except Exception as e: logging.info("Exception during fp8 op: {}".format(e)) - weight, bias = cast_bias_weight(self, input) - return torch.nn.functional.linear(input, weight, bias) - -def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): - logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input)) - class scaled_fp8_op(manual_cast): - class Linear(manual_cast.Linear): - def __init__(self, *args, **kwargs): - if override_dtype is not None: - kwargs['dtype'] = override_dtype - super().__init__(*args, **kwargs) - - def reset_parameters(self): - if not hasattr(self, 'scale_weight'): - self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) - - if not scale_input: - self.scale_input = None - - if not hasattr(self, 'scale_input'): - self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) - return None - - def forward_comfy_cast_weights(self, input): - if fp8_matrix_mult: - out = fp8_linear(self, input) - if out is not None: - return out - - weight, bias = cast_bias_weight(self, input) - - if weight.numel() < input.numel(): #TODO: optimize - return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias) - else: - return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias) - - def convert_weight(self, weight, inplace=False, **kwargs): - if inplace: - weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype) - return weight - else: - return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype) - - def set_weight(self, weight, inplace_update=False, seed=None, **kwargs): - weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed) - if inplace_update: - self.weight.data.copy_(weight) - else: - self.weight = torch.nn.Parameter(weight, requires_grad=False) - - return scaled_fp8_op + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = torch.nn.functional.linear(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x CUBLAS_IS_AVAILABLE = False try: @@ -444,10 +473,186 @@ if CUBLAS_IS_AVAILABLE: def forward(self, *args, **kwargs): return super().forward(*args, **kwargs) -def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None): - fp8_compute = comfy.model_management.supports_fp8_compute(load_device) - if scaled_fp8 is not None: - return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8) + +# ============================================================================== +# Mixed Precision Operations +# ============================================================================== +from .quant_ops import QuantizedTensor, QUANT_ALGOS + + +def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): + class MixedPrecisionOps(manual_cast): + _quant_config = quant_config + _compute_dtype = compute_dtype + _full_precision_mm = full_precision_mm + + class Linear(torch.nn.Module, CastWeightBiasOp): + def __init__( + self, + in_features: int, + out_features: int, + bias: bool = True, + device=None, + dtype=None, + ) -> None: + super().__init__() + + if dtype is None: + dtype = MixedPrecisionOps._compute_dtype + + self.factory_kwargs = {"device": device, "dtype": dtype} + + self.in_features = in_features + self.out_features = out_features + self._has_bias = bias + + self.tensor_class = None + self._full_precision_mm = MixedPrecisionOps._full_precision_mm + + def reset_parameters(self): + return None + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, + strict, missing_keys, unexpected_keys, error_msgs): + + device = self.factory_kwargs["device"] + layer_name = prefix.rstrip('.') + weight_key = f"{prefix}weight" + weight = state_dict.pop(weight_key, None) + if weight is None: + raise ValueError(f"Missing weight for layer {layer_name}") + + manually_loaded_keys = [weight_key] + + layer_conf = state_dict.pop(f"{prefix}comfy_quant", None) + if layer_conf is not None: + layer_conf = json.loads(layer_conf.numpy().tobytes()) + + if layer_conf is None: + dtype = self.factory_kwargs["dtype"] + self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False) + if dtype != MixedPrecisionOps._compute_dtype: + self.comfy_cast_weights = True + if self._has_bias: + self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=dtype)) + else: + self.register_parameter("bias", None) + else: + self.quant_format = layer_conf.get("format", None) + if not self._full_precision_mm: + self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False) + + if self.quant_format is None: + raise ValueError(f"Unknown quantization format for layer {layer_name}") + + qconfig = QUANT_ALGOS[self.quant_format] + self.layout_type = qconfig["comfy_tensor_layout"] + + weight_scale_key = f"{prefix}weight_scale" + scale = state_dict.pop(weight_scale_key, None) + if scale is not None: + scale = scale.to(device) + layout_params = { + 'scale': scale, + 'orig_dtype': MixedPrecisionOps._compute_dtype, + 'block_size': qconfig.get("group_size", None), + } + + if scale is not None: + manually_loaded_keys.append(weight_scale_key) + + self.weight = torch.nn.Parameter( + QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params), + requires_grad=False + ) + + if self._has_bias: + self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=MixedPrecisionOps._compute_dtype)) + else: + self.register_parameter("bias", None) + + for param_name in qconfig["parameters"]: + param_key = f"{prefix}{param_name}" + _v = state_dict.pop(param_key, None) + if _v is None: + continue + self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) + manually_loaded_keys.append(param_key) + + super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) + + for key in manually_loaded_keys: + if key in missing_keys: + missing_keys.remove(key) + + def state_dict(self, *args, destination=None, prefix="", **kwargs): + sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) + if isinstance(self.weight, QuantizedTensor): + sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale'] + quant_conf = {"format": self.quant_format} + if self._full_precision_mm: + quant_conf["full_precision_matrix_mult"] = True + sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8) + return sd + + def _forward(self, input, weight, bias): + return torch.nn.functional.linear(input, weight, bias) + + def forward_comfy_cast_weights(self, input): + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = self._forward(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x + + def forward(self, input, *args, **kwargs): + run_every_op() + + if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: + return self.forward_comfy_cast_weights(input, *args, **kwargs) + if (getattr(self, 'layout_type', None) is not None and + not isinstance(input, QuantizedTensor)): + input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype) + return self._forward(input, self.weight, self.bias) + + def convert_weight(self, weight, inplace=False, **kwargs): + if isinstance(weight, QuantizedTensor): + return weight.dequantize() + else: + return weight + + def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): + if getattr(self, 'layout_type', None) is not None: + weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) + else: + weight = weight.to(self.weight.dtype) + if return_weight: + return weight + + assert inplace_update is False # TODO: eventually remove the inplace_update stuff + self.weight = torch.nn.Parameter(weight, requires_grad=False) + + def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working + if recurse: + for module in self.children(): + module._apply(fn) + + for key, param in self._parameters.items(): + if param is None: + continue + self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False)) + for key, buf in self._buffers.items(): + if buf is not None: + self._buffers[key] = fn(buf) + return self + + return MixedPrecisionOps + +def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None): + fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular + + if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config: + logging.info("Using mixed precision operations") + return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute) if ( fp8_compute and diff --git a/comfy/patcher_extension.py b/comfy/patcher_extension.py index 46cc7b2a8..5ee4d5ee5 100644 --- a/comfy/patcher_extension.py +++ b/comfy/patcher_extension.py @@ -150,7 +150,7 @@ def merge_nested_dicts(dict1: dict, dict2: dict, copy_dict1=True): for key, value in dict2.items(): if isinstance(value, dict): curr_value = merged_dict.setdefault(key, {}) - merged_dict[key] = merge_nested_dicts(value, curr_value) + merged_dict[key] = merge_nested_dicts(curr_value, value) elif isinstance(value, list): merged_dict.setdefault(key, []).extend(value) else: diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py new file mode 100644 index 000000000..cd96541d7 --- /dev/null +++ b/comfy/quant_ops.py @@ -0,0 +1,580 @@ +import torch +import logging +from typing import Tuple, Dict +import comfy.float + +_LAYOUT_REGISTRY = {} +_GENERIC_UTILS = {} + + +def register_layout_op(torch_op, layout_type): + """ + Decorator to register a layout-specific operation handler. + Args: + torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default) + layout_type: Layout class (e.g., TensorCoreFP8Layout) + Example: + @register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout) + def fp8_linear(func, args, kwargs): + # FP8-specific linear implementation + ... + """ + def decorator(handler_func): + if torch_op not in _LAYOUT_REGISTRY: + _LAYOUT_REGISTRY[torch_op] = {} + _LAYOUT_REGISTRY[torch_op][layout_type] = handler_func + return handler_func + return decorator + + +def register_generic_util(torch_op): + """ + Decorator to register a generic utility that works for all layouts. + Args: + torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default) + + Example: + @register_generic_util(torch.ops.aten.detach.default) + def generic_detach(func, args, kwargs): + # Works for any layout + ... + """ + def decorator(handler_func): + _GENERIC_UTILS[torch_op] = handler_func + return handler_func + return decorator + + +def _get_layout_from_args(args): + for arg in args: + if isinstance(arg, QuantizedTensor): + return arg._layout_type + elif isinstance(arg, (list, tuple)): + for item in arg: + if isinstance(item, QuantizedTensor): + return item._layout_type + return None + + +def _move_layout_params_to_device(params, device): + new_params = {} + for k, v in params.items(): + if isinstance(v, torch.Tensor): + new_params[k] = v.to(device=device) + else: + new_params[k] = v + return new_params + + +def _copy_layout_params(params): + new_params = {} + for k, v in params.items(): + if isinstance(v, torch.Tensor): + new_params[k] = v.clone() + else: + new_params[k] = v + return new_params + +def _copy_layout_params_inplace(src, dst, non_blocking=False): + for k, v in src.items(): + if isinstance(v, torch.Tensor): + dst[k].copy_(v, non_blocking=non_blocking) + else: + dst[k] = v + +class QuantizedLayout: + """ + Base class for quantization layouts. + + A layout encapsulates the format-specific logic for quantization/dequantization + and provides a uniform interface for extracting raw tensors needed for computation. + + New quantization formats should subclass this and implement the required methods. + """ + @classmethod + def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]: + raise NotImplementedError(f"{cls.__name__} must implement quantize()") + + @staticmethod + def dequantize(qdata, **layout_params) -> torch.Tensor: + raise NotImplementedError("TensorLayout must implement dequantize()") + + @classmethod + def get_plain_tensors(cls, qtensor) -> torch.Tensor: + raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()") + + +class QuantizedTensor(torch.Tensor): + """ + Universal quantized tensor that works with any layout. + + This tensor subclass uses a pluggable layout system to support multiple + quantization formats (FP8, INT4, INT8, etc.) without code duplication. + + The layout_type determines format-specific behavior, while common operations + (detach, clone, to) are handled generically. + + Attributes: + _qdata: The quantized tensor data + _layout_type: Layout class (e.g., TensorCoreFP8Layout) + _layout_params: Dict with layout-specific params (scale, zero_point, etc.) + """ + + @staticmethod + def __new__(cls, qdata, layout_type, layout_params): + """ + Create a quantized tensor. + + Args: + qdata: The quantized data tensor + layout_type: Layout class (subclass of QuantizedLayout) + layout_params: Dict with layout-specific parameters + """ + return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False) + + def __init__(self, qdata, layout_type, layout_params): + self._qdata = qdata + self._layout_type = layout_type + self._layout_params = layout_params + + def __repr__(self): + layout_name = self._layout_type + param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2]) + return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})" + + @property + def layout_type(self): + return self._layout_type + + def __tensor_flatten__(self): + """ + Tensor flattening protocol for proper device movement. + """ + inner_tensors = ["_qdata"] + ctx = { + "layout_type": self._layout_type, + } + + tensor_params = {} + non_tensor_params = {} + for k, v in self._layout_params.items(): + if isinstance(v, torch.Tensor): + tensor_params[k] = v + else: + non_tensor_params[k] = v + + ctx["tensor_param_keys"] = list(tensor_params.keys()) + ctx["non_tensor_params"] = non_tensor_params + + for k, v in tensor_params.items(): + attr_name = f"_layout_param_{k}" + object.__setattr__(self, attr_name, v) + inner_tensors.append(attr_name) + + return inner_tensors, ctx + + @staticmethod + def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride): + """ + Tensor unflattening protocol for proper device movement. + Reconstructs the QuantizedTensor after device movement. + """ + layout_type = ctx["layout_type"] + layout_params = dict(ctx["non_tensor_params"]) + + for key in ctx["tensor_param_keys"]: + attr_name = f"_layout_param_{key}" + layout_params[key] = inner_tensors[attr_name] + + return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params) + + @classmethod + def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor': + qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs) + return cls(qdata, layout_type, layout_params) + + def dequantize(self) -> torch.Tensor: + return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params) + + @classmethod + def __torch_dispatch__(cls, func, types, args=(), kwargs=None): + kwargs = kwargs or {} + + # Step 1: Check generic utilities first (detach, clone, to, etc.) + if func in _GENERIC_UTILS: + return _GENERIC_UTILS[func](func, args, kwargs) + + # Step 2: Check layout-specific handlers (linear, matmul, etc.) + layout_type = _get_layout_from_args(args) + if layout_type and func in _LAYOUT_REGISTRY: + handler = _LAYOUT_REGISTRY[func].get(layout_type) + if handler: + return handler(func, args, kwargs) + + # Step 3: Fallback to dequantization + if isinstance(args[0] if args else None, QuantizedTensor): + logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}") + return cls._dequant_and_fallback(func, args, kwargs) + + @classmethod + def _dequant_and_fallback(cls, func, args, kwargs): + def dequant_arg(arg): + if isinstance(arg, QuantizedTensor): + return arg.dequantize() + elif isinstance(arg, (list, tuple)): + return type(arg)(dequant_arg(a) for a in arg) + return arg + + new_args = dequant_arg(args) + new_kwargs = dequant_arg(kwargs) + return func(*new_args, **new_kwargs) + + def data_ptr(self): + return self._qdata.data_ptr() + + def is_pinned(self): + return self._qdata.is_pinned() + + def is_contiguous(self, *arg, **kwargs): + return self._qdata.is_contiguous(*arg, **kwargs) + + def storage(self): + return self._qdata.storage() + +# ============================================================================== +# Generic Utilities (Layout-Agnostic Operations) +# ============================================================================== + +def _create_transformed_qtensor(qt, transform_fn): + new_data = transform_fn(qt._qdata) + new_params = _copy_layout_params(qt._layout_params) + return QuantizedTensor(new_data, qt._layout_type, new_params) + + +def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"): + if target_layout is not None and target_layout != torch.strided: + logging.warning( + f"QuantizedTensor: layout change requested to {target_layout}, " + f"but not supported. Ignoring layout." + ) + + # Handle device transfer + current_device = qt._qdata.device + if target_device is not None: + # Normalize device for comparison + if isinstance(target_device, str): + target_device = torch.device(target_device) + if isinstance(current_device, str): + current_device = torch.device(current_device) + + if target_device != current_device: + logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}") + new_q_data = qt._qdata.to(device=target_device) + new_params = _move_layout_params_to_device(qt._layout_params, target_device) + if target_dtype is not None: + new_params["orig_dtype"] = target_dtype + new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params) + logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}") + return new_qt + + logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original") + return qt + + +@register_generic_util(torch.ops.aten.detach.default) +def generic_detach(func, args, kwargs): + """Detach operation - creates a detached copy of the quantized tensor.""" + qt = args[0] + if isinstance(qt, QuantizedTensor): + return _create_transformed_qtensor(qt, lambda x: x.detach()) + return func(*args, **kwargs) + + +@register_generic_util(torch.ops.aten.clone.default) +def generic_clone(func, args, kwargs): + """Clone operation - creates a deep copy of the quantized tensor.""" + qt = args[0] + if isinstance(qt, QuantizedTensor): + return _create_transformed_qtensor(qt, lambda x: x.clone()) + return func(*args, **kwargs) + + +@register_generic_util(torch.ops.aten._to_copy.default) +def generic_to_copy(func, args, kwargs): + """Device/dtype transfer operation - handles .to(device) calls.""" + qt = args[0] + if isinstance(qt, QuantizedTensor): + return _handle_device_transfer( + qt, + target_device=kwargs.get('device', None), + target_dtype=kwargs.get('dtype', None), + op_name="_to_copy" + ) + return func(*args, **kwargs) + + +@register_generic_util(torch.ops.aten.to.dtype_layout) +def generic_to_dtype_layout(func, args, kwargs): + """Handle .to(device) calls using the dtype_layout variant.""" + qt = args[0] + if isinstance(qt, QuantizedTensor): + return _handle_device_transfer( + qt, + target_device=kwargs.get('device', None), + target_dtype=kwargs.get('dtype', None), + target_layout=kwargs.get('layout', None), + op_name="to" + ) + return func(*args, **kwargs) + + +@register_generic_util(torch.ops.aten.copy_.default) +def generic_copy_(func, args, kwargs): + qt_dest = args[0] + src = args[1] + non_blocking = args[2] if len(args) > 2 else False + if isinstance(qt_dest, QuantizedTensor): + if isinstance(src, QuantizedTensor): + # Copy from another quantized tensor + qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking) + qt_dest._layout_type = src._layout_type + orig_dtype = qt_dest._layout_params["orig_dtype"] + _copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking) + qt_dest._layout_params["orig_dtype"] = orig_dtype + else: + # Copy from regular tensor - just copy raw data + qt_dest._qdata.copy_(src) + return qt_dest + return func(*args, **kwargs) + + +@register_generic_util(torch.ops.aten.to.dtype) +def generic_to_dtype(func, args, kwargs): + """Handle .to(dtype) calls - dtype conversion only.""" + src = args[0] + if isinstance(src, QuantizedTensor): + # For dtype-only conversion, just change the orig_dtype, no real cast is needed + target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype') + src._layout_params["orig_dtype"] = target_dtype + return src + return func(*args, **kwargs) + + +@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default) +def generic_has_compatible_shallow_copy_type(func, args, kwargs): + return True + + +@register_generic_util(torch.ops.aten.empty_like.default) +def generic_empty_like(func, args, kwargs): + """Empty_like operation - creates an empty tensor with the same quantized structure.""" + qt = args[0] + if isinstance(qt, QuantizedTensor): + # Create empty tensor with same shape and dtype as the quantized data + hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"]) + new_qdata = torch.empty_like(qt._qdata, **kwargs) + + # Handle device transfer for layout params + target_device = kwargs.get('device', new_qdata.device) + new_params = _move_layout_params_to_device(qt._layout_params, target_device) + + # Update orig_dtype if dtype is specified + new_params['orig_dtype'] = hp_dtype + + return QuantizedTensor(new_qdata, qt._layout_type, new_params) + return func(*args, **kwargs) + +# ============================================================================== +# FP8 Layout + Operation Handlers +# ============================================================================== +class TensorCoreFP8Layout(QuantizedLayout): + """ + Storage format: + - qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2) + - scale: Scalar tensor (float32) for dequantization + - orig_dtype: Original dtype before quantization (for casting back) + """ + @classmethod + def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False): + orig_dtype = tensor.dtype + + if isinstance(scale, str) and scale == "recalculate": + scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(dtype).max + if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small + tensor_info = torch.finfo(tensor.dtype) + scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max)) + + if scale is not None: + if not isinstance(scale, torch.Tensor): + scale = torch.tensor(scale) + scale = scale.to(device=tensor.device, dtype=torch.float32) + + if inplace_ops: + tensor *= (1.0 / scale).to(tensor.dtype) + else: + tensor = tensor * (1.0 / scale).to(tensor.dtype) + else: + scale = torch.ones((), device=tensor.device, dtype=torch.float32) + + if stochastic_rounding > 0: + tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding) + else: + lp_amax = torch.finfo(dtype).max + torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor) + tensor = tensor.to(dtype, memory_format=torch.contiguous_format) + + layout_params = { + 'scale': scale, + 'orig_dtype': orig_dtype + } + return tensor, layout_params + + @staticmethod + def dequantize(qdata, scale, orig_dtype, **kwargs): + plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype) + plain_tensor.mul_(scale) + return plain_tensor + + @classmethod + def get_plain_tensors(cls, qtensor): + return qtensor._qdata, qtensor._layout_params['scale'] + +QUANT_ALGOS = { + "float8_e4m3fn": { + "storage_t": torch.float8_e4m3fn, + "parameters": {"weight_scale", "input_scale"}, + "comfy_tensor_layout": "TensorCoreFP8Layout", + }, +} + +LAYOUTS = { + "TensorCoreFP8Layout": TensorCoreFP8Layout, +} + + +@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout") +def fp8_linear(func, args, kwargs): + input_tensor = args[0] + weight = args[1] + bias = args[2] if len(args) > 2 else None + + if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): + plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) + plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight) + + out_dtype = kwargs.get("out_dtype") + if out_dtype is None: + out_dtype = input_tensor._layout_params['orig_dtype'] + + weight_t = plain_weight.t() + + tensor_2d = False + if len(plain_input.shape) == 2: + tensor_2d = True + plain_input = plain_input.unsqueeze(1) + + input_shape = plain_input.shape + if len(input_shape) != 3: + return None + + try: + output = torch._scaled_mm( + plain_input.reshape(-1, input_shape[2]).contiguous(), + weight_t, + bias=bias, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=out_dtype, + ) + + if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4 + output = output[0] + + if not tensor_2d: + output = output.reshape((-1, input_shape[1], weight.shape[0])) + + if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: + output_scale = scale_a * scale_b + output_params = { + 'scale': output_scale, + 'orig_dtype': input_tensor._layout_params['orig_dtype'] + } + return QuantizedTensor(output, "TensorCoreFP8Layout", output_params) + else: + return output + + except Exception as e: + raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}") + + # Case 2: DQ Fallback + if isinstance(weight, QuantizedTensor): + weight = weight.dequantize() + if isinstance(input_tensor, QuantizedTensor): + input_tensor = input_tensor.dequantize() + + return torch.nn.functional.linear(input_tensor, weight, bias) + +def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None): + if out_dtype is None: + out_dtype = input_tensor._layout_params['orig_dtype'] + + plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) + plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight) + + output = torch._scaled_mm( + plain_input.contiguous(), + plain_weight, + bias=bias, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=out_dtype, + ) + + if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4 + output = output[0] + return output + +@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout") +def fp8_addmm(func, args, kwargs): + input_tensor = args[1] + weight = args[2] + bias = args[0] + + if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): + return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None)) + + a = list(args) + if isinstance(args[0], QuantizedTensor): + a[0] = args[0].dequantize() + if isinstance(args[1], QuantizedTensor): + a[1] = args[1].dequantize() + if isinstance(args[2], QuantizedTensor): + a[2] = args[2].dequantize() + + return func(*a, **kwargs) + +@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout") +def fp8_mm(func, args, kwargs): + input_tensor = args[0] + weight = args[1] + + if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): + return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None)) + + a = list(args) + if isinstance(args[0], QuantizedTensor): + a[0] = args[0].dequantize() + if isinstance(args[1], QuantizedTensor): + a[1] = args[1].dequantize() + return func(*a, **kwargs) + +@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout") +@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout") +def fp8_func(func, args, kwargs): + input_tensor = args[0] + if isinstance(input_tensor, QuantizedTensor): + plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) + ar = list(args) + ar[0] = plain_input + return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params) + return func(*args, **kwargs) diff --git a/comfy/sample.py b/comfy/sample.py index be5a7e246..2f8f3a51c 100644 --- a/comfy/sample.py +++ b/comfy/sample.py @@ -4,13 +4,9 @@ import comfy.samplers import comfy.utils import numpy as np import logging +import comfy.nested_tensor -def prepare_noise(latent_image, seed, noise_inds=None): - """ - creates random noise given a latent image and a seed. - optional arg skip can be used to skip and discard x number of noise generations for a given seed - """ - generator = torch.manual_seed(seed) +def prepare_noise_inner(latent_image, generator, noise_inds=None): if noise_inds is None: return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") @@ -21,10 +17,29 @@ def prepare_noise(latent_image, seed, noise_inds=None): if i in unique_inds: noises.append(noise) noises = [noises[i] for i in inverse] - noises = torch.cat(noises, axis=0) + return torch.cat(noises, axis=0) + +def prepare_noise(latent_image, seed, noise_inds=None): + """ + creates random noise given a latent image and a seed. + optional arg skip can be used to skip and discard x number of noise generations for a given seed + """ + generator = torch.manual_seed(seed) + + if latent_image.is_nested: + tensors = latent_image.unbind() + noises = [] + for t in tensors: + noises.append(prepare_noise_inner(t, generator, noise_inds)) + noises = comfy.nested_tensor.NestedTensor(noises) + else: + noises = prepare_noise_inner(latent_image, generator, noise_inds) + return noises def fix_empty_latent_channels(model, latent_image): + if latent_image.is_nested: + return latent_image latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0: latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1) diff --git a/comfy/sampler_helpers.py b/comfy/sampler_helpers.py index e46971afb..9134e6d71 100644 --- a/comfy/sampler_helpers.py +++ b/comfy/sampler_helpers.py @@ -122,20 +122,20 @@ def estimate_memory(model, noise_shape, conds): minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min) return memory_required, minimum_memory_required -def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): +def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False): executor = comfy.patcher_extension.WrapperExecutor.new_executor( _prepare_sampling, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True) ) - return executor.execute(model, noise_shape, conds, model_options=model_options) + return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load) -def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): +def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False): real_model: BaseModel = None models, inference_memory = get_additional_models(conds, model.model_dtype()) models += get_additional_models_from_model_options(model_options) models += model.get_nested_additional_models() # TODO: does this require inference_memory update? memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds) - comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory) + comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load) real_model = model.model return real_model, conds, models diff --git a/comfy/samplers.py b/comfy/samplers.py index c59e296a1..1989ef107 100755 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -306,17 +306,10 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens copy_dict1=False) if patches is not None: - # TODO: replace with merge_nested_dicts function - if "patches" in transformer_options: - cur_patches = transformer_options["patches"].copy() - for p in patches: - if p in cur_patches: - cur_patches[p] = cur_patches[p] + patches[p] - else: - cur_patches[p] = patches[p] - transformer_options["patches"] = cur_patches - else: - transformer_options["patches"] = patches + transformer_options["patches"] = comfy.patcher_extension.merge_nested_dicts( + transformer_options.get("patches", {}), + patches + ) transformer_options["cond_or_uncond"] = cond_or_uncond[:] transformer_options["uuids"] = uuids[:] @@ -727,7 +720,7 @@ class Sampler: sigma = float(sigmas[0]) return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma -KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", +KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "exp_heun_2_x0", "exp_heun_2_x0_sde", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp", @@ -789,7 +782,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}): return KSAMPLER(sampler_function, extra_options, inpaint_options) -def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None): +def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None, latent_shapes=None): for k in conds: conds[k] = conds[k][:] resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device) @@ -799,7 +792,7 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N if hasattr(model, 'extra_conds'): for k in conds: - conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) + conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed, latent_shapes=latent_shapes) #make sure each cond area has an opposite one with the same area for k in conds: @@ -969,11 +962,11 @@ class CFGGuider: def predict_noise(self, x, timestep, model_options={}, seed=None): return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed) - def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed): + def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=None): if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. latent_image = self.inner_model.process_latent_in(latent_image) - self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed) + self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed, latent_shapes=latent_shapes) extra_model_options = comfy.model_patcher.create_model_options_clone(self.model_options) extra_model_options.setdefault("transformer_options", {})["sample_sigmas"] = sigmas @@ -987,13 +980,10 @@ class CFGGuider: samples = executor.execute(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) return self.inner_model.process_latent_out(samples.to(torch.float32)) - def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None): + def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None, latent_shapes=None): self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options) device = self.model_patcher.load_device - if denoise_mask is not None: - denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) - noise = noise.to(device) latent_image = latent_image.to(device) sigmas = sigmas.to(device) @@ -1001,7 +991,7 @@ class CFGGuider: try: self.model_patcher.pre_run() - output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) + output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes) finally: self.model_patcher.cleanup() @@ -1014,6 +1004,30 @@ class CFGGuider: if sigmas.shape[-1] == 0: return latent_image + if latent_image.is_nested: + latent_image, latent_shapes = comfy.utils.pack_latents(latent_image.unbind()) + noise, _ = comfy.utils.pack_latents(noise.unbind()) + else: + latent_shapes = [latent_image.shape] + + if denoise_mask is not None: + if denoise_mask.is_nested: + denoise_masks = denoise_mask.unbind() + denoise_masks = denoise_masks[:len(latent_shapes)] + else: + denoise_masks = [denoise_mask] + + for i in range(len(denoise_masks), len(latent_shapes)): + denoise_masks.append(torch.ones(latent_shapes[i])) + + for i in range(len(denoise_masks)): + denoise_masks[i] = comfy.sampler_helpers.prepare_mask(denoise_masks[i], latent_shapes[i], self.model_patcher.load_device) + + if len(denoise_masks) > 1: + denoise_mask, _ = comfy.utils.pack_latents(denoise_masks) + else: + denoise_mask = denoise_masks[0] + self.conds = {} for k in self.original_conds: self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) @@ -1033,7 +1047,7 @@ class CFGGuider: self, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, self.model_options, is_model_options=True) ) - output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) + output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes) finally: cast_to_load_options(self.model_options, device=self.model_patcher.offload_device) self.model_options = orig_model_options @@ -1041,6 +1055,9 @@ class CFGGuider: self.model_patcher.restore_hook_patches() del self.conds + + if len(latent_shapes) > 1: + output = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(output, latent_shapes)) return output diff --git a/comfy/sd.py b/comfy/sd.py index be225ad03..7de7dd9c6 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -18,6 +18,7 @@ import comfy.ldm.wan.vae2_2 import comfy.ldm.hunyuan3d.vae import comfy.ldm.ace.vae.music_dcae_pipeline import comfy.ldm.hunyuan_video.vae +import comfy.ldm.mmaudio.vae.autoencoder import comfy.pixel_space_convert import yaml import math @@ -51,6 +52,11 @@ import comfy.text_encoders.ace import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image +import comfy.text_encoders.z_image +import comfy.text_encoders.ovis +import comfy.text_encoders.kandinsky5 +import comfy.text_encoders.jina_clip_2 +import comfy.text_encoders.newbie import comfy.model_patcher import comfy.lora @@ -58,6 +64,8 @@ import comfy.lora_convert import comfy.hooks import comfy.t2i_adapter.adapter import comfy.taesd.taesd +import comfy.taesd.taehv +import comfy.latent_formats import comfy.ldm.flux.redux @@ -93,7 +101,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip): class CLIP: - def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}): + def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}): if no_init: return params = target.params.copy() @@ -121,9 +129,32 @@ class CLIP: self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) + #Match torch.float32 hardcode upcast in TE implemention + self.patcher.set_model_compute_dtype(torch.float32) self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram self.patcher.is_clip = True self.apply_hooks_to_conds = None + if len(state_dict) > 0: + if isinstance(state_dict, list): + for c in state_dict: + m, u = self.load_sd(c) + if len(m) > 0: + logging.warning("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected: {}".format(u)) + else: + m, u = self.load_sd(state_dict, full_model=True) + if len(m) > 0: + m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) + if len(m_filter) > 0: + logging.warning("clip missing: {}".format(m)) + else: + logging.debug("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected {}:".format(u)) + if params['device'] == load_device: model_management.load_models_gpu([self.patcher], force_full_load=True) self.layer_idx = None @@ -142,6 +173,9 @@ class CLIP: n.apply_hooks_to_conds = self.apply_hooks_to_conds return n + def get_ram_usage(self): + return self.patcher.get_ram_usage() + def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): return self.patcher.add_patches(patches, strength_patch, strength_model) @@ -185,6 +219,7 @@ class CLIP: self.cond_stage_model.set_clip_options({"projected_pooled": False}) self.load_model() + self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) all_hooks.reset() self.patcher.patch_hooks(None) if show_pbar: @@ -232,6 +267,7 @@ class CLIP: self.cond_stage_model.set_clip_options({"projected_pooled": False}) self.load_model() + self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) o = self.cond_stage_model.encode_token_weights(tokens) cond, pooled = o[:2] if return_dict: @@ -275,22 +311,30 @@ class VAE: if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format sd = diffusers_convert.convert_vae_state_dict(sd) - self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower) - self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) + if model_management.is_amd(): + VAE_KL_MEM_RATIO = 2.73 + else: + VAE_KL_MEM_RATIO = 1.0 + + self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO #These are for AutoencoderKL and need tweaking (should be lower) + self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO self.downscale_ratio = 8 self.upscale_ratio = 8 self.latent_channels = 4 self.latent_dim = 2 self.output_channels = 3 + self.pad_channel_value = None self.process_input = lambda image: image * 2.0 - 1.0 self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0) self.working_dtypes = [torch.bfloat16, torch.float32] self.disable_offload = False self.not_video = False + self.size = None self.downscale_index_formula = None self.upscale_index_formula = None self.extra_1d_channel = None + self.crop_input = True if config is None: if "decoder.mid.block_1.mix_factor" in sd: @@ -345,7 +389,7 @@ class VAE: self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype) - elif sd['decoder.conv_in.weight'].shape[1] == 32: + elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5: ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False} self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] @@ -371,6 +415,17 @@ class VAE: self.upscale_ratio = 4 self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] + if 'decoder.post_quant_conv.weight' in sd: + sd = comfy.utils.state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."}) + + if 'bn.running_mean' in sd: + ddconfig["batch_norm_latent"] = True + self.downscale_ratio *= 2 + self.upscale_ratio *= 2 + self.latent_channels *= 4 + old_memory_used_decode = self.memory_used_decode + self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0 + if 'post_quant_conv.weight' in sd: self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1]) else: @@ -383,6 +438,7 @@ class VAE: self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype) self.latent_channels = 64 self.output_channels = 2 + self.pad_channel_value = "replicate" self.upscale_ratio = 2048 self.downscale_ratio = 2048 self.latent_dim = 1 @@ -430,20 +486,20 @@ class VAE: elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32: ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True} ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1] - self.latent_channels = 64 + self.latent_channels = 32 self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16) self.upscale_index_formula = (4, 16, 16) self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16) self.downscale_index_formula = (4, 16, 16) self.latent_dim = 3 - self.not_video = True + self.not_video = False self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"}, encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig}, decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig}) - self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) elif "decoder.conv_in.conv.weight" in sd: ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} ddconfig["conv3d"] = True @@ -455,8 +511,10 @@ class VAE: self.latent_dim = 3 self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1] self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1]) - self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype) - self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype) + #This is likely to significantly over-estimate with single image or low frame counts as the + #implementation is able to completely skip caching. Rework if used as an image only VAE + self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] elif "decoder.unpatcher3d.wavelets" in sd: self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8) @@ -485,17 +543,22 @@ class VAE: self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype) else: # Wan 2.1 VAE + dim = sd["decoder.head.0.gamma"].shape[0] self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8) self.upscale_index_formula = (4, 8, 8) self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8) self.downscale_index_formula = (4, 8, 8) self.latent_dim = 3 self.latent_channels = 16 - ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} + self.output_channels = sd["encoder.conv1.weight"].shape[1] + self.pad_channel_value = 1.0 + ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0} self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] - self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (2200 if shape[2]<=4 else 7000) * shape[3] * shape[4] * (8*8) * model_management.dtype_size(dtype) + + # Hunyuan 3d v2 2.0 & 2.1 elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd: @@ -525,6 +588,7 @@ class VAE: self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype) self.latent_channels = 8 self.output_channels = 2 + self.pad_channel_value = "replicate" self.upscale_ratio = 4096 self.downscale_ratio = 4096 self.latent_dim = 2 @@ -542,6 +606,54 @@ class VAE: self.latent_channels = 3 self.latent_dim = 2 self.output_channels = 3 + elif "vocoder.activation_post.downsample.lowpass.filter" in sd: #MMAudio VAE + sample_rate = 16000 + if sample_rate == 16000: + mode = '16k' + else: + mode = '44k' + + self.first_stage_model = comfy.ldm.mmaudio.vae.autoencoder.AudioAutoencoder(mode=mode) + self.memory_used_encode = lambda shape, dtype: (30 * shape[2]) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (90 * shape[2] * 1411.2) * model_management.dtype_size(dtype) + self.latent_channels = 20 + self.output_channels = 2 + self.upscale_ratio = 512 * (44100 / sample_rate) + self.downscale_ratio = 512 * (44100 / sample_rate) + self.latent_dim = 1 + self.process_output = lambda audio: audio + self.process_input = lambda audio: audio + self.working_dtypes = [torch.float32] + self.crop_input = False + elif "decoder.22.bias" in sd: # taehv, taew and lighttae + self.latent_channels = sd["decoder.1.weight"].shape[1] + self.latent_dim = 3 + self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16) + self.upscale_index_formula = (4, 16, 16) + self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16) + self.downscale_index_formula = (4, 16, 16) + if self.latent_channels == 48: # Wan 2.2 + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling + self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently")) + self.process_output = lambda image: image + self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)) + elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15 + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15) + self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently")) + self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype)) + else: + if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical + latent_format=comfy.latent_formats.HunyuanVideo + else: + latent_format=None # lighttaew2_1 doesn't need scaling + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=latent_format) + self.process_input = self.process_output = lambda image: image + self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8) + self.upscale_index_formula = (4, 8, 8) + self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8) + self.downscale_index_formula = (4, 8, 8) + self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)) + self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype)) else: logging.warning("WARNING: No VAE weights detected, VAE not initalized.") self.first_stage_model = None @@ -569,20 +681,44 @@ class VAE: self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype)) + self.model_size() + + def model_size(self): + if self.size is not None: + return self.size + self.size = comfy.model_management.module_size(self.first_stage_model) + return self.size + + def get_ram_usage(self): + return self.model_size() def throw_exception_if_invalid(self): if self.first_stage_model is None: raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.") def vae_encode_crop_pixels(self, pixels): - downscale_ratio = self.spacial_compression_encode() + if self.crop_input: + downscale_ratio = self.spacial_compression_encode() - dims = pixels.shape[1:-1] - for d in range(len(dims)): - x = (dims[d] // downscale_ratio) * downscale_ratio - x_offset = (dims[d] % downscale_ratio) // 2 - if x != dims[d]: - pixels = pixels.narrow(d + 1, x_offset, x) + dims = pixels.shape[1:-1] + for d in range(len(dims)): + x = (dims[d] // downscale_ratio) * downscale_ratio + x_offset = (dims[d] % downscale_ratio) // 2 + if x != dims[d]: + pixels = pixels.narrow(d + 1, x_offset, x) + + if pixels.shape[-1] > self.output_channels: + pixels = pixels[..., :self.output_channels] + elif pixels.shape[-1] < self.output_channels: + if self.pad_channel_value is not None: + if isinstance(self.pad_channel_value, str): + mode = self.pad_channel_value + value = None + else: + mode = "constant" + value = self.pad_channel_value + + pixels = torch.nn.functional.pad(pixels, (0, self.output_channels - pixels.shape[-1]), mode=mode, value=value) return pixels def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): @@ -653,6 +789,8 @@ class VAE: self.throw_exception_if_invalid() pixel_samples = None do_tile = False + if self.latent_dim == 2 and samples_in.ndim == 5: + samples_in = samples_in[:, :, 0] try: memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) @@ -868,12 +1006,20 @@ class CLIPType(Enum): OMNIGEN2 = 17 QWEN_IMAGE = 18 HUNYUAN_IMAGE = 19 + HUNYUAN_VIDEO_15 = 20 + OVIS = 21 + KANDINSKY5 = 22 + KANDINSKY5_IMAGE = 23 + NEWBIE = 24 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): clip_data = [] for p in ckpt_paths: - clip_data.append(comfy.utils.load_torch_file(p, safe_load=True)) + sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True) + if model_options.get("custom_operations", None) is None: + sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata) + clip_data.append(sd) return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options) @@ -890,6 +1036,13 @@ class TEModel(Enum): QWEN25_3B = 10 QWEN25_7B = 11 BYT5_SMALL_GLYPH = 12 + GEMMA_3_4B = 13 + MISTRAL3_24B = 14 + MISTRAL3_24B_PRUNED_FLUX2 = 15 + QWEN3_4B = 16 + QWEN3_2B = 17 + JINA_CLIP_2 = 18 + def detect_te_model(sd): if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: @@ -898,6 +1051,8 @@ def detect_te_model(sd): return TEModel.CLIP_H if "text_model.encoder.layers.0.mlp.fc1.weight" in sd: return TEModel.CLIP_L + if "model.encoder.layers.0.mixer.Wqkv.weight" in sd: + return TEModel.JINA_CLIP_2 if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd: weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"] if weight.shape[-1] == 4096: @@ -912,6 +1067,8 @@ def detect_te_model(sd): return TEModel.BYT5_SMALL_GLYPH return TEModel.T5_BASE if 'model.layers.0.post_feedforward_layernorm.weight' in sd: + if 'model.layers.0.self_attn.q_norm.weight' in sd: + return TEModel.GEMMA_3_4B return TEModel.GEMMA_2_2B if 'model.layers.0.self_attn.k_proj.bias' in sd: weight = sd['model.layers.0.self_attn.k_proj.bias'] @@ -920,6 +1077,18 @@ def detect_te_model(sd): if weight.shape[0] == 512: return TEModel.QWEN25_7B if "model.layers.0.post_attention_layernorm.weight" in sd: + weight = sd['model.layers.0.post_attention_layernorm.weight'] + if 'model.layers.0.self_attn.q_norm.weight' in sd: + if weight.shape[0] == 2560: + return TEModel.QWEN3_4B + elif weight.shape[0] == 2048: + return TEModel.QWEN3_2B + if weight.shape[0] == 5120: + if "model.layers.39.post_attention_layernorm.weight" in sd: + return TEModel.MISTRAL3_24B + else: + return TEModel.MISTRAL3_24B_PRUNED_FLUX2 + return TEModel.LLAMA3_8 return None @@ -969,7 +1138,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HIDREAM: - clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None) + clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: clip_target.clip = sdxl_clip.SDXLRefinerClipModel @@ -993,7 +1162,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif clip_type == CLIPType.HIDREAM: clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), - clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None) + clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: #CLIPType.MOCHI clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) @@ -1016,9 +1185,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) + elif te_model == TEModel.GEMMA_3_4B: + clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b") + clip_target.tokenizer = comfy.text_encoders.lumina2.NTokenizer + tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif te_model == TEModel.LLAMA3_8: clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data), - clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None) + clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer elif te_model == TEModel.QWEN25_3B: clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data)) @@ -1030,13 +1203,26 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip else: clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer + elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2: + clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2) + clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer + tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None) + elif te_model == TEModel.QWEN3_4B: + clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer + elif te_model == TEModel.QWEN3_2B: + clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer + elif te_model == TEModel.JINA_CLIP_2: + clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper + clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper else: # clip_l if clip_type == CLIPType.SD3: clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HIDREAM: - clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None) + clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: clip_target.clip = sd1_clip.SD1ClipModel @@ -1076,6 +1262,26 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.HUNYUAN_IMAGE: clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer + elif clip_type == CLIPType.HUNYUAN_VIDEO_15: + clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer + elif clip_type == CLIPType.KANDINSKY5: + clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer + elif clip_type == CLIPType.KANDINSKY5_IMAGE: + clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage + elif clip_type == CLIPType.NEWBIE: + clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer + if "model.layers.0.self_attn.q_norm.weight" in clip_data[0]: + clip_data_gemma = clip_data[0] + clip_data_jina = clip_data[1] + else: + clip_data_gemma = clip_data[1] + clip_data_jina = clip_data[0] + tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None) + tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None) else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer @@ -1091,14 +1297,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip parameters += comfy.utils.calculate_parameters(c) tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) - clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options) - for c in clip_data: - m, u = clip.load_sd(c) - if len(m) > 0: - logging.warning("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected: {}".format(u)) + clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options) return clip def load_gligen(ckpt_path): @@ -1157,6 +1356,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) load_device = model_management.get_torch_device() + custom_operations = model_options.get("custom_operations", None) + if custom_operations is None: + sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata) + model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata) if model_config is None: logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.") @@ -1165,18 +1368,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c return None return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used' - unet_weight_dtype = list(model_config.supported_inference_dtypes) - if model_config.scaled_fp8 is not None: + if model_config.quant_config is not None: weight_dtype = None - model_config.custom_operations = model_options.get("custom_operations", None) + if custom_operations is not None: + model_config.custom_operations = custom_operations + unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None)) if unet_dtype is None: unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype) - manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) + if model_config.quant_config is not None: + manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes) + else: + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) if model_config.clip_vision_prefix is not None: @@ -1194,22 +1401,33 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c vae = VAE(sd=vae_sd, metadata=metadata) if output_clip: + if te_model_options.get("custom_operations", None) is None: + scaled_fp8_list = [] + for k in list(sd.keys()): # Convert scaled fp8 to mixed ops + if k.endswith(".scaled_fp8"): + scaled_fp8_list.append(k[:-len("scaled_fp8")]) + + if len(scaled_fp8_list) > 0: + out_sd = {} + for k in sd: + skip = False + for pref in scaled_fp8_list: + skip = skip or k.startswith(pref) + if not skip: + out_sd[k] = sd[k] + + for pref in scaled_fp8_list: + quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={}) + for k in quant_sd: + out_sd[k] = quant_sd[k] + sd = out_sd + clip_target = model_config.clip_target(state_dict=sd) if clip_target is not None: clip_sd = model_config.process_clip_state_dict(sd) if len(clip_sd) > 0: parameters = comfy.utils.calculate_parameters(clip_sd) - clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options) - m, u = clip.load_sd(clip_sd, full_model=True) - if len(m) > 0: - m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) - if len(m_filter) > 0: - logging.warning("clip missing: {}".format(m)) - else: - logging.debug("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected {}:".format(u)) + clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options) else: logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") @@ -1226,7 +1444,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c return (model_patcher, clip, vae, clipvision) -def load_diffusion_model_state_dict(sd, model_options={}): +def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): """ Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats. @@ -1256,11 +1474,14 @@ def load_diffusion_model_state_dict(sd, model_options={}): if len(temp_sd) > 0: sd = temp_sd + custom_operations = model_options.get("custom_operations", None) + if custom_operations is None: + sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata) parameters = comfy.utils.calculate_parameters(sd) weight_dtype = comfy.utils.weight_dtype(sd) load_device = model_management.get_torch_device() - model_config = model_detection.model_config_from_unet(sd, "") + model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata) if model_config is not None: new_sd = sd @@ -1286,7 +1507,7 @@ def load_diffusion_model_state_dict(sd, model_options={}): offload_device = model_management.unet_offload_device() unet_weight_dtype = list(model_config.supported_inference_dtypes) - if model_config.scaled_fp8 is not None: + if model_config.quant_config is not None: weight_dtype = None if dtype is None: @@ -1294,9 +1515,15 @@ def load_diffusion_model_state_dict(sd, model_options={}): else: unet_dtype = dtype - manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) + if model_config.quant_config is not None: + manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes) + else: + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) - model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations) + + if custom_operations is not None: + model_config.custom_operations = custom_operations + if model_options.get("fp8_optimizations", False): model_config.optimizations["fp8"] = True @@ -1310,8 +1537,8 @@ def load_diffusion_model_state_dict(sd, model_options={}): def load_diffusion_model(unet_path, model_options={}): - sd = comfy.utils.load_torch_file(unet_path) - model = load_diffusion_model_state_dict(sd, model_options=model_options) + sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True) + model = load_diffusion_model_state_dict(sd, model_options=model_options, metadata=metadata) if model is None: logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path)) raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd))) @@ -1335,6 +1562,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m if vae is not None: vae_sd = vae.get_sd() + if metadata is None: + metadata = {} + model_management.load_models_gpu(load_models, force_patch_weights=True) clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index f8a7c2a1b..c512ca5d0 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -90,7 +90,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False, return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32 super().__init__() - assert layer in self.LAYERS if textmodel_json_config is None: textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") @@ -108,19 +107,17 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): config[k] = v operations = model_options.get("custom_operations", None) - scaled_fp8 = None + quant_config = model_options.get("quantization_metadata", None) if operations is None: - scaled_fp8 = model_options.get("scaled_fp8", None) - if scaled_fp8 is not None: - operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) + if quant_config is not None: + operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True) + logging.info("Using MixedPrecisionOps for text encoder") else: operations = comfy.ops.manual_cast self.operations = operations self.transformer = model_class(config, dtype, device, self.operations) - if scaled_fp8 is not None: - self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8)) self.num_layers = self.transformer.num_layers @@ -138,6 +135,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): self.layer_norm_hidden_state = layer_norm_hidden_state self.return_projected_pooled = return_projected_pooled self.return_attention_masks = return_attention_masks + self.execution_device = None if layer == "hidden": assert layer_idx is not None @@ -154,7 +152,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): def set_clip_options(self, options): layer_idx = options.get("layer", self.layer_idx) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) - if self.layer == "all": + self.execution_device = options.get("execution_device", self.execution_device) + if isinstance(self.layer, list) or self.layer == "all": pass elif layer_idx is None or abs(layer_idx) > self.num_layers: self.layer = "last" @@ -166,6 +165,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): self.layer = self.options_default[0] self.layer_idx = self.options_default[1] self.return_projected_pooled = self.options_default[2] + self.execution_device = None def process_tokens(self, tokens, device): end_token = self.special_tokens.get("end", None) @@ -249,14 +249,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info def forward(self, tokens): - device = self.transformer.get_input_embeddings().weight.device + if self.execution_device is None: + device = self.transformer.get_input_embeddings().weight.device + else: + device = self.execution_device + embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device) attention_mask_model = None if self.enable_attention_masks: attention_mask_model = attention_mask - if self.layer == "all": + if isinstance(self.layer, list): + intermediate_output = self.layer + elif self.layer == "all": intermediate_output = "all" else: intermediate_output = self.layer_idx @@ -460,7 +466,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No return embed_out class SDTokenizer: - def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}): + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}): if tokenizer_path is None: tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args) @@ -468,6 +474,7 @@ class SDTokenizer: self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length) self.end_token = None self.min_padding = min_padding + self.pad_left = pad_left empty = self.tokenizer('')["input_ids"] self.tokenizer_adds_end_token = has_end_token @@ -506,6 +513,8 @@ class SDTokenizer: self.embedding_size = embedding_size self.embedding_key = embedding_key + self.disable_weights = disable_weights + def _try_get_embedding(self, embedding_name:str): ''' Takes a potential embedding name and tries to retrieve it. @@ -522,6 +531,12 @@ class SDTokenizer: return (embed, "{} {}".format(embedding_name[len(stripped):], leftover)) return (embed, leftover) + def pad_tokens(self, tokens, amount): + if self.pad_left: + for i in range(amount): + tokens.insert(0, (self.pad_token, 1.0, 0)) + else: + tokens.extend([(self.pad_token, 1.0, 0)] * amount) def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs): ''' @@ -534,7 +549,7 @@ class SDTokenizer: min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding) text = escape_important(text) - if kwargs.get("disable_weights", False): + if kwargs.get("disable_weights", self.disable_weights): parsed_weights = [(text, 1.0)] else: parsed_weights = token_weights(text, 1.0) @@ -600,7 +615,7 @@ class SDTokenizer: if self.end_token is not None: batch.append((self.end_token, 1.0, 0)) if self.pad_to_max_length: - batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length)) + self.pad_tokens(batch, remaining_length) #start new batch batch = [] if self.start_token is not None: @@ -614,11 +629,11 @@ class SDTokenizer: if self.end_token is not None: batch.append((self.end_token, 1.0, 0)) if min_padding is not None: - batch.extend([(self.pad_token, 1.0, 0)] * min_padding) + self.pad_tokens(batch, min_padding) if self.pad_to_max_length and len(batch) < self.max_length: - batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch))) + self.pad_tokens(batch, self.max_length - len(batch)) if min_length is not None and len(batch) < min_length: - batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch))) + self.pad_tokens(batch, min_length - len(batch)) if not return_word_ids: batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 4064bdae1..1888f35ba 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -21,11 +21,14 @@ import comfy.text_encoders.ace import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image +import comfy.text_encoders.kandinsky5 +import comfy.text_encoders.z_image from . import supported_models_base from . import latent_formats from . import diffusers_convert +import comfy.model_management class SD15(supported_models_base.BASE): unet_config = { @@ -539,7 +542,7 @@ class SD3(supported_models_base.BASE): unet_extra_config = {} latent_format = latent_formats.SD3 - memory_usage_factor = 1.2 + memory_usage_factor = 1.6 text_encoder_key_prefix = ["text_encoders."] @@ -741,6 +744,37 @@ class FluxSchnell(Flux): out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device) return out +class Flux2(Flux): + unet_config = { + "image_model": "flux2", + } + + sampling_settings = { + "shift": 2.02, + } + + unet_extra_config = {} + latent_format = latent_formats.Flux2 + + supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def __init__(self, unet_config): + super().__init__(unet_config) + self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Flux2(self, device=device) + return out + + def clip_target(self, state_dict={}): + return None # TODO + pref = self.text_encoder_key_prefix[0] + t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect)) + class GenmoMochi(supported_models_base.BASE): unet_config = { "image_model": "mochi_preview", @@ -932,7 +966,7 @@ class CosmosT2IPredict2(supported_models_base.BASE): def __init__(self, unet_config): super().__init__(unet_config) - self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9 + self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95 def get_model(self, state_dict, prefix="", device=None): out = model_base.CosmosPredict2(self, device=device) @@ -963,7 +997,7 @@ class Lumina2(supported_models_base.BASE): "shift": 6.0, } - memory_usage_factor = 1.2 + memory_usage_factor = 1.4 unet_extra_config = {} latent_format = latent_formats.Flux @@ -982,6 +1016,32 @@ class Lumina2(supported_models_base.BASE): hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect)) +class ZImage(Lumina2): + unet_config = { + "image_model": "lumina2", + "dim": 3840, + } + + sampling_settings = { + "multiplier": 1.0, + "shift": 3.0, + } + + memory_usage_factor = 2.0 + + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + def __init__(self, unet_config): + super().__init__(unet_config) + if comfy.model_management.extended_fp16_support(): + self.supported_inference_dtypes = self.supported_inference_dtypes.copy() + self.supported_inference_dtypes.insert(1, torch.float16) + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.z_image.ZImageTokenizer, comfy.text_encoders.z_image.te(**hunyuan_detect)) + class WAN21_T2V(supported_models_base.BASE): unet_config = { "image_model": "wan2.1", @@ -1236,7 +1296,7 @@ class ChromaRadiance(Chroma): latent_format = comfy.latent_formats.ChromaRadiance # Pixel-space model, no spatial compression for model input. - memory_usage_factor = 0.038 + memory_usage_factor = 0.044 def get_model(self, state_dict, prefix="", device=None): return model_base.ChromaRadiance(self, device=device) @@ -1279,7 +1339,7 @@ class Omnigen2(supported_models_base.BASE): "shift": 2.6, } - memory_usage_factor = 1.65 #TODO + memory_usage_factor = 1.95 #TODO unet_extra_config = {} latent_format = latent_formats.Flux @@ -1344,7 +1404,7 @@ class HunyuanImage21(HunyuanVideo): latent_format = latent_formats.HunyuanImage21 - memory_usage_factor = 7.7 + memory_usage_factor = 8.7 supported_inference_dtypes = [torch.bfloat16, torch.float32] @@ -1374,6 +1434,108 @@ class HunyuanImage21Refiner(HunyuanVideo): out = model_base.HunyuanImage21Refiner(self, device=device) return out -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage] +class HunyuanVideo15(HunyuanVideo): + unet_config = { + "image_model": "hunyuan_video", + "vision_in_dim": 1152, + } + + sampling_settings = { + "shift": 7.0, + } + memory_usage_factor = 4.0 #TODO + supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] + + latent_format = latent_formats.HunyuanVideo15 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.HunyuanVideo15(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) + + +class HunyuanVideo15_SR_Distilled(HunyuanVideo): + unet_config = { + "image_model": "hunyuan_video", + "vision_in_dim": 1152, + "in_channels": 98, + } + + sampling_settings = { + "shift": 2.0, + } + memory_usage_factor = 4.0 #TODO + supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] + + latent_format = latent_formats.HunyuanVideo15 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.HunyuanVideo15_SR_Distilled(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) + + +class Kandinsky5(supported_models_base.BASE): + unet_config = { + "image_model": "kandinsky5", + } + + sampling_settings = { + "shift": 10.0, + } + + unet_extra_config = {} + latent_format = latent_formats.HunyuanVideo + + memory_usage_factor = 1.25 #TODO + + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Kandinsky5(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) + + +class Kandinsky5Image(Kandinsky5): + unet_config = { + "image_model": "kandinsky5", + "model_dim": 2560, + "visual_embed_dim": 64, + } + + sampling_settings = { + "shift": 3.0, + } + + latent_format = latent_formats.Flux + memory_usage_factor = 1.25 #TODO + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Kandinsky5Image(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) + + +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py index 54573abb1..0e7a829ba 100644 --- a/comfy/supported_models_base.py +++ b/comfy/supported_models_base.py @@ -17,6 +17,7 @@ """ import torch +import logging from . import model_base from . import utils from . import latent_formats @@ -49,7 +50,7 @@ class BASE: manual_cast_dtype = None custom_operations = None - scaled_fp8 = None + quant_config = None # quantization configuration for mixed precision optimizations = {"fp8": False} @classmethod @@ -117,3 +118,7 @@ class BASE: def set_inference_dtype(self, dtype, manual_cast_dtype): self.unet_config['dtype'] = dtype self.manual_cast_dtype = manual_cast_dtype + + def __getattr__(self, name): + logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name)) + return None diff --git a/comfy/taesd/taehv.py b/comfy/taesd/taehv.py new file mode 100644 index 000000000..3dfe1e4d4 --- /dev/null +++ b/comfy/taesd/taehv.py @@ -0,0 +1,171 @@ +# Tiny AutoEncoder for HunyuanVideo and WanVideo https://github.com/madebyollin/taehv + +import torch +import torch.nn as nn +import torch.nn.functional as F +from tqdm.auto import tqdm +from collections import namedtuple, deque + +import comfy.ops +operations=comfy.ops.disable_weight_init + +DecoderResult = namedtuple("DecoderResult", ("frame", "memory")) +TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index")) + +def conv(n_in, n_out, **kwargs): + return operations.Conv2d(n_in, n_out, 3, padding=1, **kwargs) + +class Clamp(nn.Module): + def forward(self, x): + return torch.tanh(x / 3) * 3 + +class MemBlock(nn.Module): + def __init__(self, n_in, n_out, act_func): + super().__init__() + self.conv = nn.Sequential(conv(n_in * 2, n_out), act_func, conv(n_out, n_out), act_func, conv(n_out, n_out)) + self.skip = operations.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() + self.act = act_func + def forward(self, x, past): + return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x)) + +class TPool(nn.Module): + def __init__(self, n_f, stride): + super().__init__() + self.stride = stride + self.conv = operations.Conv2d(n_f*stride,n_f, 1, bias=False) + def forward(self, x): + _NT, C, H, W = x.shape + return self.conv(x.reshape(-1, self.stride * C, H, W)) + +class TGrow(nn.Module): + def __init__(self, n_f, stride): + super().__init__() + self.stride = stride + self.conv = operations.Conv2d(n_f, n_f*stride, 1, bias=False) + def forward(self, x): + _NT, C, H, W = x.shape + x = self.conv(x) + return x.reshape(-1, C, H, W) + +def apply_model_with_memblocks(model, x, parallel, show_progress_bar): + + B, T, C, H, W = x.shape + if parallel: + x = x.reshape(B*T, C, H, W) + # parallel over input timesteps, iterate over blocks + for b in tqdm(model, disable=not show_progress_bar): + if isinstance(b, MemBlock): + BT, C, H, W = x.shape + T = BT // B + _x = x.reshape(B, T, C, H, W) + mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape) + x = b(x, mem) + else: + x = b(x) + BT, C, H, W = x.shape + T = BT // B + x = x.view(B, T, C, H, W) + else: + out = [] + work_queue = deque([TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(B, T * C, H, W).chunk(T, dim=1))]) + progress_bar = tqdm(range(T), disable=not show_progress_bar) + mem = [None] * len(model) + while work_queue: + xt, i = work_queue.popleft() + if i == 0: + progress_bar.update(1) + if i == len(model): + out.append(xt) + del xt + else: + b = model[i] + if isinstance(b, MemBlock): + if mem[i] is None: + xt_new = b(xt, xt * 0) + mem[i] = xt.detach().clone() + else: + xt_new = b(xt, mem[i]) + mem[i] = xt.detach().clone() + del xt + work_queue.appendleft(TWorkItem(xt_new, i+1)) + elif isinstance(b, TPool): + if mem[i] is None: + mem[i] = [] + mem[i].append(xt.detach().clone()) + if len(mem[i]) == b.stride: + B, C, H, W = xt.shape + xt = b(torch.cat(mem[i], 1).view(B*b.stride, C, H, W)) + mem[i] = [] + work_queue.appendleft(TWorkItem(xt, i+1)) + elif isinstance(b, TGrow): + xt = b(xt) + NT, C, H, W = xt.shape + for xt_next in reversed(xt.view(B, b.stride*C, H, W).chunk(b.stride, 1)): + work_queue.appendleft(TWorkItem(xt_next, i+1)) + del xt + else: + xt = b(xt) + work_queue.appendleft(TWorkItem(xt, i+1)) + progress_bar.close() + x = torch.stack(out, 1) + return x + + +class TAEHV(nn.Module): + def __init__(self, latent_channels, parallel=False, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), latent_format=None, show_progress_bar=True): + super().__init__() + self.image_channels = 3 + self.patch_size = 1 + self.latent_channels = latent_channels + self.parallel = parallel + self.latent_format = latent_format + self.show_progress_bar = show_progress_bar + self.process_in = latent_format().process_in if latent_format is not None else (lambda x: x) + self.process_out = latent_format().process_out if latent_format is not None else (lambda x: x) + if self.latent_channels in [48, 32]: # Wan 2.2 and HunyuanVideo1.5 + self.patch_size = 2 + if self.latent_channels == 32: # HunyuanVideo1.5 + act_func = nn.LeakyReLU(0.2, inplace=True) + else: # HunyuanVideo, Wan 2.1 + act_func = nn.ReLU(inplace=True) + + self.encoder = nn.Sequential( + conv(self.image_channels*self.patch_size**2, 64), act_func, + TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + conv(64, self.latent_channels), + ) + n_f = [256, 128, 64, 64] + self.frames_to_trim = 2**sum(decoder_time_upscale) - 1 + self.decoder = nn.Sequential( + Clamp(), conv(self.latent_channels, n_f[0]), act_func, + MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False), + MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False), + MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False), + act_func, conv(n_f[3], self.image_channels*self.patch_size**2), + ) + @property + def show_progress_bar(self): + return self._show_progress_bar + + @show_progress_bar.setter + def show_progress_bar(self, value): + self._show_progress_bar = value + + def encode(self, x, **kwargs): + if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size) + x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] + if x.shape[1] % 4 != 0: + # pad at end to multiple of 4 + n_pad = 4 - x.shape[1] % 4 + padding = x[:, -1:].repeat_interleave(n_pad, dim=1) + x = torch.cat([x, padding], 1) + x = apply_model_with_memblocks(self.encoder, x, self.parallel, self.show_progress_bar).movedim(2, 1) + return self.process_out(x) + + def decode(self, x, **kwargs): + x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] + x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar) + if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size) + return x[:, self.frames_to_trim:].movedim(2, 1) diff --git a/comfy/text_encoders/cosmos.py b/comfy/text_encoders/cosmos.py index a1adb5242..448381fa9 100644 --- a/comfy/text_encoders/cosmos.py +++ b/comfy/text_encoders/cosmos.py @@ -7,10 +7,10 @@ from transformers import T5TokenizerFast class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json") - t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) - if t5xxl_scaled_fp8 is not None: + t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None) + if t5xxl_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5xxl_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options) @@ -30,12 +30,12 @@ class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def te(dtype_t5=None, t5xxl_scaled_fp8=None): +def te(dtype_t5=None, t5_quantization_metadata=None): class CosmosTEModel_(CosmosT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index d61ef6668..21d93d757 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -1,10 +1,13 @@ from comfy import sd1_clip import comfy.text_encoders.t5 import comfy.text_encoders.sd3_clip +import comfy.text_encoders.llama import comfy.model_management -from transformers import T5TokenizerFast +from transformers import T5TokenizerFast, LlamaTokenizerFast import torch import os +import json +import base64 class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): @@ -60,11 +63,112 @@ class FluxClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None): +def flux_clip(dtype_t5=None, t5_quantization_metadata=None): class FluxClipModel_(FluxClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) return FluxClipModel_ + +def load_mistral_tokenizer(data): + if torch.is_tensor(data): + data = data.numpy().tobytes() + + try: + from transformers.integrations.mistral import MistralConverter + except ModuleNotFoundError: + from transformers.models.pixtral.convert_pixtral_weights_to_hf import MistralConverter + + mistral_vocab = json.loads(data) + + special_tokens = {} + vocab = {} + + max_vocab = mistral_vocab["config"]["default_vocab_size"] + max_vocab -= len(mistral_vocab["special_tokens"]) + + for w in mistral_vocab["vocab"]: + r = w["rank"] + if r >= max_vocab: + continue + + vocab[base64.b64decode(w["token_bytes"])] = r + + for w in mistral_vocab["special_tokens"]: + if "token_bytes" in w: + special_tokens[base64.b64decode(w["token_bytes"])] = w["rank"] + else: + special_tokens[w["token_str"]] = w["rank"] + + all_special = [] + for v in special_tokens: + all_special.append(v) + + special_tokens.update(vocab) + vocab = special_tokens + return {"tokenizer_object": MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(), "legacy": False} + +class MistralTokenizerClass: + @staticmethod + def from_pretrained(path, **kwargs): + return LlamaTokenizerFast(**kwargs) + +class Mistral3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.tekken_data = tokenizer_data.get("tekken_model", None) + super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"tekken_model": self.tekken_data} + +class Flux2Tokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="mistral3_24b", tokenizer=Mistral3Tokenizer) + self.llama_template = '[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]{}[/INST]' + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + +class Mistral3_24BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer=[10, 20, 30], layer_idx=None, dtype=None, attention_mask=True, model_options={}): + textmodel_json_config = {} + num_layers = model_options.get("num_layers", None) + if num_layers is not None: + textmodel_json_config["num_hidden_layers"] = num_layers + if num_layers < 40: + textmodel_json_config["final_norm"] = False + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 1, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Mistral3Small24B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + +class Flux2TEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}, name="mistral3_24b", clip_model=Mistral3_24BModel): + super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs): + out, pooled, extra = super().encode_token_weights(token_weight_pairs) + + out = torch.stack((out[:, 0], out[:, 1], out[:, 2]), dim=1) + out = out.movedim(1, 2) + out = out.reshape(out.shape[0], out.shape[1], -1) + return out, pooled, extra + +def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False): + class Flux2TEModel_(Flux2TEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + if pruned: + model_options = model_options.copy() + model_options["num_layers"] = 30 + super().__init__(device=device, dtype=dtype, model_options=model_options) + return Flux2TEModel_ diff --git a/comfy/text_encoders/genmo.py b/comfy/text_encoders/genmo.py index 9dcf190a2..5daea8135 100644 --- a/comfy/text_encoders/genmo.py +++ b/comfy/text_encoders/genmo.py @@ -26,12 +26,12 @@ class MochiT5Tokenizer(sd1_clip.SD1Tokenizer): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None): +def mochi_te(dtype_t5=None, t5_quantization_metadata=None): class MochiTEModel_(MochiT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/hidream.py b/comfy/text_encoders/hidream.py index dbcf52784..600b34480 100644 --- a/comfy/text_encoders/hidream.py +++ b/comfy/text_encoders/hidream.py @@ -142,14 +142,14 @@ class HiDreamTEModel(torch.nn.Module): return self.llama.load_sd(sd) -def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None): +def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5_quantization_metadata=None, llama_quantization_metadata=None): class HiDreamTEModel_(HiDreamTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HiDreamTEModel_ diff --git a/comfy/text_encoders/hunyuan_image.py b/comfy/text_encoders/hunyuan_image.py index ff04726e1..cd198036c 100644 --- a/comfy/text_encoders/hunyuan_image.py +++ b/comfy/text_encoders/hunyuan_image.py @@ -40,10 +40,10 @@ class HunyuanImageTokenizer(QwenImageTokenizer): class Qwen25_7BVLIModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -91,12 +91,12 @@ class HunyuanImageTEModel(QwenImageTEModel): else: return super().load_sd(sd) -def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None): +def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(HunyuanImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index b02148b33..a9a6c525e 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -1,11 +1,12 @@ from comfy import sd1_clip import comfy.model_management import comfy.text_encoders.llama +from .hunyuan_image import HunyuanImageTokenizer from transformers import LlamaTokenizerFast import torch import os import numbers - +import comfy.utils def llama_detect(state_dict, prefix=""): out = {} @@ -13,9 +14,9 @@ def llama_detect(state_dict, prefix=""): if t5_key in state_dict: out["dtype_llama"] = state_dict[t5_key].dtype - scaled_fp8_key = "{}scaled_fp8".format(prefix) - if scaled_fp8_key in state_dict: - out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype + quant = comfy.utils.detect_layer_quantization(state_dict, prefix) + if quant is not None: + out["llama_quantization_metadata"] = quant return out @@ -27,10 +28,10 @@ class LLAMA3Tokenizer(sd1_clip.SDTokenizer): class LLAMAModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}): - llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata textmodel_json_config = {} vocab_size = model_options.get("vocab_size", None) @@ -73,6 +74,14 @@ class HunyuanVideoTokenizer: return {} +class HunyuanVideo15Tokenizer(HunyuanImageTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a helpful assistant. Describe the video by detailing the following aspects:\n1. The main content and theme of the video.\n2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.\n3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.\n4. background environment, light, style and atmosphere.\n5. camera angles, movements, and transitions used in the video.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + return super().tokenize_with_weights(text, return_word_ids, prevent_empty_text=True, **kwargs) + class HunyuanVideoClipModel(torch.nn.Module): def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): super().__init__() @@ -149,11 +158,11 @@ class HunyuanVideoClipModel(torch.nn.Module): return self.llama.load_sd(sd) -def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None): +def hunyuan_video_clip(dtype_llama=None, llama_quantization_metadata=None): class HunyuanVideoClipModel_(HunyuanVideoClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HunyuanVideoClipModel_ diff --git a/comfy/text_encoders/jina_clip_2.py b/comfy/text_encoders/jina_clip_2.py new file mode 100644 index 000000000..0cffb6d16 --- /dev/null +++ b/comfy/text_encoders/jina_clip_2.py @@ -0,0 +1,219 @@ +# Jina CLIP v2 and Jina Embeddings v3 both use their modified XLM-RoBERTa architecture. Reference implementation: +# Jina CLIP v2 (both text and vision): https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/modeling_clip.py +# Jina XLM-RoBERTa (text only): http://huggingface.co/jinaai/xlm-roberta-flash-implementation/blob/2b6bc3f30750b3a9648fe9b63448c09920efe9be/modeling_xlm_roberta.py + +from dataclasses import dataclass + +import torch +from torch import nn as nn +from torch.nn import functional as F + +import comfy.model_management +import comfy.ops +from comfy import sd1_clip +from .spiece_tokenizer import SPieceTokenizer + +class JinaClip2Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer = tokenizer_data.get("spiece_model", None) + # The official NewBie uses max_length=8000, but Jina Embeddings v3 actually supports 8192 + super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='jina_clip_2', tokenizer_class=SPieceTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=False, max_length=8192, min_length=1, pad_token=1, end_token=2, tokenizer_args={"add_bos": True, "add_eos": True}, tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"spiece_model": self.tokenizer.serialize_model()} + +class JinaClip2TokenizerWrapper(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=JinaClip2Tokenizer, name="jina_clip_2") + +# https://huggingface.co/jinaai/jina-embeddings-v3/blob/343dbf534c76fe845f304fa5c2d1fd87e1e78918/config.json +@dataclass +class XLMRobertaConfig: + vocab_size: int = 250002 + type_vocab_size: int = 1 + hidden_size: int = 1024 + num_hidden_layers: int = 24 + num_attention_heads: int = 16 + rotary_emb_base: float = 20000.0 + intermediate_size: int = 4096 + hidden_act: str = "gelu" + hidden_dropout_prob: float = 0.1 + attention_probs_dropout_prob: float = 0.1 + layer_norm_eps: float = 1e-05 + bos_token_id: int = 0 + eos_token_id: int = 2 + pad_token_id: int = 1 + +class XLMRobertaEmbeddings(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + embed_dim = config.hidden_size + self.word_embeddings = ops.Embedding(config.vocab_size, embed_dim, padding_idx=config.pad_token_id, device=device, dtype=dtype) + self.token_type_embeddings = ops.Embedding(config.type_vocab_size, embed_dim, device=device, dtype=dtype) + + def forward(self, input_ids=None, embeddings=None): + if input_ids is not None and embeddings is None: + embeddings = self.word_embeddings(input_ids) + + if embeddings is not None: + token_type_ids = torch.zeros(embeddings.shape[1], device=embeddings.device, dtype=torch.int32) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings = embeddings + token_type_embeddings + return embeddings + +class RotaryEmbedding(nn.Module): + def __init__(self, dim, base, device=None): + super().__init__() + inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self._seq_len_cached = 0 + self._cos_cached = None + self._sin_cached = None + + def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): + if seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype: + self._seq_len_cached = seqlen + t = torch.arange(seqlen, device=device, dtype=torch.float32) + freqs = torch.outer(t, self.inv_freq.to(device=t.device)) + emb = torch.cat((freqs, freqs), dim=-1) + self._cos_cached = emb.cos().to(dtype) + self._sin_cached = emb.sin().to(dtype) + + def forward(self, q, k): + batch, seqlen, heads, head_dim = q.shape + self._update_cos_sin_cache(seqlen, device=q.device, dtype=q.dtype) + + cos = self._cos_cached[:seqlen].view(1, seqlen, 1, head_dim) + sin = self._sin_cached[:seqlen].view(1, seqlen, 1, head_dim) + + def rotate_half(x): + size = x.shape[-1] // 2 + x1, x2 = x[..., :size], x[..., size:] + return torch.cat((-x2, x1), dim=-1) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + +class MHA(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = embed_dim // config.num_attention_heads + + self.rotary_emb = RotaryEmbedding(self.head_dim, config.rotary_emb_base, device=device) + self.Wqkv = ops.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype) + self.out_proj = ops.Linear(embed_dim, embed_dim, device=device, dtype=dtype) + + def forward(self, x, mask=None, optimized_attention=None): + qkv = self.Wqkv(x) + batch_size, seq_len, _ = qkv.shape + qkv = qkv.view(batch_size, seq_len, 3, self.num_heads, self.head_dim) + q, k, v = qkv.unbind(2) + + q, k = self.rotary_emb(q, k) + + # NHD -> HND + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + + out = optimized_attention(q, k, v, heads=self.num_heads, mask=mask, skip_reshape=True) + return self.out_proj(out) + +class MLP(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.fc1 = ops.Linear(config.hidden_size, config.intermediate_size, device=device, dtype=dtype) + self.activation = F.gelu + self.fc2 = ops.Linear(config.intermediate_size, config.hidden_size, device=device, dtype=dtype) + + def forward(self, x): + x = self.fc1(x) + x = self.activation(x) + x = self.fc2(x) + return x + +class Block(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.mixer = MHA(config, device=device, dtype=dtype, ops=ops) + self.dropout1 = nn.Dropout(config.hidden_dropout_prob) + self.norm1 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) + self.dropout2 = nn.Dropout(config.hidden_dropout_prob) + self.norm2 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + + def forward(self, hidden_states, mask=None, optimized_attention=None): + mixer_out = self.mixer(hidden_states, mask=mask, optimized_attention=optimized_attention) + hidden_states = self.norm1(self.dropout1(mixer_out) + hidden_states) + mlp_out = self.mlp(hidden_states) + hidden_states = self.norm2(self.dropout2(mlp_out) + hidden_states) + return hidden_states + +class XLMRobertaEncoder(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.layers = nn.ModuleList([Block(config, device=device, dtype=dtype, ops=ops) for _ in range(config.num_hidden_layers)]) + + def forward(self, hidden_states, attention_mask=None): + optimized_attention = comfy.ldm.modules.attention.optimized_attention_for_device(hidden_states.device, mask=attention_mask is not None, small_input=True) + for layer in self.layers: + hidden_states = layer(hidden_states, mask=attention_mask, optimized_attention=optimized_attention) + return hidden_states + +class XLMRobertaModel_(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.embeddings = XLMRobertaEmbeddings(config, device=device, dtype=dtype, ops=ops) + self.emb_ln = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + self.emb_drop = nn.Dropout(config.hidden_dropout_prob) + self.encoder = XLMRobertaEncoder(config, device=device, dtype=dtype, ops=ops) + + def forward(self, input_ids, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]): + x = self.embeddings(input_ids=input_ids, embeddings=embeds) + x = self.emb_ln(x) + x = self.emb_drop(x) + + mask = None + if attention_mask is not None: + mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, 1, attention_mask.shape[-1])) + mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max) + + sequence_output = self.encoder(x, attention_mask=mask) + + # Mean pool, see https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/hf_model.py + pooled_output = None + if attention_mask is None: + pooled_output = sequence_output.mean(dim=1) + else: + attention_mask = attention_mask.to(sequence_output.dtype) + pooled_output = (sequence_output * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=-1, keepdim=True) + + # Intermediate output is not yet implemented, use None for placeholder + return sequence_output, None, pooled_output + +class XLMRobertaModel(nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.config = XLMRobertaConfig(**config_dict) + self.model = XLMRobertaModel_(self.config, device=device, dtype=dtype, ops=operations) + self.num_layers = self.config.num_hidden_layers + + def get_input_embeddings(self): + return self.model.embeddings.word_embeddings + + def set_input_embeddings(self, embeddings): + self.model.embeddings.word_embeddings = embeddings + + def forward(self, *args, **kwargs): + return self.model(*args, **kwargs) + +class JinaClip2TextModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, textmodel_json_config={}, model_class=XLMRobertaModel, special_tokens={"start": 0, "end": 2, "pad": 1}, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) + +class JinaClip2TextModelWrapper(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, clip_model=JinaClip2TextModel, name="jina_clip_2", model_options=model_options) diff --git a/comfy/text_encoders/kandinsky5.py b/comfy/text_encoders/kandinsky5.py new file mode 100644 index 000000000..be086458c --- /dev/null +++ b/comfy/text_encoders/kandinsky5.py @@ -0,0 +1,68 @@ +from comfy import sd1_clip +from .qwen_image import QwenImageTokenizer, QwenImageTEModel +from .llama import Qwen25_7BVLI + + +class Kandinsky5Tokenizer(QwenImageTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a prompt engineer. Describe the video in detail.\nDescribe how the camera moves or shakes, describe the zoom and view angle, whether it follows the objects.\nDescribe the location of the video, main characters or objects and their action.\nDescribe the dynamism of the video and presented actions.\nName the visual style of the video: whether it is a professional footage, user generated content, some kind of animation, video game or screen content.\nDescribe the visual effects, postprocessing and transitions if they are presented in the video.\nPay attention to the order of key actions shown in the scene.<|im_end|>\n<|im_start|>user\n{}<|im_end|>" + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + out = super().tokenize_with_weights(text, return_word_ids, **kwargs) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) + + return out + + +class Kandinsky5TokenizerImage(Kandinsky5Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a promt engineer. Describe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>" + + +class Qwen25_7BVLIModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}): + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + +class Kandinsky5TEModel(QwenImageTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options) + self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs): + cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=-1) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs["l"]) + + return cond, l_pooled, extra + + def set_clip_options(self, options): + super().set_clip_options(options) + self.clip_l.set_clip_options(options) + + def reset_clip_options(self): + super().reset_clip_options() + self.clip_l.reset_clip_options() + + def load_sd(self, sd): + if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: + return self.clip_l.load_sd(sd) + else: + return super().load_sd(sd) + +def te(dtype_llama=None, llama_quantization_metadata=None): + class Kandinsky5TEModel_(Kandinsky5TEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["llama_quantization_metadata"] = llama_quantization_metadata + if dtype_llama is not None: + dtype = dtype_llama + super().__init__(device=device, dtype=dtype, model_options=model_options) + return Kandinsky5TEModel_ diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index c5a48ba9f..ed29e014d 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -28,6 +28,32 @@ class Llama2Config: mlp_activation = "silu" qkv_bias = False rope_dims = None + q_norm = None + k_norm = None + rope_scale = None + final_norm: bool = True + +@dataclass +class Mistral3Small24BConfig: + vocab_size: int = 131072 + hidden_size: int = 5120 + intermediate_size: int = 32768 + num_hidden_layers: int = 40 + num_attention_heads: int = 32 + num_key_value_heads: int = 8 + max_position_embeddings: int = 8192 + rms_norm_eps: float = 1e-5 + rope_theta: float = 1000000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = None + k_norm = None + rope_scale = None + final_norm: bool = True @dataclass class Qwen25_3BConfig: @@ -46,6 +72,54 @@ class Qwen25_3BConfig: mlp_activation = "silu" qkv_bias = True rope_dims = None + q_norm = None + k_norm = None + rope_scale = None + final_norm: bool = True + +@dataclass +class Qwen3_4BConfig: + vocab_size: int = 151936 + hidden_size: int = 2560 + intermediate_size: int = 9728 + num_hidden_layers: int = 36 + num_attention_heads: int = 32 + num_key_value_heads: int = 8 + max_position_embeddings: int = 40960 + rms_norm_eps: float = 1e-6 + rope_theta: float = 1000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + rope_scale = None + final_norm: bool = True + +@dataclass +class Ovis25_2BConfig: + vocab_size: int = 151936 + hidden_size: int = 2048 + intermediate_size: int = 6144 + num_hidden_layers: int = 28 + num_attention_heads: int = 16 + num_key_value_heads: int = 8 + max_position_embeddings: int = 40960 + rms_norm_eps: float = 1e-6 + rope_theta: float = 1000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + rope_scale = None + final_norm: bool = True @dataclass class Qwen25_7BVLI_Config: @@ -64,6 +138,10 @@ class Qwen25_7BVLI_Config: mlp_activation = "silu" qkv_bias = True rope_dims = [16, 24, 24] + q_norm = None + k_norm = None + rope_scale = None + final_norm: bool = True @dataclass class Gemma2_2B_Config: @@ -82,6 +160,34 @@ class Gemma2_2B_Config: mlp_activation = "gelu_pytorch_tanh" qkv_bias = False rope_dims = None + q_norm = None + k_norm = None + sliding_attention = None + rope_scale = None + final_norm: bool = True + +@dataclass +class Gemma3_4B_Config: + vocab_size: int = 262208 + hidden_size: int = 2560 + intermediate_size: int = 10240 + num_hidden_layers: int = 34 + num_attention_heads: int = 8 + num_key_value_heads: int = 4 + max_position_embeddings: int = 131072 + rms_norm_eps: float = 1e-6 + rope_theta = [1000000.0, 10000.0] + transformer_type: str = "gemma3" + head_dim = 256 + rms_norm_add = True + mlp_activation = "gelu_pytorch_tanh" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + sliding_attention = [1024, 1024, 1024, 1024, 1024, False] + rope_scale = [8.0, 1.0] + final_norm: bool = True class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None): @@ -106,25 +212,40 @@ def rotate_half(x): return torch.cat((-x2, x1), dim=-1) -def precompute_freqs_cis(head_dim, position_ids, theta, rope_dims=None, device=None): - theta_numerator = torch.arange(0, head_dim, 2, device=device).float() - inv_freq = 1.0 / (theta ** (theta_numerator / head_dim)) +def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None): + if not isinstance(theta, list): + theta = [theta] - inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) - position_ids_expanded = position_ids[:, None, :].float() - freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) - emb = torch.cat((freqs, freqs), dim=-1) - cos = emb.cos() - sin = emb.sin() - if rope_dims is not None and position_ids.shape[0] > 1: - mrope_section = rope_dims * 2 - cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0) - sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0) - else: - cos = cos.unsqueeze(1) - sin = sin.unsqueeze(1) + out = [] + for index, t in enumerate(theta): + theta_numerator = torch.arange(0, head_dim, 2, device=device).float() + inv_freq = 1.0 / (t ** (theta_numerator / head_dim)) - return (cos, sin) + if rope_scale is not None: + if isinstance(rope_scale, list): + inv_freq /= rope_scale[index] + else: + inv_freq /= rope_scale + + inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + if rope_dims is not None and position_ids.shape[0] > 1: + mrope_section = rope_dims * 2 + cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0) + sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0) + else: + cos = cos.unsqueeze(1) + sin = sin.unsqueeze(1) + out.append((cos, sin)) + + if len(out) == 1: + return out[0] + + return out def apply_rope(xq, xk, freqs_cis): @@ -152,6 +273,14 @@ class Attention(nn.Module): self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype) self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype) + self.q_norm = None + self.k_norm = None + + if config.q_norm == "gemma3": + self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + if config.k_norm == "gemma3": + self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + def forward( self, hidden_states: torch.Tensor, @@ -168,6 +297,11 @@ class Attention(nn.Module): xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2) xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2) + if self.q_norm is not None: + xq = self.q_norm(xq) + if self.k_norm is not None: + xk = self.k_norm(xk) + xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis) xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1) @@ -192,7 +326,7 @@ class MLP(nn.Module): return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): - def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): + def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None): super().__init__() self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops) self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) @@ -226,7 +360,7 @@ class TransformerBlock(nn.Module): return x class TransformerBlockGemma2(nn.Module): - def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None): + def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None): super().__init__() self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops) self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) @@ -235,6 +369,13 @@ class TransformerBlockGemma2(nn.Module): self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + if config.sliding_attention is not None: + self.sliding_attention = config.sliding_attention[index % len(config.sliding_attention)] + else: + self.sliding_attention = False + + self.transformer_type = config.transformer_type + def forward( self, x: torch.Tensor, @@ -242,6 +383,19 @@ class TransformerBlockGemma2(nn.Module): freqs_cis: Optional[torch.Tensor] = None, optimized_attention=None, ): + if self.transformer_type == 'gemma3': + if self.sliding_attention: + if x.shape[1] > self.sliding_attention: + sliding_mask = torch.full((x.shape[1], x.shape[1]), float("-inf"), device=x.device, dtype=x.dtype) + sliding_mask.tril_(diagonal=-self.sliding_attention) + if attention_mask is not None: + attention_mask = attention_mask + sliding_mask + else: + attention_mask = sliding_mask + freqs_cis = freqs_cis[1] + else: + freqs_cis = freqs_cis[0] + # Self Attention residual = x x = self.input_layernorm(x) @@ -276,7 +430,7 @@ class Llama2_(nn.Module): device=device, dtype=dtype ) - if self.config.transformer_type == "gemma2": + if self.config.transformer_type == "gemma2" or self.config.transformer_type == "gemma3": transformer = TransformerBlockGemma2 self.normalize_in = True else: @@ -284,10 +438,15 @@ class Llama2_(nn.Module): self.normalize_in = False self.layers = nn.ModuleList([ - transformer(config, device=device, dtype=dtype, ops=ops) - for _ in range(config.num_hidden_layers) + transformer(config, index=i, device=device, dtype=dtype, ops=ops) + for i in range(config.num_hidden_layers) ]) - self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + + if config.final_norm: + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + else: + self.norm = None + # self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype) def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]): @@ -305,6 +464,7 @@ class Llama2_(nn.Module): freqs_cis = precompute_freqs_cis(self.config.head_dim, position_ids, self.config.rope_theta, + self.config.rope_scale, self.config.rope_dims, device=x.device) @@ -322,8 +482,12 @@ class Llama2_(nn.Module): intermediate = None all_intermediate = None + only_layers = None if intermediate_output is not None: - if intermediate_output == "all": + if isinstance(intermediate_output, list): + all_intermediate = [] + only_layers = set(intermediate_output) + elif intermediate_output == "all": all_intermediate = [] intermediate_output = None elif intermediate_output < 0: @@ -331,7 +495,8 @@ class Llama2_(nn.Module): for i, layer in enumerate(self.layers): if all_intermediate is not None: - all_intermediate.append(x.unsqueeze(1).clone()) + if only_layers is None or (i in only_layers): + all_intermediate.append(x.unsqueeze(1).clone()) x = layer( x=x, attention_mask=mask, @@ -341,14 +506,17 @@ class Llama2_(nn.Module): if i == intermediate_output: intermediate = x.clone() - x = self.norm(x) + if self.norm is not None: + x = self.norm(x) + if all_intermediate is not None: - all_intermediate.append(x.unsqueeze(1).clone()) + if only_layers is None or ((i + 1) in only_layers): + all_intermediate.append(x.unsqueeze(1).clone()) if all_intermediate is not None: intermediate = torch.cat(all_intermediate, dim=1) - if intermediate is not None and final_layer_norm_intermediate: + if intermediate is not None and final_layer_norm_intermediate and self.norm is not None: intermediate = self.norm(intermediate) return x, intermediate @@ -373,6 +541,15 @@ class Llama2(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Mistral3Small24B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Mistral3Small24BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Qwen25_3B(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() @@ -382,6 +559,24 @@ class Qwen25_3B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Qwen3_4B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Qwen3_4BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + +class Ovis25_2B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Ovis25_2BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Qwen25_7BVLI(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() @@ -433,3 +628,12 @@ class Gemma2_2B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype + +class Gemma3_4B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Gemma3_4B_Config(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index 674461b75..b29a7cc87 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -11,29 +11,52 @@ class Gemma2BTokenizer(sd1_clip.SDTokenizer): def state_dict(self): return {"spiece_model": self.tokenizer.serialize_model()} +class Gemma3_4BTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer = tokenizer_data.get("spiece_model", None) + super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, disable_weights=True, tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"spiece_model": self.tokenizer.serialize_model()} class LuminaTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma2_2b", tokenizer=Gemma2BTokenizer) +class NTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_4b", tokenizer=Gemma3_4BTokenizer) class Gemma2_2BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) +class Gemma3_4BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) class LuminaModel(sd1_clip.SD1ClipModel): - def __init__(self, device="cpu", dtype=None, model_options={}): - super().__init__(device=device, dtype=dtype, name="gemma2_2b", clip_model=Gemma2_2BModel, model_options=model_options) + def __init__(self, device="cpu", dtype=None, model_options={}, name="gemma2_2b", clip_model=Gemma2_2BModel): + super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b"): + if model_type == "gemma2_2b": + model = Gemma2_2BModel + elif model_type == "gemma3_4b": + model = Gemma3_4BModel + class LuminaTEModel_(LuminaModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama - super().__init__(device=device, dtype=dtype, model_options=model_options) + super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model) return LuminaTEModel_ diff --git a/comfy/text_encoders/newbie.py b/comfy/text_encoders/newbie.py new file mode 100644 index 000000000..db2324576 --- /dev/null +++ b/comfy/text_encoders/newbie.py @@ -0,0 +1,62 @@ +import torch + +import comfy.model_management +import comfy.text_encoders.jina_clip_2 +import comfy.text_encoders.lumina2 + +class NewBieTokenizer: + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.gemma = comfy.text_encoders.lumina2.Gemma3_4BTokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["gemma_spiece_model"]}) + self.jina = comfy.text_encoders.jina_clip_2.JinaClip2Tokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["jina_spiece_model"]}) + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + out = {} + out["gemma"] = self.gemma.tokenize_with_weights(text, return_word_ids, **kwargs) + out["jina"] = self.jina.tokenize_with_weights(text, return_word_ids, **kwargs) + return out + + def untokenize(self, token_weight_pair): + raise NotImplementedError + + def state_dict(self): + return {} + +class NewBieTEModel(torch.nn.Module): + def __init__(self, dtype_gemma=None, device="cpu", dtype=None, model_options={}): + super().__init__() + dtype_gemma = comfy.model_management.pick_weight_dtype(dtype_gemma, dtype, device) + self.gemma = comfy.text_encoders.lumina2.Gemma3_4BModel(device=device, dtype=dtype_gemma, model_options=model_options) + self.jina = comfy.text_encoders.jina_clip_2.JinaClip2TextModel(device=device, dtype=dtype, model_options=model_options) + self.dtypes = {dtype, dtype_gemma} + + def set_clip_options(self, options): + self.gemma.set_clip_options(options) + self.jina.set_clip_options(options) + + def reset_clip_options(self): + self.gemma.reset_clip_options() + self.jina.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_gemma = token_weight_pairs["gemma"] + token_weight_pairs_jina = token_weight_pairs["jina"] + + gemma_out, gemma_pooled, gemma_extra = self.gemma.encode_token_weights(token_weight_pairs_gemma) + jina_out, jina_pooled, jina_extra = self.jina.encode_token_weights(token_weight_pairs_jina) + + return gemma_out, jina_pooled, gemma_extra + + def load_sd(self, sd): + if "model.layers.0.self_attn.q_norm.weight" in sd: + return self.gemma.load_sd(sd) + else: + return self.jina.load_sd(sd) + +def te(dtype_llama=None, llama_quantization_metadata=None): + class NewBieTEModel_(NewBieTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["llama_quantization_metadata"] = llama_quantization_metadata + super().__init__(dtype_gemma=dtype_llama, device=device, dtype=dtype, model_options=model_options) + return NewBieTEModel_ diff --git a/comfy/text_encoders/omnigen2.py b/comfy/text_encoders/omnigen2.py index 1a01b2dd4..50aa4121f 100644 --- a/comfy/text_encoders/omnigen2.py +++ b/comfy/text_encoders/omnigen2.py @@ -32,12 +32,12 @@ class Omnigen2Model(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class Omnigen2TEModel_(Omnigen2Model): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/ovis.py b/comfy/text_encoders/ovis.py new file mode 100644 index 000000000..5754424d2 --- /dev/null +++ b/comfy/text_encoders/ovis.py @@ -0,0 +1,66 @@ +from transformers import Qwen2Tokenizer +import comfy.text_encoders.llama +from comfy import sd1_clip +import os +import torch +import numbers + +class Qwen3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen3_2b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=284, pad_token=151643, tokenizer_data=tokenizer_data) + + +class OvisTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_2b", tokenizer=Qwen3Tokenizer) + self.llama_template = "<|im_start|>user\nDescribe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: {}<|im_end|>\n<|im_start|>assistant\n\n\n\n\n" + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + +class Ovis25_2BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Ovis25_2B, enable_attention_masks=attention_mask, return_attention_masks=False, zero_out_masked=True, model_options=model_options) + + +class OvisTEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, name="qwen3_2b", clip_model=Ovis25_2BModel, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs, template_end=-1): + out, pooled = super().encode_token_weights(token_weight_pairs) + tok_pairs = token_weight_pairs["qwen3_2b"][0] + count_im_start = 0 + if template_end == -1: + for i, v in enumerate(tok_pairs): + elem = v[0] + if not torch.is_tensor(elem): + if isinstance(elem, numbers.Integral): + if elem == 4004 and count_im_start < 1: + template_end = i + count_im_start += 1 + + if out.shape[1] > (template_end + 1): + if tok_pairs[template_end + 1][0] == 25: + template_end += 1 + + out = out[:, template_end:] + return out, pooled, {} + + +def te(dtype_llama=None, llama_quantization_metadata=None): + class OvisTEModel_(OvisTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, dtype=dtype, model_options=model_options) + return OvisTEModel_ diff --git a/comfy/text_encoders/pixart_t5.py b/comfy/text_encoders/pixart_t5.py index 5f383de07..e5e5f18be 100644 --- a/comfy/text_encoders/pixart_t5.py +++ b/comfy/text_encoders/pixart_t5.py @@ -30,12 +30,12 @@ class PixArtTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None): +def pixart_te(dtype_t5=None, t5_quantization_metadata=None): class PixArtTEModel_(PixArtT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json b/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json index 67688e82c..df5b5d7fe 100644 --- a/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json +++ b/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json @@ -179,36 +179,36 @@ "special": false }, "151665": { - "content": "<|img|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151666": { - "content": "<|endofimg|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151667": { - "content": "<|meta|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151668": { - "content": "<|endofmeta|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false } }, "additional_special_tokens": [ diff --git a/comfy/text_encoders/qwen_image.py b/comfy/text_encoders/qwen_image.py index 40fa67937..5c14dec23 100644 --- a/comfy/text_encoders/qwen_image.py +++ b/comfy/text_encoders/qwen_image.py @@ -17,12 +17,14 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer): self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n" - def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs): + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], prevent_empty_text=False, **kwargs): skip_template = False if text.startswith('<|im_start|>'): skip_template = True if text.startswith('<|start_header_id|>'): skip_template = True + if prevent_empty_text and text == '': + text = ' ' if skip_template: llama_text = text @@ -83,12 +85,12 @@ class QwenImageTEModel(sd1_clip.SD1ClipModel): return out, pooled, extra -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(QwenImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/sd3_clip.py b/comfy/text_encoders/sd3_clip.py index ff5d412db..8b153c72b 100644 --- a/comfy/text_encoders/sd3_clip.py +++ b/comfy/text_encoders/sd3_clip.py @@ -6,14 +6,15 @@ import torch import os import comfy.model_management import logging +import comfy.utils class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") - t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) - if t5xxl_scaled_fp8 is not None: + t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None) + if t5xxl_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5xxl_quantization_metadata model_options = {**model_options, "model_name": "t5xxl"} super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -25,9 +26,9 @@ def t5_xxl_detect(state_dict, prefix=""): if t5_key in state_dict: out["dtype_t5"] = state_dict[t5_key].dtype - scaled_fp8_key = "{}scaled_fp8".format(prefix) - if scaled_fp8_key in state_dict: - out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype + quant = comfy.utils.detect_layer_quantization(state_dict, prefix) + if quant is not None: + out["t5_quantization_metadata"] = quant return out @@ -156,11 +157,11 @@ class SD3ClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False): +def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_quantization_metadata=None, t5_attention_mask=False): class SD3ClipModel_(SD3ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options) return SD3ClipModel_ diff --git a/comfy/text_encoders/wan.py b/comfy/text_encoders/wan.py index d50fa4b28..164a57edd 100644 --- a/comfy/text_encoders/wan.py +++ b/comfy/text_encoders/wan.py @@ -25,12 +25,12 @@ class WanT5Model(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs): super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs) -def te(dtype_t5=None, t5xxl_scaled_fp8=None): +def te(dtype_t5=None, t5_quantization_metadata=None): class WanTEModel(WanT5Model): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5_quantization_metadata if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/z_image.py b/comfy/text_encoders/z_image.py new file mode 100644 index 000000000..19adde0b7 --- /dev/null +++ b/comfy/text_encoders/z_image.py @@ -0,0 +1,45 @@ +from transformers import Qwen2Tokenizer +import comfy.text_encoders.llama +from comfy import sd1_clip +import os + +class Qwen3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data) + + +class ZImageTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_4b", tokenizer=Qwen3Tokenizer) + self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + + +class Qwen3_4BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + +class ZImageTEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options) + + +def te(dtype_llama=None, llama_quantization_metadata=None): + class ZImageTEModel_(ZImageTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, dtype=dtype, model_options=model_options) + return ZImageTEModel_ diff --git a/comfy/utils.py b/comfy/utils.py index fab28cf08..8d4e2b445 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -29,6 +29,7 @@ import itertools from torch.nn.functional import interpolate from einops import rearrange from comfy.cli_args import args +import json MMAP_TORCH_FILES = args.mmap_torch_files DISABLE_MMAP = args.disable_mmap @@ -39,7 +40,11 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pass ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint" - from numpy.core.multiarray import scalar + def scalar(*args, **kwargs): + from numpy.core.multiarray import scalar as sc + return sc(*args, **kwargs) + scalar.__module__ = "numpy.core.multiarray" + from numpy import dtype from numpy.dtypes import Float64DType from _codecs import encode @@ -48,7 +53,7 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in ALWAYS_SAFE_LOAD = True logging.info("Checkpoint files will always be loaded safely.") else: - logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.") + logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.") def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False): if device is None: @@ -671,6 +676,72 @@ def flux_to_diffusers(mmdit_config, output_prefix=""): return key_map +def z_image_to_diffusers(mmdit_config, output_prefix=""): + n_layers = mmdit_config.get("n_layers", 0) + hidden_size = mmdit_config.get("dim", 0) + n_context_refiner = mmdit_config.get("n_refiner_layers", 2) + n_noise_refiner = mmdit_config.get("n_refiner_layers", 2) + key_map = {} + + def add_block_keys(prefix_from, prefix_to, has_adaln=True): + for end in ("weight", "bias"): + k = "{}.attention.".format(prefix_from) + qkv = "{}.attention.qkv.{}".format(prefix_to, end) + key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) + key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) + key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) + + block_map = { + "attention.norm_q.weight": "attention.q_norm.weight", + "attention.norm_k.weight": "attention.k_norm.weight", + "attention.to_out.0.weight": "attention.out.weight", + "attention.to_out.0.bias": "attention.out.bias", + "attention_norm1.weight": "attention_norm1.weight", + "attention_norm2.weight": "attention_norm2.weight", + "feed_forward.w1.weight": "feed_forward.w1.weight", + "feed_forward.w2.weight": "feed_forward.w2.weight", + "feed_forward.w3.weight": "feed_forward.w3.weight", + "ffn_norm1.weight": "ffn_norm1.weight", + "ffn_norm2.weight": "ffn_norm2.weight", + } + if has_adaln: + block_map["adaLN_modulation.0.weight"] = "adaLN_modulation.0.weight" + block_map["adaLN_modulation.0.bias"] = "adaLN_modulation.0.bias" + for k, v in block_map.items(): + key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, v) + + for i in range(n_layers): + add_block_keys("layers.{}".format(i), "{}layers.{}".format(output_prefix, i)) + + for i in range(n_context_refiner): + add_block_keys("context_refiner.{}".format(i), "{}context_refiner.{}".format(output_prefix, i)) + + for i in range(n_noise_refiner): + add_block_keys("noise_refiner.{}".format(i), "{}noise_refiner.{}".format(output_prefix, i)) + + MAP_BASIC = [ + ("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"), + ("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"), + ("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"), + ("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"), + ("x_embedder.weight", "all_x_embedder.2-1.weight"), + ("x_embedder.bias", "all_x_embedder.2-1.bias"), + ("x_pad_token", "x_pad_token"), + ("cap_embedder.0.weight", "cap_embedder.0.weight"), + ("cap_embedder.1.weight", "cap_embedder.1.weight"), + ("cap_embedder.1.bias", "cap_embedder.1.bias"), + ("cap_pad_token", "cap_pad_token"), + ("t_embedder.mlp.0.weight", "t_embedder.mlp.0.weight"), + ("t_embedder.mlp.0.bias", "t_embedder.mlp.0.bias"), + ("t_embedder.mlp.2.weight", "t_embedder.mlp.2.weight"), + ("t_embedder.mlp.2.bias", "t_embedder.mlp.2.bias"), + ] + + for c, diffusers in MAP_BASIC: + key_map[diffusers] = "{}{}".format(output_prefix, c) + + return key_map + def repeat_to_batch_size(tensor, batch_size, dim=0): if tensor.shape[dim] > batch_size: return tensor.narrow(dim, 0, batch_size) @@ -732,12 +803,17 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024): return None return f.read(length_of_header) +ATTR_UNSET={} + def set_attr(obj, attr, value): attrs = attr.split(".") for name in attrs[:-1]: obj = getattr(obj, name) - prev = getattr(obj, attrs[-1]) - setattr(obj, attrs[-1], value) + prev = getattr(obj, attrs[-1], ATTR_UNSET) + if value is ATTR_UNSET: + delattr(obj, attrs[-1]) + else: + setattr(obj, attrs[-1], value) return prev def set_attr_param(obj, attr, value): @@ -1102,3 +1178,90 @@ def upscale_dit_mask(mask: torch.Tensor, img_size_in, img_size_out): dim=1 ) return out + +def pack_latents(latents): + latent_shapes = [] + tensors = [] + for tensor in latents: + latent_shapes.append(tensor.shape) + tensors.append(tensor.reshape(tensor.shape[0], 1, -1)) + + latent = torch.cat(tensors, dim=-1) + return latent, latent_shapes + +def unpack_latents(combined_latent, latent_shapes): + if len(latent_shapes) > 1: + output_tensors = [] + for shape in latent_shapes: + cut = math.prod(shape[1:]) + tens = combined_latent[:, :, :cut] + combined_latent = combined_latent[:, :, cut:] + output_tensors.append(tens.reshape([tens.shape[0]] + list(shape)[1:])) + else: + output_tensors = combined_latent + return output_tensors + +def detect_layer_quantization(state_dict, prefix): + for k in state_dict: + if k.startswith(prefix) and k.endswith(".comfy_quant"): + logging.info("Found quantization metadata version 1") + return {"mixed_ops": True} + return None + +def convert_old_quants(state_dict, model_prefix="", metadata={}): + if metadata is None: + metadata = {} + + quant_metadata = None + if "_quantization_metadata" not in metadata: + scaled_fp8_key = "{}scaled_fp8".format(model_prefix) + + if scaled_fp8_key in state_dict: + scaled_fp8_weight = state_dict[scaled_fp8_key] + scaled_fp8_dtype = scaled_fp8_weight.dtype + if scaled_fp8_dtype == torch.float32: + scaled_fp8_dtype = torch.float8_e4m3fn + + if scaled_fp8_weight.nelement() == 2: + full_precision_matrix_mult = True + else: + full_precision_matrix_mult = False + + out_sd = {} + layers = {} + for k in list(state_dict.keys()): + if not k.startswith(model_prefix): + out_sd[k] = state_dict[k] + continue + k_out = k + w = state_dict.pop(k) + layer = None + if k_out.endswith(".scale_weight"): + layer = k_out[:-len(".scale_weight")] + k_out = "{}.weight_scale".format(layer) + + if layer is not None: + layer_conf = {"format": "float8_e4m3fn"} # TODO: check if anyone did some non e4m3fn scaled checkpoints + if full_precision_matrix_mult: + layer_conf["full_precision_matrix_mult"] = full_precision_matrix_mult + layers[layer] = layer_conf + + if k_out.endswith(".scale_input"): + layer = k_out[:-len(".scale_input")] + k_out = "{}.input_scale".format(layer) + if w.item() == 1.0: + continue + + out_sd[k_out] = w + + state_dict = out_sd + quant_metadata = {"layers": layers} + else: + quant_metadata = json.loads(metadata["_quantization_metadata"]) + + if quant_metadata is not None: + layers = quant_metadata["layers"] + for k, v in layers.items(): + state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8) + + return state_dict, metadata diff --git a/comfy/weight_adapter/lora.py b/comfy/weight_adapter/lora.py index 4db004e50..3cc60bb1b 100644 --- a/comfy/weight_adapter/lora.py +++ b/comfy/weight_adapter/lora.py @@ -194,6 +194,7 @@ class LoRAAdapter(WeightAdapterBase): lora_diff = torch.mm( mat1.flatten(start_dim=1), mat2.flatten(start_dim=1) ).reshape(weight.shape) + del mat1, mat2 if dora_scale is not None: weight = weight_decompose( dora_scale, diff --git a/comfy_api/feature_flags.py b/comfy_api/feature_flags.py index 0d4389a6e..de167f037 100644 --- a/comfy_api/feature_flags.py +++ b/comfy_api/feature_flags.py @@ -5,19 +5,20 @@ This module handles capability negotiation between frontend and backend, allowing graceful protocol evolution while maintaining backward compatibility. """ -from typing import Any, Dict +from typing import Any from comfy.cli_args import args # Default server capabilities -SERVER_FEATURE_FLAGS: Dict[str, Any] = { +SERVER_FEATURE_FLAGS: dict[str, Any] = { "supports_preview_metadata": True, "max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes + "extension": {"manager": {"supports_v4": True}}, } def get_connection_feature( - sockets_metadata: Dict[str, Dict[str, Any]], + sockets_metadata: dict[str, dict[str, Any]], sid: str, feature_name: str, default: Any = False @@ -41,7 +42,7 @@ def get_connection_feature( def supports_feature( - sockets_metadata: Dict[str, Dict[str, Any]], + sockets_metadata: dict[str, dict[str, Any]], sid: str, feature_name: str ) -> bool: @@ -59,7 +60,7 @@ def supports_feature( return get_connection_feature(sockets_metadata, sid, feature_name, False) is True -def get_server_features() -> Dict[str, Any]: +def get_server_features() -> dict[str, Any]: """ Get the server's feature flags. diff --git a/comfy_api/internal/api_registry.py b/comfy_api/internal/api_registry.py index 7e3375cf6..2b1cb016a 100644 --- a/comfy_api/internal/api_registry.py +++ b/comfy_api/internal/api_registry.py @@ -1,4 +1,4 @@ -from typing import Type, List, NamedTuple +from typing import NamedTuple from comfy_api.internal.singleton import ProxiedSingleton from packaging import version as packaging_version @@ -10,7 +10,7 @@ class ComfyAPIBase(ProxiedSingleton): class ComfyAPIWithVersion(NamedTuple): version: str - api_class: Type[ComfyAPIBase] + api_class: type[ComfyAPIBase] def parse_version(version_str: str) -> packaging_version.Version: @@ -23,16 +23,16 @@ def parse_version(version_str: str) -> packaging_version.Version: return packaging_version.parse(version_str) -registered_versions: List[ComfyAPIWithVersion] = [] +registered_versions: list[ComfyAPIWithVersion] = [] -def register_versions(versions: List[ComfyAPIWithVersion]): +def register_versions(versions: list[ComfyAPIWithVersion]): versions.sort(key=lambda x: parse_version(x.version)) global registered_versions registered_versions = versions -def get_all_versions() -> List[ComfyAPIWithVersion]: +def get_all_versions() -> list[ComfyAPIWithVersion]: """ Returns a list of all registered ComfyAPI versions. """ diff --git a/comfy_api/internal/async_to_sync.py b/comfy_api/internal/async_to_sync.py index f5f805a62..c9b0576e1 100644 --- a/comfy_api/internal/async_to_sync.py +++ b/comfy_api/internal/async_to_sync.py @@ -8,7 +8,7 @@ import os import textwrap import threading from enum import Enum -from typing import Optional, Type, get_origin, get_args +from typing import Optional, get_origin, get_args, get_type_hints class TypeTracker: @@ -193,7 +193,7 @@ class AsyncToSyncConverter: return result_container["result"] @classmethod - def create_sync_class(cls, async_class: Type, thread_pool_size=10) -> Type: + def create_sync_class(cls, async_class: type, thread_pool_size=10) -> type: """ Creates a new class with synchronous versions of all async methods. @@ -220,11 +220,18 @@ class AsyncToSyncConverter: self._async_instance = async_class(*args, **kwargs) # Handle annotated class attributes (like execution: Execution) - # Get all annotations from the class hierarchy - all_annotations = {} - for base_class in reversed(inspect.getmro(async_class)): - if hasattr(base_class, "__annotations__"): - all_annotations.update(base_class.__annotations__) + # Get all annotations from the class hierarchy and resolve string annotations + try: + # get_type_hints resolves string annotations to actual type objects + # This handles classes using 'from __future__ import annotations' + all_annotations = get_type_hints(async_class) + except Exception: + # Fallback to raw annotations if get_type_hints fails + # (e.g., for undefined forward references) + all_annotations = {} + for base_class in reversed(inspect.getmro(async_class)): + if hasattr(base_class, "__annotations__"): + all_annotations.update(base_class.__annotations__) # For each annotated attribute, check if it needs to be created or wrapped for attr_name, attr_type in all_annotations.items(): @@ -556,7 +563,7 @@ class AsyncToSyncConverter: @classmethod def _generate_imports( - cls, async_class: Type, type_tracker: TypeTracker + cls, async_class: type, type_tracker: TypeTracker ) -> list[str]: """Generate import statements for the stub file.""" imports = [] @@ -621,19 +628,23 @@ class AsyncToSyncConverter: return imports @classmethod - def _get_class_attributes(cls, async_class: Type) -> list[tuple[str, Type]]: + def _get_class_attributes(cls, async_class: type) -> list[tuple[str, type]]: """Extract class attributes that are classes themselves.""" class_attributes = [] + # Get resolved type hints to handle string annotations + try: + type_hints = get_type_hints(async_class) + except Exception: + type_hints = {} + # Look for class attributes that are classes for name, attr in sorted(inspect.getmembers(async_class)): if isinstance(attr, type) and not name.startswith("_"): class_attributes.append((name, attr)) - elif ( - hasattr(async_class, "__annotations__") - and name in async_class.__annotations__ - ): - annotation = async_class.__annotations__[name] + elif name in type_hints: + # Use resolved type hint instead of raw annotation + annotation = type_hints[name] if isinstance(annotation, type): class_attributes.append((name, annotation)) @@ -643,7 +654,7 @@ class AsyncToSyncConverter: def _generate_inner_class_stub( cls, name: str, - attr: Type, + attr: type, indent: str = " ", type_tracker: Optional[TypeTracker] = None, ) -> list[str]: @@ -771,7 +782,7 @@ class AsyncToSyncConverter: return processed @classmethod - def generate_stub_file(cls, async_class: Type, sync_class: Type) -> None: + def generate_stub_file(cls, async_class: type, sync_class: type) -> None: """ Generate a .pyi stub file for the sync class to help IDEs with type checking. """ @@ -908,11 +919,15 @@ class AsyncToSyncConverter: attribute_mappings = {} # First check annotations for typed attributes (including from parent classes) - # Collect all annotations from the class hierarchy - all_annotations = {} - for base_class in reversed(inspect.getmro(async_class)): - if hasattr(base_class, "__annotations__"): - all_annotations.update(base_class.__annotations__) + # Resolve string annotations to actual types + try: + all_annotations = get_type_hints(async_class) + except Exception: + # Fallback to raw annotations + all_annotations = {} + for base_class in reversed(inspect.getmro(async_class)): + if hasattr(base_class, "__annotations__"): + all_annotations.update(base_class.__annotations__) for attr_name, attr_type in sorted(all_annotations.items()): for class_name, class_type in class_attributes: @@ -973,7 +988,7 @@ class AsyncToSyncConverter: logging.error(traceback.format_exc()) -def create_sync_class(async_class: Type, thread_pool_size=10) -> Type: +def create_sync_class(async_class: type, thread_pool_size=10) -> type: """ Creates a sync version of an async class diff --git a/comfy_api/internal/singleton.py b/comfy_api/internal/singleton.py index 75f16f98e..d89380262 100644 --- a/comfy_api/internal/singleton.py +++ b/comfy_api/internal/singleton.py @@ -1,4 +1,4 @@ -from typing import Type, TypeVar +from typing import TypeVar class SingletonMetaclass(type): T = TypeVar("T", bound="SingletonMetaclass") @@ -11,13 +11,13 @@ class SingletonMetaclass(type): ) return cls._instances[cls] - def inject_instance(cls: Type[T], instance: T) -> None: + def inject_instance(cls: type[T], instance: T) -> None: assert cls not in SingletonMetaclass._instances, ( "Cannot inject instance after first instantiation" ) SingletonMetaclass._instances[cls] = instance - def get_instance(cls: Type[T], *args, **kwargs) -> T: + def get_instance(cls: type[T], *args, **kwargs) -> T: """ Gets the singleton instance of the class, creating it if it doesn't exist. """ diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index 2cee65aa9..b0fa14ff6 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -1,16 +1,15 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Type, TYPE_CHECKING +from typing import TYPE_CHECKING from comfy_api.internal import ComfyAPIBase from comfy_api.internal.singleton import ProxiedSingleton from comfy_api.internal.async_to_sync import create_sync_class -from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput -from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents -from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents -from comfy_api.latest._io import _IO as io #noqa: F401 -from comfy_api.latest._ui import _UI as ui #noqa: F401 -# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 +from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput +from ._input_impl import VideoFromFile, VideoFromComponents +from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL +from . import _io_public as io +from . import _ui_public as ui from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple from PIL import Image @@ -80,7 +79,7 @@ class ComfyExtension(ABC): async def on_load(self) -> None: """ Called when an extension is loaded. - This should be used to initialize any global resources neeeded by the extension. + This should be used to initialize any global resources needed by the extension. """ @abstractmethod @@ -104,6 +103,8 @@ class Types: VideoCodec = VideoCodec VideoContainer = VideoContainer VideoComponents = VideoComponents + MESH = MESH + VOXEL = VOXEL ComfyAPI = ComfyAPI_latest @@ -111,9 +112,13 @@ ComfyAPI = ComfyAPI_latest if TYPE_CHECKING: import comfy_api.latest.generated.ComfyAPISyncStub # type: ignore - ComfyAPISync: Type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub] + ComfyAPISync: type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub] ComfyAPISync = create_sync_class(ComfyAPI_latest) +# create new aliases for io and ui +IO = io +UI = ui + __all__ = [ "ComfyAPI", "ComfyAPISync", @@ -121,4 +126,8 @@ __all__ = [ "InputImpl", "Types", "ComfyExtension", + "io", + "IO", + "ui", + "UI", ] diff --git a/comfy_api/latest/_input/basic_types.py b/comfy_api/latest/_input/basic_types.py index 245c6cbb1..d73deabd2 100644 --- a/comfy_api/latest/_input/basic_types.py +++ b/comfy_api/latest/_input/basic_types.py @@ -1,5 +1,5 @@ import torch -from typing import TypedDict, List, Optional +from typing import TypedDict, Optional ImageInput = torch.Tensor """ @@ -39,4 +39,4 @@ class LatentInput(TypedDict): Optional noise mask tensor in the same format as samples. """ - batch_index: Optional[List[int]] + batch_index: Optional[list[int]] diff --git a/comfy_api/latest/_input/video_types.py b/comfy_api/latest/_input/video_types.py index 5d95dc507..e634a0311 100644 --- a/comfy_api/latest/_input/video_types.py +++ b/comfy_api/latest/_input/video_types.py @@ -1,9 +1,10 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Optional, Union +from fractions import Fraction +from typing import Optional, Union, IO import io import av -from comfy_api.util import VideoContainer, VideoCodec, VideoComponents +from .._util import VideoContainer, VideoCodec, VideoComponents class VideoInput(ABC): """ @@ -23,7 +24,7 @@ class VideoInput(ABC): @abstractmethod def save_to( self, - path: str, + path: Union[str, IO[bytes]], format: VideoContainer = VideoContainer.AUTO, codec: VideoCodec = VideoCodec.AUTO, metadata: Optional[dict] = None @@ -72,6 +73,33 @@ class VideoInput(ABC): frame_count = components.images.shape[0] return float(frame_count / components.frame_rate) + def get_frame_count(self) -> int: + """ + Returns the number of frames in the video. + + Default implementation uses :meth:`get_components`, which may require + loading all frames into memory. File-based implementations should + override this method and use container/stream metadata instead. + + Returns: + Total number of frames as an integer. + """ + return int(self.get_components().images.shape[0]) + + def get_frame_rate(self) -> Fraction: + """ + Returns the frame rate of the video. + + Default implementation materializes the video into memory via + `get_components()`. Subclasses that can inspect the underlying + container (e.g. `VideoFromFile`) should override this with a more + efficient implementation. + + Returns: + Frame rate as a Fraction. + """ + return self.get_components().frame_rate + def get_container_format(self) -> str: """ Returns the container format of the video (e.g., 'mp4', 'mov', 'avi'). diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index f646504c8..ea35c6062 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -3,14 +3,14 @@ from av.container import InputContainer from av.subtitles.stream import SubtitleStream from fractions import Fraction from typing import Optional -from comfy_api.latest._input import AudioInput, VideoInput +from .._input import AudioInput, VideoInput import av import io import json import numpy as np import math import torch -from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents +from .._util import VideoContainer, VideoCodec, VideoComponents def container_to_output_format(container_format: str | None) -> str | None: @@ -121,6 +121,71 @@ class VideoFromFile(VideoInput): raise ValueError(f"Could not determine duration for file '{self.__file}'") + def get_frame_count(self) -> int: + """ + Returns the number of frames in the video without materializing them as + torch tensors. + """ + if isinstance(self.__file, io.BytesIO): + self.__file.seek(0) + + with av.open(self.__file, mode="r") as container: + video_stream = self._get_first_video_stream(container) + # 1. Prefer the frames field if available + if video_stream.frames and video_stream.frames > 0: + return int(video_stream.frames) + + # 2. Try to estimate from duration and average_rate using only metadata + if container.duration is not None and video_stream.average_rate: + duration_seconds = float(container.duration / av.time_base) + estimated_frames = int(round(duration_seconds * float(video_stream.average_rate))) + if estimated_frames > 0: + return estimated_frames + + if ( + getattr(video_stream, "duration", None) is not None + and getattr(video_stream, "time_base", None) is not None + and video_stream.average_rate + ): + duration_seconds = float(video_stream.duration * video_stream.time_base) + estimated_frames = int(round(duration_seconds * float(video_stream.average_rate))) + if estimated_frames > 0: + return estimated_frames + + # 3. Last resort: decode frames and count them (streaming) + frame_count = 0 + container.seek(0) + for packet in container.demux(video_stream): + for _ in packet.decode(): + frame_count += 1 + + if frame_count == 0: + raise ValueError(f"Could not determine frame count for file '{self.__file}'") + return frame_count + + def get_frame_rate(self) -> Fraction: + """ + Returns the average frame rate of the video using container metadata + without decoding all frames. + """ + if isinstance(self.__file, io.BytesIO): + self.__file.seek(0) + + with av.open(self.__file, mode="r") as container: + video_stream = self._get_first_video_stream(container) + # Preferred: use PyAV's average_rate (usually already a Fraction-like) + if video_stream.average_rate: + return Fraction(video_stream.average_rate) + + # Fallback: estimate from frames + duration if available + if video_stream.frames and container.duration: + duration_seconds = float(container.duration / av.time_base) + if duration_seconds > 0: + return Fraction(video_stream.frames / duration_seconds).limit_denominator() + + # Last resort: match get_components_internal default + return Fraction(1) + def get_container_format(self) -> str: """ Returns the container format of the video (e.g., 'mp4', 'mov', 'avi'). @@ -238,6 +303,13 @@ class VideoFromFile(VideoInput): packet.stream = stream_map[packet.stream] output_container.mux(packet) + def _get_first_video_stream(self, container: InputContainer): + video_stream = next((s for s in container.streams if s.type == "video"), None) + if video_stream is None: + raise ValueError(f"No video stream found in file '{self.__file}'") + return video_stream + + class VideoFromComponents(VideoInput): """ Class representing video input from tensors. @@ -264,7 +336,10 @@ class VideoFromComponents(VideoInput): raise ValueError("Only MP4 format is supported for now") if codec != VideoCodec.AUTO and codec != VideoCodec.H264: raise ValueError("Only H264 codec is supported for now") - with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output: + extra_kwargs = {} + if isinstance(format, VideoContainer) and format != VideoContainer.AUTO: + extra_kwargs["format"] = format.value + with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}, **extra_kwargs) as output: # Add metadata before writing any streams if metadata is not None: for key, value in metadata.items(): diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 2d95cffd6..764fa8b2b 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -4,7 +4,8 @@ import copy import inspect from abc import ABC, abstractmethod from collections import Counter -from dataclasses import asdict, dataclass +from collections.abc import Iterable +from dataclasses import asdict, dataclass, field from enum import Enum from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING from typing_extensions import NotRequired, final @@ -25,10 +26,9 @@ if TYPE_CHECKING: from comfy_api.input import VideoInput from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class, prune_dict, shallow_clone_class) -from comfy_api.latest._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker +from ._util import MESH, VOXEL, SVG as _SVG -# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference class FolderType(str, Enum): input = "input" @@ -75,16 +75,6 @@ class NumberDisplay(str, Enum): slider = "slider" -class _StringIOType(str): - def __ne__(self, value: object) -> bool: - if self == "*" or value == "*": - return False - if not isinstance(value, str): - return True - a = frozenset(self.split(",")) - b = frozenset(value.split(",")) - return not (b.issubset(a) or a.issubset(b)) - class _ComfyType(ABC): Type = Any io_type: str = None @@ -124,8 +114,7 @@ def comfytype(io_type: str, **kwargs): new_cls.__module__ = cls.__module__ new_cls.__doc__ = cls.__doc__ # assign ComfyType attributes, if needed - # NOTE: use __ne__ trick for io_type (see node_typing.IO.__ne__ for details) - new_cls.io_type = _StringIOType(io_type) + new_cls.io_type = io_type if hasattr(new_cls, "Input") and new_cls.Input is not None: new_cls.Input.Parent = new_cls if hasattr(new_cls, "Output") and new_cls.Output is not None: @@ -149,6 +138,9 @@ class _IO_V3: def __init__(self): pass + def validate(self): + pass + @property def io_type(self): return self.Parent.io_type @@ -161,7 +153,7 @@ class Input(_IO_V3): ''' Base class for a V3 Input. ''' - def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): super().__init__() self.id = id self.display_name = display_name @@ -169,6 +161,7 @@ class Input(_IO_V3): self.tooltip = tooltip self.lazy = lazy self.extra_dict = extra_dict if extra_dict is not None else {} + self.rawLink = raw_link def as_dict(self): return prune_dict({ @@ -176,10 +169,14 @@ class Input(_IO_V3): "optional": self.optional, "tooltip": self.tooltip, "lazy": self.lazy, + "rawLink": self.rawLink, }) | prune_dict(self.extra_dict) def get_io_type(self): - return _StringIOType(self.io_type) + return self.io_type + + def get_all(self) -> list[Input]: + return [self] class WidgetInput(Input): ''' @@ -187,8 +184,8 @@ class WidgetInput(Input): ''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: Any=None, - socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.default = default self.socketless = socketless self.widget_type = widget_type @@ -210,13 +207,14 @@ class Output(_IO_V3): def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): self.id = id - self.display_name = display_name + self.display_name = display_name if display_name else id self.tooltip = tooltip self.is_output_list = is_output_list def as_dict(self): + display_name = self.display_name if self.display_name else self.id return prune_dict({ - "display_name": self.display_name, + "display_name": display_name, "tooltip": self.tooltip, "is_output_list": self.is_output_list, }) @@ -244,8 +242,8 @@ class Boolean(ComfyTypeIO): '''Boolean input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: bool=None, label_on: str=None, label_off: str=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.label_on = label_on self.label_off = label_off self.default: bool @@ -264,8 +262,8 @@ class Int(ComfyTypeIO): '''Integer input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -290,8 +288,8 @@ class Float(ComfyTypeIO): '''Float input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: float=None, min: float=None, max: float=None, step: float=None, round: float=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -316,8 +314,8 @@ class String(ComfyTypeIO): '''String input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.multiline = multiline self.placeholder = placeholder self.dynamic_prompts = dynamic_prompts @@ -336,12 +334,28 @@ class Combo(ComfyTypeIO): class Input(WidgetInput): """Combo input (dropdown).""" Type = str - def __init__(self, id: str, options: list[str]=None, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, - default: str=None, control_after_generate: bool=None, - upload: UploadType=None, image_folder: FolderType=None, - remote: RemoteOptions=None, - socketless: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + def __init__( + self, + id: str, + options: list[str] | list[int] | type[Enum] = None, + display_name: str=None, + optional=False, + tooltip: str=None, + lazy: bool=None, + default: str | int | Enum = None, + control_after_generate: bool=None, + upload: UploadType=None, + image_folder: FolderType=None, + remote: RemoteOptions=None, + socketless: bool=None, + extra_dict=None, + raw_link: bool=None, + ): + if isinstance(options, type) and issubclass(options, Enum): + options = [v.value for v in options] + if isinstance(default, Enum): + default = default.value + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) self.multiselect = False self.options = options self.control_after_generate = control_after_generate @@ -365,10 +379,6 @@ class Combo(ComfyTypeIO): super().__init__(id, display_name, tooltip, is_output_list) self.options = options if options is not None else [] - @property - def io_type(self): - return self.options - @comfytype(io_type="COMBO") class MultiCombo(ComfyTypeI): '''Multiselect Combo input (dropdown for selecting potentially more than one value).''' @@ -377,8 +387,8 @@ class MultiCombo(ComfyTypeI): class Input(Combo.Input): def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None, - socketless: bool=None): - super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless) + socketless: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link) self.multiselect = True self.placeholder = placeholder self.chip = chip @@ -411,9 +421,9 @@ class Webcam(ComfyTypeIO): Type = str def __init__( self, id: str, display_name: str=None, optional=False, - tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None + tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None, extra_dict=None, raw_link: bool=None ): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) @comfytype(io_type="MASK") @@ -546,6 +556,8 @@ class Conditioning(ComfyTypeIO): '''Used by WAN Camera.''' time_dim_concat: NotRequired[torch.Tensor] '''Used by WAN Phantom Subject.''' + time_dim_replace: NotRequired[torch.Tensor] + '''Used by Kandinsky5 I2V.''' CondList = list[tuple[torch.Tensor, PooledDict]] Type = CondList @@ -614,6 +626,10 @@ class UpscaleModel(ComfyTypeIO): if TYPE_CHECKING: Type = ImageModelDescriptor +@comfytype(io_type="LATENT_UPSCALE_MODEL") +class LatentUpscaleModel(ComfyTypeIO): + Type = Any + @comfytype(io_type="AUDIO") class Audio(ComfyTypeIO): class AudioDict(TypedDict): @@ -628,7 +644,7 @@ class Video(ComfyTypeIO): @comfytype(io_type="SVG") class SVG(ComfyTypeIO): - Type = Any # TODO: SVG class is defined in comfy_extras/nodes_images.py, causing circular reference; should be moved to somewhere else before referenced directly in v3 + Type = _SVG @comfytype(io_type="LORA_MODEL") class LoraModel(ComfyTypeIO): @@ -642,11 +658,11 @@ class LossMap(ComfyTypeIO): @comfytype(io_type="VOXEL") class Voxel(ComfyTypeIO): - Type = Any # TODO: VOXEL class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3 + Type = VOXEL @comfytype(io_type="MESH") class Mesh(ComfyTypeIO): - Type = Any # TODO: MESH class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3 + Type = MESH @comfytype(io_type="HOOKS") class Hooks(ComfyTypeIO): @@ -746,6 +762,13 @@ class AudioEncoder(ComfyTypeIO): class AudioEncoderOutput(ComfyTypeIO): Type = Any +@comfytype(io_type="TRACKS") +class Tracks(ComfyTypeIO): + class TrackDict(TypedDict): + track_path: torch.Tensor + track_visibility: torch.Tensor + Type = TrackDict + @comfytype(io_type="COMFY_MULTITYPED_V3") class MultiType: Type = Any @@ -753,7 +776,7 @@ class MultiType: ''' Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values. ''' - def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): # if id is an Input, then use that Input with overridden values self.input_override = None if isinstance(id, Input): @@ -766,7 +789,7 @@ class MultiType: # if is a widget input, make sure widget_type is set appropriately if isinstance(self.input_override, WidgetInput): self.input_override.widget_type = self.input_override.get_io_type() - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self._io_types = types @property @@ -795,115 +818,326 @@ class MultiType: else: return super().as_dict() +@comfytype(io_type="COMFY_MATCHTYPE_V3") +class MatchType(ComfyTypeIO): + class Template: + def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType] = AnyType): + self.template_id = template_id + # account for syntactic sugar + if not isinstance(allowed_types, Iterable): + allowed_types = [allowed_types] + for t in allowed_types: + if not isinstance(t, type): + if not isinstance(t, _ComfyType): + raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__class__.__name__}") + else: + if not issubclass(t, _ComfyType): + raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__name__}") + self.allowed_types = allowed_types + + def as_dict(self): + return { + "template_id": self.template_id, + "allowed_types": ",".join([t.io_type for t in self.allowed_types]), + } + + class Input(Input): + def __init__(self, id: str, template: MatchType.Template, + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + + class Output(Output): + def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, + is_output_list=False): + if not id and not display_name: + display_name = "MATCHTYPE" + super().__init__(id, display_name, tooltip, is_output_list) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + class DynamicInput(Input, ABC): ''' Abstract class for dynamic input registration. ''' - @abstractmethod - def get_dynamic(self) -> list[Input]: - ... + pass + class DynamicOutput(Output, ABC): ''' Abstract class for dynamic output registration. ''' - def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) + pass - @abstractmethod - def get_dynamic(self) -> list[Output]: - ... +def handle_prefix(prefix_list: list[str] | None, id: str | None = None) -> list[str]: + if prefix_list is None: + prefix_list = [] + if id is not None: + prefix_list = prefix_list + [id] + return prefix_list + +def finalize_prefix(prefix_list: list[str] | None, id: str | None = None) -> str: + assert not (prefix_list is None and id is None) + if prefix_list is None: + return id + elif id is not None: + prefix_list = prefix_list + [id] + return ".".join(prefix_list) @comfytype(io_type="COMFY_AUTOGROW_V3") -class AutogrowDynamic(ComfyTypeI): - Type = list[Any] - class Input(DynamicInput): - def __init__(self, id: str, template_input: Input, min: int=1, max: int=None, - display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) - self.template_input = template_input - if min is not None: - assert(min >= 1) - if max is not None: - assert(max >= 1) +class Autogrow(ComfyTypeI): + Type = dict[str, Any] + _MaxNames = 100 # NOTE: max 100 names for sanity + + class _AutogrowTemplate: + def __init__(self, input: Input): + # dynamic inputs are not allowed as the template input + assert(not isinstance(input, DynamicInput)) + self.input = copy.copy(input) + if isinstance(self.input, WidgetInput): + self.input.force_input = True + self.names: list[str] = [] + self.cached_inputs = {} + + def _create_input(self, input: Input, name: str): + new_input = copy.copy(self.input) + new_input.id = name + return new_input + + def _create_cached_inputs(self): + for name in self.names: + self.cached_inputs[name] = self._create_input(self.input, name) + + def get_all(self) -> list[Input]: + return list(self.cached_inputs.values()) + + def as_dict(self): + return prune_dict({ + "input": create_input_dict_v1([self.input]), + }) + + def validate(self): + self.input.validate() + + class TemplatePrefix(_AutogrowTemplate): + def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): + super().__init__(input) + self.prefix = prefix + assert(min >= 0) + assert(max >= 1) + assert(max <= Autogrow._MaxNames) self.min = min self.max = max + self.names = [f"{self.prefix}{i}" for i in range(self.max)] + self._create_cached_inputs() - def get_dynamic(self) -> list[Input]: - curr_count = 1 - new_inputs = [] - for i in range(self.min): - new_input = copy.copy(self.template_input) - new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$" - if new_input.display_name is not None: - new_input.display_name = f"{new_input.display_name}{curr_count}" - new_input.optional = self.optional or new_input.optional - if isinstance(self.template_input, WidgetInput): - new_input.force_input = True - new_inputs.append(new_input) - curr_count += 1 - # pretend to expand up to max - for i in range(curr_count-1, self.max): - new_input = copy.copy(self.template_input) - new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$" - if new_input.display_name is not None: - new_input.display_name = f"{new_input.display_name}{curr_count}" - new_input.optional = True - if isinstance(self.template_input, WidgetInput): - new_input.force_input = True - new_inputs.append(new_input) - curr_count += 1 - return new_inputs + def as_dict(self): + return super().as_dict() | prune_dict({ + "prefix": self.prefix, + "min": self.min, + "max": self.max, + }) + + class TemplateNames(_AutogrowTemplate): + def __init__(self, input: Input, names: list[str], min: int=1): + super().__init__(input) + self.names = names[:Autogrow._MaxNames] + assert(min >= 0) + self.min = min + self._create_cached_inputs() + + def as_dict(self): + return super().as_dict() | prune_dict({ + "names": self.names, + "min": self.min, + }) -@comfytype(io_type="COMFY_COMBODYNAMIC_V3") -class ComboDynamic(ComfyTypeI): class Input(DynamicInput): - def __init__(self, id: str): - pass + def __init__(self, id: str, template: Autogrow.TemplatePrefix | Autogrow.TemplateNames, + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + self.template = template -@comfytype(io_type="COMFY_MATCHTYPE_V3") -class MatchType(ComfyTypeIO): - class Template: - def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType]): - self.template_id = template_id - self.allowed_types = [allowed_types] if isinstance(allowed_types, _ComfyType) else allowed_types + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + + def get_all(self) -> list[Input]: + return [self] + self.template.get_all() + + def validate(self): + self.template.validate() + + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + # NOTE: purposely do not include self in out_dict; instead use only the template inputs + # need to figure out names based on template type + is_names = ("names" in value[1]["template"]) + is_prefix = ("prefix" in value[1]["template"]) + input = value[1]["template"]["input"] + if is_names: + min = value[1]["template"]["min"] + names = value[1]["template"]["names"] + max = len(names) + elif is_prefix: + prefix = value[1]["template"]["prefix"] + min = value[1]["template"]["min"] + max = value[1]["template"]["max"] + names = [f"{prefix}{i}" for i in range(max)] + # need to create a new input based on the contents of input + template_input = None + for _, dict_input in input.items(): + # for now, get just the first value from dict_input + template_input = list(dict_input.values())[0] + new_dict = {} + for i, name in enumerate(names): + expected_id = finalize_prefix(curr_prefix, name) + if expected_id in live_inputs: + # required + if i < min: + type_dict = new_dict.setdefault("required", {}) + # optional + else: + type_dict = new_dict.setdefault("optional", {}) + type_dict[name] = template_input + parse_class_inputs(out_dict, live_inputs, new_dict, curr_prefix) + +@comfytype(io_type="COMFY_DYNAMICCOMBO_V3") +class DynamicCombo(ComfyTypeI): + Type = dict[str, Any] + + class Option: + def __init__(self, key: str, inputs: list[Input]): + self.key = key + self.inputs = inputs def as_dict(self): return { - "template_id": self.template_id, - "allowed_types": "".join(t.io_type for t in self.allowed_types), + "key": self.key, + "inputs": create_input_dict_v1(self.inputs), } class Input(DynamicInput): - def __init__(self, id: str, template: MatchType.Template, + def __init__(self, id: str, options: list[DynamicCombo.Option], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) - self.template = template + self.options = options - def get_dynamic(self) -> list[Input]: - return [self] + def get_all(self) -> list[Input]: + return [self] + [input for option in self.options for input in option.inputs] def as_dict(self): return super().as_dict() | prune_dict({ - "template": self.template.as_dict(), + "options": [o.as_dict() for o in self.options], }) - class Output(DynamicOutput): - def __init__(self, id: str, template: MatchType.Template, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) - self.template = template + def validate(self): + # make sure all nested inputs are validated + for option in self.options: + for input in option.inputs: + input.validate() - def get_dynamic(self) -> list[Output]: - return [self] + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + key = live_inputs[finalized_id] + selected_option = None + # get options from dict + options: list[dict[str, str | dict[str, Any]]] = value[1]["options"] + for option in options: + if option["key"] == key: + selected_option = option + break + if selected_option is not None: + parse_class_inputs(out_dict, live_inputs, selected_option["inputs"], curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + +@comfytype(io_type="COMFY_DYNAMICSLOT_V3") +class DynamicSlot(ComfyTypeI): + Type = dict[str, Any] + + class Input(DynamicInput): + def __init__(self, slot: Input, inputs: list[Input], + display_name: str=None, tooltip: str=None, lazy: bool=None, extra_dict=None): + assert(not isinstance(slot, DynamicInput)) + self.slot = copy.copy(slot) + self.slot.display_name = slot.display_name if slot.display_name is not None else display_name + optional = True + self.slot.tooltip = slot.tooltip if slot.tooltip is not None else tooltip + self.slot.lazy = slot.lazy if slot.lazy is not None else lazy + self.slot.extra_dict = slot.extra_dict if slot.extra_dict is not None else extra_dict + super().__init__(slot.id, self.slot.display_name, optional, self.slot.tooltip, self.slot.lazy, self.slot.extra_dict) + self.inputs = inputs + self.force_input = None + # force widget inputs to have no widgets, otherwise this would be awkward + if isinstance(self.slot, WidgetInput): + self.force_input = True + self.slot.force_input = True + + def get_all(self) -> list[Input]: + return [self.slot] + self.inputs def as_dict(self): return super().as_dict() | prune_dict({ - "template": self.template.as_dict(), + "slotType": str(self.slot.get_io_type()), + "inputs": create_input_dict_v1(self.inputs), + "forceInput": self.force_input, }) + def validate(self): + self.slot.validate() + for input in self.inputs: + input.validate() + + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + inputs = value[1]["inputs"] + parse_class_inputs(out_dict, live_inputs, inputs, curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + +DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {} +def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]): + DYNAMIC_INPUT_LOOKUP[io_type] = func + +def get_dynamic_input_func(io_type: str) -> Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]: + return DYNAMIC_INPUT_LOOKUP[io_type] + +def setup_dynamic_input_funcs(): + # Autogrow.Input + register_dynamic_input_func(Autogrow.io_type, Autogrow._expand_schema_for_dynamic) + # DynamicCombo.Input + register_dynamic_input_func(DynamicCombo.io_type, DynamicCombo._expand_schema_for_dynamic) + # DynamicSlot.Input + register_dynamic_input_func(DynamicSlot.io_type, DynamicSlot._expand_schema_for_dynamic) + +if len(DYNAMIC_INPUT_LOOKUP) == 0: + setup_dynamic_input_funcs() + +class V3Data(TypedDict): + hidden_inputs: dict[str, Any] + 'Dictionary where the keys are the hidden input ids and the values are the values of the hidden inputs.' + dynamic_paths: dict[str, Any] + 'Dictionary where the keys are the input ids and the values dictate how to turn the inputs into a nested dictionary.' + create_dynamic_tuple: bool + 'When True, the value of the dynamic input will be in the format (value, path_key).' class HiddenHolder: def __init__(self, unique_id: str, prompt: Any, @@ -939,6 +1173,10 @@ class HiddenHolder: api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None), ) + @classmethod + def from_v3_data(cls, v3_data: V3Data | None) -> HiddenHolder: + return cls.from_dict(v3_data["hidden_inputs"] if v3_data else None) + class Hidden(str, Enum): ''' Enumerator for requesting hidden variables in nodes. @@ -965,6 +1203,7 @@ class NodeInfoV1: output_is_list: list[bool]=None output_name: list[str]=None output_tooltips: list[str]=None + output_matchtypes: list[str]=None name: str=None display_name: str=None description: str=None @@ -1000,9 +1239,9 @@ class Schema: """Display name of node.""" category: str = "sd" """The category of the node, as per the "Add Node" menu.""" - inputs: list[Input]=None - outputs: list[Output]=None - hidden: list[Hidden]=None + inputs: list[Input] = field(default_factory=list) + outputs: list[Output] = field(default_factory=list) + hidden: list[Hidden] = field(default_factory=list) description: str="" """Node description, shown as a tooltip when hovering over the node.""" is_input_list: bool = False @@ -1042,60 +1281,57 @@ class Schema: '''Validate the schema: - verify ids on inputs and outputs are unique - both internally and in relation to each other ''' - input_ids = [i.id for i in self.inputs] if self.inputs is not None else [] - output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] + nested_inputs: list[Input] = [] + for input in self.inputs: + if not isinstance(input, DynamicInput): + nested_inputs.extend(input.get_all()) + input_ids = [i.id for i in nested_inputs] + output_ids = [o.id for o in self.outputs] input_set = set(input_ids) output_set = set(output_ids) - issues = [] + issues: list[str] = [] # verify ids are unique per list if len(input_set) != len(input_ids): issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.") if len(output_set) != len(output_ids): issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.") - # verify ids are unique between lists - intersection = input_set & output_set - if len(intersection) > 0: - issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.") if len(issues) > 0: raise ValueError("\n".join(issues)) + # validate inputs and outputs + for input in self.inputs: + input.validate() + for output in self.outputs: + output.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" + # ensure inputs, outputs, and hidden are lists + if self.inputs is None: + self.inputs = [] + if self.outputs is None: + self.outputs = [] + if self.hidden is None: + self.hidden = [] # if is an api_node, will need key-related hidden if self.is_api_node: - if self.hidden is None: - self.hidden = [] if Hidden.auth_token_comfy_org not in self.hidden: self.hidden.append(Hidden.auth_token_comfy_org) if Hidden.api_key_comfy_org not in self.hidden: self.hidden.append(Hidden.api_key_comfy_org) # if is an output_node, will need prompt and extra_pnginfo if self.is_output_node: - if self.hidden is None: - self.hidden = [] if Hidden.prompt not in self.hidden: self.hidden.append(Hidden.prompt) if Hidden.extra_pnginfo not in self.hidden: self.hidden.append(Hidden.extra_pnginfo) # give outputs without ids default ids - if self.outputs is not None: - for i, output in enumerate(self.outputs): - if output.id is None: - output.id = f"_{i}_{output.io_type}_" + for i, output in enumerate(self.outputs): + if output.id is None: + output.id = f"_{i}_{output.io_type}_" def get_v1_info(self, cls) -> NodeInfoV1: # get V1 inputs - input = { - "required": {} - } - if self.inputs: - for i in self.inputs: - if isinstance(i, DynamicInput): - dynamic_inputs = i.get_dynamic() - for d in dynamic_inputs: - add_to_dict_v1(d, input) - else: - add_to_dict_v1(i, input) + input = create_input_dict_v1(self.inputs) if self.hidden: for hidden in self.hidden: input.setdefault("hidden", {})[hidden.name] = (hidden.value,) @@ -1104,12 +1340,24 @@ class Schema: output_is_list = [] output_name = [] output_tooltips = [] + output_matchtypes = [] + any_matchtypes = False if self.outputs: for o in self.outputs: output.append(o.io_type) output_is_list.append(o.is_output_list) output_name.append(o.display_name if o.display_name else o.io_type) output_tooltips.append(o.tooltip if o.tooltip else None) + # special handling for MatchType + if isinstance(o, MatchType.Output): + output_matchtypes.append(o.template.template_id) + any_matchtypes = True + else: + output_matchtypes.append(None) + + # clear out lists that are all None + if not any_matchtypes: + output_matchtypes = None info = NodeInfoV1( input=input, @@ -1118,6 +1366,7 @@ class Schema: output_is_list=output_is_list, output_name=output_name, output_tooltips=output_tooltips, + output_matchtypes=output_matchtypes, name=self.node_id, display_name=self.display_name, category=self.category, @@ -1162,17 +1411,84 @@ class Schema: ) return info +def get_finalized_class_inputs(d: dict[str, Any], live_inputs: dict[str, Any], include_hidden=False) -> tuple[dict[str, Any], V3Data]: + out_dict = { + "required": {}, + "optional": {}, + "dynamic_paths": {}, + } + d = d.copy() + # ignore hidden for parsing + hidden = d.pop("hidden", None) + parse_class_inputs(out_dict, live_inputs, d) + if hidden is not None and include_hidden: + out_dict["hidden"] = hidden + v3_data = {} + dynamic_paths = out_dict.pop("dynamic_paths", None) + if dynamic_paths is not None: + v3_data["dynamic_paths"] = dynamic_paths + return out_dict, hidden, v3_data -def add_to_dict_v1(i: Input, input: dict): +def parse_class_inputs(out_dict: dict[str, Any], live_inputs: dict[str, Any], curr_dict: dict[str, Any], curr_prefix: list[str] | None=None) -> None: + for input_type, inner_d in curr_dict.items(): + for id, value in inner_d.items(): + io_type = value[0] + if io_type in DYNAMIC_INPUT_LOOKUP: + # dynamic inputs need to be handled with lookup functions + dynamic_input_func = get_dynamic_input_func(io_type) + new_prefix = handle_prefix(curr_prefix, id) + dynamic_input_func(out_dict, live_inputs, value, input_type, new_prefix) + else: + # non-dynamic inputs get directly transferred + finalized_id = finalize_prefix(curr_prefix, id) + out_dict[input_type][finalized_id] = value + if curr_prefix: + out_dict["dynamic_paths"][finalized_id] = finalized_id + +def create_input_dict_v1(inputs: list[Input]) -> dict: + input = { + "required": {} + } + for i in inputs: + add_to_dict_v1(i, input) + return input + +def add_to_dict_v1(i: Input, d: dict): key = "optional" if i.optional else "required" as_dict = i.as_dict() # for v1, we don't want to include the optional key as_dict.pop("optional", None) - input.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) + d.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) def add_to_dict_v3(io: Input | Output, d: dict): d[io.id] = (io.get_io_type(), io.as_dict()) +def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): + paths = v3_data.get("dynamic_paths", None) + if paths is None: + return values + values = values.copy() + result = {} + + create_tuple = v3_data.get("create_dynamic_tuple", False) + + for key, path in paths.items(): + parts = path.split(".") + current = result + + for i, p in enumerate(parts): + is_last = (i == len(parts) - 1) + + if is_last: + value = values.pop(key, None) + if create_tuple: + value = (value, key) + current[p] = value + else: + current = current.setdefault(p, {}) + + values.update(result) + return values class _ComfyNodeBaseInternal(_ComfyNodeInternal): @@ -1182,7 +1498,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): SCHEMA = None # filled in during execution - resources: Resources = None hidden: HiddenHolder = None @classmethod @@ -1229,7 +1544,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): return [name for name in kwargs if kwargs[name] is None] def __init__(self): - self.local_resources: ResourcesLocal = None self.__class__.VALIDATE_CLASS() @classmethod @@ -1292,12 +1606,12 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def PREPARE_CLASS_CLONE(cls, hidden_inputs: dict) -> type[ComfyNode]: + def PREPARE_CLASS_CLONE(cls, v3_data: V3Data | None) -> type[ComfyNode]: """Creates clone of real node class to prevent monkey-patching.""" c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(hidden_inputs) + type_clone.hidden = HiddenHolder.from_v3_data(v3_data) return type_clone @final @@ -1414,15 +1728,10 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def INPUT_TYPES(cls, include_hidden=True, return_schema=False) -> dict[str, dict] | tuple[dict[str, dict], Schema]: + def INPUT_TYPES(cls) -> dict[str, dict]: schema = cls.FINALIZE_SCHEMA() info = schema.get_v1_info(cls) - input = info.input - if not include_hidden: - input.pop("hidden", None) - if return_schema: - return input, schema - return input + return info.input @final @classmethod @@ -1494,7 +1803,7 @@ class ComfyNode(_ComfyNodeBaseInternal): raise NotImplementedError @classmethod - def validate_inputs(cls, **kwargs) -> bool: + def validate_inputs(cls, **kwargs) -> bool | str: """Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS.""" raise NotImplementedError @@ -1541,7 +1850,7 @@ class NodeOutput(_NodeOutputInternal): return self.args if len(self.args) > 0 else None @classmethod - def from_dict(cls, data: dict[str, Any]) -> "NodeOutput": + def from_dict(cls, data: dict[str, Any]) -> NodeOutput: args = () ui = None expand = None @@ -1554,7 +1863,7 @@ class NodeOutput(_NodeOutputInternal): ui = data["ui"] if "expand" in data: expand = data["expand"] - return cls(args=args, ui=ui, expand=expand) + return cls(*args, ui=ui, expand=expand) def __getitem__(self, index) -> Any: return self.args[index] @@ -1568,78 +1877,85 @@ class _UIOutput(ABC): ... -class _IO: - FolderType = FolderType - UploadType = UploadType - RemoteOptions = RemoteOptions - NumberDisplay = NumberDisplay +__all__ = [ + "FolderType", + "UploadType", + "RemoteOptions", + "NumberDisplay", - comfytype = staticmethod(comfytype) - Custom = staticmethod(Custom) - Input = Input - WidgetInput = WidgetInput - Output = Output - ComfyTypeI = ComfyTypeI - ComfyTypeIO = ComfyTypeIO - #--------------------------------- + "comfytype", + "Custom", + "Input", + "WidgetInput", + "Output", + "ComfyTypeI", + "ComfyTypeIO", # Supported Types - Boolean = Boolean - Int = Int - Float = Float - String = String - Combo = Combo - MultiCombo = MultiCombo - Image = Image - WanCameraEmbedding = WanCameraEmbedding - Webcam = Webcam - Mask = Mask - Latent = Latent - Conditioning = Conditioning - Sampler = Sampler - Sigmas = Sigmas - Noise = Noise - Guider = Guider - Clip = Clip - ControlNet = ControlNet - Vae = Vae - Model = Model - ClipVision = ClipVision - ClipVisionOutput = ClipVisionOutput - AudioEncoder = AudioEncoder - AudioEncoderOutput = AudioEncoderOutput - StyleModel = StyleModel - Gligen = Gligen - UpscaleModel = UpscaleModel - Audio = Audio - Video = Video - SVG = SVG - LoraModel = LoraModel - LossMap = LossMap - Voxel = Voxel - Mesh = Mesh - Hooks = Hooks - HookKeyframes = HookKeyframes - TimestepsRange = TimestepsRange - LatentOperation = LatentOperation - FlowControl = FlowControl - Accumulation = Accumulation - Load3DCamera = Load3DCamera - Load3D = Load3D - Load3DAnimation = Load3DAnimation - Photomaker = Photomaker - Point = Point - FaceAnalysis = FaceAnalysis - BBOX = BBOX - SEGS = SEGS - AnyType = AnyType - MultiType = MultiType - #--------------------------------- - HiddenHolder = HiddenHolder - Hidden = Hidden - NodeInfoV1 = NodeInfoV1 - NodeInfoV3 = NodeInfoV3 - Schema = Schema - ComfyNode = ComfyNode - NodeOutput = NodeOutput - add_to_dict_v1 = staticmethod(add_to_dict_v1) - add_to_dict_v3 = staticmethod(add_to_dict_v3) + "Boolean", + "Int", + "Float", + "String", + "Combo", + "MultiCombo", + "Image", + "WanCameraEmbedding", + "Webcam", + "Mask", + "Latent", + "Conditioning", + "Sampler", + "Sigmas", + "Noise", + "Guider", + "Clip", + "ControlNet", + "Vae", + "Model", + "ClipVision", + "ClipVisionOutput", + "AudioEncoder", + "AudioEncoderOutput", + "StyleModel", + "Gligen", + "UpscaleModel", + "LatentUpscaleModel", + "Audio", + "Video", + "SVG", + "LoraModel", + "LossMap", + "Voxel", + "Mesh", + "Hooks", + "HookKeyframes", + "TimestepsRange", + "LatentOperation", + "FlowControl", + "Accumulation", + "Load3DCamera", + "Load3D", + "Load3DAnimation", + "Photomaker", + "Point", + "FaceAnalysis", + "BBOX", + "SEGS", + "AnyType", + "MultiType", + "Tracks", + # Dynamic Types + "MatchType", + "DynamicCombo", + "Autogrow", + # Other classes + "HiddenHolder", + "Hidden", + "NodeInfoV1", + "NodeInfoV3", + "Schema", + "ComfyNode", + "NodeOutput", + "add_to_dict_v1", + "add_to_dict_v3", + "V3Data", +] diff --git a/comfy_api/latest/_io_public.py b/comfy_api/latest/_io_public.py new file mode 100644 index 000000000..43c7680f3 --- /dev/null +++ b/comfy_api/latest/_io_public.py @@ -0,0 +1 @@ +from ._io import * # noqa: F403 diff --git a/comfy_api/latest/_resources.py b/comfy_api/latest/_resources.py deleted file mode 100644 index a6bdda972..000000000 --- a/comfy_api/latest/_resources.py +++ /dev/null @@ -1,72 +0,0 @@ -from __future__ import annotations -import comfy.utils -import folder_paths -import logging -from abc import ABC, abstractmethod -from typing import Any -import torch - -class ResourceKey(ABC): - Type = Any - def __init__(self): - ... - -class TorchDictFolderFilename(ResourceKey): - '''Key for requesting a torch file via file_name from a folder category.''' - Type = dict[str, torch.Tensor] - def __init__(self, folder_name: str, file_name: str): - self.folder_name = folder_name - self.file_name = file_name - - def __hash__(self): - return hash((self.folder_name, self.file_name)) - - def __eq__(self, other: object) -> bool: - if not isinstance(other, TorchDictFolderFilename): - return False - return self.folder_name == other.folder_name and self.file_name == other.file_name - - def __str__(self): - return f"{self.folder_name} -> {self.file_name}" - -class Resources(ABC): - def __init__(self): - ... - - @abstractmethod - def get(self, key: ResourceKey, default: Any=...) -> Any: - pass - -class ResourcesLocal(Resources): - def __init__(self): - super().__init__() - self.local_resources: dict[ResourceKey, Any] = {} - - def get(self, key: ResourceKey, default: Any=...) -> Any: - cached = self.local_resources.get(key, None) - if cached is not None: - logging.info(f"Using cached resource '{key}'") - return cached - logging.info(f"Loading resource '{key}'") - to_return = None - if isinstance(key, TorchDictFolderFilename): - if default is ...: - to_return = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise(key.folder_name, key.file_name), safe_load=True) - else: - full_path = folder_paths.get_full_path(key.folder_name, key.file_name) - if full_path is not None: - to_return = comfy.utils.load_torch_file(full_path, safe_load=True) - - if to_return is not None: - self.local_resources[key] = to_return - return to_return - if default is not ...: - return default - raise Exception(f"Unsupported resource key type: {type(key)}") - - -class _RESOURCES: - ResourceKey = ResourceKey - TorchDictFolderFilename = TorchDictFolderFilename - Resources = Resources - ResourcesLocal = ResourcesLocal diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index 26a55615f..e238cdf3c 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -3,8 +3,8 @@ from __future__ import annotations import json import os import random +import uuid from io import BytesIO -from typing import Type import av import numpy as np @@ -21,7 +21,7 @@ import folder_paths # used for image preview from comfy.cli_args import args -from comfy_api.latest._io import ComfyNode, FolderType, Image, _UIOutput +from ._io import ComfyNode, FolderType, Image, _UIOutput class SavedResult(dict): @@ -82,7 +82,7 @@ class ImageSaveHelper: return PILImage.fromarray(np.clip(255.0 * image_tensor.cpu().numpy(), 0, 255).astype(np.uint8)) @staticmethod - def _create_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: + def _create_png_metadata(cls: type[ComfyNode] | None) -> PngInfo | None: """Creates a PngInfo object with prompt and extra_pnginfo.""" if args.disable_metadata or cls is None or not cls.hidden: return None @@ -95,7 +95,7 @@ class ImageSaveHelper: return metadata @staticmethod - def _create_animated_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: + def _create_animated_png_metadata(cls: type[ComfyNode] | None) -> PngInfo | None: """Creates a PngInfo object with prompt and extra_pnginfo for animated PNGs (APNG).""" if args.disable_metadata or cls is None or not cls.hidden: return None @@ -120,7 +120,7 @@ class ImageSaveHelper: return metadata @staticmethod - def _create_webp_metadata(pil_image: PILImage.Image, cls: Type[ComfyNode] | None) -> PILImage.Exif: + def _create_webp_metadata(pil_image: PILImage.Image, cls: type[ComfyNode] | None) -> PILImage.Exif: """Creates EXIF metadata bytes for WebP images.""" exif_data = pil_image.getexif() if args.disable_metadata or cls is None or cls.hidden is None: @@ -136,7 +136,7 @@ class ImageSaveHelper: @staticmethod def save_images( - images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, compress_level = 4, + images, filename_prefix: str, folder_type: FolderType, cls: type[ComfyNode] | None, compress_level = 4, ) -> list[SavedResult]: """Saves a batch of images as individual PNG files.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( @@ -154,7 +154,7 @@ class ImageSaveHelper: return results @staticmethod - def get_save_images_ui(images, filename_prefix: str, cls: Type[ComfyNode] | None, compress_level=4) -> SavedImages: + def get_save_images_ui(images, filename_prefix: str, cls: type[ComfyNode] | None, compress_level=4) -> SavedImages: """Saves a batch of images and returns a UI object for the node output.""" return SavedImages( ImageSaveHelper.save_images( @@ -168,7 +168,7 @@ class ImageSaveHelper: @staticmethod def save_animated_png( - images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, fps: float, compress_level: int + images, filename_prefix: str, folder_type: FolderType, cls: type[ComfyNode] | None, fps: float, compress_level: int ) -> SavedResult: """Saves a batch of images as a single animated PNG.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( @@ -190,7 +190,7 @@ class ImageSaveHelper: @staticmethod def get_save_animated_png_ui( - images, filename_prefix: str, cls: Type[ComfyNode] | None, fps: float, compress_level: int + images, filename_prefix: str, cls: type[ComfyNode] | None, fps: float, compress_level: int ) -> SavedImages: """Saves an animated PNG and returns a UI object for the node output.""" result = ImageSaveHelper.save_animated_png( @@ -208,7 +208,7 @@ class ImageSaveHelper: images, filename_prefix: str, folder_type: FolderType, - cls: Type[ComfyNode] | None, + cls: type[ComfyNode] | None, fps: float, lossless: bool, quality: int, @@ -237,7 +237,7 @@ class ImageSaveHelper: def get_save_animated_webp_ui( images, filename_prefix: str, - cls: Type[ComfyNode] | None, + cls: type[ComfyNode] | None, fps: float, lossless: bool, quality: int, @@ -266,7 +266,7 @@ class AudioSaveHelper: audio: dict, filename_prefix: str, folder_type: FolderType, - cls: Type[ComfyNode] | None, + cls: type[ComfyNode] | None, format: str = "flac", quality: str = "128k", ) -> list[SavedResult]: @@ -318,9 +318,10 @@ class AudioSaveHelper: for key, value in metadata.items(): output_container.metadata[key] = value + layout = "mono" if waveform.shape[0] == 1 else "stereo" # Set up the output stream with appropriate properties if format == "opus": - out_stream = output_container.add_stream("libopus", rate=sample_rate) + out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout) if quality == "64k": out_stream.bit_rate = 64000 elif quality == "96k": @@ -332,7 +333,7 @@ class AudioSaveHelper: elif quality == "320k": out_stream.bit_rate = 320000 elif format == "mp3": - out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) + out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout) if quality == "V0": # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool out_stream.codec_context.qscale = 1 @@ -341,12 +342,12 @@ class AudioSaveHelper: elif quality == "320k": out_stream.bit_rate = 320000 else: # format == "flac": - out_stream = output_container.add_stream("flac", rate=sample_rate) + out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout) frame = av.AudioFrame.from_ndarray( waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format="flt", - layout="mono" if waveform.shape[0] == 1 else "stereo", + layout=layout, ) frame.sample_rate = sample_rate frame.pts = 0 @@ -370,7 +371,7 @@ class AudioSaveHelper: @staticmethod def get_save_audio_ui( - audio, filename_prefix: str, cls: Type[ComfyNode] | None, format: str = "flac", quality: str = "128k", + audio, filename_prefix: str, cls: type[ComfyNode] | None, format: str = "flac", quality: str = "128k", ) -> SavedAudios: """Save and instantly wrap for UI.""" return SavedAudios( @@ -386,7 +387,7 @@ class AudioSaveHelper: class PreviewImage(_UIOutput): - def __init__(self, image: Image.Type, animated: bool = False, cls: Type[ComfyNode] = None, **kwargs): + def __init__(self, image: Image.Type, animated: bool = False, cls: type[ComfyNode] = None, **kwargs): self.values = ImageSaveHelper.save_images( image, filename_prefix="ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)), @@ -410,7 +411,7 @@ class PreviewMask(PreviewImage): class PreviewAudio(_UIOutput): - def __init__(self, audio: dict, cls: Type[ComfyNode] = None, **kwargs): + def __init__(self, audio: dict, cls: type[ComfyNode] = None, **kwargs): self.values = AudioSaveHelper.save_audio( audio, filename_prefix="ComfyUI_temp_" + "".join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5)), @@ -436,9 +437,19 @@ class PreviewUI3D(_UIOutput): def __init__(self, model_file, camera_info, **kwargs): self.model_file = model_file self.camera_info = camera_info + self.bg_image_path = None + bg_image = kwargs.get("bg_image", None) + if bg_image is not None: + img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8) + img = PILImage.fromarray(img_array) + temp_dir = folder_paths.get_temp_directory() + filename = f"bg_{uuid.uuid4().hex}.png" + bg_image_path = os.path.join(temp_dir, filename) + img.save(bg_image_path, compress_level=1) + self.bg_image_path = f"temp/{filename}" def as_dict(self): - return {"result": [self.model_file, self.camera_info]} + return {"result": [self.model_file, self.camera_info, self.bg_image_path]} class PreviewText(_UIOutput): @@ -449,15 +460,16 @@ class PreviewText(_UIOutput): return {"text": (self.value,)} -class _UI: - SavedResult = SavedResult - SavedImages = SavedImages - SavedAudios = SavedAudios - ImageSaveHelper = ImageSaveHelper - AudioSaveHelper = AudioSaveHelper - PreviewImage = PreviewImage - PreviewMask = PreviewMask - PreviewAudio = PreviewAudio - PreviewVideo = PreviewVideo - PreviewUI3D = PreviewUI3D - PreviewText = PreviewText +__all__ = [ + "SavedResult", + "SavedImages", + "SavedAudios", + "ImageSaveHelper", + "AudioSaveHelper", + "PreviewImage", + "PreviewMask", + "PreviewAudio", + "PreviewVideo", + "PreviewUI3D", + "PreviewText", +] diff --git a/comfy_api/latest/_ui_public.py b/comfy_api/latest/_ui_public.py new file mode 100644 index 000000000..85b11d78b --- /dev/null +++ b/comfy_api/latest/_ui_public.py @@ -0,0 +1 @@ +from ._ui import * # noqa: F403 diff --git a/comfy_api/latest/_util/__init__.py b/comfy_api/latest/_util/__init__.py index 9019c46db..6313eb01b 100644 --- a/comfy_api/latest/_util/__init__.py +++ b/comfy_api/latest/_util/__init__.py @@ -1,8 +1,13 @@ from .video_types import VideoContainer, VideoCodec, VideoComponents +from .geometry_types import VOXEL, MESH +from .image_types import SVG __all__ = [ # Utility Types "VideoContainer", "VideoCodec", "VideoComponents", + "VOXEL", + "MESH", + "SVG", ] diff --git a/comfy_api/latest/_util/geometry_types.py b/comfy_api/latest/_util/geometry_types.py new file mode 100644 index 000000000..385122778 --- /dev/null +++ b/comfy_api/latest/_util/geometry_types.py @@ -0,0 +1,12 @@ +import torch + + +class VOXEL: + def __init__(self, data: torch.Tensor): + self.data = data + + +class MESH: + def __init__(self, vertices: torch.Tensor, faces: torch.Tensor): + self.vertices = vertices + self.faces = faces diff --git a/comfy_api/latest/_util/image_types.py b/comfy_api/latest/_util/image_types.py new file mode 100644 index 000000000..f031ed426 --- /dev/null +++ b/comfy_api/latest/_util/image_types.py @@ -0,0 +1,18 @@ +from io import BytesIO + + +class SVG: + """Stores SVG representations via a list of BytesIO objects.""" + + def __init__(self, data: list[BytesIO]): + self.data = data + + def combine(self, other: 'SVG') -> 'SVG': + return SVG(self.data + other.data) + + @staticmethod + def combine_all(svgs: list['SVG']) -> 'SVG': + all_svgs_list: list[BytesIO] = [] + for svg_item in svgs: + all_svgs_list.extend(svg_item.data) + return SVG(all_svgs_list) diff --git a/comfy_api/latest/_util/video_types.py b/comfy_api/latest/_util/video_types.py index c3e3d8e3a..fd3b5a510 100644 --- a/comfy_api/latest/_util/video_types.py +++ b/comfy_api/latest/_util/video_types.py @@ -3,7 +3,7 @@ from dataclasses import dataclass from enum import Enum from fractions import Fraction from typing import Optional -from comfy_api.latest._input import ImageInput, AudioInput +from .._input import ImageInput, AudioInput class VideoCodec(str, Enum): AUTO = "auto" diff --git a/comfy_api/v0_0_2/__init__.py b/comfy_api/v0_0_2/__init__.py index de0f95001..c4fa1d971 100644 --- a/comfy_api/v0_0_2/__init__.py +++ b/comfy_api/v0_0_2/__init__.py @@ -6,7 +6,7 @@ from comfy_api.latest import ( ) from typing import Type, TYPE_CHECKING from comfy_api.internal.async_to_sync import create_sync_class -from comfy_api.latest import io, ui, ComfyExtension #noqa: F401 +from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401 class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest): @@ -42,4 +42,8 @@ __all__ = [ "InputImpl", "Types", "ComfyExtension", + "io", + "IO", + "ui", + "UI", ] diff --git a/comfy_api/version_list.py b/comfy_api/version_list.py index 7cb1871d5..be6e1db66 100644 --- a/comfy_api/version_list.py +++ b/comfy_api/version_list.py @@ -2,9 +2,8 @@ from comfy_api.latest import ComfyAPI_latest from comfy_api.v0_0_2 import ComfyAPIAdapter_v0_0_2 from comfy_api.v0_0_1 import ComfyAPIAdapter_v0_0_1 from comfy_api.internal import ComfyAPIBase -from typing import List, Type -supported_versions: List[Type[ComfyAPIBase]] = [ +supported_versions: list[type[ComfyAPIBase]] = [ ComfyAPI_latest, ComfyAPIAdapter_v0_0_2, ComfyAPIAdapter_v0_0_1, diff --git a/comfy_api_nodes/apinode_utils.py b/comfy_api_nodes/apinode_utils.py deleted file mode 100644 index 37438f835..000000000 --- a/comfy_api_nodes/apinode_utils.py +++ /dev/null @@ -1,691 +0,0 @@ -from __future__ import annotations -import aiohttp -import io -import logging -import mimetypes -from typing import Optional, Union -from comfy.utils import common_upscale -from comfy_api.input_impl import VideoFromFile -from comfy_api.util import VideoContainer, VideoCodec -from comfy_api.input.video_types import VideoInput -from comfy_api.input.basic_types import AudioInput -from comfy_api_nodes.apis.client import ( - ApiClient, - ApiEndpoint, - HttpMethod, - SynchronousOperation, - UploadRequest, - UploadResponse, -) -from server import PromptServer - - -import numpy as np -from PIL import Image -import torch -import math -import base64 -import uuid -from io import BytesIO -import av - - -async def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile: - """Downloads a video from a URL and returns a `VIDEO` output. - - Args: - video_url: The URL of the video to download. - - Returns: - A Comfy node `VIDEO` output. - """ - video_io = await download_url_to_bytesio(video_url, timeout) - if video_io is None: - error_msg = f"Failed to download video from {video_url}" - logging.error(error_msg) - raise ValueError(error_msg) - return VideoFromFile(video_io) - - -def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor: - """Downscale input image tensor to roughly the specified total pixels.""" - samples = image.movedim(-1, 1) - total = int(total_pixels) - scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) - if scale_by >= 1: - return image - width = round(samples.shape[3] * scale_by) - height = round(samples.shape[2] * scale_by) - - s = common_upscale(samples, width, height, "lanczos", "disabled") - s = s.movedim(1, -1) - return s - - -async def validate_and_cast_response( - response, timeout: int = None, node_id: Union[str, None] = None -) -> torch.Tensor: - """Validates and casts a response to a torch.Tensor. - - Args: - response: The response to validate and cast. - timeout: Request timeout in seconds. Defaults to None (no timeout). - - Returns: - A torch.Tensor representing the image (1, H, W, C). - - Raises: - ValueError: If the response is not valid. - """ - # validate raw JSON response - data = response.data - if not data or len(data) == 0: - raise ValueError("No images returned from API endpoint") - - # Initialize list to store image tensors - image_tensors: list[torch.Tensor] = [] - - # Process each image in the data array - async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session: - for img_data in data: - img_bytes: bytes - if img_data.b64_json: - img_bytes = base64.b64decode(img_data.b64_json) - elif img_data.url: - if node_id: - PromptServer.instance.send_progress_text(f"Result URL: {img_data.url}", node_id) - async with session.get(img_data.url) as resp: - if resp.status != 200: - raise ValueError("Failed to download generated image") - img_bytes = await resp.read() - else: - raise ValueError("Invalid image payload – neither URL nor base64 data present.") - - pil_img = Image.open(BytesIO(img_bytes)).convert("RGBA") - arr = np.asarray(pil_img).astype(np.float32) / 255.0 - image_tensors.append(torch.from_numpy(arr)) - - return torch.stack(image_tensors, dim=0) - - -def validate_aspect_ratio( - aspect_ratio: str, - minimum_ratio: float, - maximum_ratio: float, - minimum_ratio_str: str, - maximum_ratio_str: str, -) -> float: - """Validates and casts an aspect ratio string to a float. - - Args: - aspect_ratio: The aspect ratio string to validate. - minimum_ratio: The minimum aspect ratio. - maximum_ratio: The maximum aspect ratio. - minimum_ratio_str: The minimum aspect ratio string. - maximum_ratio_str: The maximum aspect ratio string. - - Returns: - The validated and cast aspect ratio. - - Raises: - Exception: If the aspect ratio is not valid. - """ - # get ratio values - numbers = aspect_ratio.split(":") - if len(numbers) != 2: - raise TypeError( - f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}." - ) - try: - numerator = int(numbers[0]) - denominator = int(numbers[1]) - except ValueError as exc: - raise TypeError( - f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}." - ) from exc - calculated_ratio = numerator / denominator - # if not close to minimum and maximum, check bounds - if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose( - calculated_ratio, maximum_ratio - ): - if calculated_ratio < minimum_ratio: - raise TypeError( - f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})." - ) - elif calculated_ratio > maximum_ratio: - raise TypeError( - f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})." - ) - return aspect_ratio - - -def mimetype_to_extension(mime_type: str) -> str: - """Converts a MIME type to a file extension.""" - return mime_type.split("/")[-1].lower() - - -async def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO: - """Downloads content from a URL using requests and returns it as BytesIO. - - Args: - url: The URL to download. - timeout: Request timeout in seconds. Defaults to None (no timeout). - - Returns: - BytesIO object containing the downloaded content. - """ - timeout_cfg = aiohttp.ClientTimeout(total=timeout) if timeout else None - async with aiohttp.ClientSession(timeout=timeout_cfg) as session: - async with session.get(url) as resp: - resp.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX) - return BytesIO(await resp.read()) - - -def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor: - """Converts image data from BytesIO to a torch.Tensor. - - Args: - image_bytesio: BytesIO object containing the image data. - mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA"). - - Returns: - A torch.Tensor representing the image (1, H, W, C). - - Raises: - PIL.UnidentifiedImageError: If the image data cannot be identified. - ValueError: If the specified mode is invalid. - """ - image = Image.open(image_bytesio) - image = image.convert(mode) - image_array = np.array(image).astype(np.float32) / 255.0 - return torch.from_numpy(image_array).unsqueeze(0) - - -async def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor: - """Downloads an image from a URL and returns a [B, H, W, C] tensor.""" - image_bytesio = await download_url_to_bytesio(url, timeout) - return bytesio_to_image_tensor(image_bytesio) - - -def process_image_response(response_content: bytes | str) -> torch.Tensor: - """Uses content from a Response object and converts it to a torch.Tensor""" - return bytesio_to_image_tensor(BytesIO(response_content)) - - -def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image: - """Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling.""" - if len(image.shape) > 3: - image = image[0] - # TODO: remove alpha if not allowed and present - input_tensor = image.cpu() - input_tensor = downscale_image_tensor( - input_tensor.unsqueeze(0), total_pixels=total_pixels - ).squeeze() - image_np = (input_tensor.numpy() * 255).astype(np.uint8) - img = Image.fromarray(image_np) - return img - - -def _pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO: - """Converts a PIL Image to a BytesIO object.""" - if not mime_type: - mime_type = "image/png" - - img_byte_arr = io.BytesIO() - # Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG') - pil_format = mime_type.split("/")[-1].upper() - if pil_format == "JPG": - pil_format = "JPEG" - img.save(img_byte_arr, format=pil_format) - img_byte_arr.seek(0) - return img_byte_arr - - -def tensor_to_bytesio( - image: torch.Tensor, - name: Optional[str] = None, - total_pixels: int = 2048 * 2048, - mime_type: str = "image/png", -) -> BytesIO: - """Converts a torch.Tensor image to a named BytesIO object. - - Args: - image: Input torch.Tensor image. - name: Optional filename for the BytesIO object. - total_pixels: Maximum total pixels for potential downscaling. - mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). - - Returns: - Named BytesIO object containing the image data. - """ - if not mime_type: - mime_type = "image/png" - - pil_image = _tensor_to_pil(image, total_pixels=total_pixels) - img_binary = _pil_to_bytesio(pil_image, mime_type=mime_type) - img_binary.name = ( - f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}" - ) - return img_binary - - -def tensor_to_base64_string( - image_tensor: torch.Tensor, - total_pixels: int = 2048 * 2048, - mime_type: str = "image/png", -) -> str: - """Convert [B, H, W, C] or [H, W, C] tensor to a base64 string. - - Args: - image_tensor: Input torch.Tensor image. - total_pixels: Maximum total pixels for potential downscaling. - mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). - - Returns: - Base64 encoded string of the image. - """ - pil_image = _tensor_to_pil(image_tensor, total_pixels=total_pixels) - img_byte_arr = _pil_to_bytesio(pil_image, mime_type=mime_type) - img_bytes = img_byte_arr.getvalue() - # Encode bytes to base64 string - base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8") - return base64_encoded_string - - -def tensor_to_data_uri( - image_tensor: torch.Tensor, - total_pixels: int = 2048 * 2048, - mime_type: str = "image/png", -) -> str: - """Converts a tensor image to a Data URI string. - - Args: - image_tensor: Input torch.Tensor image. - total_pixels: Maximum total pixels for potential downscaling. - mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp'). - - Returns: - Data URI string (e.g., 'data:image/png;base64,...'). - """ - base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type) - return f"data:{mime_type};base64,{base64_string}" - - -def text_filepath_to_base64_string(filepath: str) -> str: - """Converts a text file to a base64 string.""" - with open(filepath, "rb") as f: - file_content = f.read() - return base64.b64encode(file_content).decode("utf-8") - - -def text_filepath_to_data_uri(filepath: str) -> str: - """Converts a text file to a data URI.""" - base64_string = text_filepath_to_base64_string(filepath) - mime_type, _ = mimetypes.guess_type(filepath) - if mime_type is None: - mime_type = "application/octet-stream" - return f"data:{mime_type};base64,{base64_string}" - - -async def upload_file_to_comfyapi( - file_bytes_io: BytesIO, - filename: str, - upload_mime_type: Optional[str], - auth_kwargs: Optional[dict[str, str]] = None, -) -> str: - """ - Uploads a single file to ComfyUI API and returns its download URL. - - Args: - file_bytes_io: BytesIO object containing the file data. - filename: The filename of the file. - upload_mime_type: MIME type of the file. - auth_kwargs: Optional authentication token(s). - - Returns: - The download URL for the uploaded file. - """ - if upload_mime_type is None: - request_object = UploadRequest(file_name=filename) - else: - request_object = UploadRequest(file_name=filename, content_type=upload_mime_type) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/customers/storage", - method=HttpMethod.POST, - request_model=UploadRequest, - response_model=UploadResponse, - ), - request=request_object, - auth_kwargs=auth_kwargs, - ) - - response: UploadResponse = await operation.execute() - await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type) - return response.download_url - - -def video_to_base64_string( - video: VideoInput, - container_format: VideoContainer = None, - codec: VideoCodec = None -) -> str: - """ - Converts a video input to a base64 string. - - Args: - video: The video input to convert - container_format: Optional container format to use (defaults to video.container if available) - codec: Optional codec to use (defaults to video.codec if available) - """ - video_bytes_io = io.BytesIO() - - # Use provided format/codec if specified, otherwise use video's own if available - format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4) - codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264) - - video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use) - video_bytes_io.seek(0) - return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8") - - -async def upload_video_to_comfyapi( - video: VideoInput, - auth_kwargs: Optional[dict[str, str]] = None, - container: VideoContainer = VideoContainer.MP4, - codec: VideoCodec = VideoCodec.H264, - max_duration: Optional[int] = None, -) -> str: - """ - Uploads a single video to ComfyUI API and returns its download URL. - Uses the specified container and codec for saving the video before upload. - - Args: - video: VideoInput object (Comfy VIDEO type). - auth_kwargs: Optional authentication token(s). - container: The video container format to use (default: MP4). - codec: The video codec to use (default: H264). - max_duration: Optional maximum duration of the video in seconds. If the video is longer than this, an error will be raised. - - Returns: - The download URL for the uploaded video file. - """ - if max_duration is not None: - try: - actual_duration = video.duration_seconds - if actual_duration is not None and actual_duration > max_duration: - raise ValueError( - f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)." - ) - except Exception as e: - logging.error(f"Error getting video duration: {e}") - raise ValueError(f"Could not verify video duration from source: {e}") from e - - upload_mime_type = f"video/{container.value.lower()}" - filename = f"uploaded_video.{container.value.lower()}" - - # Convert VideoInput to BytesIO using specified container/codec - video_bytes_io = io.BytesIO() - video.save_to(video_bytes_io, format=container, codec=codec) - video_bytes_io.seek(0) - - return await upload_file_to_comfyapi(video_bytes_io, filename, upload_mime_type, auth_kwargs) - - -def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray: - """ - Prepares audio waveform for av library by converting to a contiguous numpy array. - - Args: - waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type. - - Returns: - Contiguous numpy array of the audio waveform. If the audio was batched, - the first item is taken. - """ - if waveform.ndim != 3 or waveform.shape[0] != 1: - raise ValueError("Expected waveform tensor shape (1, channels, samples)") - - # If batch is > 1, take first item - if waveform.shape[0] > 1: - waveform = waveform[0] - - # Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array - audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy() - if audio_data_np.dtype != np.float32: - audio_data_np = audio_data_np.astype(np.float32) - - return audio_data_np - - -def audio_ndarray_to_bytesio( - audio_data_np: np.ndarray, - sample_rate: int, - container_format: str = "mp4", - codec_name: str = "aac", -) -> BytesIO: - """ - Encodes a numpy array of audio data into a BytesIO object. - """ - audio_bytes_io = io.BytesIO() - with av.open(audio_bytes_io, mode="w", format=container_format) as output_container: - audio_stream = output_container.add_stream(codec_name, rate=sample_rate) - frame = av.AudioFrame.from_ndarray( - audio_data_np, - format="fltp", - layout="stereo" if audio_data_np.shape[0] > 1 else "mono", - ) - frame.sample_rate = sample_rate - frame.pts = 0 - - for packet in audio_stream.encode(frame): - output_container.mux(packet) - - # Flush stream - for packet in audio_stream.encode(None): - output_container.mux(packet) - - audio_bytes_io.seek(0) - return audio_bytes_io - - -async def upload_audio_to_comfyapi( - audio: AudioInput, - auth_kwargs: Optional[dict[str, str]] = None, - container_format: str = "mp4", - codec_name: str = "aac", - mime_type: str = "audio/mp4", - filename: str = "uploaded_audio.mp4", -) -> str: - """ - Uploads a single audio input to ComfyUI API and returns its download URL. - Encodes the raw waveform into the specified format before uploading. - - Args: - audio: a Comfy `AUDIO` type (contains waveform tensor and sample_rate) - auth_kwargs: Optional authentication token(s). - - Returns: - The download URL for the uploaded audio file. - """ - sample_rate: int = audio["sample_rate"] - waveform: torch.Tensor = audio["waveform"] - audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) - audio_bytes_io = audio_ndarray_to_bytesio( - audio_data_np, sample_rate, container_format, codec_name - ) - - return await upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs) - - -def f32_pcm(wav: torch.Tensor) -> torch.Tensor: - """Convert audio to float 32 bits PCM format. Copy-paste from nodes_audio.py file.""" - if wav.dtype.is_floating_point: - return wav - elif wav.dtype == torch.int16: - return wav.float() / (2 ** 15) - elif wav.dtype == torch.int32: - return wav.float() / (2 ** 31) - raise ValueError(f"Unsupported wav dtype: {wav.dtype}") - - -def audio_bytes_to_audio_input(audio_bytes: bytes,) -> dict: - """ - Decode any common audio container from bytes using PyAV and return - a Comfy AUDIO dict: {"waveform": [1, C, T] float32, "sample_rate": int}. - """ - with av.open(io.BytesIO(audio_bytes)) as af: - if not af.streams.audio: - raise ValueError("No audio stream found in response.") - stream = af.streams.audio[0] - - in_sr = int(stream.codec_context.sample_rate) - out_sr = in_sr - - frames: list[torch.Tensor] = [] - n_channels = stream.channels or 1 - - for frame in af.decode(streams=stream.index): - arr = frame.to_ndarray() # shape can be [C, T] or [T, C] or [T] - buf = torch.from_numpy(arr) - if buf.ndim == 1: - buf = buf.unsqueeze(0) # [T] -> [1, T] - elif buf.shape[0] != n_channels and buf.shape[-1] == n_channels: - buf = buf.transpose(0, 1).contiguous() # [T, C] -> [C, T] - elif buf.shape[0] != n_channels: - buf = buf.reshape(-1, n_channels).t().contiguous() # fallback to [C, T] - frames.append(buf) - - if not frames: - raise ValueError("Decoded zero audio frames.") - - wav = torch.cat(frames, dim=1) # [C, T] - wav = f32_pcm(wav) - return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr} - - -def audio_input_to_mp3(audio: AudioInput) -> io.BytesIO: - waveform = audio["waveform"].cpu() - - output_buffer = io.BytesIO() - output_container = av.open(output_buffer, mode='w', format="mp3") - - out_stream = output_container.add_stream("libmp3lame", rate=audio["sample_rate"]) - out_stream.bit_rate = 320000 - - frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo') - frame.sample_rate = audio["sample_rate"] - frame.pts = 0 - output_container.mux(out_stream.encode(frame)) - output_container.mux(out_stream.encode(None)) - output_container.close() - output_buffer.seek(0) - return output_buffer - - -def audio_to_base64_string( - audio: AudioInput, container_format: str = "mp4", codec_name: str = "aac" -) -> str: - """Converts an audio input to a base64 string.""" - sample_rate: int = audio["sample_rate"] - waveform: torch.Tensor = audio["waveform"] - audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) - audio_bytes_io = audio_ndarray_to_bytesio( - audio_data_np, sample_rate, container_format, codec_name - ) - audio_bytes = audio_bytes_io.getvalue() - return base64.b64encode(audio_bytes).decode("utf-8") - - -async def upload_images_to_comfyapi( - image: torch.Tensor, - max_images=8, - auth_kwargs: Optional[dict[str, str]] = None, - mime_type: Optional[str] = None, -) -> list[str]: - """ - Uploads images to ComfyUI API and returns download URLs. - To upload multiple images, stack them in the batch dimension first. - - Args: - image: Input torch.Tensor image. - max_images: Maximum number of images to upload. - auth_kwargs: Optional authentication token(s). - mime_type: Optional MIME type for the image. - """ - # if batch, try to upload each file if max_images is greater than 0 - download_urls: list[str] = [] - is_batch = len(image.shape) > 3 - batch_len = image.shape[0] if is_batch else 1 - - for idx in range(min(batch_len, max_images)): - tensor = image[idx] if is_batch else image - img_io = tensor_to_bytesio(tensor, mime_type=mime_type) - url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs) - download_urls.append(url) - return download_urls - - -def resize_mask_to_image( - mask: torch.Tensor, - image: torch.Tensor, - upscale_method="nearest-exact", - crop="disabled", - allow_gradient=True, - add_channel_dim=False, -): - """ - Resize mask to be the same dimensions as an image, while maintaining proper format for API calls. - """ - _, H, W, _ = image.shape - mask = mask.unsqueeze(-1) - mask = mask.movedim(-1, 1) - mask = common_upscale( - mask, width=W, height=H, upscale_method=upscale_method, crop=crop - ) - mask = mask.movedim(1, -1) - if not add_channel_dim: - mask = mask.squeeze(-1) - if not allow_gradient: - mask = (mask > 0.5).float() - return mask - - -def validate_string( - string: str, - strip_whitespace=True, - field_name="prompt", - min_length=None, - max_length=None, -): - if string is None: - raise Exception(f"Field '{field_name}' cannot be empty.") - if strip_whitespace: - string = string.strip() - if min_length and len(string) < min_length: - raise Exception( - f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long." - ) - if max_length and len(string) > max_length: - raise Exception( - f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long." - ) - - -def image_tensor_pair_to_batch( - image1: torch.Tensor, image2: torch.Tensor -) -> torch.Tensor: - """ - Converts a pair of image tensors to a batch tensor. - If the images are not the same size, the smaller image is resized to - match the larger image. - """ - if image1.shape[1:] != image2.shape[1:]: - image2 = common_upscale( - image2.movedim(-1, 1), - image1.shape[2], - image1.shape[1], - "bilinear", - "center", - ).movedim(1, -1) - return torch.cat((image1, image2), dim=0) diff --git a/comfy_api_nodes/apis/PixverseController.py b/comfy_api_nodes/apis/PixverseController.py deleted file mode 100644 index 310c0f546..000000000 --- a/comfy_api_nodes/apis/PixverseController.py +++ /dev/null @@ -1,17 +0,0 @@ -# generated by datamodel-codegen: -# filename: filtered-openapi.yaml -# timestamp: 2025-04-29T23:44:54+00:00 - -from __future__ import annotations - -from typing import Optional - -from pydantic import BaseModel - -from . import PixverseDto - - -class ResponseData(BaseModel): - ErrCode: Optional[int] = None - ErrMsg: Optional[str] = None - Resp: Optional[PixverseDto.V2OpenAPII2VResp] = None diff --git a/comfy_api_nodes/apis/PixverseDto.py b/comfy_api_nodes/apis/PixverseDto.py deleted file mode 100644 index 323c38e96..000000000 --- a/comfy_api_nodes/apis/PixverseDto.py +++ /dev/null @@ -1,57 +0,0 @@ -# generated by datamodel-codegen: -# filename: filtered-openapi.yaml -# timestamp: 2025-04-29T23:44:54+00:00 - -from __future__ import annotations - -from typing import Optional - -from pydantic import BaseModel, Field - - -class V2OpenAPII2VResp(BaseModel): - video_id: Optional[int] = Field(None, description='Video_id') - - -class V2OpenAPIT2VReq(BaseModel): - aspect_ratio: str = Field( - ..., description='Aspect ratio (16:9, 4:3, 1:1, 3:4, 9:16)', examples=['16:9'] - ) - duration: int = Field( - ..., - description='Video duration (5, 8 seconds, --model=v3.5 only allows 5,8; --quality=1080p does not support 8s)', - examples=[5], - ) - model: str = Field( - ..., description='Model version (only supports v3.5)', examples=['v3.5'] - ) - motion_mode: Optional[str] = Field( - 'normal', - description='Motion mode (normal, fast, --fast only available when duration=5; --quality=1080p does not support fast)', - examples=['normal'], - ) - negative_prompt: Optional[str] = Field( - None, description='Negative prompt\n', max_length=2048 - ) - prompt: str = Field(..., description='Prompt', max_length=2048) - quality: str = Field( - ..., - description='Video quality ("360p"(Turbo model), "540p", "720p", "1080p")', - examples=['540p'], - ) - seed: Optional[int] = Field(None, description='Random seed, range: 0 - 2147483647') - style: Optional[str] = Field( - None, - description='Style (effective when model=v3.5, "anime", "3d_animation", "clay", "comic", "cyberpunk") Do not include style parameter unless needed', - examples=['anime'], - ) - template_id: Optional[int] = Field( - None, - description='Template ID (template_id must be activated before use)', - examples=[302325299692608], - ) - water_mark: Optional[bool] = Field( - False, - description='Watermark (true: add watermark, false: no watermark)', - examples=[False], - ) diff --git a/comfy_api_nodes/apis/bfl_api.py b/comfy_api_nodes/apis/bfl_api.py index 0e90aef7c..d8d3557b3 100644 --- a/comfy_api_nodes/apis/bfl_api.py +++ b/comfy_api_nodes/apis/bfl_api.py @@ -50,44 +50,6 @@ class BFLFluxFillImageRequest(BaseModel): mask: str = Field(None, description='A Base64-encoded string representing the mask of the areas you with to modify.') -class BFLFluxCannyImageRequest(BaseModel): - prompt: str = Field(..., description='Text prompt for image generation') - prompt_upsampling: Optional[bool] = Field( - None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' - ) - canny_low_threshold: Optional[int] = Field(None, description='Low threshold for Canny edge detection') - canny_high_threshold: Optional[int] = Field(None, description='High threshold for Canny edge detection') - seed: Optional[int] = Field(None, description='The seed value for reproducibility.') - steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') - guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process') - safety_tolerance: Optional[conint(ge=0, le=6)] = Field( - 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' - ) - output_format: Optional[BFLOutputFormat] = Field( - BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] - ) - control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided') - preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step') - - -class BFLFluxDepthImageRequest(BaseModel): - prompt: str = Field(..., description='Text prompt for image generation') - prompt_upsampling: Optional[bool] = Field( - None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' - ) - seed: Optional[int] = Field(None, description='The seed value for reproducibility.') - steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') - guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process') - safety_tolerance: Optional[conint(ge=0, le=6)] = Field( - 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' - ) - output_format: Optional[BFLOutputFormat] = Field( - BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] - ) - control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided') - preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step') - - class BFLFluxProGenerateRequest(BaseModel): prompt: str = Field(..., description='The text prompt for image generation.') prompt_upsampling: Optional[bool] = Field( @@ -108,6 +70,29 @@ class BFLFluxProGenerateRequest(BaseModel): # ) +class Flux2ProGenerateRequest(BaseModel): + prompt: str = Field(...) + width: int = Field(1024, description="Must be a multiple of 32.") + height: int = Field(768, description="Must be a multiple of 32.") + seed: int | None = Field(None) + prompt_upsampling: bool | None = Field(None) + input_image: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_2: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_3: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_4: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_5: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_6: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_7: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_8: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_9: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + safety_tolerance: int | None = Field( + 5, description="Tolerance level for input and output moderation. Value 0 being most strict.", ge=0, le=5 + ) + output_format: str | None = Field( + "png", description="Output format for the generated image. Can be 'jpeg' or 'png'." + ) + + class BFLFluxKontextProGenerateRequest(BaseModel): prompt: str = Field(..., description='The text prompt for what you wannt to edit.') input_image: Optional[str] = Field(None, description='Image to edit in base64 format') @@ -147,8 +132,9 @@ class BFLFluxProUltraGenerateRequest(BaseModel): class BFLFluxProGenerateResponse(BaseModel): - id: str = Field(..., description='The unique identifier for the generation task.') - polling_url: str = Field(..., description='URL to poll for the generation result.') + id: str = Field(..., description="The unique identifier for the generation task.") + polling_url: str = Field(..., description="URL to poll for the generation result.") + cost: float | None = Field(None, description="Price in cents") class BFLStatus(str, Enum): @@ -160,15 +146,8 @@ class BFLStatus(str, Enum): error = "Error" -class BFLFluxProStatusResponse(BaseModel): +class BFLFluxStatusResponse(BaseModel): id: str = Field(..., description="The unique identifier for the generation task.") status: BFLStatus = Field(..., description="The status of the task.") - result: Optional[Dict[str, Any]] = Field( - None, description="The result of the task (null if not completed)." - ) - progress: confloat(ge=0.0, le=1.0) = Field( - ..., description="The progress of the task (0.0 to 1.0)." - ) - details: Optional[Dict[str, Any]] = Field( - None, description="Additional details about the task (null if not available)." - ) + result: Optional[Dict[str, Any]] = Field(None, description="The result of the task (null if not completed).") + progress: Optional[float] = Field(None, description="The progress of the task (0.0 to 1.0).", ge=0.0, le=1.0) diff --git a/comfy_api_nodes/apis/bytedance_api.py b/comfy_api_nodes/apis/bytedance_api.py new file mode 100644 index 000000000..b8c2f618b --- /dev/null +++ b/comfy_api_nodes/apis/bytedance_api.py @@ -0,0 +1,144 @@ +from typing import Literal + +from pydantic import BaseModel, Field + + +class Text2ImageTaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(...) + response_format: str | None = Field("url") + size: str | None = Field(None) + seed: int | None = Field(0, ge=0, le=2147483647) + guidance_scale: float | None = Field(..., ge=1.0, le=10.0) + watermark: bool | None = Field(False) + + +class Image2ImageTaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(...) + response_format: str | None = Field("url") + image: str = Field(..., description="Base64 encoded string or image URL") + size: str | None = Field("adaptive") + seed: int | None = Field(..., ge=0, le=2147483647) + guidance_scale: float | None = Field(..., ge=1.0, le=10.0) + watermark: bool | None = Field(False) + + +class Seedream4Options(BaseModel): + max_images: int = Field(15) + + +class Seedream4TaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(...) + response_format: str = Field("url") + image: list[str] | None = Field(None, description="Image URLs") + size: str = Field(...) + seed: int = Field(..., ge=0, le=2147483647) + sequential_image_generation: str = Field("disabled") + sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) + watermark: bool = Field(False) + + +class ImageTaskCreationResponse(BaseModel): + model: str = Field(...) + created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.") + data: list = Field([], description="Contains information about the generated image(s).") + error: dict = Field({}, description="Contains `code` and `message` fields in case of error.") + + +class TaskTextContent(BaseModel): + type: str = Field("text") + text: str = Field(...) + + +class TaskImageContentUrl(BaseModel): + url: str = Field(...) + + +class TaskImageContent(BaseModel): + type: str = Field("image_url") + image_url: TaskImageContentUrl = Field(...) + role: Literal["first_frame", "last_frame", "reference_image"] | None = Field(None) + + +class Text2VideoTaskCreationRequest(BaseModel): + model: str = Field(...) + content: list[TaskTextContent] = Field(..., min_length=1) + + +class Image2VideoTaskCreationRequest(BaseModel): + model: str = Field(...) + content: list[TaskTextContent | TaskImageContent] = Field(..., min_length=2) + + +class TaskCreationResponse(BaseModel): + id: str = Field(...) + + +class TaskStatusError(BaseModel): + code: str = Field(...) + message: str = Field(...) + + +class TaskStatusResult(BaseModel): + video_url: str = Field(...) + + +class TaskStatusResponse(BaseModel): + id: str = Field(...) + model: str = Field(...) + status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...) + error: TaskStatusError | None = Field(None) + content: TaskStatusResult | None = Field(None) + + +RECOMMENDED_PRESETS = [ + ("1024x1024 (1:1)", 1024, 1024), + ("864x1152 (3:4)", 864, 1152), + ("1152x864 (4:3)", 1152, 864), + ("1280x720 (16:9)", 1280, 720), + ("720x1280 (9:16)", 720, 1280), + ("832x1248 (2:3)", 832, 1248), + ("1248x832 (3:2)", 1248, 832), + ("1512x648 (21:9)", 1512, 648), + ("2048x2048 (1:1)", 2048, 2048), + ("Custom", None, None), +] + +RECOMMENDED_PRESETS_SEEDREAM_4 = [ + ("2048x2048 (1:1)", 2048, 2048), + ("2304x1728 (4:3)", 2304, 1728), + ("1728x2304 (3:4)", 1728, 2304), + ("2560x1440 (16:9)", 2560, 1440), + ("1440x2560 (9:16)", 1440, 2560), + ("2496x1664 (3:2)", 2496, 1664), + ("1664x2496 (2:3)", 1664, 2496), + ("3024x1296 (21:9)", 3024, 1296), + ("4096x4096 (1:1)", 4096, 4096), + ("Custom", None, None), +] + +# The time in this dictionary are given for 10 seconds duration. +VIDEO_TASKS_EXECUTION_TIME = { + "seedance-1-0-lite-t2v-250428": { + "480p": 40, + "720p": 60, + "1080p": 90, + }, + "seedance-1-0-lite-i2v-250428": { + "480p": 40, + "720p": 60, + "1080p": 90, + }, + "seedance-1-0-pro-250528": { + "480p": 70, + "720p": 85, + "1080p": 115, + }, + "seedance-1-0-pro-fast-251015": { + "480p": 50, + "720p": 65, + "1080p": 100, + }, +} diff --git a/comfy_api_nodes/apis/client.py b/comfy_api_nodes/apis/client.py deleted file mode 100644 index 79de3c262..000000000 --- a/comfy_api_nodes/apis/client.py +++ /dev/null @@ -1,960 +0,0 @@ -""" -API Client Framework for api.comfy.org. - -This module provides a flexible framework for making API requests from ComfyUI nodes. -It supports both synchronous and asynchronous API operations with proper type validation. - -Key Components: --------------- -1. ApiClient - Handles HTTP requests with authentication and error handling -2. ApiEndpoint - Defines a single HTTP endpoint with its request/response models -3. ApiOperation - Executes a single synchronous API operation - -Usage Examples: --------------- - -# Example 1: Synchronous API Operation -# ------------------------------------ -# For a simple API call that returns the result immediately: - -# 1. Create the API client -api_client = ApiClient( - base_url="https://api.example.com", - auth_token="your_auth_token_here", - comfy_api_key="your_comfy_api_key_here", - timeout=30.0, - verify_ssl=True -) - -# 2. Define the endpoint -user_info_endpoint = ApiEndpoint( - path="/v1/users/me", - method=HttpMethod.GET, - request_model=EmptyRequest, # No request body needed - response_model=UserProfile, # Pydantic model for the response - query_params=None -) - -# 3. Create the request object -request = EmptyRequest() - -# 4. Create and execute the operation -operation = ApiOperation( - endpoint=user_info_endpoint, - request=request -) -user_profile = await operation.execute(client=api_client) # Returns immediately with the result - - -# Example 2: Asynchronous API Operation with Polling -# ------------------------------------------------- -# For an API that starts a task and requires polling for completion: - -# 1. Define the endpoints (initial request and polling) -generate_image_endpoint = ApiEndpoint( - path="/v1/images/generate", - method=HttpMethod.POST, - request_model=ImageGenerationRequest, - response_model=TaskCreatedResponse, - query_params=None -) - -check_task_endpoint = ApiEndpoint( - path="/v1/tasks/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=ImageGenerationResult, - query_params=None -) - -# 2. Create the request object -request = ImageGenerationRequest( - prompt="a beautiful sunset over mountains", - width=1024, - height=1024, - num_images=1 -) - -# 3. Create and execute the polling operation -operation = PollingOperation( - initial_endpoint=generate_image_endpoint, - initial_request=request, - poll_endpoint=check_task_endpoint, - task_id_field="task_id", - status_field="status", - completed_statuses=["completed"], - failed_statuses=["failed", "error"] -) - -# This will make the initial request and then poll until completion -result = await operation.execute(client=api_client) # Returns the final ImageGenerationResult when done -""" - -from __future__ import annotations -import aiohttp -import asyncio -import logging -import io -import os -import socket -from aiohttp.client_exceptions import ClientError, ClientResponseError -from typing import Dict, Type, Optional, Any, TypeVar, Generic, Callable, Tuple -from enum import Enum -import json -from urllib.parse import urljoin, urlparse -from pydantic import BaseModel, Field -import uuid # For generating unique operation IDs - -from server import PromptServer -from comfy.cli_args import args -from comfy import utils -from . import request_logger - -T = TypeVar("T", bound=BaseModel) -R = TypeVar("R", bound=BaseModel) -P = TypeVar("P", bound=BaseModel) # For poll response - -PROGRESS_BAR_MAX = 100 - - -class NetworkError(Exception): - """Base exception for network-related errors with diagnostic information.""" - pass - - -class LocalNetworkError(NetworkError): - """Exception raised when local network connectivity issues are detected.""" - pass - - -class ApiServerError(NetworkError): - """Exception raised when the API server is unreachable but internet is working.""" - pass - - -class EmptyRequest(BaseModel): - """Base class for empty request bodies. - For GET requests, fields will be sent as query parameters.""" - - pass - - -class UploadRequest(BaseModel): - file_name: str = Field(..., description="Filename to upload") - content_type: Optional[str] = Field( - None, - description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.", - ) - - -class UploadResponse(BaseModel): - download_url: str = Field(..., description="URL to GET uploaded file") - upload_url: str = Field(..., description="URL to PUT file to upload") - - -class HttpMethod(str, Enum): - GET = "GET" - POST = "POST" - PUT = "PUT" - DELETE = "DELETE" - PATCH = "PATCH" - - -class ApiClient: - """ - Client for making HTTP requests to an API with authentication, error handling, and retry logic. - """ - - def __init__( - self, - base_url: str, - auth_token: Optional[str] = None, - comfy_api_key: Optional[str] = None, - timeout: float = 3600.0, - verify_ssl: bool = True, - max_retries: int = 3, - retry_delay: float = 1.0, - retry_backoff_factor: float = 2.0, - retry_status_codes: Optional[Tuple[int, ...]] = None, - session: Optional[aiohttp.ClientSession] = None, - ): - self.base_url = base_url - self.auth_token = auth_token - self.comfy_api_key = comfy_api_key - self.timeout = timeout - self.verify_ssl = verify_ssl - self.max_retries = max_retries - self.retry_delay = retry_delay - self.retry_backoff_factor = retry_backoff_factor - # Default retry status codes: 408 (Request Timeout), 429 (Too Many Requests), - # 500, 502, 503, 504 (Server Errors) - self.retry_status_codes = retry_status_codes or (408, 429, 500, 502, 503, 504) - self._session: Optional[aiohttp.ClientSession] = session - self._owns_session = session is None # Track if we have to close it - - @staticmethod - def _generate_operation_id(path: str) -> str: - """Generates a unique operation ID for logging.""" - return f"{path.strip('/').replace('/', '_')}_{uuid.uuid4().hex[:8]}" - - @staticmethod - def _create_json_payload_args( - data: Optional[Dict[str, Any]] = None, - headers: Optional[Dict[str, str]] = None, - ) -> Dict[str, Any]: - return { - "json": data, - "headers": headers, - } - - def _create_form_data_args( - self, - data: Dict[str, Any] | None, - files: Dict[str, Any] | None, - headers: Optional[Dict[str, str]] = None, - multipart_parser: Callable | None = None, - ) -> Dict[str, Any]: - if headers and "Content-Type" in headers: - del headers["Content-Type"] - - if multipart_parser and data: - data = multipart_parser(data) - - form = aiohttp.FormData(default_to_multipart=True) - if data: # regular text fields - for k, v in data.items(): - if v is None: - continue # aiohttp fails to serialize "None" values - # aiohttp expects strings or bytes; convert enums etc. - form.add_field(k, str(v) if not isinstance(v, (bytes, bytearray)) else v) - - if files: - file_iter = files if isinstance(files, list) else files.items() - for field_name, file_obj in file_iter: - if file_obj is None: - continue # aiohttp fails to serialize "None" values - # file_obj can be (filename, bytes/io.BytesIO, content_type) tuple - if isinstance(file_obj, tuple): - filename, file_value, content_type = self._unpack_tuple(file_obj) - else: - file_value = file_obj - filename = getattr(file_obj, "name", field_name) - content_type = "application/octet-stream" - - form.add_field( - name=field_name, - value=file_value, - filename=filename, - content_type=content_type, - ) - return {"data": form, "headers": headers or {}} - - @staticmethod - def _create_urlencoded_form_data_args( - data: Dict[str, Any], - headers: Optional[Dict[str, str]] = None, - ) -> Dict[str, Any]: - headers = headers or {} - headers["Content-Type"] = "application/x-www-form-urlencoded" - return { - "data": data, - "headers": headers, - } - - def get_headers(self) -> Dict[str, str]: - """Get headers for API requests, including authentication if available""" - headers = {"Content-Type": "application/json", "Accept": "application/json"} - - if self.auth_token: - headers["Authorization"] = f"Bearer {self.auth_token}" - elif self.comfy_api_key: - headers["X-API-KEY"] = self.comfy_api_key - - return headers - - async def _check_connectivity(self, target_url: str) -> Dict[str, bool]: - """ - Check connectivity to determine if network issues are local or server-related. - - Args: - target_url: URL to check connectivity to - - Returns: - Dictionary with connectivity status details - """ - results = { - "internet_accessible": False, - "api_accessible": False, - "is_local_issue": False, - "is_api_issue": False, - } - timeout = aiohttp.ClientTimeout(total=5.0) - async with aiohttp.ClientSession(timeout=timeout) as session: - try: - async with session.get("https://www.google.com", ssl=self.verify_ssl) as resp: - results["internet_accessible"] = resp.status < 500 - except (ClientError, asyncio.TimeoutError, socket.gaierror): - results["is_local_issue"] = True - return results # cannot reach the internet – early exit - - # Now check API health endpoint - parsed = urlparse(target_url) - health_url = f"{parsed.scheme}://{parsed.netloc}/health" - try: - async with session.get(health_url, ssl=self.verify_ssl) as resp: - results["api_accessible"] = resp.status < 500 - except ClientError: - pass # leave as False - - results["is_api_issue"] = results["internet_accessible"] and not results["api_accessible"] - return results - - async def request( - self, - method: str, - path: str, - params: Optional[Dict[str, Any]] = None, - data: Optional[Dict[str, Any]] = None, - files: Optional[Dict[str, Any] | list[tuple[str, Any]]] = None, - headers: Optional[Dict[str, str]] = None, - content_type: str = "application/json", - multipart_parser: Callable | None = None, - retry_count: int = 0, # Used internally for tracking retries - ) -> Dict[str, Any]: - """ - Make an HTTP request to the API with automatic retries for transient errors. - - Args: - method: HTTP method (GET, POST, etc.) - path: API endpoint path (will be joined with base_url) - params: Query parameters - data: body data - files: Files to upload - headers: Additional headers - content_type: Content type of the request. Defaults to application/json. - retry_count: Internal parameter for tracking retries, do not set manually - - Returns: - Parsed JSON response - - Raises: - LocalNetworkError: If local network connectivity issues are detected - ApiServerError: If the API server is unreachable but internet is working - Exception: For other request failures - """ - - # Build full URL and merge headers - relative_path = path.lstrip("/") - url = urljoin(self.base_url, relative_path) - self._check_auth(self.auth_token, self.comfy_api_key) - - request_headers = self.get_headers() - if headers: - request_headers.update(headers) - if files: - request_headers.pop("Content-Type", None) - if params: - params = {k: v for k, v in params.items() if v is not None} # aiohttp fails to serialize None values - - logging.debug(f"[DEBUG] Request Headers: {request_headers}") - logging.debug(f"[DEBUG] Files: {files}") - logging.debug(f"[DEBUG] Params: {params}") - logging.debug(f"[DEBUG] Data: {data}") - - if content_type == "application/x-www-form-urlencoded": - payload_args = self._create_urlencoded_form_data_args(data or {}, request_headers) - elif content_type == "multipart/form-data": - payload_args = self._create_form_data_args(data, files, request_headers, multipart_parser) - else: - payload_args = self._create_json_payload_args(data, request_headers) - - operation_id = self._generate_operation_id(path) - request_logger.log_request_response( - operation_id=operation_id, - request_method=method, - request_url=url, - request_headers=request_headers, - request_params=params, - request_data=data if content_type == "application/json" else "[form-data or other]", - ) - - session = await self._get_session() - try: - async with session.request( - method, - url, - params=params, - ssl=self.verify_ssl, - **payload_args, - ) as resp: - if resp.status >= 400: - try: - error_data = await resp.json() - except (aiohttp.ContentTypeError, json.JSONDecodeError): - error_data = await resp.text() - - return await self._handle_http_error( - ClientResponseError(resp.request_info, resp.history, status=resp.status, message=error_data), - operation_id, - method, - url, - params, - data, - files, - headers, - content_type, - multipart_parser, - retry_count=retry_count, - response_content=error_data, - ) - - # Success – parse JSON (safely) and log - try: - payload = await resp.json() - response_content_to_log = payload - except (aiohttp.ContentTypeError, json.JSONDecodeError): - payload = {} - response_content_to_log = await resp.text() - - request_logger.log_request_response( - operation_id=operation_id, - request_method=method, - request_url=url, - response_status_code=resp.status, - response_headers=dict(resp.headers), - response_content=response_content_to_log, - ) - return payload - - except (ClientError, asyncio.TimeoutError, socket.gaierror) as e: - # Treat as *connection* problem – optionally retry, else escalate - if retry_count < self.max_retries: - delay = self.retry_delay * (self.retry_backoff_factor ** retry_count) - logging.warning("Connection error. Retrying in %.2fs (%s/%s): %s", delay, retry_count + 1, - self.max_retries, str(e)) - await asyncio.sleep(delay) - return await self.request( - method, - path, - params=params, - data=data, - files=files, - headers=headers, - content_type=content_type, - multipart_parser=multipart_parser, - retry_count=retry_count + 1, - ) - # One final connectivity check for diagnostics - connectivity = await self._check_connectivity(self.base_url) - if connectivity["is_local_issue"]: - raise LocalNetworkError( - "Unable to connect to the API server due to local network issues. " - "Please check your internet connection and try again." - ) from e - raise ApiServerError( - f"The API server at {self.base_url} is currently unreachable. " - f"The service may be experiencing issues. Please try again later." - ) from e - - @staticmethod - def _check_auth(auth_token, comfy_api_key): - """Verify that an auth token is present or comfy_api_key is present""" - if auth_token is None and comfy_api_key is None: - raise Exception("Unauthorized: Please login first to use this node.") - return auth_token or comfy_api_key - - @staticmethod - async def upload_file( - upload_url: str, - file: io.BytesIO | str, - content_type: str | None = None, - max_retries: int = 3, - retry_delay: float = 1.0, - retry_backoff_factor: float = 2.0, - ) -> aiohttp.ClientResponse: - """Upload a file to the API with retry logic. - - Args: - upload_url: The URL to upload to - file: Either a file path string, BytesIO object, or tuple of (file_path, filename) - content_type: Optional mime type to set for the upload - max_retries: Maximum number of retry attempts - retry_delay: Initial delay between retries in seconds - retry_backoff_factor: Multiplier for the delay after each retry - """ - headers: Dict[str, str] = {} - skip_auto_headers: set[str] = set() - if content_type: - headers["Content-Type"] = content_type - else: - # tell aiohttp not to add Content-Type that will break the request signature and result in a 403 status. - skip_auto_headers.add("Content-Type") - - # Extract file bytes - if isinstance(file, io.BytesIO): - file.seek(0) - data = file.read() - elif isinstance(file, str): - with open(file, "rb") as f: - data = f.read() - else: - raise ValueError("File must be BytesIO or str path") - - parsed = urlparse(upload_url) - basename = os.path.basename(parsed.path) or parsed.netloc or "upload" - operation_id = f"upload_{basename}_{uuid.uuid4().hex[:8]}" - request_logger.log_request_response( - operation_id=operation_id, - request_method="PUT", - request_url=upload_url, - request_headers=headers, - request_data=f"[File data {len(data)} bytes]", - ) - - delay = retry_delay - for attempt in range(max_retries + 1): - try: - timeout = aiohttp.ClientTimeout(total=None) # honour server side timeouts - async with aiohttp.ClientSession(timeout=timeout) as session: - async with session.put( - upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers, - ) as resp: - resp.raise_for_status() - request_logger.log_request_response( - operation_id=operation_id, - request_method="PUT", - request_url=upload_url, - response_status_code=resp.status, - response_headers=dict(resp.headers), - response_content="File uploaded successfully.", - ) - return resp - except (ClientError, asyncio.TimeoutError) as e: - request_logger.log_request_response( - operation_id=operation_id, - request_method="PUT", - request_url=upload_url, - response_status_code=e.status if hasattr(e, "status") else None, - response_headers=dict(e.headers) if hasattr(e, "headers") else None, - response_content=None, - error_message=f"{type(e).__name__}: {str(e)}", - ) - if attempt < max_retries: - logging.warning( - "Upload failed (%s/%s). Retrying in %.2fs. %s", attempt + 1, max_retries, delay, str(e) - ) - await asyncio.sleep(delay) - delay *= retry_backoff_factor - else: - raise NetworkError(f"Failed to upload file after {max_retries + 1} attempts: {e}") from e - - async def _handle_http_error( - self, - exc: ClientResponseError, - operation_id: str, - *req_meta, - retry_count: int, - response_content: dict | str = "", - ) -> Dict[str, Any]: - status_code = exc.status - if status_code == 401: - user_friendly = "Unauthorized: Please login first to use this node." - elif status_code == 402: - user_friendly = "Payment Required: Please add credits to your account to use this node." - elif status_code == 409: - user_friendly = "There is a problem with your account. Please contact support@comfy.org." - elif status_code == 429: - user_friendly = "Rate Limit Exceeded: Please try again later." - else: - if isinstance(response_content, dict): - if "error" in response_content and "message" in response_content["error"]: - user_friendly = f"API Error: {response_content['error']['message']}" - if "type" in response_content["error"]: - user_friendly += f" (Type: {response_content['error']['type']})" - else: # Handle cases where error is just a JSON dict with unknown format - user_friendly = f"API Error: {json.dumps(response_content)}" - else: - if len(response_content) < 200: # Arbitrary limit for display - user_friendly = f"API Error (raw): {response_content}" - else: - user_friendly = f"API Error (raw, status {response_content})" - - request_logger.log_request_response( - operation_id=operation_id, - request_method=req_meta[0], - request_url=req_meta[1], - response_status_code=exc.status, - response_headers=dict(req_meta[5]) if req_meta[5] else None, - response_content=response_content, - error_message=f"HTTP Error {exc.status}", - ) - - logging.debug(f"[DEBUG] API Error: {user_friendly} (Status: {status_code})") - if response_content: - logging.debug(f"[DEBUG] Response content: {response_content}") - - # Retry if eligible - if status_code in self.retry_status_codes and retry_count < self.max_retries: - delay = self.retry_delay * (self.retry_backoff_factor ** retry_count) - logging.warning( - "HTTP error %s. Retrying in %.2fs (%s/%s)", - status_code, - delay, - retry_count + 1, - self.max_retries, - ) - await asyncio.sleep(delay) - return await self.request( - req_meta[0], # method - req_meta[1].replace(self.base_url, ""), # path - params=req_meta[2], - data=req_meta[3], - files=req_meta[4], - headers=req_meta[5], - content_type=req_meta[6], - multipart_parser=req_meta[7], - retry_count=retry_count + 1, - ) - - raise Exception(user_friendly) from exc - - @staticmethod - def _unpack_tuple(t): - """Helper to normalise (filename, file, content_type) tuples.""" - if len(t) == 3: - return t - elif len(t) == 2: - return t[0], t[1], "application/octet-stream" - else: - raise ValueError("files tuple must be (filename, file[, content_type])") - - async def _get_session(self) -> aiohttp.ClientSession: - if self._session is None or self._session.closed: - timeout = aiohttp.ClientTimeout(total=self.timeout) - self._session = aiohttp.ClientSession(timeout=timeout) - self._owns_session = True - return self._session - - async def close(self) -> None: - if self._owns_session and self._session and not self._session.closed: - await self._session.close() - - async def __aenter__(self) -> "ApiClient": - """Allow usage as async‑context‑manager – ensures clean teardown""" - return self - - async def __aexit__(self, exc_type, exc, tb): - await self.close() - - -class ApiEndpoint(Generic[T, R]): - """Defines an API endpoint with its request and response types""" - - def __init__( - self, - path: str, - method: HttpMethod, - request_model: Type[T], - response_model: Type[R], - query_params: Optional[Dict[str, Any]] = None, - ): - """Initialize an API endpoint definition. - - Args: - path: The URL path for this endpoint, can include placeholders like {id} - method: The HTTP method to use (GET, POST, etc.) - request_model: Pydantic model class that defines the structure and validation rules for API requests to this endpoint - response_model: Pydantic model class that defines the structure and validation rules for API responses from this endpoint - query_params: Optional dictionary of query parameters to include in the request - """ - self.path = path - self.method = method - self.request_model = request_model - self.response_model = response_model - self.query_params = query_params or {} - - -class SynchronousOperation(Generic[T, R]): - """Represents a single synchronous API operation.""" - - def __init__( - self, - endpoint: ApiEndpoint[T, R], - request: T, - files: Optional[Dict[str, Any] | list[tuple[str, Any]]] = None, - api_base: str | None = None, - auth_token: Optional[str] = None, - comfy_api_key: Optional[str] = None, - auth_kwargs: Optional[Dict[str, str]] = None, - timeout: float = 7200.0, - verify_ssl: bool = True, - content_type: str = "application/json", - multipart_parser: Callable | None = None, - max_retries: int = 3, - retry_delay: float = 1.0, - retry_backoff_factor: float = 2.0, - ) -> None: - self.endpoint = endpoint - self.request = request - self.files = files - self.api_base: str = api_base or args.comfy_api_base - self.auth_token = auth_token - self.comfy_api_key = comfy_api_key - if auth_kwargs is not None: - self.auth_token = auth_kwargs.get("auth_token", self.auth_token) - self.comfy_api_key = auth_kwargs.get("comfy_api_key", self.comfy_api_key) - self.timeout = timeout - self.verify_ssl = verify_ssl - self.content_type = content_type - self.multipart_parser = multipart_parser - self.max_retries = max_retries - self.retry_delay = retry_delay - self.retry_backoff_factor = retry_backoff_factor - - async def execute(self, client: Optional[ApiClient] = None) -> R: - owns_client = client is None - if owns_client: - client = ApiClient( - base_url=self.api_base, - auth_token=self.auth_token, - comfy_api_key=self.comfy_api_key, - timeout=self.timeout, - verify_ssl=self.verify_ssl, - max_retries=self.max_retries, - retry_delay=self.retry_delay, - retry_backoff_factor=self.retry_backoff_factor, - ) - - try: - request_dict: Optional[Dict[str, Any]] - if isinstance(self.request, EmptyRequest): - request_dict = None - else: - request_dict = self.request.model_dump(exclude_none=True) - for k, v in list(request_dict.items()): - if isinstance(v, Enum): - request_dict[k] = v.value - - logging.debug( - f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}" - ) - logging.debug(f"[DEBUG] Request Data: {json.dumps(request_dict, indent=2)}") - logging.debug(f"[DEBUG] Query Params: {self.endpoint.query_params}") - - response_json = await client.request( - self.endpoint.method.value, - self.endpoint.path, - params=self.endpoint.query_params, - data=request_dict, - files=self.files, - content_type=self.content_type, - multipart_parser=self.multipart_parser, - ) - - logging.debug("=" * 50) - logging.debug("[DEBUG] RESPONSE DETAILS:") - logging.debug("[DEBUG] Status Code: 200 (Success)") - logging.debug(f"[DEBUG] Response Body: {json.dumps(response_json, indent=2)}") - logging.debug("=" * 50) - - parsed_response = self.endpoint.response_model.model_validate(response_json) - logging.debug(f"[DEBUG] Parsed Response: {parsed_response}") - return parsed_response - finally: - if owns_client: - await client.close() - - -class TaskStatus(str, Enum): - """Enum for task status values""" - - COMPLETED = "completed" - FAILED = "failed" - PENDING = "pending" - - -class PollingOperation(Generic[T, R]): - """Represents an asynchronous API operation that requires polling for completion.""" - - def __init__( - self, - poll_endpoint: ApiEndpoint[EmptyRequest, R], - completed_statuses: list[str], - failed_statuses: list[str], - status_extractor: Callable[[R], str], - progress_extractor: Callable[[R], float] | None = None, - result_url_extractor: Callable[[R], str] | None = None, - request: Optional[T] = None, - api_base: str | None = None, - auth_token: Optional[str] = None, - comfy_api_key: Optional[str] = None, - auth_kwargs: Optional[Dict[str, str]] = None, - poll_interval: float = 5.0, - max_poll_attempts: int = 120, # Default max polling attempts (10 minutes with 5s interval) - max_retries: int = 3, # Max retries per individual API call - retry_delay: float = 1.0, - retry_backoff_factor: float = 2.0, - estimated_duration: Optional[float] = None, - node_id: Optional[str] = None, - ) -> None: - self.poll_endpoint = poll_endpoint - self.request = request - self.api_base: str = api_base or args.comfy_api_base - self.auth_token = auth_token - self.comfy_api_key = comfy_api_key - if auth_kwargs is not None: - self.auth_token = auth_kwargs.get("auth_token", self.auth_token) - self.comfy_api_key = auth_kwargs.get("comfy_api_key", self.comfy_api_key) - self.poll_interval = poll_interval - self.max_poll_attempts = max_poll_attempts - self.max_retries = max_retries - self.retry_delay = retry_delay - self.retry_backoff_factor = retry_backoff_factor - self.estimated_duration = estimated_duration - self.status_extractor = status_extractor or (lambda x: getattr(x, "status", None)) - self.progress_extractor = progress_extractor - self.result_url_extractor = result_url_extractor - self.node_id = node_id - self.completed_statuses = completed_statuses - self.failed_statuses = failed_statuses - self.final_response: Optional[R] = None - - async def execute(self, client: Optional[ApiClient] = None) -> R: - owns_client = client is None - if owns_client: - client = ApiClient( - base_url=self.api_base, - auth_token=self.auth_token, - comfy_api_key=self.comfy_api_key, - max_retries=self.max_retries, - retry_delay=self.retry_delay, - retry_backoff_factor=self.retry_backoff_factor, - ) - try: - return await self._poll_until_complete(client) - finally: - if owns_client: - await client.close() - - def _display_text_on_node(self, text: str): - if not self.node_id: - return - PromptServer.instance.send_progress_text(text, self.node_id) - - def _display_time_progress_on_node(self, time_completed: int | float): - if not self.node_id: - return - if self.estimated_duration is not None: - remaining = max(0, int(self.estimated_duration) - time_completed) - message = f"Task in progress: {time_completed}s (~{remaining}s remaining)" - else: - message = f"Task in progress: {time_completed}s" - self._display_text_on_node(message) - - def _check_task_status(self, response: R) -> TaskStatus: - try: - status = self.status_extractor(response) - if status in self.completed_statuses: - return TaskStatus.COMPLETED - if status in self.failed_statuses: - return TaskStatus.FAILED - return TaskStatus.PENDING - except Exception as e: - logging.error("Error extracting status: %s", e) - return TaskStatus.PENDING - - async def _poll_until_complete(self, client: ApiClient) -> R: - """Poll until the task is complete""" - consecutive_errors = 0 - max_consecutive_errors = min(5, self.max_retries * 2) # Limit consecutive errors - - if self.progress_extractor: - progress = utils.ProgressBar(PROGRESS_BAR_MAX) - - status = TaskStatus.PENDING - for poll_count in range(1, self.max_poll_attempts + 1): - try: - logging.debug(f"[DEBUG] Polling attempt #{poll_count}") - - request_dict = ( - None if self.request is None else self.request.model_dump(exclude_none=True) - ) - - if poll_count == 1: - logging.debug( - f"[DEBUG] Poll Request: {self.poll_endpoint.method.value} {self.poll_endpoint.path}" - ) - logging.debug( - f"[DEBUG] Poll Request Data: {json.dumps(request_dict, indent=2) if request_dict else 'None'}" - ) - - # Query task status - resp = await client.request( - self.poll_endpoint.method.value, - self.poll_endpoint.path, - params=self.poll_endpoint.query_params, - data=request_dict, - ) - consecutive_errors = 0 # reset on success - response_obj: R = self.poll_endpoint.response_model.model_validate(resp) - - # Check if task is complete - status = self._check_task_status(response_obj) - logging.debug(f"[DEBUG] Task Status: {status}") - - # If progress extractor is provided, extract progress - if self.progress_extractor: - new_progress = self.progress_extractor(response_obj) - if new_progress is not None: - progress.update_absolute(new_progress, total=PROGRESS_BAR_MAX) - - if status == TaskStatus.COMPLETED: - message = "Task completed successfully" - if self.result_url_extractor: - result_url = self.result_url_extractor(response_obj) - if result_url: - message = f"Result URL: {result_url}" - logging.debug(f"[DEBUG] {message}") - self._display_text_on_node(message) - self.final_response = response_obj - if self.progress_extractor: - progress.update(100) - return self.final_response - if status == TaskStatus.FAILED: - message = f"Task failed: {json.dumps(resp)}" - logging.error(f"[DEBUG] {message}") - raise Exception(message) - logging.debug("[DEBUG] Task still pending, continuing to poll...") - # Task pending – wait - for i in range(int(self.poll_interval)): - self._display_time_progress_on_node((poll_count - 1) * self.poll_interval + i) - await asyncio.sleep(1) - - except (LocalNetworkError, ApiServerError, NetworkError) as e: - consecutive_errors += 1 - if consecutive_errors >= max_consecutive_errors: - raise Exception( - f"Polling aborted after {consecutive_errors} network errors: {str(e)}" - ) from e - logging.warning("Network error (%s/%s): %s", consecutive_errors, max_consecutive_errors, str(e)) - await asyncio.sleep(self.poll_interval) - except Exception as e: - # For other errors, increment count and potentially abort - consecutive_errors += 1 - if consecutive_errors >= max_consecutive_errors or status == TaskStatus.FAILED: - raise Exception( - f"Polling aborted after {consecutive_errors} consecutive errors: {str(e)}" - ) from e - - logging.error(f"[DEBUG] Polling error: {str(e)}") - logging.warning( - f"Error during polling (attempt {poll_count}/{self.max_poll_attempts}): {str(e)}. " - f"Will retry in {self.poll_interval} seconds." - ) - await asyncio.sleep(self.poll_interval) - - # If we've exhausted all polling attempts - raise Exception( - f"Polling timed out after {self.max_poll_attempts} attempts (" f"{self.max_poll_attempts * self.poll_interval} seconds). " - "The operation may still be running on the server but is taking longer than expected." - ) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index 138bf035d..d81337dae 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -1,19 +1,229 @@ -from __future__ import annotations +from datetime import date +from enum import Enum +from typing import Any -from typing import List, Optional +from pydantic import BaseModel, Field -from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata -from pydantic import BaseModel + +class GeminiSafetyCategory(str, Enum): + HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT" + HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH" + HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT" + HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT" + + +class GeminiSafetyThreshold(str, Enum): + OFF = "OFF" + BLOCK_NONE = "BLOCK_NONE" + BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE" + BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE" + BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH" + + +class GeminiSafetySetting(BaseModel): + category: GeminiSafetyCategory + threshold: GeminiSafetyThreshold + + +class GeminiRole(str, Enum): + user = "user" + model = "model" + + +class GeminiMimeType(str, Enum): + application_pdf = "application/pdf" + audio_mpeg = "audio/mpeg" + audio_mp3 = "audio/mp3" + audio_wav = "audio/wav" + image_png = "image/png" + image_jpeg = "image/jpeg" + image_webp = "image/webp" + text_plain = "text/plain" + video_mov = "video/mov" + video_mpeg = "video/mpeg" + video_mp4 = "video/mp4" + video_mpg = "video/mpg" + video_avi = "video/avi" + video_wmv = "video/wmv" + video_mpegps = "video/mpegps" + video_flv = "video/flv" + + +class GeminiInlineData(BaseModel): + data: str | None = Field( + None, + description="The base64 encoding of the image, PDF, or video to include inline in the prompt. " + "When including media inline, you must also specify the media type (mimeType) of the data. Size limit: 20MB", + ) + mimeType: GeminiMimeType | None = Field(None) + + +class GeminiFileData(BaseModel): + fileUri: str | None = Field(None) + mimeType: GeminiMimeType | None = Field(None) + + +class GeminiPart(BaseModel): + inlineData: GeminiInlineData | None = Field(None) + fileData: GeminiFileData | None = Field(None) + text: str | None = Field(None) + + +class GeminiTextPart(BaseModel): + text: str | None = Field(None) + + +class GeminiContent(BaseModel): + parts: list[GeminiPart] = Field([]) + role: GeminiRole = Field(..., examples=["user"]) + + +class GeminiSystemInstructionContent(BaseModel): + parts: list[GeminiTextPart] = Field( + ..., + description="A list of ordered parts that make up a single message. " + "Different parts may have different IANA MIME types.", + ) + role: GeminiRole | None = Field(..., description="The role field of systemInstruction may be ignored.") + + +class GeminiFunctionDeclaration(BaseModel): + description: str | None = Field(None) + name: str = Field(...) + parameters: dict[str, Any] = Field(..., description="JSON schema for the function parameters") + + +class GeminiTool(BaseModel): + functionDeclarations: list[GeminiFunctionDeclaration] | None = Field(None) + + +class GeminiOffset(BaseModel): + nanos: int | None = Field(None, ge=0, le=999999999) + seconds: int | None = Field(None, ge=-315576000000, le=315576000000) + + +class GeminiVideoMetadata(BaseModel): + endOffset: GeminiOffset | None = Field(None) + startOffset: GeminiOffset | None = Field(None) + + +class GeminiGenerationConfig(BaseModel): + maxOutputTokens: int | None = Field(None, ge=16, le=8192) + seed: int | None = Field(None) + stopSequences: list[str] | None = Field(None) + temperature: float | None = Field(None, ge=0.0, le=2.0) + topK: int | None = Field(None, ge=1) + topP: float | None = Field(None, ge=0.0, le=1.0) + + +class GeminiImageConfig(BaseModel): + aspectRatio: str | None = Field(None) + imageSize: str | None = Field(None) class GeminiImageGenerationConfig(GeminiGenerationConfig): - responseModalities: Optional[List[str]] = None + responseModalities: list[str] | None = Field(None) + imageConfig: GeminiImageConfig | None = Field(None) class GeminiImageGenerateContentRequest(BaseModel): - contents: List[GeminiContent] - generationConfig: Optional[GeminiImageGenerationConfig] = None - safetySettings: Optional[List[GeminiSafetySetting]] = None - systemInstruction: Optional[GeminiSystemInstructionContent] = None - tools: Optional[List[GeminiTool]] = None - videoMetadata: Optional[GeminiVideoMetadata] = None + contents: list[GeminiContent] = Field(...) + generationConfig: GeminiImageGenerationConfig | None = Field(None) + safetySettings: list[GeminiSafetySetting] | None = Field(None) + systemInstruction: GeminiSystemInstructionContent | None = Field(None) + tools: list[GeminiTool] | None = Field(None) + videoMetadata: GeminiVideoMetadata | None = Field(None) + uploadImagesToStorage: bool = Field(True) + + +class GeminiGenerateContentRequest(BaseModel): + contents: list[GeminiContent] = Field(...) + generationConfig: GeminiGenerationConfig | None = Field(None) + safetySettings: list[GeminiSafetySetting] | None = Field(None) + systemInstruction: GeminiSystemInstructionContent | None = Field(None) + tools: list[GeminiTool] | None = Field(None) + videoMetadata: GeminiVideoMetadata | None = Field(None) + + +class Modality(str, Enum): + MODALITY_UNSPECIFIED = "MODALITY_UNSPECIFIED" + TEXT = "TEXT" + IMAGE = "IMAGE" + VIDEO = "VIDEO" + AUDIO = "AUDIO" + DOCUMENT = "DOCUMENT" + + +class ModalityTokenCount(BaseModel): + modality: Modality | None = None + tokenCount: int | None = Field(None, description="Number of tokens for the given modality.") + + +class Probability(str, Enum): + NEGLIGIBLE = "NEGLIGIBLE" + LOW = "LOW" + MEDIUM = "MEDIUM" + HIGH = "HIGH" + UNKNOWN = "UNKNOWN" + + +class GeminiSafetyRating(BaseModel): + category: GeminiSafetyCategory | None = None + probability: Probability | None = Field( + None, + description="The probability that the content violates the specified safety category", + ) + + +class GeminiCitation(BaseModel): + authors: list[str] | None = None + endIndex: int | None = None + license: str | None = None + publicationDate: date | None = None + startIndex: int | None = None + title: str | None = None + uri: str | None = None + + +class GeminiCitationMetadata(BaseModel): + citations: list[GeminiCitation] | None = None + + +class GeminiCandidate(BaseModel): + citationMetadata: GeminiCitationMetadata | None = None + content: GeminiContent | None = None + finishReason: str | None = None + safetyRatings: list[GeminiSafetyRating] | None = None + + +class GeminiPromptFeedback(BaseModel): + blockReason: str | None = None + blockReasonMessage: str | None = None + safetyRatings: list[GeminiSafetyRating] | None = None + + +class GeminiUsageMetadata(BaseModel): + cachedContentTokenCount: int | None = Field( + None, + description="Output only. Number of tokens in the cached part in the input (the cached content).", + ) + candidatesTokenCount: int | None = Field(None, description="Number of tokens in the response(s).") + candidatesTokensDetails: list[ModalityTokenCount] | None = Field( + None, description="Breakdown of candidate tokens by modality." + ) + promptTokenCount: int | None = Field( + None, + description="Number of tokens in the request. When cachedContent is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.", + ) + promptTokensDetails: list[ModalityTokenCount] | None = Field( + None, description="Breakdown of prompt tokens by modality." + ) + thoughtsTokenCount: int | None = Field(None, description="Number of tokens present in thoughts output.") + toolUsePromptTokenCount: int | None = Field(None, description="Number of tokens present in tool-use prompt(s).") + + +class GeminiGenerateContentResponse(BaseModel): + candidates: list[GeminiCandidate] | None = Field(None) + promptFeedback: GeminiPromptFeedback | None = Field(None) + usageMetadata: GeminiUsageMetadata | None = Field(None) + modelVersion: str | None = Field(None) diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py new file mode 100644 index 000000000..bf54ede3e --- /dev/null +++ b/comfy_api_nodes/apis/kling_api.py @@ -0,0 +1,113 @@ +from pydantic import BaseModel, Field + + +class OmniProText2VideoRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + + +class OmniParamImage(BaseModel): + image_url: str = Field(...) + type: str | None = Field(None, description="Can be 'first_frame' or 'end_frame'") + + +class OmniParamVideo(BaseModel): + video_url: str = Field(...) + refer_type: str | None = Field(..., description="Can be 'base' or 'feature'") + keep_original_sound: str = Field(..., description="'yes' or 'no'") + + +class OmniProFirstLastFrameRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + image_list: list[OmniParamImage] = Field(..., min_length=1, max_length=7) + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + + +class OmniProReferences2VideoRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + aspect_ratio: str | None = Field(..., description="'16:9', '9:16' or '1:1'") + image_list: list[OmniParamImage] | None = Field( + None, max_length=7, description="Max length 4 when video is present." + ) + video_list: list[OmniParamVideo] | None = Field(None, max_length=1) + duration: str | None = Field(..., description="From 3 to 10.") + prompt: str = Field(...) + mode: str = Field("pro") + + +class TaskStatusVideoResult(BaseModel): + duration: str | None = Field(None, description="Total video duration") + id: str | None = Field(None, description="Generated video ID") + url: str | None = Field(None, description="URL for generated video") + + +class TaskStatusImageResult(BaseModel): + index: int = Field(..., description="Image Number,0-9") + url: str = Field(..., description="URL for generated image") + + +class TaskStatusResults(BaseModel): + videos: list[TaskStatusVideoResult] | None = Field(None) + images: list[TaskStatusImageResult] | None = Field(None) + + +class TaskStatusResponseData(BaseModel): + created_at: int | None = Field(None, description="Task creation time") + updated_at: int | None = Field(None, description="Task update time") + task_status: str | None = None + task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.") + task_id: str | None = Field(None, description="Task ID") + task_result: TaskStatusResults | None = Field(None) + + +class TaskStatusResponse(BaseModel): + code: int | None = Field(None, description="Error code") + message: str | None = Field(None, description="Error message") + request_id: str | None = Field(None, description="Request ID") + data: TaskStatusResponseData | None = Field(None) + + +class OmniImageParamImage(BaseModel): + image: str = Field(...) + + +class OmniProImageRequest(BaseModel): + model_name: str = Field(..., description="kling-image-o1") + resolution: str = Field(..., description="'1k' or '2k'") + aspect_ratio: str | None = Field(...) + prompt: str = Field(...) + mode: str = Field("pro") + n: int | None = Field(1, le=9) + image_list: list[OmniImageParamImage] | None = Field(..., max_length=10) + + +class TextToVideoWithAudioRequest(BaseModel): + model_name: str = Field(..., description="kling-v2-6") + aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + sound: str = Field(..., description="'on' or 'off'") + + +class ImageToVideoWithAudioRequest(BaseModel): + model_name: str = Field(..., description="kling-v2-6") + image: str = Field(...) + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + sound: str = Field(..., description="'on' or 'off'") + + +class MotionControlRequest(BaseModel): + prompt: str = Field(...) + image_url: str = Field(...) + video_url: str = Field(...) + keep_original_sound: str = Field(...) + character_orientation: str = Field(...) + mode: str = Field(..., description="'pro' or 'std'") diff --git a/comfy_api_nodes/apis/minimax_api.py b/comfy_api_nodes/apis/minimax_api.py new file mode 100644 index 000000000..d747e177a --- /dev/null +++ b/comfy_api_nodes/apis/minimax_api.py @@ -0,0 +1,120 @@ +from enum import Enum +from typing import Optional + +from pydantic import BaseModel, Field + + +class MinimaxBaseResponse(BaseModel): + status_code: int = Field( + ..., + description='Status code. 0 indicates success, other values indicate errors.', + ) + status_msg: str = Field( + ..., description='Specific error details or success message.' + ) + + +class File(BaseModel): + bytes: Optional[int] = Field(None, description='File size in bytes') + created_at: Optional[int] = Field( + None, description='Unix timestamp when the file was created, in seconds' + ) + download_url: Optional[str] = Field( + None, description='The URL to download the video' + ) + backup_download_url: Optional[str] = Field( + None, description='The backup URL to download the video' + ) + + file_id: Optional[int] = Field(None, description='Unique identifier for the file') + filename: Optional[str] = Field(None, description='The name of the file') + purpose: Optional[str] = Field(None, description='The purpose of using the file') + + +class MinimaxFileRetrieveResponse(BaseModel): + base_resp: MinimaxBaseResponse + file: File + + +class MiniMaxModel(str, Enum): + T2V_01_Director = 'T2V-01-Director' + I2V_01_Director = 'I2V-01-Director' + S2V_01 = 'S2V-01' + I2V_01 = 'I2V-01' + I2V_01_live = 'I2V-01-live' + T2V_01 = 'T2V-01' + Hailuo_02 = 'MiniMax-Hailuo-02' + + +class Status6(str, Enum): + Queueing = 'Queueing' + Preparing = 'Preparing' + Processing = 'Processing' + Success = 'Success' + Fail = 'Fail' + + +class MinimaxTaskResultResponse(BaseModel): + base_resp: MinimaxBaseResponse + file_id: Optional[str] = Field( + None, + description='After the task status changes to Success, this field returns the file ID corresponding to the generated video.', + ) + status: Status6 = Field( + ..., + description="Task status: 'Queueing' (in queue), 'Preparing' (task is preparing), 'Processing' (generating), 'Success' (task completed successfully), or 'Fail' (task failed).", + ) + task_id: str = Field(..., description='The task ID being queried.') + + +class SubjectReferenceItem(BaseModel): + image: Optional[str] = Field( + None, description='URL or base64 encoding of the subject reference image.' + ) + mask: Optional[str] = Field( + None, + description='URL or base64 encoding of the mask for the subject reference image.', + ) + + +class MinimaxVideoGenerationRequest(BaseModel): + callback_url: Optional[str] = Field( + None, + description='Optional. URL to receive real-time status updates about the video generation task.', + ) + first_frame_image: Optional[str] = Field( + None, + description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.', + ) + model: MiniMaxModel = Field( + ..., + description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01', + ) + prompt: Optional[str] = Field( + None, + description='Description of the video. Should be less than 2000 characters. Supports camera movement instructions in [brackets].', + max_length=2000, + ) + prompt_optimizer: Optional[bool] = Field( + True, + description='If true (default), the model will automatically optimize the prompt. Set to false for more precise control.', + ) + subject_reference: Optional[list[SubjectReferenceItem]] = Field( + None, + description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.', + ) + duration: Optional[int] = Field( + None, + description="The length of the output video in seconds." + ) + resolution: Optional[str] = Field( + None, + description="The dimensions of the video display. 1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels." + ) + + +class MinimaxVideoGenerationResponse(BaseModel): + base_resp: MinimaxBaseResponse + task_id: str = Field( + ..., description='The task ID for the asynchronous video generation task.' + ) diff --git a/comfy_api_nodes/apis/openai_api.py b/comfy_api_nodes/apis/openai_api.py new file mode 100644 index 000000000..ae5bb2673 --- /dev/null +++ b/comfy_api_nodes/apis/openai_api.py @@ -0,0 +1,52 @@ +from pydantic import BaseModel, Field + + +class Datum2(BaseModel): + b64_json: str | None = Field(None, description="Base64 encoded image data") + revised_prompt: str | None = Field(None, description="Revised prompt") + url: str | None = Field(None, description="URL of the image") + + +class InputTokensDetails(BaseModel): + image_tokens: int | None = None + text_tokens: int | None = None + + +class Usage(BaseModel): + input_tokens: int | None = None + input_tokens_details: InputTokensDetails | None = None + output_tokens: int | None = None + total_tokens: int | None = None + + +class OpenAIImageGenerationResponse(BaseModel): + data: list[Datum2] | None = None + usage: Usage | None = None + + +class OpenAIImageEditRequest(BaseModel): + background: str | None = Field(None, description="Background transparency") + model: str = Field(...) + moderation: str | None = Field(None) + n: int | None = Field(None, description="The number of images to generate") + output_compression: int | None = Field(None, description="Compression level for JPEG or WebP (0-100)") + output_format: str | None = Field(None) + prompt: str = Field(...) + quality: str | None = Field(None, description="Size of the image (e.g., 1024x1024, 1536x1024, auto)") + size: str | None = Field(None, description="Size of the output image") + + +class OpenAIImageGenerationRequest(BaseModel): + background: str | None = Field(None, description="Background transparency") + model: str | None = Field(None) + moderation: str | None = Field(None) + n: int | None = Field( + None, + description="The number of images to generate.", + ) + output_compression: int | None = Field(None, description="Compression level for JPEG or WebP (0-100)") + output_format: str | None = Field(None) + prompt: str = Field(...) + quality: str | None = Field(None, description="The quality of the generated image") + size: str | None = Field(None, description="Size of the image (e.g., 1024x1024, 1536x1024, auto)") + style: str | None = Field(None, description="Style of the image (only for dall-e-3)") diff --git a/comfy_api_nodes/apis/topaz_api.py b/comfy_api_nodes/apis/topaz_api.py new file mode 100644 index 000000000..4d9e62e72 --- /dev/null +++ b/comfy_api_nodes/apis/topaz_api.py @@ -0,0 +1,133 @@ +from typing import Optional, Union + +from pydantic import BaseModel, Field + + +class ImageEnhanceRequest(BaseModel): + model: str = Field("Reimagine") + output_format: str = Field("jpeg") + subject_detection: str = Field("All") + face_enhancement: bool = Field(True) + face_enhancement_creativity: float = Field(0, description="Is ignored if face_enhancement is false") + face_enhancement_strength: float = Field(0.8, description="Is ignored if face_enhancement is false") + source_url: str = Field(...) + output_width: Optional[int] = Field(None) + output_height: Optional[int] = Field(None) + crop_to_fill: bool = Field(False) + prompt: Optional[str] = Field(None, description="Text prompt for creative upscaling guidance") + creativity: int = Field(3, description="Creativity settings range from 1 to 9") + face_preservation: str = Field("true", description="To preserve the identity of characters") + color_preservation: str = Field("true", description="To preserve the original color") + + +class ImageAsyncTaskResponse(BaseModel): + process_id: str = Field(...) + + +class ImageStatusResponse(BaseModel): + process_id: str = Field(...) + status: str = Field(...) + progress: Optional[int] = Field(None) + credits: int = Field(...) + + +class ImageDownloadResponse(BaseModel): + download_url: str = Field(...) + expiry: int = Field(...) + + +class Resolution(BaseModel): + width: int = Field(...) + height: int = Field(...) + + +class CreateCreateVideoRequestSource(BaseModel): + container: str = Field(...) + size: int = Field(..., description="Size of the video file in bytes") + duration: int = Field(..., description="Duration of the video file in seconds") + frameCount: int = Field(..., description="Total number of frames in the video") + frameRate: int = Field(...) + resolution: Resolution = Field(...) + + +class VideoFrameInterpolationFilter(BaseModel): + model: str = Field(...) + slowmo: Optional[int] = Field(None) + fps: int = Field(...) + duplicate: bool = Field(...) + duplicate_threshold: float = Field(...) + + +class VideoEnhancementFilter(BaseModel): + model: str = Field(...) + auto: Optional[str] = Field(None, description="Auto, Manual, Relative") + focusFixLevel: Optional[str] = Field(None, description="Downscales video input for correction of blurred subjects") + compression: Optional[float] = Field(None, description="Strength of compression recovery") + details: Optional[float] = Field(None, description="Amount of detail reconstruction") + prenoise: Optional[float] = Field(None, description="Amount of noise to add to input to reduce over-smoothing") + noise: Optional[float] = Field(None, description="Amount of noise reduction") + halo: Optional[float] = Field(None, description="Amount of halo reduction") + preblur: Optional[float] = Field(None, description="Anti-aliasing and deblurring strength") + blur: Optional[float] = Field(None, description="Amount of sharpness applied") + grain: Optional[float] = Field(None, description="Grain after AI model processing") + grainSize: Optional[float] = Field(None, description="Size of generated grain") + recoverOriginalDetailValue: Optional[float] = Field(None, description="Source details into the output video") + creativity: Optional[str] = Field(None, description="Creativity level(high, low) for slc-1 only") + isOptimizedMode: Optional[bool] = Field(None, description="Set to true for Starlight Creative (slc-1) only") + + +class OutputInformationVideo(BaseModel): + resolution: Resolution = Field(...) + frameRate: int = Field(...) + audioCodec: Optional[str] = Field(..., description="Required if audioTransfer is Copy or Convert") + audioTransfer: str = Field(..., description="Copy, Convert, None") + dynamicCompressionLevel: str = Field(..., description="Low, Mid, High") + + +class Overrides(BaseModel): + isPaidDiffusion: bool = Field(True) + + +class CreateVideoRequest(BaseModel): + source: CreateCreateVideoRequestSource = Field(...) + filters: list[Union[VideoFrameInterpolationFilter, VideoEnhancementFilter]] = Field(...) + output: OutputInformationVideo = Field(...) + overrides: Overrides = Field(Overrides(isPaidDiffusion=True)) + + +class CreateVideoResponse(BaseModel): + requestId: str = Field(...) + + +class VideoAcceptResponse(BaseModel): + uploadId: str = Field(...) + urls: list[str] = Field(...) + + +class VideoCompleteUploadRequestPart(BaseModel): + partNum: int = Field(...) + eTag: str = Field(...) + + +class VideoCompleteUploadRequest(BaseModel): + uploadResults: list[VideoCompleteUploadRequestPart] = Field(...) + + +class VideoCompleteUploadResponse(BaseModel): + message: str = Field(..., description="Confirmation message") + + +class VideoStatusResponseEstimates(BaseModel): + cost: list[int] = Field(...) + + +class VideoStatusResponseDownloadUrl(BaseModel): + url: str = Field(...) + + +class VideoStatusResponse(BaseModel): + status: str = Field(...) + estimates: Optional[VideoStatusResponseEstimates] = Field(None) + progress: Optional[float] = Field(None) + message: Optional[str] = Field("") + download: Optional[VideoStatusResponseDownloadUrl] = Field(None) diff --git a/comfy_api_nodes/apis/tripo_api.py b/comfy_api_nodes/apis/tripo_api.py index 9f43d4d09..ffaaa7dc1 100644 --- a/comfy_api_nodes/apis/tripo_api.py +++ b/comfy_api_nodes/apis/tripo_api.py @@ -1,13 +1,26 @@ from __future__ import annotations -from comfy_api_nodes.apis import ( - TripoModelVersion, - TripoTextureQuality, -) from enum import Enum from typing import Optional, List, Dict, Any, Union from pydantic import BaseModel, Field, RootModel +class TripoModelVersion(str, Enum): + v3_0_20250812 = 'v3.0-20250812' + v2_5_20250123 = 'v2.5-20250123' + v2_0_20240919 = 'v2.0-20240919' + v1_4_20240625 = 'v1.4-20240625' + + +class TripoGeometryQuality(str, Enum): + standard = 'standard' + detailed = 'detailed' + + +class TripoTextureQuality(str, Enum): + standard = 'standard' + detailed = 'detailed' + + class TripoStyle(str, Enum): PERSON_TO_CARTOON = "person:person2cartoon" ANIMAL_VENOM = "animal:venom" @@ -54,14 +67,20 @@ class TripoSpec(str, Enum): class TripoAnimation(str, Enum): IDLE = "preset:idle" WALK = "preset:walk" + RUN = "preset:run" + DIVE = "preset:dive" CLIMB = "preset:climb" JUMP = "preset:jump" - RUN = "preset:run" SLASH = "preset:slash" SHOOT = "preset:shoot" HURT = "preset:hurt" FALL = "preset:fall" TURN = "preset:turn" + QUADRUPED_WALK = "preset:quadruped:walk" + HEXAPOD_WALK = "preset:hexapod:walk" + OCTOPOD_WALK = "preset:octopod:walk" + SERPENTINE_MARCH = "preset:serpentine:march" + AQUATIC_MARCH = "preset:aquatic:march" class TripoStylizeStyle(str, Enum): LEGO = "lego" @@ -98,6 +117,11 @@ class TripoTaskStatus(str, Enum): BANNED = "banned" EXPIRED = "expired" +class TripoFbxPreset(str, Enum): + BLENDER = "blender" + MIXAMO = "mixamo" + _3DSMAX = "3dsmax" + class TripoFileTokenReference(BaseModel): type: Optional[str] = Field(None, description='The type of the reference') file_token: str @@ -135,6 +159,7 @@ class TripoTextToModelRequest(BaseModel): model_seed: Optional[int] = Field(None, description='The seed for the model') texture_seed: Optional[int] = Field(None, description='The seed for the texture') texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard + geometry_quality: Optional[TripoGeometryQuality] = TripoGeometryQuality.standard style: Optional[TripoStyle] = None auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model') quad: Optional[bool] = Field(False, description='Whether to apply quad to the generated model') @@ -149,6 +174,7 @@ class TripoImageToModelRequest(BaseModel): model_seed: Optional[int] = Field(None, description='The seed for the model') texture_seed: Optional[int] = Field(None, description='The seed for the texture') texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard + geometry_quality: Optional[TripoGeometryQuality] = TripoGeometryQuality.standard texture_alignment: Optional[TripoTextureAlignment] = Field(TripoTextureAlignment.ORIGINAL_IMAGE, description='The texture alignment method') style: Optional[TripoStyle] = Field(None, description='The style to apply to the generated model') auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model') @@ -166,6 +192,7 @@ class TripoMultiviewToModelRequest(BaseModel): model_seed: Optional[int] = Field(None, description='The seed for the model') texture_seed: Optional[int] = Field(None, description='The seed for the texture') texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard + geometry_quality: Optional[TripoGeometryQuality] = TripoGeometryQuality.standard texture_alignment: Optional[TripoTextureAlignment] = TripoTextureAlignment.ORIGINAL_IMAGE auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model') orientation: Optional[TripoOrientation] = Field(TripoOrientation.DEFAULT, description='The orientation for the model') @@ -212,14 +239,24 @@ class TripoConvertModelRequest(BaseModel): type: TripoTaskType = Field(TripoTaskType.CONVERT_MODEL, description='Type of task') format: TripoConvertFormat = Field(..., description='The format to convert to') original_model_task_id: str = Field(..., description='The task ID of the original model') - quad: Optional[bool] = Field(False, description='Whether to apply quad to the model') - force_symmetry: Optional[bool] = Field(False, description='Whether to force symmetry') - face_limit: Optional[int] = Field(10000, description='The number of faces to limit the conversion to') - flatten_bottom: Optional[bool] = Field(False, description='Whether to flatten the bottom of the model') - flatten_bottom_threshold: Optional[float] = Field(0.01, description='The threshold for flattening the bottom') - texture_size: Optional[int] = Field(4096, description='The size of the texture') + quad: Optional[bool] = Field(None, description='Whether to apply quad to the model') + force_symmetry: Optional[bool] = Field(None, description='Whether to force symmetry') + face_limit: Optional[int] = Field(None, description='The number of faces to limit the conversion to') + flatten_bottom: Optional[bool] = Field(None, description='Whether to flatten the bottom of the model') + flatten_bottom_threshold: Optional[float] = Field(None, description='The threshold for flattening the bottom') + texture_size: Optional[int] = Field(None, description='The size of the texture') texture_format: Optional[TripoTextureFormat] = Field(TripoTextureFormat.JPEG, description='The format of the texture') - pivot_to_center_bottom: Optional[bool] = Field(False, description='Whether to pivot to the center bottom') + pivot_to_center_bottom: Optional[bool] = Field(None, description='Whether to pivot to the center bottom') + scale_factor: Optional[float] = Field(None, description='The scale factor for the model') + with_animation: Optional[bool] = Field(None, description='Whether to include animations') + pack_uv: Optional[bool] = Field(None, description='Whether to pack the UVs') + bake: Optional[bool] = Field(None, description='Whether to bake the model') + part_names: Optional[List[str]] = Field(None, description='The names of the parts to include') + fbx_preset: Optional[TripoFbxPreset] = Field(None, description='The preset for the FBX export') + export_vertex_colors: Optional[bool] = Field(None, description='Whether to export the vertex colors') + export_orientation: Optional[TripoOrientation] = Field(None, description='The orientation for the export') + animate_in_place: Optional[bool] = Field(None, description='Whether to animate in place') + class TripoTaskRequest(RootModel): root: Union[ diff --git a/comfy_api_nodes/apis/veo_api.py b/comfy_api_nodes/apis/veo_api.py new file mode 100644 index 000000000..23ca725b7 --- /dev/null +++ b/comfy_api_nodes/apis/veo_api.py @@ -0,0 +1,99 @@ +from typing import Optional + +from pydantic import BaseModel, Field + + +class VeoRequestInstanceImage(BaseModel): + bytesBase64Encoded: str | None = Field(None) + gcsUri: str | None = Field(None) + mimeType: str | None = Field(None) + + +class VeoRequestInstance(BaseModel): + image: VeoRequestInstanceImage | None = Field(None) + lastFrame: VeoRequestInstanceImage | None = Field(None) + prompt: str = Field(..., description='Text description of the video') + + +class VeoRequestParameters(BaseModel): + aspectRatio: Optional[str] = Field(None, examples=['16:9']) + durationSeconds: Optional[int] = None + enhancePrompt: Optional[bool] = None + generateAudio: Optional[bool] = Field( + None, + description='Generate audio for the video. Only supported by veo 3 models.', + ) + negativePrompt: Optional[str] = None + personGeneration: str | None = Field(None, description="ALLOW or BLOCK") + sampleCount: Optional[int] = None + seed: Optional[int] = None + storageUri: Optional[str] = Field( + None, description='Optional Cloud Storage URI to upload the video' + ) + resolution: str | None = Field(None) + + +class VeoGenVidRequest(BaseModel): + instances: list[VeoRequestInstance] | None = Field(None) + parameters: VeoRequestParameters | None = Field(None) + + +class VeoGenVidResponse(BaseModel): + name: str = Field( + ..., + description='Operation resource name', + examples=[ + 'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/a1b07c8e-7b5a-4aba-bb34-3e1ccb8afcc8' + ], + ) + + +class VeoGenVidPollRequest(BaseModel): + operationName: str = Field( + ..., + description='Full operation name (from predict response)', + examples=[ + 'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/OPERATION_ID' + ], + ) + + +class Video(BaseModel): + bytesBase64Encoded: Optional[str] = Field( + None, description='Base64-encoded video content' + ) + gcsUri: Optional[str] = Field(None, description='Cloud Storage URI of the video') + mimeType: Optional[str] = Field(None, description='Video MIME type') + + +class Error1(BaseModel): + code: Optional[int] = Field(None, description='Error code') + message: Optional[str] = Field(None, description='Error message') + + +class Response1(BaseModel): + field_type: Optional[str] = Field( + None, + alias='@type', + examples=[ + 'type.googleapis.com/cloud.ai.large_models.vision.GenerateVideoResponse' + ], + ) + raiMediaFilteredCount: Optional[int] = Field( + None, description='Count of media filtered by responsible AI policies' + ) + raiMediaFilteredReasons: Optional[list[str]] = Field( + None, description='Reasons why media was filtered by responsible AI policies' + ) + videos: Optional[list[Video]] = Field(None) + + +class VeoGenVidPollResponse(BaseModel): + done: Optional[bool] = None + error: Optional[Error1] = Field( + None, description='Error details if operation failed' + ) + name: Optional[str] = None + response: Optional[Response1] = Field( + None, description='The actual prediction response if done is true' + ) diff --git a/comfy_api_nodes/nodes_bfl.py b/comfy_api_nodes/nodes_bfl.py index 77914021d..ce077d6b3 100644 --- a/comfy_api_nodes/nodes_bfl.py +++ b/comfy_api_nodes/nodes_bfl.py @@ -1,166 +1,64 @@ -import asyncio -import io -from inspect import cleandoc -from typing import Union, Optional +import torch +from pydantic import BaseModel from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io + +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis.bfl_api import ( - BFLStatus, BFLFluxExpandImageRequest, BFLFluxFillImageRequest, - BFLFluxCannyImageRequest, - BFLFluxDepthImageRequest, - BFLFluxProGenerateRequest, BFLFluxKontextProGenerateRequest, - BFLFluxProUltraGenerateRequest, BFLFluxProGenerateResponse, + BFLFluxProUltraGenerateRequest, + BFLFluxStatusResponse, + BFLStatus, + Flux2ProGenerateRequest, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, -) -from comfy_api_nodes.apinode_utils import ( - downscale_image_tensor, - validate_aspect_ratio, - process_image_response, + download_url_to_image_tensor, + get_number_of_images, + poll_op, resize_mask_to_image, + sync_op, + tensor_to_base64_string, + validate_aspect_ratio_string, validate_string, ) -import numpy as np -from PIL import Image -import aiohttp -import torch -import base64 -import time -from server import PromptServer - -def convert_mask_to_image(mask: torch.Tensor): +def convert_mask_to_image(mask: Input.Image): """ Make mask have the expected amount of dims (4) and channels (3) to be recognized as an image. """ mask = mask.unsqueeze(-1) - mask = torch.cat([mask]*3, dim=-1) + mask = torch.cat([mask] * 3, dim=-1) return mask -async def handle_bfl_synchronous_operation( - operation: SynchronousOperation, - timeout_bfl_calls=360, - node_id: Union[str, None] = None, -): - response_api: BFLFluxProGenerateResponse = await operation.execute() - return await _poll_until_generated( - response_api.polling_url, timeout=timeout_bfl_calls, node_id=node_id - ) - - -async def _poll_until_generated( - polling_url: str, timeout=360, node_id: Union[str, None] = None -): - # used bfl-comfy-nodes to verify code implementation: - # https://github.com/black-forest-labs/bfl-comfy-nodes/tree/main - start_time = time.time() - retries_404 = 0 - max_retries_404 = 5 - retry_404_seconds = 2 - retry_202_seconds = 2 - retry_pending_seconds = 1 - - async with aiohttp.ClientSession() as session: - # NOTE: should True loop be replaced with checking if workflow has been interrupted? - while True: - if node_id: - time_elapsed = time.time() - start_time - PromptServer.instance.send_progress_text( - f"Generating ({time_elapsed:.0f}s)", node_id - ) - - async with session.get(polling_url) as response: - if response.status == 200: - result = await response.json() - if result["status"] == BFLStatus.ready: - img_url = result["result"]["sample"] - if node_id: - PromptServer.instance.send_progress_text( - f"Result URL: {img_url}", node_id - ) - async with session.get(img_url) as img_resp: - return process_image_response(await img_resp.content.read()) - elif result["status"] in [ - BFLStatus.request_moderated, - BFLStatus.content_moderated, - ]: - status = result["status"] - raise Exception( - f"BFL API did not return an image due to: {status}." - ) - elif result["status"] == BFLStatus.error: - raise Exception(f"BFL API encountered an error: {result}.") - elif result["status"] == BFLStatus.pending: - await asyncio.sleep(retry_pending_seconds) - continue - elif response.status == 404: - if retries_404 < max_retries_404: - retries_404 += 1 - await asyncio.sleep(retry_404_seconds) - continue - raise Exception( - f"BFL API could not find task after {max_retries_404} tries." - ) - elif response.status == 202: - await asyncio.sleep(retry_202_seconds) - elif time.time() - start_time > timeout: - raise Exception( - f"BFL API experienced a timeout; could not return request under {timeout} seconds." - ) - else: - raise Exception(f"BFL API encountered an error: {response.json()}") - -def convert_image_to_base64(image: torch.Tensor): - scaled_image = downscale_image_tensor(image, total_pixels=2048 * 2048) - # remove batch dimension if present - if len(scaled_image.shape) > 3: - scaled_image = scaled_image[0] - image_np = (scaled_image.numpy() * 255).astype(np.uint8) - img = Image.fromarray(image_np) - img_byte_arr = io.BytesIO() - img.save(img_byte_arr, format="PNG") - return base64.b64encode(img_byte_arr.getvalue()).decode() - - -class FluxProUltraImageNode(comfy_io.ComfyNode): - """ - Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution. - """ - - MINIMUM_RATIO = 1 / 4 - MAXIMUM_RATIO = 4 / 1 - MINIMUM_RATIO_STR = "1:4" - MAXIMUM_RATIO_STR = "4:1" +class FluxProUltraImageNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="FluxProUltraImageNode", display_name="Flux 1.1 [pro] Ultra Image", category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_upsampling", default=False, - tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", + tooltip="Whether to perform upsampling on the prompt. " + "If active, automatically modifies the prompt for more creative generation, " + "but results are nondeterministic (same seed will not produce exactly the same result).", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -168,21 +66,21 @@ class FluxProUltraImageNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - comfy_io.String.Input( + IO.String.Input( "aspect_ratio", default="16:9", tooltip="Aspect ratio of image; must be between 1:4 and 4:1.", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "raw", default=False, tooltip="When True, generate less processed, more natural-looking images.", ), - comfy_io.Image.Input( + IO.Image.Input( "image_prompt", optional=True, ), - comfy_io.Float.Input( + IO.Float.Input( "image_prompt_strength", default=0.1, min=0.0, @@ -192,27 +90,18 @@ class FluxProUltraImageNode(comfy_io.ComfyNode): optional=True, ), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @classmethod def validate_inputs(cls, aspect_ratio: str): - try: - validate_aspect_ratio( - aspect_ratio, - minimum_ratio=cls.MINIMUM_RATIO, - maximum_ratio=cls.MAXIMUM_RATIO, - minimum_ratio_str=cls.MINIMUM_RATIO_STR, - maximum_ratio_str=cls.MAXIMUM_RATIO_STR, - ) - except Exception as e: - return str(e) + validate_aspect_ratio_string(aspect_ratio, (1, 4), (4, 1)) return True @classmethod @@ -220,81 +109,68 @@ class FluxProUltraImageNode(comfy_io.ComfyNode): cls, prompt: str, aspect_ratio: str, - prompt_upsampling=False, - raw=False, - seed=0, - image_prompt=None, - image_prompt_strength=0.1, - ) -> comfy_io.NodeOutput: + prompt_upsampling: bool = False, + raw: bool = False, + seed: int = 0, + image_prompt: Input.Image | None = None, + image_prompt_strength: float = 0.1, + ) -> IO.NodeOutput: if image_prompt is None: validate_string(prompt, strip_whitespace=False) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/bfl/flux-pro-1.1-ultra/generate", - method=HttpMethod.POST, - request_model=BFLFluxProUltraGenerateRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxProUltraGenerateRequest( + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/bfl/flux-pro-1.1-ultra/generate", method="POST"), + response_model=BFLFluxProGenerateResponse, + data=BFLFluxProUltraGenerateRequest( prompt=prompt, prompt_upsampling=prompt_upsampling, seed=seed, - aspect_ratio=validate_aspect_ratio( - aspect_ratio, - minimum_ratio=cls.MINIMUM_RATIO, - maximum_ratio=cls.MAXIMUM_RATIO, - minimum_ratio_str=cls.MINIMUM_RATIO_STR, - maximum_ratio_str=cls.MAXIMUM_RATIO_STR, - ), + aspect_ratio=aspect_ratio, raw=raw, - image_prompt=( - image_prompt - if image_prompt is None - else convert_image_to_base64(image_prompt) - ), - image_prompt_strength=( - None if image_prompt is None else round(image_prompt_strength, 2) - ), + image_prompt=(image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt)), + image_prompt_strength=(None if image_prompt is None else round(image_prompt_strength, 2)), ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) + response = await poll_op( + cls, + ApiEndpoint(initial_response.polling_url), + response_model=BFLFluxStatusResponse, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + completed_statuses=[BFLStatus.ready], + failed_statuses=[ + BFLStatus.request_moderated, + BFLStatus.content_moderated, + BFLStatus.error, + BFLStatus.task_not_found, + ], + queued_statuses=[], + ) + return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) -class FluxKontextProImageNode(comfy_io.ComfyNode): - """ - Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio. - """ - - MINIMUM_RATIO = 1 / 4 - MAXIMUM_RATIO = 4 / 1 - MINIMUM_RATIO_STR = "1:4" - MAXIMUM_RATIO_STR = "4:1" +class FluxKontextProImageNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id=cls.NODE_ID, display_name=cls.DISPLAY_NAME, category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation - specify what and how to edit.", ), - comfy_io.String.Input( + IO.String.Input( "aspect_ratio", default="16:9", tooltip="Aspect ratio of image; must be between 1:4 and 4:1.", ), - comfy_io.Float.Input( + IO.Float.Input( "guidance", default=3.0, min=0.1, @@ -302,14 +178,14 @@ class FluxKontextProImageNode(comfy_io.ComfyNode): step=0.1, tooltip="Guidance strength for the image generation process", ), - comfy_io.Int.Input( + IO.Int.Input( "steps", default=50, min=1, max=150, tooltip="Number of steps for the image generation process", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=1234, min=0, @@ -317,21 +193,21 @@ class FluxKontextProImageNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_upsampling", default=False, tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", ), - comfy_io.Image.Input( + IO.Image.Input( "input_image", optional=True, ), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -347,238 +223,120 @@ class FluxKontextProImageNode(comfy_io.ComfyNode): aspect_ratio: str, guidance: float, steps: int, - input_image: Optional[torch.Tensor]=None, + input_image: Input.Image | None = None, seed=0, prompt_upsampling=False, - ) -> comfy_io.NodeOutput: - aspect_ratio = validate_aspect_ratio( - aspect_ratio, - minimum_ratio=cls.MINIMUM_RATIO, - maximum_ratio=cls.MAXIMUM_RATIO, - minimum_ratio_str=cls.MINIMUM_RATIO_STR, - maximum_ratio_str=cls.MAXIMUM_RATIO_STR, - ) + ) -> IO.NodeOutput: + validate_aspect_ratio_string(aspect_ratio, (1, 4), (4, 1)) if input_image is None: validate_string(prompt, strip_whitespace=False) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=cls.BFL_PATH, - method=HttpMethod.POST, - request_model=BFLFluxKontextProGenerateRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxKontextProGenerateRequest( + initial_response = await sync_op( + cls, + ApiEndpoint(path=cls.BFL_PATH, method="POST"), + response_model=BFLFluxProGenerateResponse, + data=BFLFluxKontextProGenerateRequest( prompt=prompt, prompt_upsampling=prompt_upsampling, guidance=round(guidance, 1), steps=steps, seed=seed, aspect_ratio=aspect_ratio, - input_image=( - input_image - if input_image is None - else convert_image_to_base64(input_image) - ) + input_image=(input_image if input_image is None else tensor_to_base64_string(input_image)), ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) + response = await poll_op( + cls, + ApiEndpoint(initial_response.polling_url), + response_model=BFLFluxStatusResponse, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + completed_statuses=[BFLStatus.ready], + failed_statuses=[ + BFLStatus.request_moderated, + BFLStatus.content_moderated, + BFLStatus.error, + BFLStatus.task_not_found, + ], + queued_statuses=[], + ) + return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) class FluxKontextMaxImageNode(FluxKontextProImageNode): - """ - Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio. - """ - DESCRIPTION = cleandoc(__doc__ or "") + DESCRIPTION = "Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio." BFL_PATH = "/proxy/bfl/flux-kontext-max/generate" NODE_ID = "FluxKontextMaxImageNode" DISPLAY_NAME = "Flux.1 Kontext [max] Image" -class FluxProImageNode(comfy_io.ComfyNode): - """ - Generates images synchronously based on prompt and resolution. - """ +class FluxProExpandNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( - node_id="FluxProImageNode", - display_name="Flux 1.1 [pro] Image", - category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), - inputs=[ - comfy_io.String.Input( - "prompt", - multiline=True, - default="", - tooltip="Prompt for the image generation", - ), - comfy_io.Boolean.Input( - "prompt_upsampling", - default=False, - tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", - ), - comfy_io.Int.Input( - "width", - default=1024, - min=256, - max=1440, - step=32, - ), - comfy_io.Int.Input( - "height", - default=768, - min=256, - max=1440, - step=32, - ), - comfy_io.Int.Input( - "seed", - default=0, - min=0, - max=0xFFFFFFFFFFFFFFFF, - control_after_generate=True, - tooltip="The random seed used for creating the noise.", - ), - comfy_io.Image.Input( - "image_prompt", - optional=True, - ), - # "image_prompt_strength": ( - # IO.FLOAT, - # { - # "default": 0.1, - # "min": 0.0, - # "max": 1.0, - # "step": 0.01, - # "tooltip": "Blend between the prompt and the image prompt.", - # }, - # ), - ], - outputs=[comfy_io.Image.Output()], - hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, - ], - is_api_node=True, - ) - - @classmethod - async def execute( - cls, - prompt: str, - prompt_upsampling, - width: int, - height: int, - seed=0, - image_prompt=None, - # image_prompt_strength=0.1, - ) -> comfy_io.NodeOutput: - image_prompt = ( - image_prompt - if image_prompt is None - else convert_image_to_base64(image_prompt) - ) - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/bfl/flux-pro-1.1/generate", - method=HttpMethod.POST, - request_model=BFLFluxProGenerateRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxProGenerateRequest( - prompt=prompt, - prompt_upsampling=prompt_upsampling, - width=width, - height=height, - seed=seed, - image_prompt=image_prompt, - ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) - - -class FluxProExpandNode(comfy_io.ComfyNode): - """ - Outpaints image based on prompt. - """ - - @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="FluxProExpandNode", display_name="Flux.1 Expand Image", category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Outpaints image based on prompt.", inputs=[ - comfy_io.Image.Input("image"), - comfy_io.String.Input( + IO.Image.Input("image"), + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_upsampling", default=False, - tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", + tooltip="Whether to perform upsampling on the prompt. " + "If active, automatically modifies the prompt for more creative generation, " + "but results are nondeterministic (same seed will not produce exactly the same result).", ), - comfy_io.Int.Input( + IO.Int.Input( "top", default=0, min=0, max=2048, tooltip="Number of pixels to expand at the top of the image", ), - comfy_io.Int.Input( + IO.Int.Input( "bottom", default=0, min=0, max=2048, tooltip="Number of pixels to expand at the bottom of the image", ), - comfy_io.Int.Input( + IO.Int.Input( "left", default=0, min=0, max=2048, tooltip="Number of pixels to expand at the left of the image", ), - comfy_io.Int.Input( + IO.Int.Input( "right", default=0, min=0, max=2048, tooltip="Number of pixels to expand at the right of the image", ), - comfy_io.Float.Input( + IO.Float.Input( "guidance", default=60, min=1.5, max=100, tooltip="Guidance strength for the image generation process", ), - comfy_io.Int.Input( + IO.Int.Input( "steps", default=50, min=15, max=50, tooltip="Number of steps for the image generation process", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -587,11 +345,11 @@ class FluxProExpandNode(comfy_io.ComfyNode): tooltip="The random seed used for creating the noise.", ), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -599,7 +357,7 @@ class FluxProExpandNode(comfy_io.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, + image: Input.Image, prompt: str, prompt_upsampling: bool, top: int, @@ -609,17 +367,12 @@ class FluxProExpandNode(comfy_io.ComfyNode): steps: int, guidance: float, seed=0, - ) -> comfy_io.NodeOutput: - image = convert_image_to_base64(image) - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/bfl/flux-pro-1.0-expand/generate", - method=HttpMethod.POST, - request_model=BFLFluxExpandImageRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxExpandImageRequest( + ) -> IO.NodeOutput: + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/bfl/flux-pro-1.0-expand/generate", method="POST"), + response_model=BFLFluxProGenerateResponse, + data=BFLFluxExpandImageRequest( prompt=prompt, prompt_upsampling=prompt_upsampling, top=top, @@ -629,59 +382,67 @@ class FluxProExpandNode(comfy_io.ComfyNode): steps=steps, guidance=guidance, seed=seed, - image=image, + image=tensor_to_base64_string(image), ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) + response = await poll_op( + cls, + ApiEndpoint(initial_response.polling_url), + response_model=BFLFluxStatusResponse, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + completed_statuses=[BFLStatus.ready], + failed_statuses=[ + BFLStatus.request_moderated, + BFLStatus.content_moderated, + BFLStatus.error, + BFLStatus.task_not_found, + ], + queued_statuses=[], + ) + return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) - -class FluxProFillNode(comfy_io.ComfyNode): - """ - Inpaints image based on mask and prompt. - """ +class FluxProFillNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="FluxProFillNode", display_name="Flux.1 Fill Image", category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Inpaints image based on mask and prompt.", inputs=[ - comfy_io.Image.Input("image"), - comfy_io.Mask.Input("mask"), - comfy_io.String.Input( + IO.Image.Input("image"), + IO.Mask.Input("mask"), + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_upsampling", default=False, - tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", + tooltip="Whether to perform upsampling on the prompt. " + "If active, automatically modifies the prompt for more creative generation, " + "but results are nondeterministic (same seed will not produce exactly the same result).", ), - comfy_io.Float.Input( + IO.Float.Input( "guidance", default=60, min=1.5, max=100, tooltip="Guidance strength for the image generation process", ), - comfy_io.Int.Input( + IO.Int.Input( "steps", default=50, min=15, max=50, tooltip="Number of steps for the image generation process", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -690,11 +451,11 @@ class FluxProFillNode(comfy_io.ComfyNode): tooltip="The random seed used for creating the noise.", ), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -702,106 +463,84 @@ class FluxProFillNode(comfy_io.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, - mask: torch.Tensor, + image: Input.Image, + mask: Input.Image, prompt: str, prompt_upsampling: bool, steps: int, guidance: float, seed=0, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: # prepare mask mask = resize_mask_to_image(mask, image) - mask = convert_image_to_base64(convert_mask_to_image(mask)) - # make sure image will have alpha channel removed - image = convert_image_to_base64(image[:, :, :, :3]) - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/bfl/flux-pro-1.0-fill/generate", - method=HttpMethod.POST, - request_model=BFLFluxFillImageRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxFillImageRequest( + mask = tensor_to_base64_string(convert_mask_to_image(mask)) + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/bfl/flux-pro-1.0-fill/generate", method="POST"), + response_model=BFLFluxProGenerateResponse, + data=BFLFluxFillImageRequest( prompt=prompt, prompt_upsampling=prompt_upsampling, steps=steps, guidance=guidance, seed=seed, - image=image, + image=tensor_to_base64_string(image[:, :, :, :3]), # make sure image will have alpha channel removed mask=mask, ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) + response = await poll_op( + cls, + ApiEndpoint(initial_response.polling_url), + response_model=BFLFluxStatusResponse, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + completed_statuses=[BFLStatus.ready], + failed_statuses=[ + BFLStatus.request_moderated, + BFLStatus.content_moderated, + BFLStatus.error, + BFLStatus.task_not_found, + ], + queued_statuses=[], + ) + return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) -class FluxProCannyNode(comfy_io.ComfyNode): - """ - Generate image using a control image (canny). - """ +class Flux2ProImageNode(IO.ComfyNode): + + NODE_ID = "Flux2ProImageNode" + DISPLAY_NAME = "Flux.2 [pro] Image" + API_ENDPOINT = "/proxy/bfl/flux-2-pro/generate" @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( - node_id="FluxProCannyNode", - display_name="Flux.1 Canny Control Image", + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id=cls.NODE_ID, + display_name=cls.DISPLAY_NAME, category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Generates images synchronously based on prompt and resolution.", inputs=[ - comfy_io.Image.Input("control_image"), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt for the image generation", + tooltip="Prompt for the image generation or edit", ), - comfy_io.Boolean.Input( - "prompt_upsampling", - default=False, - tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", + IO.Int.Input( + "width", + default=1024, + min=256, + max=2048, + step=32, ), - comfy_io.Float.Input( - "canny_low_threshold", - default=0.1, - min=0.01, - max=0.99, - step=0.01, - tooltip="Low threshold for Canny edge detection; ignored if skip_processing is True", + IO.Int.Input( + "height", + default=768, + min=256, + max=2048, + step=32, ), - comfy_io.Float.Input( - "canny_high_threshold", - default=0.4, - min=0.01, - max=0.99, - step=0.01, - tooltip="High threshold for Canny edge detection; ignored if skip_processing is True", - ), - comfy_io.Boolean.Input( - "skip_preprocessing", - default=False, - tooltip="Whether to skip preprocessing; set to True if control_image already is canny-fied, False if it is a raw image.", - ), - comfy_io.Float.Input( - "guidance", - default=30, - min=1, - max=100, - tooltip="Guidance strength for the image generation process", - ), - comfy_io.Int.Input( - "steps", - default=50, - min=15, - max=50, - tooltip="Number of steps for the image generation process", - ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -809,130 +548,19 @@ class FluxProCannyNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - ], - outputs=[comfy_io.Image.Output()], - hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, - ], - is_api_node=True, - ) - - @classmethod - async def execute( - cls, - control_image: torch.Tensor, - prompt: str, - prompt_upsampling: bool, - canny_low_threshold: float, - canny_high_threshold: float, - skip_preprocessing: bool, - steps: int, - guidance: float, - seed=0, - ) -> comfy_io.NodeOutput: - control_image = convert_image_to_base64(control_image[:, :, :, :3]) - preprocessed_image = None - - # scale canny threshold between 0-500, to match BFL's API - def scale_value(value: float, min_val=0, max_val=500): - return min_val + value * (max_val - min_val) - canny_low_threshold = int(round(scale_value(canny_low_threshold))) - canny_high_threshold = int(round(scale_value(canny_high_threshold))) - - - if skip_preprocessing: - preprocessed_image = control_image - control_image = None - canny_low_threshold = None - canny_high_threshold = None - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/bfl/flux-pro-1.0-canny/generate", - method=HttpMethod.POST, - request_model=BFLFluxCannyImageRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxCannyImageRequest( - prompt=prompt, - prompt_upsampling=prompt_upsampling, - steps=steps, - guidance=guidance, - seed=seed, - control_image=control_image, - canny_low_threshold=canny_low_threshold, - canny_high_threshold=canny_high_threshold, - preprocessed_image=preprocessed_image, - ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) - - -class FluxProDepthNode(comfy_io.ComfyNode): - """ - Generate image using a control image (depth). - """ - - @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( - node_id="FluxProDepthNode", - display_name="Flux.1 Depth Control Image", - category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), - inputs=[ - comfy_io.Image.Input("control_image"), - comfy_io.String.Input( - "prompt", - multiline=True, - default="", - tooltip="Prompt for the image generation", - ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_upsampling", - default=False, - tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", - ), - comfy_io.Boolean.Input( - "skip_preprocessing", - default=False, - tooltip="Whether to skip preprocessing; set to True if control_image already is depth-ified, False if it is a raw image.", - ), - comfy_io.Float.Input( - "guidance", - default=15, - min=1, - max=100, - tooltip="Guidance strength for the image generation process", - ), - comfy_io.Int.Input( - "steps", - default=50, - min=15, - max=50, - tooltip="Number of steps for the image generation process", - ), - comfy_io.Int.Input( - "seed", - default=0, - min=0, - max=0xFFFFFFFFFFFFFFFF, - control_after_generate=True, - tooltip="The random seed used for creating the noise.", + default=True, + tooltip="Whether to perform upsampling on the prompt. " + "If active, automatically modifies the prompt for more creative generation.", ), + IO.Image.Input("images", optional=True, tooltip="Up to 9 images to be used as references."), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -940,58 +568,74 @@ class FluxProDepthNode(comfy_io.ComfyNode): @classmethod async def execute( cls, - control_image: torch.Tensor, prompt: str, + width: int, + height: int, + seed: int, prompt_upsampling: bool, - skip_preprocessing: bool, - steps: int, - guidance: float, - seed=0, - ) -> comfy_io.NodeOutput: - control_image = convert_image_to_base64(control_image[:,:,:,:3]) - preprocessed_image = None - - if skip_preprocessing: - preprocessed_image = control_image - control_image = None - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/bfl/flux-pro-1.0-depth/generate", - method=HttpMethod.POST, - request_model=BFLFluxDepthImageRequest, - response_model=BFLFluxProGenerateResponse, - ), - request=BFLFluxDepthImageRequest( + images: Input.Image | None = None, + ) -> IO.NodeOutput: + reference_images = {} + if images is not None: + if get_number_of_images(images) > 9: + raise ValueError("The current maximum number of supported images is 9.") + for image_index in range(images.shape[0]): + key_name = f"input_image_{image_index + 1}" if image_index else "input_image" + reference_images[key_name] = tensor_to_base64_string(images[image_index], total_pixels=2048 * 2048) + initial_response = await sync_op( + cls, + ApiEndpoint(path=cls.API_ENDPOINT, method="POST"), + response_model=BFLFluxProGenerateResponse, + data=Flux2ProGenerateRequest( prompt=prompt, - prompt_upsampling=prompt_upsampling, - steps=steps, - guidance=guidance, + width=width, + height=height, seed=seed, - control_image=control_image, - preprocessed_image=preprocessed_image, + prompt_upsampling=prompt_upsampling, + **reference_images, ), - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - output_image = await handle_bfl_synchronous_operation(operation, node_id=cls.hidden.unique_id) - return comfy_io.NodeOutput(output_image) + + def price_extractor(_r: BaseModel) -> float | None: + return None if initial_response.cost is None else initial_response.cost / 100 + + response = await poll_op( + cls, + ApiEndpoint(initial_response.polling_url), + response_model=BFLFluxStatusResponse, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + price_extractor=price_extractor, + completed_statuses=[BFLStatus.ready], + failed_statuses=[ + BFLStatus.request_moderated, + BFLStatus.content_moderated, + BFLStatus.error, + BFLStatus.task_not_found, + ], + queued_statuses=[], + ) + return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) + + +class Flux2MaxImageNode(Flux2ProImageNode): + + NODE_ID = "Flux2MaxImageNode" + DISPLAY_NAME = "Flux.2 [max] Image" + API_ENDPOINT = "/proxy/bfl/flux-2-max/generate" class BFLExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ FluxProUltraImageNode, - # FluxProImageNode, FluxKontextProImageNode, FluxKontextMaxImageNode, FluxProExpandNode, FluxProFillNode, - FluxProCannyNode, - FluxProDepthNode, + Flux2ProImageNode, + Flux2MaxImageNode, ] diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index 654d6a362..d4a2cfae6 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -1,35 +1,41 @@ import logging import math -from enum import Enum -from typing import Literal, Optional, Type, Union -from typing_extensions import override import torch -from pydantic import BaseModel, Field +from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api_nodes.util.validation_utils import ( - validate_image_aspect_ratio_range, - get_number_of_images, - validate_image_dimensions, +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.apis.bytedance_api import ( + RECOMMENDED_PRESETS, + RECOMMENDED_PRESETS_SEEDREAM_4, + VIDEO_TASKS_EXECUTION_TIME, + Image2ImageTaskCreationRequest, + Image2VideoTaskCreationRequest, + ImageTaskCreationResponse, + Seedream4Options, + Seedream4TaskCreationRequest, + TaskCreationResponse, + TaskImageContent, + TaskImageContentUrl, + TaskStatusResponse, + TaskTextContent, + Text2ImageTaskCreationRequest, + Text2VideoTaskCreationRequest, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - EmptyRequest, - HttpMethod, - SynchronousOperation, - PollingOperation, - T, -) -from comfy_api_nodes.apinode_utils import ( download_url_to_image_tensor, download_url_to_video_output, - upload_images_to_comfyapi, - validate_string, + get_number_of_images, image_tensor_pair_to_batch, + poll_op, + sync_op, + upload_images_to_comfyapi, + validate_image_aspect_ratio, + validate_image_dimensions, + validate_string, ) - BYTEPLUS_IMAGE_ENDPOINT = "/proxy/byteplus/api/v3/images/generations" # Long-running tasks endpoints(e.g., video) @@ -37,161 +43,6 @@ BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id} -class Text2ImageModelName(str, Enum): - seedream_3 = "seedream-3-0-t2i-250415" - - -class Image2ImageModelName(str, Enum): - seededit_3 = "seededit-3-0-i2i-250628" - - -class Text2VideoModelName(str, Enum): - seedance_1_pro = "seedance-1-0-pro-250528" - seedance_1_lite = "seedance-1-0-lite-t2v-250428" - - -class Image2VideoModelName(str, Enum): - """note(August 31): Pro model only supports FirstFrame: https://docs.byteplus.com/en/docs/ModelArk/1520757""" - seedance_1_pro = "seedance-1-0-pro-250528" - seedance_1_lite = "seedance-1-0-lite-i2v-250428" - - -class Text2ImageTaskCreationRequest(BaseModel): - model: Text2ImageModelName = Text2ImageModelName.seedream_3 - prompt: str = Field(...) - response_format: Optional[str] = Field("url") - size: Optional[str] = Field(None) - seed: Optional[int] = Field(0, ge=0, le=2147483647) - guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0) - watermark: Optional[bool] = Field(True) - - -class Image2ImageTaskCreationRequest(BaseModel): - model: Image2ImageModelName = Image2ImageModelName.seededit_3 - prompt: str = Field(...) - response_format: Optional[str] = Field("url") - image: str = Field(..., description="Base64 encoded string or image URL") - size: Optional[str] = Field("adaptive") - seed: Optional[int] = Field(..., ge=0, le=2147483647) - guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0) - watermark: Optional[bool] = Field(True) - - -class Seedream4Options(BaseModel): - max_images: int = Field(15) - - -class Seedream4TaskCreationRequest(BaseModel): - model: str = Field("seedream-4-0-250828") - prompt: str = Field(...) - response_format: str = Field("url") - image: Optional[list[str]] = Field(None, description="Image URLs") - size: str = Field(...) - seed: int = Field(..., ge=0, le=2147483647) - sequential_image_generation: str = Field("disabled") - sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) - watermark: bool = Field(True) - - -class ImageTaskCreationResponse(BaseModel): - model: str = Field(...) - created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.") - data: list = Field([], description="Contains information about the generated image(s).") - error: dict = Field({}, description="Contains `code` and `message` fields in case of error.") - - -class TaskTextContent(BaseModel): - type: str = Field("text") - text: str = Field(...) - - -class TaskImageContentUrl(BaseModel): - url: str = Field(...) - - -class TaskImageContent(BaseModel): - type: str = Field("image_url") - image_url: TaskImageContentUrl = Field(...) - role: Optional[Literal["first_frame", "last_frame", "reference_image"]] = Field(None) - - -class Text2VideoTaskCreationRequest(BaseModel): - model: Text2VideoModelName = Text2VideoModelName.seedance_1_pro - content: list[TaskTextContent] = Field(..., min_length=1) - - -class Image2VideoTaskCreationRequest(BaseModel): - model: Image2VideoModelName = Image2VideoModelName.seedance_1_pro - content: list[Union[TaskTextContent, TaskImageContent]] = Field(..., min_length=2) - - -class TaskCreationResponse(BaseModel): - id: str = Field(...) - - -class TaskStatusError(BaseModel): - code: str = Field(...) - message: str = Field(...) - - -class TaskStatusResult(BaseModel): - video_url: str = Field(...) - - -class TaskStatusResponse(BaseModel): - id: str = Field(...) - model: str = Field(...) - status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...) - error: Optional[TaskStatusError] = Field(None) - content: Optional[TaskStatusResult] = Field(None) - - -RECOMMENDED_PRESETS = [ - ("1024x1024 (1:1)", 1024, 1024), - ("864x1152 (3:4)", 864, 1152), - ("1152x864 (4:3)", 1152, 864), - ("1280x720 (16:9)", 1280, 720), - ("720x1280 (9:16)", 720, 1280), - ("832x1248 (2:3)", 832, 1248), - ("1248x832 (3:2)", 1248, 832), - ("1512x648 (21:9)", 1512, 648), - ("2048x2048 (1:1)", 2048, 2048), - ("Custom", None, None), -] - -RECOMMENDED_PRESETS_SEEDREAM_4 = [ - ("2048x2048 (1:1)", 2048, 2048), - ("2304x1728 (4:3)", 2304, 1728), - ("1728x2304 (3:4)", 1728, 2304), - ("2560x1440 (16:9)", 2560, 1440), - ("1440x2560 (9:16)", 1440, 2560), - ("2496x1664 (3:2)", 2496, 1664), - ("1664x2496 (2:3)", 1664, 2496), - ("3024x1296 (21:9)", 3024, 1296), - ("4096x4096 (1:1)", 4096, 4096), - ("Custom", None, None), -] - -# The time in this dictionary are given for 10 seconds duration. -VIDEO_TASKS_EXECUTION_TIME = { - "seedance-1-0-lite-t2v-250428": { - "480p": 40, - "720p": 60, - "1080p": 90, - }, - "seedance-1-0-lite-i2v-250428": { - "480p": 40, - "720p": 60, - "1080p": 90, - }, - "seedance-1-0-pro-250528": { - "480p": 70, - "720p": 85, - "1080p": 115, - }, -} - - def get_image_url_from_response(response: ImageTaskCreationResponse) -> str: if response.error: error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}" @@ -201,69 +52,28 @@ def get_image_url_from_response(response: ImageTaskCreationResponse) -> str: return response.data[0]["url"] -def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: - """Returns the video URL from the task status response if it exists.""" - if hasattr(response, "content") and response.content: - return response.content.video_url - return None - - -async def poll_until_finished( - auth_kwargs: dict[str, str], - task_id: str, - estimated_duration: Optional[int] = None, - node_id: Optional[str] = None, -) -> TaskStatusResponse: - """Polls the ByteDance API endpoint until the task reaches a terminal state, then returns the response.""" - return await PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"{BYTEPLUS_TASK_STATUS_ENDPOINT}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=TaskStatusResponse, - ), - completed_statuses=[ - "succeeded", - ], - failed_statuses=[ - "cancelled", - "failed", - ], - status_extractor=lambda response: response.status, - auth_kwargs=auth_kwargs, - result_url_extractor=get_video_url_from_task_status, - estimated_duration=estimated_duration, - node_id=node_id, - ).execute() - - -class ByteDanceImageNode(comfy_io.ComfyNode): +class ByteDanceImageNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceImageNode", display_name="ByteDance Image", category="api node/image/ByteDance", description="Generate images using ByteDance models via api based on prompt", inputs=[ - comfy_io.Combo.Input( - "model", - options=[model.value for model in Text2ImageModelName], - default=Text2ImageModelName.seedream_3.value, - tooltip="Model name", - ), - comfy_io.String.Input( + IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]), + IO.String.Input( "prompt", multiline=True, tooltip="The text prompt used to generate the image", ), - comfy_io.Combo.Input( + IO.Combo.Input( "size_preset", options=[label for label, _, _ in RECOMMENDED_PRESETS], tooltip="Pick a recommended size. Select Custom to use the width and height below", ), - comfy_io.Int.Input( + IO.Int.Input( "width", default=1024, min=512, @@ -271,7 +81,7 @@ class ByteDanceImageNode(comfy_io.ComfyNode): step=64, tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`", ), - comfy_io.Int.Input( + IO.Int.Input( "height", default=1024, min=512, @@ -279,41 +89,41 @@ class ByteDanceImageNode(comfy_io.ComfyNode): step=64, tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation", optional=True, ), - comfy_io.Float.Input( + IO.Float.Input( "guidance_scale", default=2.5, min=1.0, max=10.0, step=0.01, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Higher value makes the image follow the prompt more closely", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the image", + default=False, + tooltip='Whether to add an "AI generated" watermark to the image', optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -329,7 +139,7 @@ class ByteDanceImageNode(comfy_io.ComfyNode): seed: int, guidance_scale: float, watermark: bool, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) w = h = None for label, tw, th in RECOMMENDED_PRESETS: @@ -341,8 +151,7 @@ class ByteDanceImageNode(comfy_io.ComfyNode): w, h = width, height if not (512 <= w <= 2048) or not (512 <= h <= 2048): raise ValueError( - f"Custom size out of range: {w}x{h}. " - "Both width and height must be between 512 and 2048 pixels." + f"Custom size out of range: {w}x{h}. " "Both width and height must be between 512 and 2048 pixels." ) payload = Text2ImageTaskCreationRequest( @@ -353,112 +162,91 @@ class ByteDanceImageNode(comfy_io.ComfyNode): guidance_scale=guidance_scale, watermark=watermark, ) - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=BYTEPLUS_IMAGE_ENDPOINT, - method=HttpMethod.POST, - request_model=Text2ImageTaskCreationRequest, - response_model=ImageTaskCreationResponse, - ), - request=payload, - auth_kwargs=auth_kwargs, - ).execute() - return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) + response = await sync_op( + cls, + ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"), + data=payload, + response_model=ImageTaskCreationResponse, + ) + return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) -class ByteDanceImageEditNode(comfy_io.ComfyNode): +class ByteDanceImageEditNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceImageEditNode", display_name="ByteDance Image Edit", category="api node/image/ByteDance", description="Edit images using ByteDance models via api based on prompt", inputs=[ - comfy_io.Combo.Input( - "model", - options=[model.value for model in Image2ImageModelName], - default=Image2ImageModelName.seededit_3.value, - tooltip="Model name", - ), - comfy_io.Image.Input( + IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]), + IO.Image.Input( "image", tooltip="The base image to edit", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Instruction to edit image", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation", optional=True, ), - comfy_io.Float.Input( + IO.Float.Input( "guidance_scale", default=5.5, min=1.0, max=10.0, step=0.01, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Higher value makes the image follow the prompt more closely", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the image", + default=False, + tooltip='Whether to add an "AI generated" watermark to the image', optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, seed: int, guidance_scale: float, watermark: bool, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) if get_number_of_images(image) != 1: raise ValueError("Exactly one input image is required.") - validate_image_aspect_ratio_range(image, (1, 3), (3, 1)) - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - source_url = (await upload_images_to_comfyapi( - image, - max_images=1, - mime_type="image/png", - auth_kwargs=auth_kwargs, - ))[0] + validate_image_aspect_ratio(image, (1, 3), (3, 1)) + source_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0] payload = Image2ImageTaskCreationRequest( model=model, prompt=prompt, @@ -467,107 +255,103 @@ class ByteDanceImageEditNode(comfy_io.ComfyNode): guidance_scale=guidance_scale, watermark=watermark, ) - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=BYTEPLUS_IMAGE_ENDPOINT, - method=HttpMethod.POST, - request_model=Image2ImageTaskCreationRequest, - response_model=ImageTaskCreationResponse, - ), - request=payload, - auth_kwargs=auth_kwargs, - ).execute() - return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) + response = await sync_op( + cls, + ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"), + data=payload, + response_model=ImageTaskCreationResponse, + ) + return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) -class ByteDanceSeedreamNode(comfy_io.ComfyNode): +class ByteDanceSeedreamNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceSeedreamNode", - display_name="ByteDance Seedream 4", + display_name="ByteDance Seedream 4.5", category="api node/image/ByteDance", description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=["seedream-4-0-250828"], + options=["seedream-4-5-251128", "seedream-4-0-250828"], tooltip="Model name", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text prompt for creating or editing an image.", ), - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="Input image(s) for image-to-image generation. " - "List of 1-10 images for single or multi-reference generation.", + "List of 1-10 images for single or multi-reference generation.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "size_preset", options=[label for label, _, _ in RECOMMENDED_PRESETS_SEEDREAM_4], tooltip="Pick a recommended size. Select Custom to use the width and height below.", ), - comfy_io.Int.Input( + IO.Int.Input( "width", default=2048, min=1024, max=4096, - step=64, + step=8, tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "height", default=2048, min=1024, max=4096, - step=64, + step=8, tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "sequential_image_generation", options=["disabled", "auto"], tooltip="Group image generation mode. " - "'disabled' generates a single image. " - "'auto' lets the model decide whether to generate multiple related images " - "(e.g., story scenes, character variations).", + "'disabled' generates a single image. " + "'auto' lets the model decide whether to generate multiple related images " + "(e.g., story scenes, character variations).", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "max_images", default=1, min=1, max=15, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Maximum number of images to generate when sequential_image_generation='auto'. " - "Total images (input + generated) cannot exceed 15.", + "Total images (input + generated) cannot exceed 15.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the image.", + default=False, + tooltip='Whether to add an "AI generated" watermark to the image.', optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "fail_on_partial", default=True, tooltip="If enabled, abort execution if any requested images are missing or return an error.", @@ -575,12 +359,12 @@ class ByteDanceSeedreamNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -590,16 +374,16 @@ class ByteDanceSeedreamNode(comfy_io.ComfyNode): cls, model: str, prompt: str, - image: torch.Tensor = None, + image: Input.Image | None = None, size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0], width: int = 2048, height: int = 2048, sequential_image_generation: str = "disabled", max_images: int = 1, seed: int = 0, - watermark: bool = True, + watermark: bool = False, fail_on_partial: bool = True, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) w = h = None for label, tw, th in RECOMMENDED_PRESETS_SEEDREAM_4: @@ -611,9 +395,20 @@ class ByteDanceSeedreamNode(comfy_io.ComfyNode): w, h = width, height if not (1024 <= w <= 4096) or not (1024 <= h <= 4096): raise ValueError( - f"Custom size out of range: {w}x{h}. " - "Both width and height must be between 1024 and 4096 pixels." + f"Custom size out of range: {w}x{h}. " "Both width and height must be between 1024 and 4096 pixels." ) + out_num_pixels = w * h + mp_provided = out_num_pixels / 1_000_000.0 + if "seedream-4-5" in model and out_num_pixels < 3686400: + raise ValueError( + f"Minimum image resolution that Seedream 4.5 can generate is 3.68MP, " + f"but {mp_provided:.2f}MP provided." + ) + if "seedream-4-0" in model and out_num_pixels < 921600: + raise ValueError( + f"Minimum image resolution that the selected model can generate is 0.92MP, " + f"but {mp_provided:.2f}MP provided." + ) n_input_images = get_number_of_images(image) if image is not None else 0 if n_input_images > 10: raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.") @@ -621,121 +416,110 @@ class ByteDanceSeedreamNode(comfy_io.ComfyNode): raise ValueError( "The maximum number of generated images plus the number of reference images cannot exceed 15." ) - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } reference_images_urls = [] if n_input_images: for i in image: - validate_image_aspect_ratio_range(i, (1, 3), (3, 1)) - reference_images_urls = (await upload_images_to_comfyapi( + validate_image_aspect_ratio(i, (1, 3), (3, 1)) + reference_images_urls = await upload_images_to_comfyapi( + cls, image, max_images=n_input_images, mime_type="image/png", - auth_kwargs=auth_kwargs, - )) - payload = Seedream4TaskCreationRequest( - model=model, - prompt=prompt, - image=reference_images_urls, - size=f"{w}x{h}", - seed=seed, - sequential_image_generation=sequential_image_generation, - sequential_image_generation_options=Seedream4Options(max_images=max_images), - watermark=watermark, - ) - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=BYTEPLUS_IMAGE_ENDPOINT, - method=HttpMethod.POST, - request_model=Seedream4TaskCreationRequest, - response_model=ImageTaskCreationResponse, + ) + response = await sync_op( + cls, + ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"), + response_model=ImageTaskCreationResponse, + data=Seedream4TaskCreationRequest( + model=model, + prompt=prompt, + image=reference_images_urls, + size=f"{w}x{h}", + seed=seed, + sequential_image_generation=sequential_image_generation, + sequential_image_generation_options=Seedream4Options(max_images=max_images), + watermark=watermark, ), - request=payload, - auth_kwargs=auth_kwargs, - ).execute() - + ) if len(response.data) == 1: - return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) + return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) urls = [str(d["url"]) for d in response.data if isinstance(d, dict) and "url" in d] if fail_on_partial and len(urls) < len(response.data): raise RuntimeError(f"Only {len(urls)} of {len(response.data)} images were generated before error.") - return comfy_io.NodeOutput(torch.cat([await download_url_to_image_tensor(i) for i in urls])) + return IO.NodeOutput(torch.cat([await download_url_to_image_tensor(i) for i in urls])) -class ByteDanceTextToVideoNode(comfy_io.ComfyNode): +class ByteDanceTextToVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceTextToVideoNode", display_name="ByteDance Text to Video", category="api node/video/ByteDance", description="Generate video using ByteDance models via api based on prompt", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in Text2VideoModelName], - default=Text2VideoModelName.seedance_1_pro.value, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"], + default="seedance-1-0-pro-fast-251015", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="The text prompt used to generate the video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=["480p", "720p", "1080p"], tooltip="The resolution of the output video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=["16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], tooltip="The aspect ratio of the output video.", ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=3, max=12, step=1, tooltip="The duration of the output video in seconds.", - display_mode=comfy_io.NumberDisplay.slider, + display_mode=IO.NumberDisplay.slider, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "camera_fixed", default=False, tooltip="Specifies whether to fix the camera. The platform appends an instruction " - "to fix the camera to your prompt, but does not guarantee the actual effect.", + "to fix the camera to your prompt, but does not guarantee the actual effect.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the video.", + default=False, + tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -751,7 +535,7 @@ class ByteDanceTextToVideoNode(comfy_io.ComfyNode): seed: int, camera_fixed: bool, watermark: bool, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) @@ -764,99 +548,88 @@ class ByteDanceTextToVideoNode(comfy_io.ComfyNode): f"--camerafixed {str(camera_fixed).lower()} " f"--watermark {str(watermark).lower()}" ) - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } return await process_video_task( - request_model=Text2VideoTaskCreationRequest, - payload=Text2VideoTaskCreationRequest( - model=model, - content=[TaskTextContent(text=prompt)], - ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, + cls, + payload=Text2VideoTaskCreationRequest(model=model, content=[TaskTextContent(text=prompt)]), estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) -class ByteDanceImageToVideoNode(comfy_io.ComfyNode): +class ByteDanceImageToVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceImageToVideoNode", display_name="ByteDance Image to Video", category="api node/video/ByteDance", description="Generate video using ByteDance models via api based on image and prompt", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in Image2VideoModelName], - default=Image2VideoModelName.seedance_1_pro.value, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"], + default="seedance-1-0-pro-fast-251015", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="The text prompt used to generate the video.", ), - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="First frame to be used for the video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=["480p", "720p", "1080p"], tooltip="The resolution of the output video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], tooltip="The aspect ratio of the output video.", ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=3, max=12, step=1, tooltip="The duration of the output video in seconds.", - display_mode=comfy_io.NumberDisplay.slider, + display_mode=IO.NumberDisplay.slider, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "camera_fixed", default=False, tooltip="Specifies whether to fix the camera. The platform appends an instruction " - "to fix the camera to your prompt, but does not guarantee the actual effect.", + "to fix the camera to your prompt, but does not guarantee the actual effect.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the video.", + default=False, + tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -866,26 +639,20 @@ class ByteDanceImageToVideoNode(comfy_io.ComfyNode): cls, model: str, prompt: str, - image: torch.Tensor, + image: Input.Image, resolution: str, aspect_ratio: str, duration: int, seed: int, camera_fixed: bool, watermark: bool, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000) - validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth_kwargs))[0] + validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 + image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0] prompt = ( f"{prompt} " f"--resolution {resolution} " @@ -897,97 +664,94 @@ class ByteDanceImageToVideoNode(comfy_io.ComfyNode): ) return await process_video_task( - request_model=Image2VideoTaskCreationRequest, + cls, payload=Image2VideoTaskCreationRequest( model=model, content=[TaskTextContent(text=prompt), TaskImageContent(image_url=TaskImageContentUrl(url=image_url))], ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) -class ByteDanceFirstLastFrameNode(comfy_io.ComfyNode): +class ByteDanceFirstLastFrameNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceFirstLastFrameNode", display_name="ByteDance First-Last-Frame to Video", category="api node/video/ByteDance", description="Generate video using prompt and first and last frames.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in Image2VideoModelName], - default=Image2VideoModelName.seedance_1_lite.value, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"], + default="seedance-1-0-lite-i2v-250428", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="The text prompt used to generate the video.", ), - comfy_io.Image.Input( + IO.Image.Input( "first_frame", tooltip="First frame to be used for the video.", ), - comfy_io.Image.Input( + IO.Image.Input( "last_frame", tooltip="Last frame to be used for the video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=["480p", "720p", "1080p"], tooltip="The resolution of the output video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], tooltip="The aspect ratio of the output video.", ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=3, max=12, step=1, tooltip="The duration of the output video in seconds.", - display_mode=comfy_io.NumberDisplay.slider, + display_mode=IO.NumberDisplay.slider, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "camera_fixed", default=False, tooltip="Specifies whether to fix the camera. The platform appends an instruction " - "to fix the camera to your prompt, but does not guarantee the actual effect.", + "to fix the camera to your prompt, but does not guarantee the actual effect.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the video.", + default=False, + tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -997,31 +761,26 @@ class ByteDanceFirstLastFrameNode(comfy_io.ComfyNode): cls, model: str, prompt: str, - first_frame: torch.Tensor, - last_frame: torch.Tensor, + first_frame: Input.Image, + last_frame: Input.Image, resolution: str, aspect_ratio: str, duration: int, seed: int, camera_fixed: bool, watermark: bool, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) for i in (first_frame, last_frame): validate_image_dimensions(i, min_width=300, min_height=300, max_width=6000, max_height=6000) - validate_image_aspect_ratio_range(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } + validate_image_aspect_ratio(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 download_urls = await upload_images_to_comfyapi( + cls, image_tensor_pair_to_batch(first_frame, last_frame), max_images=2, mime_type="image/png", - auth_kwargs=auth_kwargs, ) prompt = ( @@ -1035,7 +794,7 @@ class ByteDanceFirstLastFrameNode(comfy_io.ComfyNode): ) return await process_video_task( - request_model=Image2VideoTaskCreationRequest, + cls, payload=Image2VideoTaskCreationRequest( model=model, content=[ @@ -1044,81 +803,78 @@ class ByteDanceFirstLastFrameNode(comfy_io.ComfyNode): TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[1])), role="last_frame"), ], ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) -class ByteDanceImageReferenceNode(comfy_io.ComfyNode): +class ByteDanceImageReferenceNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ByteDanceImageReferenceNode", display_name="ByteDance Reference Images to Video", category="api node/video/ByteDance", description="Generate video using prompt and reference images.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[Image2VideoModelName.seedance_1_lite.value], - default=Image2VideoModelName.seedance_1_lite.value, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"], + default="seedance-1-0-lite-i2v-250428", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="The text prompt used to generate the video.", ), - comfy_io.Image.Input( + IO.Image.Input( "images", tooltip="One to four images.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=["480p", "720p"], tooltip="The resolution of the output video.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], tooltip="The aspect ratio of the output video.", ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=3, max=12, step=1, tooltip="The duration of the output video in seconds.", - display_mode=comfy_io.NumberDisplay.slider, + display_mode=IO.NumberDisplay.slider, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the video.", + default=False, + tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -1128,28 +884,20 @@ class ByteDanceImageReferenceNode(comfy_io.ComfyNode): cls, model: str, prompt: str, - images: torch.Tensor, + images: Input.Image, resolution: str, aspect_ratio: str, duration: int, seed: int, watermark: bool, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "watermark"]) for image in images: validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000) - validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - image_urls = await upload_images_to_comfyapi( - images, max_images=4, mime_type="image/png", auth_kwargs=auth_kwargs - ) + validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 + image_urls = await upload_images_to_comfyapi(cls, images, max_images=4, mime_type="image/png") prompt = ( f"{prompt} " f"--resolution {resolution} " @@ -1160,44 +908,34 @@ class ByteDanceImageReferenceNode(comfy_io.ComfyNode): ) x = [ TaskTextContent(text=prompt), - *[TaskImageContent(image_url=TaskImageContentUrl(url=str(i)), role="reference_image") for i in image_urls] + *[TaskImageContent(image_url=TaskImageContentUrl(url=str(i)), role="reference_image") for i in image_urls], ] return await process_video_task( - request_model=Image2VideoTaskCreationRequest, - payload=Image2VideoTaskCreationRequest( - model=model, - content=x, - ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, + cls, + payload=Image2VideoTaskCreationRequest(model=model, content=x), estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) async def process_video_task( - request_model: Type[T], - payload: Union[Text2VideoTaskCreationRequest, Image2VideoTaskCreationRequest], - auth_kwargs: dict, - node_id: str, - estimated_duration: Optional[int], -) -> comfy_io.NodeOutput: - initial_response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=BYTEPLUS_TASK_ENDPOINT, - method=HttpMethod.POST, - request_model=request_model, - response_model=TaskCreationResponse, - ), - request=payload, - auth_kwargs=auth_kwargs, - ).execute() - response = await poll_until_finished( - auth_kwargs, - initial_response.id, - estimated_duration=estimated_duration, - node_id=node_id, + cls: type[IO.ComfyNode], + payload: Text2VideoTaskCreationRequest | Image2VideoTaskCreationRequest, + estimated_duration: int | None, +) -> IO.NodeOutput: + initial_response = await sync_op( + cls, + ApiEndpoint(path=BYTEPLUS_TASK_ENDPOINT, method="POST"), + data=payload, + response_model=TaskCreationResponse, ) - return comfy_io.NodeOutput(await download_url_to_video_output(get_video_url_from_task_status(response))) + response = await poll_op( + cls, + ApiEndpoint(path=f"{BYTEPLUS_TASK_STATUS_ENDPOINT}/{initial_response.id}"), + status_extractor=lambda r: r.status, + estimated_duration=estimated_duration, + response_model=TaskStatusResponse, + ) + return IO.NodeOutput(await download_url_to_video_output(response.content.video_url)) def raise_if_text_params(prompt: str, text_params: list[str]) -> None: @@ -1210,7 +948,7 @@ def raise_if_text_params(prompt: str, text_params: list[str]) -> None: class ByteDanceExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ ByteDanceImageNode, ByteDanceImageEditNode, @@ -1221,5 +959,6 @@ class ByteDanceExtension(ComfyExtension): ByteDanceImageReferenceNode, ] + async def comfy_entrypoint() -> ByteDanceExtension: return ByteDanceExtension() diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 309e9a2d2..e8ed7e797 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -2,48 +2,57 @@ API Nodes for Gemini Multimodal LLM Usage via Remote API See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference """ -from __future__ import annotations -import json -import time -import os -import uuid import base64 -from io import BytesIO +import os from enum import Enum -from typing import Optional, Literal +from io import BytesIO +from typing import Literal import torch +from typing_extensions import override import folder_paths -from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict -from server import PromptServer -from comfy_api_nodes.apis import ( +from comfy_api.latest import IO, ComfyExtension, Input, Types +from comfy_api_nodes.apis.gemini_api import ( GeminiContent, + GeminiFileData, GeminiGenerateContentRequest, GeminiGenerateContentResponse, + GeminiImageConfig, + GeminiImageGenerateContentRequest, + GeminiImageGenerationConfig, GeminiInlineData, - GeminiPart, GeminiMimeType, + GeminiPart, + GeminiRole, + GeminiSystemInstructionContent, + GeminiTextPart, + Modality, ) -from comfy_api_nodes.apis.gemini_api import GeminiImageGenerationConfig, GeminiImageGenerateContentRequest -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, -) -from comfy_api_nodes.apinode_utils import ( - validate_string, audio_to_base64_string, - video_to_base64_string, - tensor_to_base64_string, bytesio_to_image_tensor, + download_url_to_image_tensor, + get_number_of_images, + sync_op, + tensor_to_base64_string, + upload_images_to_comfyapi, + validate_string, + video_to_base64_string, ) -from comfy_api.util import VideoContainer, VideoCodec - GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini" GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB +GEMINI_IMAGE_SYS_PROMPT = ( + "You are an expert image-generation engine. You must ALWAYS produce an image.\n" + "Interpret all user input—regardless of " + "format, intent, or abstraction—as literal visual directives for image composition.\n" + "If a prompt is conversational or lacks specific visual details, " + "you must creatively invent a concrete visual scenario that depicts the concept.\n" + "Prioritize generating the visual representation above any text, formatting, or conversational requests." +) class GeminiModel(str, Enum): @@ -55,6 +64,7 @@ class GeminiModel(str, Enum): gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17" gemini_2_5_pro = "gemini-2.5-pro" gemini_2_5_flash = "gemini-2.5-flash" + gemini_3_0_pro = "gemini-3-pro-preview" class GeminiImageModel(str, Enum): @@ -63,109 +73,53 @@ class GeminiImageModel(str, Enum): """ gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview" + gemini_2_5_flash_image = "gemini-2.5-flash-image" -def get_gemini_endpoint( - model: GeminiModel, -) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]: - """ - Get the API endpoint for a given Gemini model. - - Args: - model: The Gemini model to use, either as enum or string value. - - Returns: - ApiEndpoint configured for the specific Gemini model. - """ - if isinstance(model, str): - model = GeminiModel(model) - return ApiEndpoint( - path=f"{GEMINI_BASE_ENDPOINT}/{model.value}", - method=HttpMethod.POST, - request_model=GeminiGenerateContentRequest, - response_model=GeminiGenerateContentResponse, - ) - - -def get_gemini_image_endpoint( - model: GeminiImageModel, -) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]: - """ - Get the API endpoint for a given Gemini model. - - Args: - model: The Gemini model to use, either as enum or string value. - - Returns: - ApiEndpoint configured for the specific Gemini model. - """ - if isinstance(model, str): - model = GeminiImageModel(model) - return ApiEndpoint( - path=f"{GEMINI_BASE_ENDPOINT}/{model.value}", - method=HttpMethod.POST, - request_model=GeminiImageGenerateContentRequest, - response_model=GeminiGenerateContentResponse, - ) - - -def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]: - """ - Convert image tensor input to Gemini API compatible parts. - - Args: - image_input: Batch of image tensors from ComfyUI. - - Returns: - List of GeminiPart objects containing the encoded images. - """ +async def create_image_parts( + cls: type[IO.ComfyNode], + images: Input.Image, + image_limit: int = 0, +) -> list[GeminiPart]: image_parts: list[GeminiPart] = [] - for image_index in range(image_input.shape[0]): - image_as_b64 = tensor_to_base64_string( - image_input[image_index].unsqueeze(0) + if image_limit < 0: + raise ValueError("image_limit must be greater than or equal to 0 when creating Gemini image parts.") + total_images = get_number_of_images(images) + if total_images <= 0: + raise ValueError("No images provided to create_image_parts; at least one image is required.") + + # If image_limit == 0 --> use all images; otherwise clamp to image_limit. + effective_max = total_images if image_limit == 0 else min(total_images, image_limit) + + # Number of images we'll send as URLs (fileData) + num_url_images = min(effective_max, 10) # Vertex API max number of image links + reference_images_urls = await upload_images_to_comfyapi( + cls, + images, + max_images=num_url_images, + ) + for reference_image_url in reference_images_urls: + image_parts.append( + GeminiPart( + fileData=GeminiFileData( + mimeType=GeminiMimeType.image_png, + fileUri=reference_image_url, + ) + ) ) + for idx in range(num_url_images, effective_max): image_parts.append( GeminiPart( inlineData=GeminiInlineData( mimeType=GeminiMimeType.image_png, - data=image_as_b64, + data=tensor_to_base64_string(images[idx]), ) ) ) return image_parts -def create_text_part(text: str) -> GeminiPart: - """ - Create a text part for the Gemini API request. - - Args: - text: The text content to include in the request. - - Returns: - A GeminiPart object with the text content. - """ - return GeminiPart(text=text) - - -def get_parts_from_response( - response: GeminiGenerateContentResponse -) -> list[GeminiPart]: - """ - Extract all parts from the Gemini API response. - - Args: - response: The API response from Gemini. - - Returns: - List of response parts from the first candidate. - """ - return response.candidates[0].content.parts - - -def get_parts_by_type( - response: GeminiGenerateContentResponse, part_type: Literal["text"] | str -) -> list[GeminiPart]: +def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Literal["text"] | str) -> list[GeminiPart]: """ Filter response parts by their type. @@ -176,15 +130,23 @@ def get_parts_by_type( Returns: List of response parts matching the requested type. """ + if response.candidates is None: + if response.promptFeedback and response.promptFeedback.blockReason: + feedback = response.promptFeedback + raise ValueError( + f"Gemini API blocked the request. Reason: {feedback.blockReason} ({feedback.blockReasonMessage})" + ) + raise ValueError( + "Gemini API returned no response candidates. If you are using the `IMAGE` modality, " + "try changing it to `IMAGE+TEXT` to view the model's reasoning and understand why image generation failed." + ) parts = [] - for part in get_parts_from_response(response): - if part_type == "text" and hasattr(part, "text") and part.text: + for part in response.candidates[0].content.parts: + if part_type == "text" and part.text: parts.append(part) - elif ( - hasattr(part, "inlineData") - and part.inlineData - and part.inlineData.mimeType == part_type - ): + elif part.inlineData and part.inlineData.mimeType == part_type: + parts.append(part) + elif part.fileData and part.fileData.mimeType == part_type: parts.append(part) # Skip parts that don't match the requested type return parts @@ -204,19 +166,66 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str: return "\n".join([part.text for part in parts]) -def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor: - image_tensors: list[torch.Tensor] = [] +async def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image: + image_tensors: list[Input.Image] = [] parts = get_parts_by_type(response, "image/png") for part in parts: - image_data = base64.b64decode(part.inlineData.data) - returned_image = bytesio_to_image_tensor(BytesIO(image_data)) + if part.inlineData: + image_data = base64.b64decode(part.inlineData.data) + returned_image = bytesio_to_image_tensor(BytesIO(image_data)) + else: + returned_image = await download_url_to_image_tensor(part.fileData.fileUri) image_tensors.append(returned_image) if len(image_tensors) == 0: - return torch.zeros((1,1024,1024,4)) + return torch.zeros((1, 1024, 1024, 4)) return torch.cat(image_tensors, dim=0) -class GeminiNode(ComfyNodeABC): +def calculate_tokens_price(response: GeminiGenerateContentResponse) -> float | None: + if not response.modelVersion: + return None + # Define prices (Cost per 1,000,000 tokens), see https://cloud.google.com/vertex-ai/generative-ai/pricing + if response.modelVersion in ("gemini-2.5-pro-preview-05-06", "gemini-2.5-pro"): + input_tokens_price = 1.25 + output_text_tokens_price = 10.0 + output_image_tokens_price = 0.0 + elif response.modelVersion in ( + "gemini-2.5-flash-preview-04-17", + "gemini-2.5-flash", + ): + input_tokens_price = 0.30 + output_text_tokens_price = 2.50 + output_image_tokens_price = 0.0 + elif response.modelVersion in ( + "gemini-2.5-flash-image-preview", + "gemini-2.5-flash-image", + ): + input_tokens_price = 0.30 + output_text_tokens_price = 2.50 + output_image_tokens_price = 30.0 + elif response.modelVersion == "gemini-3-pro-preview": + input_tokens_price = 2 + output_text_tokens_price = 12.0 + output_image_tokens_price = 0.0 + elif response.modelVersion == "gemini-3-pro-image-preview": + input_tokens_price = 2 + output_text_tokens_price = 12.0 + output_image_tokens_price = 120.0 + else: + return None + final_price = response.usageMetadata.promptTokenCount * input_tokens_price + if response.usageMetadata.candidatesTokensDetails: + for i in response.usageMetadata.candidatesTokensDetails: + if i.modality == Modality.IMAGE: + final_price += output_image_tokens_price * i.tokenCount # for Nano Banana models + else: + final_price += output_text_tokens_price * i.tokenCount + if response.usageMetadata.thoughtsTokenCount: + final_price += output_text_tokens_price * response.usageMetadata.thoughtsTokenCount + return final_price / 1_000_000.0 + + +class GeminiNode(IO.ComfyNode): """ Node to generate text responses from a Gemini model. @@ -227,95 +236,87 @@ class GeminiNode(ComfyNodeABC): """ @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Text inputs to the model, used to generate a response. You can include detailed instructions, questions, or context for the model.", - }, + def define_schema(cls): + return IO.Schema( + node_id="GeminiNode", + display_name="Google Gemini", + category="api node/text/Gemini", + description="Generate text responses with Google's Gemini AI model. " + "You can provide multiple types of inputs (text, images, audio, video) " + "as context for generating more relevant and meaningful responses.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Text inputs to the model, used to generate a response. " + "You can include detailed instructions, questions, or context for the model.", ), - "model": ( - IO.COMBO, - { - "tooltip": "The Gemini model to use for generating responses.", - "options": [model.value for model in GeminiModel], - "default": GeminiModel.gemini_2_5_pro.value, - }, + IO.Combo.Input( + "model", + options=GeminiModel, + default=GeminiModel.gemini_2_5_pro, + tooltip="The Gemini model to use for generating responses.", ), - "seed": ( - IO.INT, - { - "default": 42, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.", - }, + IO.Int.Input( + "seed", + default=42, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="When seed is fixed to a specific value, the model makes a best effort to provide " + "the same response for repeated requests. Deterministic output isn't guaranteed. " + "Also, changing the model or parameter settings, such as the temperature, " + "can cause variations in the response even when you use the same seed value. " + "By default, a random seed value is used.", ), - }, - "optional": { - "images": ( - IO.IMAGE, - { - "default": None, - "tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.", - }, + IO.Image.Input( + "images", + optional=True, + tooltip="Optional image(s) to use as context for the model. " + "To include multiple images, you can use the Batch Images node.", ), - "audio": ( - IO.AUDIO, - { - "tooltip": "Optional audio to use as context for the model.", - "default": None, - }, + IO.Audio.Input( + "audio", + optional=True, + tooltip="Optional audio to use as context for the model.", ), - "video": ( - IO.VIDEO, - { - "tooltip": "Optional video to use as context for the model.", - "default": None, - }, + IO.Video.Input( + "video", + optional=True, + tooltip="Optional video to use as context for the model.", ), - "files": ( - "GEMINI_INPUT_FILES", - { - "default": None, - "tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.", - }, + IO.Custom("GEMINI_INPUT_FILES").Input( + "files", + optional=True, + tooltip="Optional file(s) to use as context for the model. " + "Accepts inputs from the Gemini Generate Content Input Files node.", ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + IO.String.Input( + "system_prompt", + multiline=True, + default="", + optional=True, + tooltip="Foundational instructions that dictate an AI's behavior.", + ), + ], + outputs=[ + IO.String.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - DESCRIPTION = "Generate text responses with Google's Gemini AI model. You can provide multiple types of inputs (text, images, audio, video) as context for generating more relevant and meaningful responses." - RETURN_TYPES = ("STRING",) - FUNCTION = "api_call" - CATEGORY = "api node/text/Gemini" - API_NODE = True - - def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]: - """ - Convert video input to Gemini API compatible parts. - - Args: - video_input: Video tensor from ComfyUI. - **kwargs: Additional arguments to pass to the conversion function. - - Returns: - List of GeminiPart objects containing the encoded video. - """ + @classmethod + def create_video_parts(cls, video_input: Input.Video) -> list[GeminiPart]: + """Convert video input to Gemini API compatible parts.""" base_64_string = video_to_base64_string( - video_input, - container_format=VideoContainer.MP4, - codec=VideoCodec.H264 + video_input, container_format=Types.VideoContainer.MP4, codec=Types.VideoCodec.H264 ) return [ GeminiPart( @@ -326,7 +327,8 @@ class GeminiNode(ComfyNodeABC): ) ] - def create_audio_parts(self, audio_input: IO.AUDIO) -> list[GeminiPart]: + @classmethod + def create_audio_parts(cls, audio_input: Input.Audio) -> list[GeminiPart]: """ Convert audio input to Gemini API compatible parts. @@ -339,10 +341,10 @@ class GeminiNode(ComfyNodeABC): audio_parts: list[GeminiPart] = [] for batch_index in range(audio_input["waveform"].shape[0]): # Recreate an IO.AUDIO object for the given batch dimension index - audio_at_index = { - "waveform": audio_input["waveform"][batch_index].unsqueeze(0), - "sample_rate": audio_input["sample_rate"], - } + audio_at_index = Input.Audio( + waveform=audio_input["waveform"][batch_index].unsqueeze(0), + sample_rate=audio_input["sample_rate"], + ) # Convert to MP3 format for compatibility with Gemini API audio_bytes = audio_to_base64_string( audio_at_index, @@ -359,77 +361,58 @@ class GeminiNode(ComfyNodeABC): ) return audio_parts - async def api_call( - self, + @classmethod + async def execute( + cls, prompt: str, - model: GeminiModel, - images: Optional[IO.IMAGE] = None, - audio: Optional[IO.AUDIO] = None, - video: Optional[IO.VIDEO] = None, - files: Optional[list[GeminiPart]] = None, - unique_id: Optional[str] = None, - **kwargs, - ) -> tuple[str]: - # Validate inputs + model: str, + seed: int, + images: Input.Image | None = None, + audio: Input.Audio | None = None, + video: Input.Video | None = None, + files: list[GeminiPart] | None = None, + system_prompt: str = "", + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) # Create parts list with text prompt as the first part - parts: list[GeminiPart] = [create_text_part(prompt)] + parts: list[GeminiPart] = [GeminiPart(text=prompt)] # Add other modal parts if images is not None: - image_parts = create_image_parts(images) - parts.extend(image_parts) + parts.extend(await create_image_parts(cls, images)) if audio is not None: - parts.extend(self.create_audio_parts(audio)) + parts.extend(cls.create_audio_parts(audio)) if video is not None: - parts.extend(self.create_video_parts(video)) + parts.extend(cls.create_video_parts(video)) if files is not None: parts.extend(files) - # Create response - response = await SynchronousOperation( - endpoint=get_gemini_endpoint(model), - request=GeminiGenerateContentRequest( + gemini_system_prompt = None + if system_prompt: + gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None) + + response = await sync_op( + cls, + endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), + data=GeminiGenerateContentRequest( contents=[ GeminiContent( - role="user", + role=GeminiRole.user, parts=parts, ) - ] + ], + systemInstruction=gemini_system_prompt, ), - auth_kwargs=kwargs, - ).execute() + response_model=GeminiGenerateContentResponse, + price_extractor=calculate_tokens_price, + ) - # Get result output output_text = get_text_from_response(response) - if unique_id and output_text: - # Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button. - render_spec = { - "node_id": unique_id, - "component": "ChatHistoryWidget", - "props": { - "history": json.dumps( - [ - { - "prompt": prompt, - "response": output_text, - "response_id": str(uuid.uuid4()), - "timestamp": time.time(), - } - ] - ), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - - return (output_text or "Empty response from Gemini model...",) + return IO.NodeOutput(output_text or "Empty response from Gemini model...") -class GeminiInputFiles(ComfyNodeABC): +class GeminiInputFiles(IO.ComfyNode): """ Loads and formats input files for use with the Gemini API. @@ -440,7 +423,7 @@ class GeminiInputFiles(ComfyNodeABC): """ @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: + def define_schema(cls): """ For details about the supported file input types, see: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference @@ -455,39 +438,37 @@ class GeminiInputFiles(ComfyNodeABC): ] input_files = sorted(input_files, key=lambda x: x.name) input_files = [f.name for f in input_files] - return { - "required": { - "file": ( - IO.COMBO, - { - "tooltip": "Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.", - "options": input_files, - "default": input_files[0] if input_files else None, - }, + return IO.Schema( + node_id="GeminiInputFiles", + display_name="Gemini Input Files", + category="api node/text/Gemini", + description="Loads and prepares input files to include as inputs for Gemini LLM nodes. " + "The files will be read by the Gemini model when generating a response. " + "The contents of the text file count toward the token limit. " + "🛈 TIP: Can be chained together with other Gemini Input File nodes.", + inputs=[ + IO.Combo.Input( + "file", + options=input_files, + default=input_files[0] if input_files else None, + tooltip="Input files to include as context for the model. " + "Only accepts text (.txt) and PDF (.pdf) files for now.", ), - }, - "optional": { - "GEMINI_INPUT_FILES": ( + IO.Custom("GEMINI_INPUT_FILES").Input( "GEMINI_INPUT_FILES", - { - "tooltip": "An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.", - "default": None, - }, + optional=True, + tooltip="An optional additional file(s) to batch together with the file loaded from this node. " + "Allows chaining of input files so that a single message can include multiple input files.", ), - }, - } - - DESCRIPTION = "Loads and prepares input files to include as inputs for Gemini LLM nodes. The files will be read by the Gemini model when generating a response. The contents of the text file count toward the token limit. 🛈 TIP: Can be chained together with other Gemini Input File nodes." - RETURN_TYPES = ("GEMINI_INPUT_FILES",) - FUNCTION = "prepare_files" - CATEGORY = "api node/text/Gemini" - - def create_file_part(self, file_path: str) -> GeminiPart: - mime_type = ( - GeminiMimeType.application_pdf - if file_path.endswith(".pdf") - else GeminiMimeType.text_plain + ], + outputs=[ + IO.Custom("GEMINI_INPUT_FILES").Output(), + ], ) + + @classmethod + def create_file_part(cls, file_path: str) -> GeminiPart: + mime_type = GeminiMimeType.application_pdf if file_path.endswith(".pdf") else GeminiMimeType.text_plain # Use base64 string directly, not the data URI with open(file_path, "rb") as f: file_content = f.read() @@ -500,174 +481,287 @@ class GeminiInputFiles(ComfyNodeABC): ) ) - def prepare_files( - self, file: str, GEMINI_INPUT_FILES: list[GeminiPart] = [] - ) -> tuple[list[GeminiPart]]: - """ - Loads and formats input files for Gemini API. - """ - file_path = folder_paths.get_annotated_filepath(file) - input_file_content = self.create_file_part(file_path) - files = [input_file_content] + GEMINI_INPUT_FILES - return (files,) - - -class GeminiImage(ComfyNodeABC): - """ - Node to generate text and image responses from a Gemini model. - - This node allows users to interact with Google's Gemini AI models, providing - multimodal inputs (text, images, files) to generate coherent - text and image responses. The node works with the latest Gemini models, handling the - API communication and response parsing. - """ @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Text prompt for generation", - }, - ), - "model": ( - IO.COMBO, - { - "tooltip": "The Gemini model to use for generating responses.", - "options": [model.value for model in GeminiImageModel], - "default": GeminiImageModel.gemini_2_5_flash_image_preview.value, - }, - ), - "seed": ( - IO.INT, - { - "default": 42, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.", - }, - ), - }, - "optional": { - "images": ( - IO.IMAGE, - { - "default": None, - "tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.", - }, - ), - "files": ( - "GEMINI_INPUT_FILES", - { - "default": None, - "tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.", - }, - ), - # TODO: later we can add this parameter later - # "n": ( - # IO.INT, - # { - # "default": 1, - # "min": 1, - # "max": 8, - # "step": 1, - # "display": "number", - # "tooltip": "How many images to generate", - # }, - # ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def execute(cls, file: str, GEMINI_INPUT_FILES: list[GeminiPart] | None = None) -> IO.NodeOutput: + """Loads and formats input files for Gemini API.""" + if GEMINI_INPUT_FILES is None: + GEMINI_INPUT_FILES = [] + file_path = folder_paths.get_annotated_filepath(file) + input_file_content = cls.create_file_part(file_path) + return IO.NodeOutput([input_file_content] + GEMINI_INPUT_FILES) - RETURN_TYPES = (IO.IMAGE, IO.STRING) - FUNCTION = "api_call" - CATEGORY = "api node/image/Gemini" - DESCRIPTION = "Edit images synchronously via Google API." - API_NODE = True - async def api_call( - self, +class GeminiImage(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="GeminiImageNode", + display_name="Nano Banana (Google Gemini Image)", + category="api node/image/Gemini", + description="Edit images synchronously via Google API.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + tooltip="Text prompt for generation", + default="", + ), + IO.Combo.Input( + "model", + options=GeminiImageModel, + default=GeminiImageModel.gemini_2_5_flash_image, + tooltip="The Gemini model to use for generating responses.", + ), + IO.Int.Input( + "seed", + default=42, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="When seed is fixed to a specific value, the model makes a best effort to provide " + "the same response for repeated requests. Deterministic output isn't guaranteed. " + "Also, changing the model or parameter settings, such as the temperature, " + "can cause variations in the response even when you use the same seed value. " + "By default, a random seed value is used.", + ), + IO.Image.Input( + "images", + optional=True, + tooltip="Optional image(s) to use as context for the model. " + "To include multiple images, you can use the Batch Images node.", + ), + IO.Custom("GEMINI_INPUT_FILES").Input( + "files", + optional=True, + tooltip="Optional file(s) to use as context for the model. " + "Accepts inputs from the Gemini Generate Content Input Files node.", + ), + IO.Combo.Input( + "aspect_ratio", + options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"], + default="auto", + tooltip="Defaults to matching the output image size to that of your input image, " + "or otherwise generates 1:1 squares.", + optional=True, + ), + IO.Combo.Input( + "response_modalities", + options=["IMAGE+TEXT", "IMAGE"], + tooltip="Choose 'IMAGE' for image-only output, or " + "'IMAGE+TEXT' to return both the generated image and a text response.", + optional=True, + ), + IO.String.Input( + "system_prompt", + multiline=True, + default=GEMINI_IMAGE_SYS_PROMPT, + optional=True, + tooltip="Foundational instructions that dictate an AI's behavior.", + ), + ], + outputs=[ + IO.Image.Output(), + IO.String.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, prompt: str, - model: GeminiImageModel, - images: Optional[IO.IMAGE] = None, - files: Optional[list[GeminiPart]] = None, - n=1, - unique_id: Optional[str] = None, - **kwargs, - ): - # Validate inputs + model: str, + seed: int, + images: Input.Image | None = None, + files: list[GeminiPart] | None = None, + aspect_ratio: str = "auto", + response_modalities: str = "IMAGE+TEXT", + system_prompt: str = "", + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) - # Create parts list with text prompt as the first part - parts: list[GeminiPart] = [create_text_part(prompt)] + parts: list[GeminiPart] = [GeminiPart(text=prompt)] + + if not aspect_ratio: + aspect_ratio = "auto" # for backward compatability with old workflows; to-do remove this in December + image_config = GeminiImageConfig(aspectRatio=aspect_ratio) - # Add other modal parts if images is not None: - image_parts = create_image_parts(images) - parts.extend(image_parts) + parts.extend(await create_image_parts(cls, images)) if files is not None: parts.extend(files) - response = await SynchronousOperation( - endpoint=get_gemini_image_endpoint(model), - request=GeminiImageGenerateContentRequest( + gemini_system_prompt = None + if system_prompt: + gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None) + + response = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"), + data=GeminiImageGenerateContentRequest( contents=[ - GeminiContent( - role="user", - parts=parts, - ), + GeminiContent(role=GeminiRole.user, parts=parts), ], generationConfig=GeminiImageGenerationConfig( - responseModalities=["TEXT","IMAGE"] - ) + responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]), + imageConfig=None if aspect_ratio == "auto" else image_config, + ), + systemInstruction=gemini_system_prompt, ), - auth_kwargs=kwargs, - ).execute() - - output_image = get_image_from_response(response) - output_text = get_text_from_response(response) - if unique_id and output_text: - # Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button. - render_spec = { - "node_id": unique_id, - "component": "ChatHistoryWidget", - "props": { - "history": json.dumps( - [ - { - "prompt": prompt, - "response": output_text, - "response_id": str(uuid.uuid4()), - "timestamp": time.time(), - } - ] - ), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - - output_text = output_text or "Empty response from Gemini model..." - return (output_image, output_text,) + response_model=GeminiGenerateContentResponse, + price_extractor=calculate_tokens_price, + ) + return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response)) -NODE_CLASS_MAPPINGS = { - "GeminiNode": GeminiNode, - "GeminiImageNode": GeminiImage, - "GeminiInputFiles": GeminiInputFiles, -} +class GeminiImage2(IO.ComfyNode): -NODE_DISPLAY_NAME_MAPPINGS = { - "GeminiNode": "Google Gemini", - "GeminiImageNode": "Google Gemini Image", - "GeminiInputFiles": "Gemini Input Files", -} + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="GeminiImage2Node", + display_name="Nano Banana Pro (Google Gemini Image)", + category="api node/image/Gemini", + description="Generate or edit images synchronously via Google Vertex API.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + tooltip="Text prompt describing the image to generate or the edits to apply. " + "Include any constraints, styles, or details the model should follow.", + default="", + ), + IO.Combo.Input( + "model", + options=["gemini-3-pro-image-preview"], + ), + IO.Int.Input( + "seed", + default=42, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="When the seed is fixed to a specific value, the model makes a best effort to provide " + "the same response for repeated requests. Deterministic output isn't guaranteed. " + "Also, changing the model or parameter settings, such as the temperature, " + "can cause variations in the response even when you use the same seed value. " + "By default, a random seed value is used.", + ), + IO.Combo.Input( + "aspect_ratio", + options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"], + default="auto", + tooltip="If set to 'auto', matches your input image's aspect ratio; " + "if no image is provided, a 16:9 square is usually generated.", + ), + IO.Combo.Input( + "resolution", + options=["1K", "2K", "4K"], + tooltip="Target output resolution. For 2K/4K the native Gemini upscaler is used.", + ), + IO.Combo.Input( + "response_modalities", + options=["IMAGE+TEXT", "IMAGE"], + tooltip="Choose 'IMAGE' for image-only output, or " + "'IMAGE+TEXT' to return both the generated image and a text response.", + ), + IO.Image.Input( + "images", + optional=True, + tooltip="Optional reference image(s). " + "To include multiple images, use the Batch Images node (up to 14).", + ), + IO.Custom("GEMINI_INPUT_FILES").Input( + "files", + optional=True, + tooltip="Optional file(s) to use as context for the model. " + "Accepts inputs from the Gemini Generate Content Input Files node.", + ), + IO.String.Input( + "system_prompt", + multiline=True, + default=GEMINI_IMAGE_SYS_PROMPT, + optional=True, + tooltip="Foundational instructions that dictate an AI's behavior.", + ), + ], + outputs=[ + IO.Image.Output(), + IO.String.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + model: str, + seed: int, + aspect_ratio: str, + resolution: str, + response_modalities: str, + images: Input.Image | None = None, + files: list[GeminiPart] | None = None, + system_prompt: str = "", + ) -> IO.NodeOutput: + validate_string(prompt, strip_whitespace=True, min_length=1) + + parts: list[GeminiPart] = [GeminiPart(text=prompt)] + if images is not None: + if get_number_of_images(images) > 14: + raise ValueError("The current maximum number of supported images is 14.") + parts.extend(await create_image_parts(cls, images)) + if files is not None: + parts.extend(files) + + image_config = GeminiImageConfig(imageSize=resolution) + if aspect_ratio != "auto": + image_config.aspectRatio = aspect_ratio + + gemini_system_prompt = None + if system_prompt: + gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None) + + response = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"), + data=GeminiImageGenerateContentRequest( + contents=[ + GeminiContent(role=GeminiRole.user, parts=parts), + ], + generationConfig=GeminiImageGenerationConfig( + responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]), + imageConfig=image_config, + ), + systemInstruction=gemini_system_prompt, + ), + response_model=GeminiGenerateContentResponse, + price_extractor=calculate_tokens_price, + ) + return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response)) + + +class GeminiExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + GeminiNode, + GeminiImage, + GeminiImage2, + GeminiInputFiles, + ] + + +async def comfy_entrypoint() -> GeminiExtension: + return GeminiExtension() diff --git a/comfy_api_nodes/nodes_ideogram.py b/comfy_api_nodes/nodes_ideogram.py index 2d1c32e4f..48f94e612 100644 --- a/comfy_api_nodes/nodes_ideogram.py +++ b/comfy_api_nodes/nodes_ideogram.py @@ -1,6 +1,6 @@ from io import BytesIO from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io +from comfy_api.latest import IO, ComfyExtension from PIL import Image import numpy as np import torch @@ -11,19 +11,13 @@ from comfy_api_nodes.apis import ( IdeogramV3Request, IdeogramV3EditRequest, ) - -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, -) - -from comfy_api_nodes.apinode_utils import ( - download_url_to_bytesio, bytesio_to_image_tensor, + download_url_as_bytesio, resize_mask_to_image, + sync_op, ) -from server import PromptServer V1_V1_RES_MAP = { "Auto":"AUTO", @@ -220,7 +214,7 @@ async def download_and_process_images(image_urls): for image_url in image_urls: # Using functions from apinode_utils.py to handle downloading and processing - image_bytesio = await download_url_to_bytesio(image_url) # Download image content to BytesIO + image_bytesio = await download_url_as_bytesio(image_url) # Download image content to BytesIO img_tensor = bytesio_to_image_tensor(image_bytesio, mode="RGB") # Convert to torch.Tensor with RGB mode image_tensors.append(img_tensor) @@ -233,89 +227,76 @@ async def download_and_process_images(image_urls): return stacked_tensors -def display_image_urls_on_node(image_urls, node_id): - if node_id and image_urls: - if len(image_urls) == 1: - PromptServer.instance.send_progress_text( - f"Generated Image URL:\n{image_urls[0]}", node_id - ) - else: - urls_text = "Generated Image URLs:\n" + "\n".join( - f"{i+1}. {url}" for i, url in enumerate(image_urls) - ) - PromptServer.instance.send_progress_text(urls_text, node_id) - - -class IdeogramV1(comfy_io.ComfyNode): +class IdeogramV1(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="IdeogramV1", display_name="Ideogram V1", category="api node/image/Ideogram", description="Generates images using the Ideogram V1 model.", is_api_node=True, inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "turbo", default=False, tooltip="Whether to use turbo mode (faster generation, potentially lower quality)", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=list(V1_V2_RATIO_MAP.keys()), default="1:1", tooltip="The aspect ratio for image generation.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "magic_prompt_option", options=["AUTO", "ON", "OFF"], default="AUTO", tooltip="Determine if MagicPrompt should be used in generation", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, control_after_generate=True, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", tooltip="Description of what to exclude from the image", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "num_images", default=1, min=1, max=8, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], ) @@ -334,77 +315,63 @@ class IdeogramV1(comfy_io.ComfyNode): aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None) model = "V_1_TURBO" if turbo else "V_1" - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/ideogram/generate", - method=HttpMethod.POST, - request_model=IdeogramGenerateRequest, - response_model=IdeogramGenerateResponse, - ), - request=IdeogramGenerateRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/ideogram/generate", method="POST"), + response_model=IdeogramGenerateResponse, + data=IdeogramGenerateRequest( image_request=ImageRequest( prompt=prompt, model=model, num_images=num_images, seed=seed, aspect_ratio=aspect_ratio if aspect_ratio != "ASPECT_1_1" else None, - magic_prompt_option=( - magic_prompt_option if magic_prompt_option != "AUTO" else None - ), + magic_prompt_option=(magic_prompt_option if magic_prompt_option != "AUTO" else None), negative_prompt=negative_prompt if negative_prompt else None, ) ), - auth_kwargs=auth, + max_retries=1, ) - response = await operation.execute() - if not response.data or len(response.data) == 0: raise Exception("No images were generated in the response") image_urls = [image_data.url for image_data in response.data if image_data.url] - if not image_urls: raise Exception("No image URLs were generated in the response") - - display_image_urls_on_node(image_urls, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_and_process_images(image_urls)) + return IO.NodeOutput(await download_and_process_images(image_urls)) -class IdeogramV2(comfy_io.ComfyNode): +class IdeogramV2(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="IdeogramV2", display_name="Ideogram V2", category="api node/image/Ideogram", description="Generates images using the Ideogram V2 model.", is_api_node=True, inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "turbo", default=False, tooltip="Whether to use turbo mode (faster generation, potentially lower quality)", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=list(V1_V2_RATIO_MAP.keys()), default="1:1", tooltip="The aspect ratio for image generation. Ignored if resolution is not set to AUTO.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=list(V1_V1_RES_MAP.keys()), default="Auto", @@ -412,44 +379,44 @@ class IdeogramV2(comfy_io.ComfyNode): "If not set to AUTO, this overrides the aspect_ratio setting.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "magic_prompt_option", options=["AUTO", "ON", "OFF"], default="AUTO", tooltip="Determine if MagicPrompt should be used in generation", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, control_after_generate=True, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "style_type", options=["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"], default="NONE", tooltip="Style type for generation (V2 only)", optional=True, ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", tooltip="Description of what to exclude from the image", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "num_images", default=1, min=1, max=8, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), #"color_palette": ( @@ -462,12 +429,12 @@ class IdeogramV2(comfy_io.ComfyNode): #), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], ) @@ -500,18 +467,11 @@ class IdeogramV2(comfy_io.ComfyNode): else: final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/ideogram/generate", - method=HttpMethod.POST, - request_model=IdeogramGenerateRequest, - response_model=IdeogramGenerateResponse, - ), - request=IdeogramGenerateRequest( + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/ideogram/generate", method="POST"), + response_model=IdeogramGenerateResponse, + data=IdeogramGenerateRequest( image_request=ImageRequest( prompt=prompt, model=model, @@ -519,36 +479,28 @@ class IdeogramV2(comfy_io.ComfyNode): seed=seed, aspect_ratio=final_aspect_ratio, resolution=final_resolution, - magic_prompt_option=( - magic_prompt_option if magic_prompt_option != "AUTO" else None - ), + magic_prompt_option=(magic_prompt_option if magic_prompt_option != "AUTO" else None), style_type=style_type if style_type != "NONE" else None, negative_prompt=negative_prompt if negative_prompt else None, color_palette=color_palette if color_palette else None, ) ), - auth_kwargs=auth, + max_retries=1, ) - - response = await operation.execute() - if not response.data or len(response.data) == 0: raise Exception("No images were generated in the response") image_urls = [image_data.url for image_data in response.data if image_data.url] - if not image_urls: raise Exception("No image URLs were generated in the response") - - display_image_urls_on_node(image_urls, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_and_process_images(image_urls)) + return IO.NodeOutput(await download_and_process_images(image_urls)) -class IdeogramV3(comfy_io.ComfyNode): +class IdeogramV3(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="IdeogramV3", display_name="Ideogram V3", category="api node/image/Ideogram", @@ -556,30 +508,30 @@ class IdeogramV3(comfy_io.ComfyNode): "Supports both regular image generation from text prompts and image editing with mask.", is_api_node=True, inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation or editing", ), - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="Optional reference image for image editing.", optional=True, ), - comfy_io.Mask.Input( + IO.Mask.Input( "mask", tooltip="Optional mask for inpainting (white areas will be replaced)", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=list(V3_RATIO_MAP.keys()), default="1:1", tooltip="The aspect ratio for image generation. Ignored if resolution is not set to Auto.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=V3_RESOLUTIONS, default="Auto", @@ -587,57 +539,57 @@ class IdeogramV3(comfy_io.ComfyNode): "If not set to Auto, this overrides the aspect_ratio setting.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "magic_prompt_option", options=["AUTO", "ON", "OFF"], default="AUTO", tooltip="Determine if MagicPrompt should be used in generation", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, control_after_generate=True, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "num_images", default=1, min=1, max=8, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "rendering_speed", options=["DEFAULT", "TURBO", "QUALITY"], default="DEFAULT", tooltip="Controls the trade-off between generation speed and quality", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "character_image", tooltip="Image to use as character reference.", optional=True, ), - comfy_io.Mask.Input( + IO.Mask.Input( "character_mask", tooltip="Optional mask for character reference image.", optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], ) @@ -656,10 +608,6 @@ class IdeogramV3(comfy_io.ComfyNode): character_image=None, character_mask=None, ): - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } if rendering_speed == "BALANCED": # for backward compatibility rendering_speed = "DEFAULT" @@ -694,9 +642,6 @@ class IdeogramV3(comfy_io.ComfyNode): # Check if both image and mask are provided for editing mode if image is not None and mask is not None: - # Edit mode - path = "/proxy/ideogram/ideogram-v3/edit" - # Process image and mask input_tensor = image.squeeze().cpu() # Resize mask to match image dimension @@ -749,27 +694,20 @@ class IdeogramV3(comfy_io.ComfyNode): if character_mask_binary: files["character_mask_binary"] = character_mask_binary - # Execute the operation for edit mode - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=path, - method=HttpMethod.POST, - request_model=IdeogramV3EditRequest, - response_model=IdeogramGenerateResponse, - ), - request=edit_request, + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/ideogram/ideogram-v3/edit", method="POST"), + response_model=IdeogramGenerateResponse, + data=edit_request, files=files, content_type="multipart/form-data", - auth_kwargs=auth, + max_retries=1, ) elif image is not None or mask is not None: # If only one of image or mask is provided, raise an error raise Exception("Ideogram V3 image editing requires both an image AND a mask") else: - # Generation mode - path = "/proxy/ideogram/ideogram-v3/generate" - # Create generation request gen_request = IdeogramV3Request( prompt=prompt, @@ -800,43 +738,34 @@ class IdeogramV3(comfy_io.ComfyNode): if files: gen_request.style_type = "AUTO" - # Execute the operation for generation mode - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=path, - method=HttpMethod.POST, - request_model=IdeogramV3Request, - response_model=IdeogramGenerateResponse, - ), - request=gen_request, + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/ideogram/ideogram-v3/generate", method="POST"), + response_model=IdeogramGenerateResponse, + data=gen_request, files=files if files else None, content_type="multipart/form-data", - auth_kwargs=auth, + max_retries=1, ) - # Execute the operation and process response - response = await operation.execute() - if not response.data or len(response.data) == 0: raise Exception("No images were generated in the response") image_urls = [image_data.url for image_data in response.data if image_data.url] - if not image_urls: raise Exception("No image URLs were generated in the response") - - display_image_urls_on_node(image_urls, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_and_process_images(image_urls)) + return IO.NodeOutput(await download_and_process_images(image_urls)) class IdeogramExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ IdeogramV1, IdeogramV2, IdeogramV3, ] + async def comfy_entrypoint() -> IdeogramExtension: return IdeogramExtension() diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 44fccc0c7..58259e029 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -4,16 +4,15 @@ For source of truth on the allowed permutations of request fields, please refere - [Compatibility Table](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) """ -from __future__ import annotations -from typing import Optional, TypeVar, Any -from collections.abc import Callable -import math import logging +import math +import re import torch +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.apis import ( - KlingTaskStatus, KlingCameraControl, KlingCameraConfig, KlingCameraControlType, @@ -50,31 +49,36 @@ from comfy_api_nodes.apis import ( KlingCharacterEffectModelName, KlingSingleImageEffectModelName, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.apis.kling_api import ( + ImageToVideoWithAudioRequest, + MotionControlRequest, + OmniImageParamImage, + OmniParamImage, + OmniParamVideo, + OmniProFirstLastFrameRequest, + OmniProImageRequest, + OmniProReferences2VideoRequest, + OmniProText2VideoRequest, + TaskStatusResponse, + TextToVideoWithAudioRequest, +) +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( - tensor_to_base64_string, - download_url_to_video_output, - upload_video_to_comfyapi, - upload_audio_to_comfyapi, download_url_to_image_tensor, -) -from comfy_api_nodes.mapper_utils import model_field_to_node_input -from comfy_api_nodes.util.validation_utils import ( - validate_image_dimensions, + download_url_to_video_output, + get_number_of_images, + poll_op, + sync_op, + tensor_to_base64_string, + upload_audio_to_comfyapi, + upload_images_to_comfyapi, + upload_video_to_comfyapi, validate_image_aspect_ratio, + validate_image_dimensions, + validate_string, validate_video_dimensions, validate_video_duration, ) -from comfy_api.input.basic_types import AudioInput -from comfy_api.input.video_types import VideoInput -from comfy_api.input_impl import VideoFromFile -from comfy.comfy_types.node_typing import IO, InputTypeOptions, ComfyNodeABC KLING_API_VERSION = "v1" PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" @@ -100,41 +104,154 @@ AVERAGE_DURATION_IMAGE_GEN = 32 AVERAGE_DURATION_VIDEO_EFFECTS = 320 AVERAGE_DURATION_VIDEO_EXTEND = 320 -R = TypeVar("R") + +MODE_TEXT2VIDEO = { + "standard mode / 5s duration / kling-v1-6": ("std", "5", "kling-v1-6"), + "standard mode / 10s duration / kling-v1-6": ("std", "10", "kling-v1-6"), + "pro mode / 5s duration / kling-v2-master": ("pro", "5", "kling-v2-master"), + "pro mode / 10s duration / kling-v2-master": ("pro", "10", "kling-v2-master"), + "standard mode / 5s duration / kling-v2-master": ("std", "5", "kling-v2-master"), + "standard mode / 10s duration / kling-v2-master": ("std", "10", "kling-v2-master"), + "pro mode / 5s duration / kling-v2-1-master": ("pro", "5", "kling-v2-1-master"), + "pro mode / 10s duration / kling-v2-1-master": ("pro", "10", "kling-v2-1-master"), + "pro mode / 5s duration / kling-v2-5-turbo": ("pro", "5", "kling-v2-5-turbo"), + "pro mode / 10s duration / kling-v2-5-turbo": ("pro", "10", "kling-v2-5-turbo"), +} +""" +Mapping of mode strings to their corresponding (mode, duration, model_name) tuples. +Only includes config combos that support the `image_tail` request field. + +See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) +""" -class KlingApiError(Exception): - """Base exception for Kling API errors.""" +MODE_START_END_FRAME = { + "pro mode / 5s duration / kling-v1-5": ("pro", "5", "kling-v1-5"), + "pro mode / 10s duration / kling-v1-5": ("pro", "10", "kling-v1-5"), + "pro mode / 5s duration / kling-v1-6": ("pro", "5", "kling-v1-6"), + "pro mode / 10s duration / kling-v1-6": ("pro", "10", "kling-v1-6"), + "pro mode / 5s duration / kling-v2-1": ("pro", "5", "kling-v2-1"), + "pro mode / 10s duration / kling-v2-1": ("pro", "10", "kling-v2-1"), + "pro mode / 5s duration / kling-v2-5-turbo": ("pro", "5", "kling-v2-5-turbo"), + "pro mode / 10s duration / kling-v2-5-turbo": ("pro", "10", "kling-v2-5-turbo"), +} +""" +Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. +Only includes config combos that support the `image_tail` request field. - pass +See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) +""" -async def poll_until_finished( - auth_kwargs: dict[str, str], - api_endpoint: ApiEndpoint[Any, R], - result_url_extractor: Optional[Callable[[R], str]] = None, - estimated_duration: Optional[int] = None, - node_id: Optional[str] = None, -) -> R: - """Polls the Kling API endpoint until the task reaches a terminal state, then returns the response.""" - return await PollingOperation( - poll_endpoint=api_endpoint, - completed_statuses=[ - KlingTaskStatus.succeed.value, - ], - failed_statuses=[KlingTaskStatus.failed.value], - status_extractor=lambda response: ( - response.data.task_status.value - if response.data and response.data.task_status - else None - ), - auth_kwargs=auth_kwargs, - result_url_extractor=result_url_extractor, - estimated_duration=estimated_duration, - node_id=node_id, - poll_interval=16.0, - max_poll_attempts=256, - ).execute() +VOICES_CONFIG = { + # English voices + "Melody": ("girlfriend_4_speech02", "en"), + "Sunny": ("genshin_vindi2", "en"), + "Sage": ("zhinen_xuesheng", "en"), + "Ace": ("AOT", "en"), + "Blossom": ("ai_shatang", "en"), + "Peppy": ("genshin_klee2", "en"), + "Dove": ("genshin_kirara", "en"), + "Shine": ("ai_kaiya", "en"), + "Anchor": ("oversea_male1", "en"), + "Lyric": ("ai_chenjiahao_712", "en"), + "Tender": ("chat1_female_new-3", "en"), + "Siren": ("chat_0407_5-1", "en"), + "Zippy": ("cartoon-boy-07", "en"), + "Bud": ("uk_boy1", "en"), + "Sprite": ("cartoon-girl-01", "en"), + "Candy": ("PeppaPig_platform", "en"), + "Beacon": ("ai_huangzhong_712", "en"), + "Rock": ("ai_huangyaoshi_712", "en"), + "Titan": ("ai_laoguowang_712", "en"), + "Grace": ("chengshu_jiejie", "en"), + "Helen": ("you_pingjing", "en"), + "Lore": ("calm_story1", "en"), + "Crag": ("uk_man2", "en"), + "Prattle": ("laopopo_speech02", "en"), + "Hearth": ("heainainai_speech02", "en"), + "The Reader": ("reader_en_m-v1", "en"), + "Commercial Lady": ("commercial_lady_en_f-v1", "en"), + # Chinese voices + "阳光少年": ("genshin_vindi2", "zh"), + "懂事小弟": ("zhinen_xuesheng", "zh"), + "运动少年": ("tiyuxi_xuedi", "zh"), + "青春少女": ("ai_shatang", "zh"), + "温柔小妹": ("genshin_klee2", "zh"), + "元气少女": ("genshin_kirara", "zh"), + "阳光男生": ("ai_kaiya", "zh"), + "幽默小哥": ("tiexin_nanyou", "zh"), + "文艺小哥": ("ai_chenjiahao_712", "zh"), + "甜美邻家": ("girlfriend_1_speech02", "zh"), + "温柔姐姐": ("chat1_female_new-3", "zh"), + "职场女青": ("girlfriend_2_speech02", "zh"), + "活泼男童": ("cartoon-boy-07", "zh"), + "俏皮女童": ("cartoon-girl-01", "zh"), + "稳重老爸": ("ai_huangyaoshi_712", "zh"), + "温柔妈妈": ("you_pingjing", "zh"), + "严肃上司": ("ai_laoguowang_712", "zh"), + "优雅贵妇": ("chengshu_jiejie", "zh"), + "慈祥爷爷": ("zhuxi_speech02", "zh"), + "唠叨爷爷": ("uk_oldman3", "zh"), + "唠叨奶奶": ("laopopo_speech02", "zh"), + "和蔼奶奶": ("heainainai_speech02", "zh"), + "东北老铁": ("dongbeilaotie_speech02", "zh"), + "重庆小伙": ("chongqingxiaohuo_speech02", "zh"), + "四川妹子": ("chuanmeizi_speech02", "zh"), + "潮汕大叔": ("chaoshandashu_speech02", "zh"), + "台湾男生": ("ai_taiwan_man2_speech02", "zh"), + "西安掌柜": ("xianzhanggui_speech02", "zh"), + "天津姐姐": ("tianjinjiejie_speech02", "zh"), + "新闻播报男": ("diyinnansang_DB_CN_M_04-v2", "zh"), + "译制片男": ("yizhipiannan-v1", "zh"), + "撒娇女友": ("tianmeixuemei-v1", "zh"), + "刀片烟嗓": ("daopianyansang-v1", "zh"), + "乖巧正太": ("mengwa-v1", "zh"), +} + + +def normalize_omni_prompt_references(prompt: str) -> str: + """ + Rewrites Kling Omni-style placeholders used in the app, like: + + @image, @image1, @image2, ... @imageN + @video, @video1, @video2, ... @videoN + + into the API-compatible form: + + <<>>, <<>>, ... + <<>>, <<>>, ... + + This is a UX shim for ComfyUI so users can type the same syntax as in the Kling app. + """ + if not prompt: + return prompt + + def _image_repl(match): + return f"<<>>" + + def _video_repl(match): + return f"<<>>" + + # (? and not @imageFoo + prompt = re.sub(r"(?\d*)(?!\w)", _image_repl, prompt) + return re.sub(r"(?\d*)(?!\w)", _video_repl, prompt) + + +async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusResponse) -> IO.NodeOutput: + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/omni-video/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + max_poll_attempts=160, + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) def is_valid_camera_control_configs(configs: list[float]) -> bool: @@ -142,11 +259,6 @@ def is_valid_camera_control_configs(configs: list[float]) -> bool: return any(not math.isclose(value, 0.0) for value in configs) -def is_valid_prompt(prompt: str) -> bool: - """Verifies that the prompt is not empty.""" - return bool(prompt) - - def is_valid_task_creation_response(response: KlingText2VideoResponse) -> bool: """Verifies that the initial response contains a task ID.""" return bool(response.data.task_id) @@ -190,23 +302,23 @@ def validate_task_creation_response(response) -> None: if not is_valid_task_creation_response(response): error_msg = f"Kling initial request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" logging.error(error_msg) - raise KlingApiError(error_msg) + raise Exception(error_msg) def validate_video_result_response(response) -> None: """Validates that the Kling task result contains a video.""" if not is_valid_video_response(response): error_msg = f"Kling task {response.data.task_id} succeeded but no video data found in response." - logging.error(f"Error: {error_msg}.\nResponse: {response}") - raise KlingApiError(error_msg) + logging.error("Error: %s.\nResponse: %s", error_msg, response) + raise Exception(error_msg) def validate_image_result_response(response) -> None: """Validates that the Kling task result contains an image.""" if not is_valid_image_response(response): error_msg = f"Kling task {response.data.task_id} succeeded but no image data found in response." - logging.error(f"Error: {error_msg}.\nResponse: {response}") - raise KlingApiError(error_msg) + logging.error("Error: %s.\nResponse: %s", error_msg, response) + raise Exception(error_msg) def validate_input_image(image: torch.Tensor) -> None: @@ -218,22 +330,7 @@ def validate_input_image(image: torch.Tensor) -> None: See: https://app.klingai.com/global/dev/document-api/apiReference/model/imageToVideo """ validate_image_dimensions(image, min_width=300, min_height=300) - validate_image_aspect_ratio(image, min_aspect_ratio=1 / 2.5, max_aspect_ratio=2.5) - - -def get_camera_control_input_config( - tooltip: str, default: float = 0.0 -) -> tuple[IO, InputTypeOptions]: - """Returns common InputTypeOptions for Kling camera control configurations.""" - input_config = { - "default": default, - "min": -10.0, - "max": 10.0, - "step": 0.25, - "display": "slider", - "tooltip": tooltip, - } - return IO.FLOAT, input_config + validate_image_aspect_ratio(image, (1, 2.5), (2.5, 1)) def get_video_from_response(response) -> KlingVideoResult: @@ -247,7 +344,7 @@ def get_video_from_response(response) -> KlingVideoResult: return video -def get_video_url_from_response(response) -> Optional[str]: +def get_video_url_from_response(response) -> str | None: """Returns the first video url from the Kling video generation task result. Will not raise an error if the response is not valid. """ @@ -266,7 +363,7 @@ def get_images_from_response(response) -> list[KlingImageResult]: return images -def get_images_urls_from_response(response) -> Optional[str]: +def get_images_urls_from_response(response) -> str | None: """Returns the list of image urls from the Kling image generation task result. Will not raise an error if the response is not valid. If there is only one image, returns the url as a string. If there are multiple images, returns a list of urls. """ @@ -278,17 +375,6 @@ def get_images_urls_from_response(response) -> Optional[str]: return None -async def video_result_to_node_output( - video: KlingVideoResult, -) -> tuple[VideoFromFile, str, str]: - """Converts a KlingVideoResult to a tuple of (VideoFromFile, str, str) to be used as a ComfyUI node output.""" - return ( - await download_url_to_video_output(str(video.url)), - str(video.id), - str(video.duration), - ) - - async def image_result_to_node_output( images: list[KlingImageResult], ) -> torch.Tensor: @@ -302,57 +388,297 @@ async def image_result_to_node_output( return torch.cat([await download_url_to_image_tensor(str(image.url)) for image in images]) -class KlingNodeBase(ComfyNodeABC): - """Base class for Kling nodes.""" +async def execute_text2video( + cls: type[IO.ComfyNode], + prompt: str, + negative_prompt: str, + cfg_scale: float, + model_name: str, + model_mode: str, + duration: str, + aspect_ratio: str, + camera_control: KlingCameraControl | None = None, +) -> IO.NodeOutput: + validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) + task_creation_response = await sync_op( + cls, + ApiEndpoint(path=PATH_TEXT_TO_VIDEO, method="POST"), + response_model=KlingText2VideoResponse, + data=KlingText2VideoRequest( + prompt=prompt if prompt else None, + negative_prompt=negative_prompt if negative_prompt else None, + duration=KlingVideoGenDuration(duration), + mode=KlingVideoGenMode(model_mode), + model_name=KlingVideoGenModelName(model_name), + cfg_scale=cfg_scale, + aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), + camera_control=camera_control, + ), + ) - FUNCTION = "api_call" - CATEGORY = "api node/video/Kling" - API_NODE = True + validate_task_creation_response(task_creation_response) + + task_id = task_creation_response.data.task_id + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_TEXT_TO_VIDEO}/{task_id}"), + response_model=KlingText2VideoResponse, + estimated_duration=AVERAGE_DURATION_T2V, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), + ) + validate_video_result_response(final_response) + + video = get_video_from_response(final_response) + return IO.NodeOutput(await download_url_to_video_output(str(video.url)), str(video.id), str(video.duration)) -class KlingCameraControls(KlingNodeBase): +async def execute_image2video( + cls: type[IO.ComfyNode], + start_frame: torch.Tensor, + prompt: str, + negative_prompt: str, + model_name: str, + cfg_scale: float, + model_mode: str, + aspect_ratio: str, + duration: str, + camera_control: KlingCameraControl | None = None, + end_frame: torch.Tensor | None = None, +) -> IO.NodeOutput: + validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_I2V) + validate_input_image(start_frame) + + if camera_control is not None: + # Camera control type for image 2 video is always `simple` + camera_control.type = KlingCameraControlType.simple + + if model_mode == "std" and model_name == KlingVideoGenModelName.kling_v2_5_turbo.value: + model_mode = "pro" # October 5: currently "std" mode is not supported for this model + + task_creation_response = await sync_op( + cls, + ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"), + response_model=KlingImage2VideoResponse, + data=KlingImage2VideoRequest( + model_name=KlingVideoGenModelName(model_name), + image=tensor_to_base64_string(start_frame), + image_tail=( + tensor_to_base64_string(end_frame) + if end_frame is not None + else None + ), + prompt=prompt, + negative_prompt=negative_prompt if negative_prompt else None, + cfg_scale=cfg_scale, + mode=KlingVideoGenMode(model_mode), + duration=KlingVideoGenDuration(duration), + camera_control=camera_control, + ), + ) + + validate_task_creation_response(task_creation_response) + task_id = task_creation_response.data.task_id + + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_IMAGE_TO_VIDEO}/{task_id}"), + response_model=KlingImage2VideoResponse, + estimated_duration=AVERAGE_DURATION_I2V, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), + ) + validate_video_result_response(final_response) + + video = get_video_from_response(final_response) + return IO.NodeOutput(await download_url_to_video_output(str(video.url)), str(video.id), str(video.duration)) + + +async def execute_video_effect( + cls: type[IO.ComfyNode], + dual_character: bool, + effect_scene: KlingDualCharacterEffectsScene | KlingSingleImageEffectsScene, + model_name: str, + duration: KlingVideoGenDuration, + image_1: torch.Tensor, + image_2: torch.Tensor | None = None, + model_mode: KlingVideoGenMode | None = None, +) -> tuple[InputImpl.VideoFromFile, str, str]: + if dual_character: + request_input_field = KlingDualCharacterEffectInput( + model_name=model_name, + mode=model_mode, + images=[ + tensor_to_base64_string(image_1), + tensor_to_base64_string(image_2), + ], + duration=duration, + ) + else: + request_input_field = KlingSingleImageEffectInput( + model_name=model_name, + image=tensor_to_base64_string(image_1), + duration=duration, + ) + + task_creation_response = await sync_op( + cls, + endpoint=ApiEndpoint(path=PATH_VIDEO_EFFECTS, method="POST"), + response_model=KlingVideoEffectsResponse, + data=KlingVideoEffectsRequest( + effect_scene=effect_scene, + input=request_input_field, + ), + ) + + validate_task_creation_response(task_creation_response) + task_id = task_creation_response.data.task_id + + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_VIDEO_EFFECTS}/{task_id}"), + response_model=KlingVideoEffectsResponse, + estimated_duration=AVERAGE_DURATION_VIDEO_EFFECTS, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), + ) + validate_video_result_response(final_response) + + video = get_video_from_response(final_response) + return await download_url_to_video_output(str(video.url)), str(video.id), str(video.duration) + + +async def execute_lipsync( + cls: type[IO.ComfyNode], + video: Input.Video, + audio: Input.Audio | None = None, + voice_language: str | None = None, + model_mode: str | None = None, + text: str | None = None, + voice_speed: float | None = None, + voice_id: str | None = None, +) -> IO.NodeOutput: + if text: + validate_string(text, field_name="Text", max_length=MAX_PROMPT_LENGTH_LIP_SYNC) + validate_video_dimensions(video, 720, 1920) + validate_video_duration(video, 2, 10) + + # Upload video to Comfy API and get download URL + video_url = await upload_video_to_comfyapi(cls, video) + logging.info("Uploaded video to Comfy API. URL: %s", video_url) + + # Upload the audio file to Comfy API and get download URL + if audio: + audio_url = await upload_audio_to_comfyapi( + cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg", filename="output.mp3" + ) + logging.info("Uploaded audio to Comfy API. URL: %s", audio_url) + else: + audio_url = None + + task_creation_response = await sync_op( + cls, + ApiEndpoint(PATH_LIP_SYNC, "POST"), + response_model=KlingLipSyncResponse, + data=KlingLipSyncRequest( + input=KlingLipSyncInputObject( + video_url=video_url, + mode=model_mode, + text=text, + voice_language=voice_language, + voice_speed=voice_speed, + audio_type="url", + audio_url=audio_url, + voice_id=voice_id, + ), + ), + ) + + validate_task_creation_response(task_creation_response) + task_id = task_creation_response.data.task_id + + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_LIP_SYNC}/{task_id}"), + response_model=KlingLipSyncResponse, + estimated_duration=AVERAGE_DURATION_LIP_SYNC, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), + ) + validate_video_result_response(final_response) + + video = get_video_from_response(final_response) + return IO.NodeOutput(await download_url_to_video_output(str(video.url)), str(video.id), str(video.duration)) + + +class KlingCameraControls(IO.ComfyNode): """Kling Camera Controls Node""" @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "camera_control_type": model_field_to_node_input( - IO.COMBO, - KlingCameraControl, - "type", - enum_type=KlingCameraControlType, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingCameraControls", + display_name="Kling Camera Controls", + category="api node/video/Kling", + description="Allows specifying configuration options for Kling Camera Controls and motion control effects.", + inputs=[ + IO.Combo.Input("camera_control_type", options=KlingCameraControlType), + IO.Float.Input( + "horizontal_movement", + default=0.0, + min=-10.0, + max=10.0, + step=0.25, + display_mode=IO.NumberDisplay.slider, + tooltip="Controls camera's movement along horizontal axis (x-axis). Negative indicates left, positive indicates right", ), - "horizontal_movement": get_camera_control_input_config( - "Controls camera's movement along horizontal axis (x-axis). Negative indicates left, positive indicates right" + IO.Float.Input( + "vertical_movement", + default=0.0, + min=-10.0, + max=10.0, + step=0.25, + display_mode=IO.NumberDisplay.slider, + tooltip="Controls camera's movement along vertical axis (y-axis). Negative indicates downward, positive indicates upward.", ), - "vertical_movement": get_camera_control_input_config( - "Controls camera's movement along vertical axis (y-axis). Negative indicates downward, positive indicates upward." - ), - "pan": get_camera_control_input_config( - "Controls camera's rotation in vertical plane (x-axis). Negative indicates downward rotation, positive indicates upward rotation.", + IO.Float.Input( + "pan", default=0.5, + min=-10.0, + max=10.0, + step=0.25, + display_mode=IO.NumberDisplay.slider, + tooltip="Controls camera's rotation in vertical plane (x-axis). Negative indicates downward rotation, positive indicates upward rotation.", ), - "tilt": get_camera_control_input_config( - "Controls camera's rotation in horizontal plane (y-axis). Negative indicates left rotation, positive indicates right rotation.", + IO.Float.Input( + "tilt", + default=0.0, + min=-10.0, + max=10.0, + step=0.25, + display_mode=IO.NumberDisplay.slider, + tooltip="Controls camera's rotation in horizontal plane (y-axis). Negative indicates left rotation, positive indicates right rotation.", ), - "roll": get_camera_control_input_config( - "Controls camera's rolling amount (z-axis). Negative indicates counterclockwise, positive indicates clockwise.", + IO.Float.Input( + "roll", + default=0.0, + min=-10.0, + max=10.0, + step=0.25, + display_mode=IO.NumberDisplay.slider, + tooltip="Controls camera's rolling amount (z-axis). Negative indicates counterclockwise, positive indicates clockwise.", ), - "zoom": get_camera_control_input_config( - "Controls change in camera's focal length. Negative indicates narrower field of view, positive indicates wider field of view.", + IO.Float.Input( + "zoom", + default=0.0, + min=-10.0, + max=10.0, + step=0.25, + display_mode=IO.NumberDisplay.slider, + tooltip="Controls change in camera's focal length. Negative indicates narrower field of view, positive indicates wider field of view.", ), - } - } - - DESCRIPTION = "Allows specifying configuration options for Kling Camera Controls and motion control effects." - RETURN_TYPES = ("CAMERA_CONTROL",) - RETURN_NAMES = ("camera_control",) - FUNCTION = "main" - API_NODE = False # This is just a helper node, it doesn't make an API call + ], + outputs=[IO.Custom("CAMERA_CONTROL").Output(display_name="camera_control")], + ) @classmethod - def VALIDATE_INPUTS( + def validate_inputs( cls, horizontal_movement: float, vertical_movement: float, @@ -374,8 +700,9 @@ class KlingCameraControls(KlingNodeBase): return "Invalid camera control configs: at least one of the values must be non-zero" return True - def main( - self, + @classmethod + def execute( + cls, camera_control_type: str, horizontal_movement: float, vertical_movement: float, @@ -383,8 +710,8 @@ class KlingCameraControls(KlingNodeBase): tilt: float, roll: float, zoom: float, - ) -> tuple[KlingCameraControl]: - return ( + ) -> IO.NodeOutput: + return IO.NodeOutput( KlingCameraControl( type=KlingCameraControlType(camera_control_type), config=KlingCameraConfig( @@ -395,303 +722,649 @@ class KlingCameraControls(KlingNodeBase): tilt=tilt, zoom=zoom, ), - ), + ) ) -class KlingTextToVideoNode(KlingNodeBase): +class KlingTextToVideoNode(IO.ComfyNode): """Kling Text to Video Node""" - @staticmethod - def get_mode_string_mapping() -> dict[str, tuple[str, str, str]]: - """ - Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. - Only includes config combos that support the `image_tail` request field. - - See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) - """ - return { - "standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), - "standard mode / 10s duration / kling-v1": ("std", "10", "kling-v1"), - "pro mode / 5s duration / kling-v1": ("pro", "5", "kling-v1"), - "pro mode / 10s duration / kling-v1": ("pro", "10", "kling-v1"), - "standard mode / 5s duration / kling-v1-6": ("std", "5", "kling-v1-6"), - "standard mode / 10s duration / kling-v1-6": ("std", "10", "kling-v1-6"), - "pro mode / 5s duration / kling-v2-master": ("pro", "5", "kling-v2-master"), - "pro mode / 10s duration / kling-v2-master": ("pro", "10", "kling-v2-master"), - "standard mode / 5s duration / kling-v2-master": ("std", "5", "kling-v2-master"), - "standard mode / 10s duration / kling-v2-master": ("std", "10", "kling-v2-master"), - "pro mode / 5s duration / kling-v2-1-master": ("pro", "5", "kling-v2-1-master"), - "pro mode / 10s duration / kling-v2-1-master": ("pro", "10", "kling-v2-1-master"), - "pro mode / 5s duration / kling-v2-5-turbo": ("pro", "5", "kling-v2-5-turbo"), - "pro mode / 10s duration / kling-v2-5-turbo": ("pro", "10", "kling-v2-5-turbo"), - } - @classmethod - def INPUT_TYPES(s): - modes = list(KlingTextToVideoNode.get_mode_string_mapping().keys()) - return { - "required": { - "prompt": model_field_to_node_input( - IO.STRING, KlingText2VideoRequest, "prompt", multiline=True - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, KlingText2VideoRequest, "negative_prompt", multiline=True - ), - "cfg_scale": model_field_to_node_input( - IO.FLOAT, - KlingText2VideoRequest, - "cfg_scale", - default=1.0, - min=0.0, - max=1.0, - ), - "aspect_ratio": model_field_to_node_input( - IO.COMBO, - KlingText2VideoRequest, + def define_schema(cls) -> IO.Schema: + modes = list(MODE_TEXT2VIDEO.keys()) + return IO.Schema( + node_id="KlingTextToVideoNode", + display_name="Kling Text to Video", + category="api node/video/Kling", + description="Kling Text to Video Node", + inputs=[ + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), + IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), + IO.Float.Input("cfg_scale", default=1.0, min=0.0, max=1.0), + IO.Combo.Input( "aspect_ratio", - enum_type=KlingVideoGenAspectRatio, + options=KlingVideoGenAspectRatio, + default="16:9", ), - "mode": ( - modes, - { - "default": modes[4], - "tooltip": "The configuration to use for the video generation following the format: mode / duration / model_name.", - }, + IO.Combo.Input( + "mode", + options=modes, + default=modes[8], + tooltip="The configuration to use for the video generation following the format: mode / duration / model_name.", ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - RETURN_TYPES = ("VIDEO", "STRING", "STRING") - RETURN_NAMES = ("VIDEO", "video_id", "duration") - DESCRIPTION = "Kling Text to Video Node" - - async def get_response( - self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None - ) -> KlingText2VideoResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_TEXT_TO_VIDEO}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=KlingText2VideoResponse, - ), - result_url_extractor=get_video_url_from_response, - estimated_duration=AVERAGE_DURATION_T2V, - node_id=node_id, + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, ) - async def api_call( - self, + @classmethod + async def execute( + cls, prompt: str, negative_prompt: str, cfg_scale: float, mode: str, aspect_ratio: str, - camera_control: Optional[KlingCameraControl] = None, - model_name: Optional[str] = None, - duration: Optional[str] = None, - unique_id: Optional[str] = None, - **kwargs, - ) -> tuple[VideoFromFile, str, str]: - validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) - if model_name is None: - mode, duration, model_name = self.get_mode_string_mapping()[mode] - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_TEXT_TO_VIDEO, - method=HttpMethod.POST, - request_model=KlingText2VideoRequest, - response_model=KlingText2VideoResponse, - ), - request=KlingText2VideoRequest( - prompt=prompt if prompt else None, - negative_prompt=negative_prompt if negative_prompt else None, - duration=KlingVideoGenDuration(duration), - mode=KlingVideoGenMode(mode), - model_name=KlingVideoGenModelName(model_name), - cfg_scale=cfg_scale, - aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), - camera_control=camera_control, - ), - auth_kwargs=kwargs, + ) -> IO.NodeOutput: + model_mode, duration, model_name = MODE_TEXT2VIDEO[mode] + return await execute_text2video( + cls, + prompt=prompt, + negative_prompt=negative_prompt, + cfg_scale=cfg_scale, + model_mode=model_mode, + aspect_ratio=aspect_ratio, + model_name=model_name, + duration=duration, ) - task_creation_response = await initial_operation.execute() - validate_task_creation_response(task_creation_response) - task_id = task_creation_response.data.task_id - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id +class OmniProTextToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProTextToVideoNode", + display_name="Kling Omni Text to Video (Pro)", + category="api node/video/Kling", + description="Use text prompts to generate videos with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Combo.Input("duration", options=[5, 10]), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, ) - validate_video_result_response(final_response) - video = get_video_from_response(final_response) - return await video_result_to_node_output(video) + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusResponse, + data=OmniProText2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + ), + ) + return await finish_omni_video_task(cls, response) -class KlingCameraControlT2VNode(KlingTextToVideoNode): +class OmniProFirstLastFrameNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProFirstLastFrameNode", + display_name="Kling Omni First-Last-Frame to Video (Pro)", + category="api node/video/Kling", + description="Use a start frame, an optional end frame, or reference images with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Int.Input("duration", default=5, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Image.Input("first_frame"), + IO.Image.Input( + "end_frame", + optional=True, + tooltip="An optional end frame for the video. " + "This cannot be used simultaneously with 'reference_images'.", + ), + IO.Image.Input( + "reference_images", + optional=True, + tooltip="Up to 6 additional reference images.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + duration: int, + first_frame: Input.Image, + end_frame: Input.Image | None = None, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + if end_frame is not None and reference_images is not None: + raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") + if duration not in (5, 10) and end_frame is None and reference_images is None: + raise ValueError( + "Duration is only supported for 5 or 10 seconds if there is no end frame or reference images." + ) + validate_image_dimensions(first_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) + image_list: list[OmniParamImage] = [ + OmniParamImage( + image_url=(await upload_images_to_comfyapi(cls, first_frame, wait_label="Uploading first frame"))[0], + type="first_frame", + ) + ] + if end_frame is not None: + validate_image_dimensions(end_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(end_frame, (1, 2.5), (2.5, 1)) + image_list.append( + OmniParamImage( + image_url=(await upload_images_to_comfyapi(cls, end_frame, wait_label="Uploading end frame"))[0], + type="end_frame", + ) + ) + if reference_images is not None: + if get_number_of_images(reference_images) > 6: + raise ValueError("The maximum number of reference images allowed is 6.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference frame(s)"): + image_list.append(OmniParamImage(image_url=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusResponse, + data=OmniProFirstLastFrameRequest( + model_name=model_name, + prompt=prompt, + duration=str(duration), + image_list=image_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProImageToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProImageToVideoNode", + display_name="Kling Omni Image to Video (Pro)", + category="api node/video/Kling", + description="Use up to 7 reference images to generate a video with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Image.Input( + "reference_images", + tooltip="Up to 7 reference images.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + reference_images: Input.Image, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + if get_number_of_images(reference_images) > 7: + raise ValueError("The maximum number of reference images is 7.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + image_list: list[OmniParamImage] = [] + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + image_list=image_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProVideoToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProVideoToVideoNode", + display_name="Kling Omni Video to Video (Pro)", + category="api node/video/Kling", + description="Use a video and up to 4 reference images to generate a video with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Video.Input("reference_video", tooltip="Video to use as a reference."), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Image.Input( + "reference_images", + tooltip="Up to 4 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + reference_video: Input.Video, + keep_original_sound: bool, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + validate_video_duration(reference_video, min_duration=3.0, max_duration=10.05) + validate_video_dimensions(reference_video, min_width=720, min_height=720, max_width=2160, max_height=2160) + image_list: list[OmniParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 4: + raise ValueError("The maximum number of reference images allowed with a video input is 4.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + video_list = [ + OmniParamVideo( + video_url=await upload_video_to_comfyapi(cls, reference_video, wait_label="Uploading reference video"), + refer_type="feature", + keep_original_sound="yes" if keep_original_sound else "no", + ) + ] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + image_list=image_list if image_list else None, + video_list=video_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProEditVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProEditVideoNode", + display_name="Kling Omni Edit Video (Pro)", + category="api node/video/Kling", + description="Edit an existing video with the latest model from Kling.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Video.Input("video", tooltip="Video for editing. The output video length will be the same."), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Image.Input( + "reference_images", + tooltip="Up to 4 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + video: Input.Video, + keep_original_sound: bool, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + validate_video_duration(video, min_duration=3.0, max_duration=10.05) + validate_video_dimensions(video, min_width=720, min_height=720, max_width=2160, max_height=2160) + image_list: list[OmniParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 4: + raise ValueError("The maximum number of reference images allowed with a video input is 4.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + video_list = [ + OmniParamVideo( + video_url=await upload_video_to_comfyapi(cls, video, wait_label="Uploading base video"), + refer_type="base", + keep_original_sound="yes" if keep_original_sound else "no", + ) + ] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=None, + duration=None, + image_list=image_list if image_list else None, + video_list=video_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProImageNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProImageNode", + display_name="Kling Omni Image (Pro)", + category="api node/image/Kling", + description="Create or edit images with the latest model from Kling.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-image-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the image content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("resolution", options=["1K", "2K"]), + IO.Combo.Input( + "aspect_ratio", + options=["16:9", "9:16", "1:1", "4:3", "3:4", "3:2", "2:3", "21:9"], + ), + IO.Image.Input( + "reference_images", + tooltip="Up to 10 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + resolution: str, + aspect_ratio: str, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + image_list: list[OmniImageParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 10: + raise ValueError("The maximum number of reference images is 10.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniImageParamImage(image=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/images/omni-image", method="POST"), + response_model=TaskStatusResponse, + data=OmniProImageRequest( + model_name=model_name, + prompt=prompt, + resolution=resolution.lower(), + aspect_ratio=aspect_ratio, + image_list=image_list if image_list else None, + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/images/omni-image/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.task_result.images[0].url)) + + +class KlingCameraControlT2VNode(IO.ComfyNode): """ Kling Text to Video Camera Control Node. This node is a text to video node, but it supports controlling the camera. Duration, mode, and model_name request fields are hard-coded because camera control is only supported in pro mode with the kling-v1-5 model at 5s duration as of 2025-05-02. """ @classmethod - def INPUT_TYPES(s): - return { - "required": { - "prompt": model_field_to_node_input( - IO.STRING, KlingText2VideoRequest, "prompt", multiline=True - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - KlingText2VideoRequest, - "negative_prompt", - multiline=True, - ), - "cfg_scale": model_field_to_node_input( - IO.FLOAT, - KlingText2VideoRequest, - "cfg_scale", - default=0.75, - min=0.0, - max=1.0, - ), - "aspect_ratio": model_field_to_node_input( - IO.COMBO, - KlingText2VideoRequest, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingCameraControlT2VNode", + display_name="Kling Text to Video (Camera Control)", + category="api node/video/Kling", + description="Transform text into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original text.", + inputs=[ + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), + IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), + IO.Float.Input("cfg_scale", default=0.75, min=0.0, max=1.0), + IO.Combo.Input( "aspect_ratio", - enum_type=KlingVideoGenAspectRatio, + options=KlingVideoGenAspectRatio, + default="16:9", ), - "camera_control": ( - "CAMERA_CONTROL", - { - "tooltip": "Can be created using the Kling Camera Controls node. Controls the camera movement and motion during the video generation.", - }, + IO.Custom("CAMERA_CONTROL").Input( + "camera_control", + tooltip="Can be created using the Kling Camera Controls node. Controls the camera movement and motion during the video generation.", ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - DESCRIPTION = "Transform text into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original text." - - async def api_call( - self, + @classmethod + async def execute( + cls, prompt: str, negative_prompt: str, cfg_scale: float, aspect_ratio: str, - camera_control: Optional[KlingCameraControl] = None, - unique_id: Optional[str] = None, - **kwargs, - ): - return await super().api_call( + camera_control: KlingCameraControl | None = None, + ) -> IO.NodeOutput: + return await execute_text2video( + cls, model_name=KlingVideoGenModelName.kling_v1, cfg_scale=cfg_scale, - mode=KlingVideoGenMode.std, + model_mode=KlingVideoGenMode.std, aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), duration=KlingVideoGenDuration.field_5, prompt=prompt, negative_prompt=negative_prompt, camera_control=camera_control, - **kwargs, ) -class KlingImage2VideoNode(KlingNodeBase): +class KlingImage2VideoNode(IO.ComfyNode): """Kling Image to Video Node""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "start_frame": model_field_to_node_input( - IO.IMAGE, - KlingImage2VideoRequest, - "image", - tooltip="The reference image used to generate the video.", - ), - "prompt": model_field_to_node_input( - IO.STRING, KlingImage2VideoRequest, "prompt", multiline=True - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - KlingImage2VideoRequest, - "negative_prompt", - multiline=True, - ), - "model_name": model_field_to_node_input( - IO.COMBO, - KlingImage2VideoRequest, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingImage2VideoNode", + display_name="Kling Image(First Frame) to Video", + category="api node/video/Kling", + inputs=[ + IO.Image.Input("start_frame", tooltip="The reference image used to generate the video."), + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), + IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), + IO.Combo.Input( "model_name", - enum_type=KlingVideoGenModelName, + options=KlingVideoGenModelName, + default="kling-v2-master", ), - "cfg_scale": model_field_to_node_input( - IO.FLOAT, - KlingImage2VideoRequest, - "cfg_scale", - default=0.8, - min=0.0, - max=1.0, - ), - "mode": model_field_to_node_input( - IO.COMBO, - KlingImage2VideoRequest, - "mode", - enum_type=KlingVideoGenMode, - ), - "aspect_ratio": model_field_to_node_input( - IO.COMBO, - KlingImage2VideoRequest, + IO.Float.Input("cfg_scale", default=0.8, min=0.0, max=1.0), + IO.Combo.Input("mode", options=KlingVideoGenMode, default=KlingVideoGenMode.std), + IO.Combo.Input( "aspect_ratio", - enum_type=KlingVideoGenAspectRatio, + options=KlingVideoGenAspectRatio, + default=KlingVideoGenAspectRatio.field_16_9, ), - "duration": model_field_to_node_input( - IO.COMBO, - KlingImage2VideoRequest, - "duration", - enum_type=KlingVideoGenDuration, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - RETURN_TYPES = ("VIDEO", "STRING", "STRING") - RETURN_NAMES = ("VIDEO", "video_id", "duration") - DESCRIPTION = "Kling Image to Video Node" - - async def get_response( - self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None - ) -> KlingImage2VideoResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_IMAGE_TO_VIDEO}/{task_id}", - method=HttpMethod.GET, - request_model=KlingImage2VideoRequest, - response_model=KlingImage2VideoResponse, - ), - result_url_extractor=get_video_url_from_response, - estimated_duration=AVERAGE_DURATION_I2V, - node_id=node_id, + IO.Combo.Input("duration", options=KlingVideoGenDuration, default=KlingVideoGenDuration.field_5), + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, ) - async def api_call( - self, + @classmethod + async def execute( + cls, start_frame: torch.Tensor, prompt: str, negative_prompt: str, @@ -700,214 +1373,141 @@ class KlingImage2VideoNode(KlingNodeBase): mode: str, aspect_ratio: str, duration: str, - camera_control: Optional[KlingCameraControl] = None, - end_frame: Optional[torch.Tensor] = None, - unique_id: Optional[str] = None, - **kwargs, - ) -> tuple[VideoFromFile]: - validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_I2V) - validate_input_image(start_frame) - - if camera_control is not None: - # Camera control type for image 2 video is always `simple` - camera_control.type = KlingCameraControlType.simple - - if mode == "std" and model_name == KlingVideoGenModelName.kling_v2_5_turbo.value: - mode = "pro" # October 5: currently "std" mode is not supported for this model - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_IMAGE_TO_VIDEO, - method=HttpMethod.POST, - request_model=KlingImage2VideoRequest, - response_model=KlingImage2VideoResponse, - ), - request=KlingImage2VideoRequest( - model_name=KlingVideoGenModelName(model_name), - image=tensor_to_base64_string(start_frame), - image_tail=( - tensor_to_base64_string(end_frame) - if end_frame is not None - else None - ), - prompt=prompt, - negative_prompt=negative_prompt if negative_prompt else None, - cfg_scale=cfg_scale, - mode=KlingVideoGenMode(mode), - duration=KlingVideoGenDuration(duration), - camera_control=camera_control, - ), - auth_kwargs=kwargs, + camera_control: KlingCameraControl | None = None, + end_frame: torch.Tensor | None = None, + ) -> IO.NodeOutput: + return await execute_image2video( + cls, + start_frame=start_frame, + prompt=prompt, + negative_prompt=negative_prompt, + cfg_scale=cfg_scale, + model_name=model_name, + aspect_ratio=aspect_ratio, + model_mode=mode, + duration=duration, + camera_control=camera_control, + end_frame=end_frame, ) - task_creation_response = await initial_operation.execute() - validate_task_creation_response(task_creation_response) - task_id = task_creation_response.data.task_id - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id - ) - validate_video_result_response(final_response) - - video = get_video_from_response(final_response) - return await video_result_to_node_output(video) - - -class KlingCameraControlI2VNode(KlingImage2VideoNode): +class KlingCameraControlI2VNode(IO.ComfyNode): """ Kling Image to Video Camera Control Node. This node is a image to video node, but it supports controlling the camera. Duration, mode, and model_name request fields are hard-coded because camera control is only supported in pro mode with the kling-v1-5 model at 5s duration as of 2025-05-02. """ @classmethod - def INPUT_TYPES(s): - return { - "required": { - "start_frame": model_field_to_node_input( - IO.IMAGE, KlingImage2VideoRequest, "image" + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingCameraControlI2VNode", + display_name="Kling Image to Video (Camera Control)", + category="api node/video/Kling", + description="Transform still images into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original image.", + inputs=[ + IO.Image.Input( + "start_frame", + tooltip="Reference Image - URL or Base64 encoded string, cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1. Base64 should not include data:image prefix.", ), - "prompt": model_field_to_node_input( - IO.STRING, KlingImage2VideoRequest, "prompt", multiline=True - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - KlingImage2VideoRequest, - "negative_prompt", - multiline=True, - ), - "cfg_scale": model_field_to_node_input( - IO.FLOAT, - KlingImage2VideoRequest, - "cfg_scale", - default=0.75, - min=0.0, - max=1.0, - ), - "aspect_ratio": model_field_to_node_input( - IO.COMBO, - KlingImage2VideoRequest, + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), + IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), + IO.Float.Input("cfg_scale", default=0.75, min=0.0, max=1.0), + IO.Combo.Input( "aspect_ratio", - enum_type=KlingVideoGenAspectRatio, + options=KlingVideoGenAspectRatio, + default=KlingVideoGenAspectRatio.field_16_9, ), - "camera_control": ( - "CAMERA_CONTROL", - { - "tooltip": "Can be created using the Kling Camera Controls node. Controls the camera movement and motion during the video generation.", - }, + IO.Custom("CAMERA_CONTROL").Input( + "camera_control", + tooltip="Can be created using the Kling Camera Controls node. Controls the camera movement and motion during the video generation.", ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - DESCRIPTION = "Transform still images into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original image." - - async def api_call( - self, + @classmethod + async def execute( + cls, start_frame: torch.Tensor, prompt: str, negative_prompt: str, cfg_scale: float, aspect_ratio: str, camera_control: KlingCameraControl, - unique_id: Optional[str] = None, - **kwargs, - ): - return await super().api_call( + ) -> IO.NodeOutput: + return await execute_image2video( + cls, model_name=KlingVideoGenModelName.kling_v1_5, start_frame=start_frame, cfg_scale=cfg_scale, - mode=KlingVideoGenMode.pro, + model_mode=KlingVideoGenMode.pro, aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio), duration=KlingVideoGenDuration.field_5, prompt=prompt, negative_prompt=negative_prompt, camera_control=camera_control, - unique_id=unique_id, - **kwargs, ) -class KlingStartEndFrameNode(KlingImage2VideoNode): +class KlingStartEndFrameNode(IO.ComfyNode): """ Kling First Last Frame Node. This node allows creation of a video from a first and last frame. It calls the normal image to video endpoint, but only allows the subset of input options that support the `image_tail` request field. """ - @staticmethod - def get_mode_string_mapping() -> dict[str, tuple[str, str, str]]: - """ - Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. - Only includes config combos that support the `image_tail` request field. - - See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) - """ - return { - "standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), - "pro mode / 5s duration / kling-v1": ("pro", "5", "kling-v1"), - "pro mode / 5s duration / kling-v1-5": ("pro", "5", "kling-v1-5"), - "pro mode / 10s duration / kling-v1-5": ("pro", "10", "kling-v1-5"), - "pro mode / 5s duration / kling-v1-6": ("pro", "5", "kling-v1-6"), - "pro mode / 10s duration / kling-v1-6": ("pro", "10", "kling-v1-6"), - "pro mode / 5s duration / kling-v2-1": ("pro", "5", "kling-v2-1"), - "pro mode / 10s duration / kling-v2-1": ("pro", "10", "kling-v2-1"), - } + @classmethod + def define_schema(cls) -> IO.Schema: + modes = list(MODE_START_END_FRAME.keys()) + return IO.Schema( + node_id="KlingStartEndFrameNode", + display_name="Kling Start-End Frame to Video", + category="api node/video/Kling", + description="Generate a video sequence that transitions between your provided start and end images. The node creates all frames in between, producing a smooth transformation from the first frame to the last.", + inputs=[ + IO.Image.Input( + "start_frame", + tooltip="Reference Image - URL or Base64 encoded string, cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1. Base64 should not include data:image prefix.", + ), + IO.Image.Input( + "end_frame", + tooltip="Reference Image - End frame control. URL or Base64 encoded string, cannot exceed 10MB, resolution not less than 300*300px. Base64 should not include data:image prefix.", + ), + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), + IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), + IO.Float.Input("cfg_scale", default=0.5, min=0.0, max=1.0), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Combo.Input( + "mode", + options=modes, + default=modes[6], + tooltip="The configuration to use for the video generation following the format: mode / duration / model_name.", + ), + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - modes = list(KlingStartEndFrameNode.get_mode_string_mapping().keys()) - return { - "required": { - "start_frame": model_field_to_node_input( - IO.IMAGE, KlingImage2VideoRequest, "image" - ), - "end_frame": model_field_to_node_input( - IO.IMAGE, KlingImage2VideoRequest, "image_tail" - ), - "prompt": model_field_to_node_input( - IO.STRING, KlingImage2VideoRequest, "prompt", multiline=True - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - KlingImage2VideoRequest, - "negative_prompt", - multiline=True, - ), - "cfg_scale": model_field_to_node_input( - IO.FLOAT, - KlingImage2VideoRequest, - "cfg_scale", - default=0.5, - min=0.0, - max=1.0, - ), - "aspect_ratio": model_field_to_node_input( - IO.COMBO, - KlingImage2VideoRequest, - "aspect_ratio", - enum_type=KlingVideoGenAspectRatio, - ), - "mode": ( - modes, - { - "default": modes[2], - "tooltip": "The configuration to use for the video generation following the format: mode / duration / model_name.", - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Generate a video sequence that transitions between your provided start and end images. The node creates all frames in between, producing a smooth transformation from the first frame to the last." - - async def api_call( - self, + async def execute( + cls, start_frame: torch.Tensor, end_frame: torch.Tensor, prompt: str, @@ -915,776 +1515,472 @@ class KlingStartEndFrameNode(KlingImage2VideoNode): cfg_scale: float, aspect_ratio: str, mode: str, - unique_id: Optional[str] = None, - **kwargs, - ): - mode, duration, model_name = KlingStartEndFrameNode.get_mode_string_mapping()[ - mode - ] - return await super().api_call( + ) -> IO.NodeOutput: + mode, duration, model_name = MODE_START_END_FRAME[mode] + return await execute_image2video( + cls, prompt=prompt, negative_prompt=negative_prompt, model_name=model_name, start_frame=start_frame, cfg_scale=cfg_scale, - mode=mode, + model_mode=mode, aspect_ratio=aspect_ratio, duration=duration, end_frame=end_frame, - unique_id=unique_id, - **kwargs, ) -class KlingVideoExtendNode(KlingNodeBase): +class KlingVideoExtendNode(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "prompt": model_field_to_node_input( - IO.STRING, KlingVideoExtendRequest, "prompt", multiline=True + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingVideoExtendNode", + display_name="Kling Video Extend", + category="api node/video/Kling", + description="Kling Video Extend Node. Extend videos made by other Kling nodes. The video_id is created by using other Kling Nodes.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + tooltip="Positive text prompt for guiding the video extension", ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - KlingVideoExtendRequest, + IO.String.Input( "negative_prompt", multiline=True, + tooltip="Negative text prompt for elements to avoid in the extended video", ), - "cfg_scale": model_field_to_node_input( - IO.FLOAT, - KlingVideoExtendRequest, - "cfg_scale", - default=0.5, - min=0.0, - max=1.0, + IO.Float.Input("cfg_scale", default=0.5, min=0.0, max=1.0), + IO.String.Input( + "video_id", + force_input=True, + tooltip="The ID of the video to be extended. Supports videos generated by text-to-video, image-to-video, and previous video extension operations. Cannot exceed 3 minutes total duration after extension.", ), - "video_id": model_field_to_node_input( - IO.STRING, KlingVideoExtendRequest, "video_id", forceInput=True - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - RETURN_TYPES = ("VIDEO", "STRING", "STRING") - RETURN_NAMES = ("VIDEO", "video_id", "duration") - DESCRIPTION = "Kling Video Extend Node. Extend videos made by other Kling nodes. The video_id is created by using other Kling Nodes." - - async def get_response( - self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None - ) -> KlingVideoExtendResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_VIDEO_EXTEND}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=KlingVideoExtendResponse, - ), - result_url_extractor=get_video_url_from_response, - estimated_duration=AVERAGE_DURATION_VIDEO_EXTEND, - node_id=node_id, + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, ) - async def api_call( - self, + @classmethod + async def execute( + cls, prompt: str, negative_prompt: str, cfg_scale: float, video_id: str, - unique_id: Optional[str] = None, - **kwargs, - ) -> tuple[VideoFromFile, str, str]: + ) -> IO.NodeOutput: validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_VIDEO_EXTEND, - method=HttpMethod.POST, - request_model=KlingVideoExtendRequest, - response_model=KlingVideoExtendResponse, - ), - request=KlingVideoExtendRequest( + task_creation_response = await sync_op( + cls, + ApiEndpoint(path=PATH_VIDEO_EXTEND, method="POST"), + response_model=KlingVideoExtendResponse, + data=KlingVideoExtendRequest( prompt=prompt if prompt else None, negative_prompt=negative_prompt if negative_prompt else None, cfg_scale=cfg_scale, video_id=video_id, ), - auth_kwargs=kwargs, ) - task_creation_response = await initial_operation.execute() validate_task_creation_response(task_creation_response) task_id = task_creation_response.data.task_id - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_VIDEO_EXTEND}/{task_id}"), + response_model=KlingVideoExtendResponse, + estimated_duration=AVERAGE_DURATION_VIDEO_EXTEND, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), ) validate_video_result_response(final_response) video = get_video_from_response(final_response) - return await video_result_to_node_output(video) + return IO.NodeOutput(await download_url_to_video_output(str(video.url)), str(video.id), str(video.duration)) -class KlingVideoEffectsBase(KlingNodeBase): - """Kling Video Effects Base""" - - RETURN_TYPES = ("VIDEO", "STRING", "STRING") - RETURN_NAMES = ("VIDEO", "video_id", "duration") - - async def get_response( - self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None - ) -> KlingVideoEffectsResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_VIDEO_EFFECTS}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=KlingVideoEffectsResponse, - ), - result_url_extractor=get_video_url_from_response, - estimated_duration=AVERAGE_DURATION_VIDEO_EFFECTS, - node_id=node_id, - ) - - async def api_call( - self, - dual_character: bool, - effect_scene: KlingDualCharacterEffectsScene | KlingSingleImageEffectsScene, - model_name: str, - duration: KlingVideoGenDuration, - image_1: torch.Tensor, - image_2: Optional[torch.Tensor] = None, - mode: Optional[KlingVideoGenMode] = None, - unique_id: Optional[str] = None, - **kwargs, - ): - if dual_character: - request_input_field = KlingDualCharacterEffectInput( - model_name=model_name, - mode=mode, - images=[ - tensor_to_base64_string(image_1), - tensor_to_base64_string(image_2), - ], - duration=duration, - ) - else: - request_input_field = KlingSingleImageEffectInput( - model_name=model_name, - image=tensor_to_base64_string(image_1), - duration=duration, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_VIDEO_EFFECTS, - method=HttpMethod.POST, - request_model=KlingVideoEffectsRequest, - response_model=KlingVideoEffectsResponse, - ), - request=KlingVideoEffectsRequest( - effect_scene=effect_scene, - input=request_input_field, - ), - auth_kwargs=kwargs, - ) - - task_creation_response = await initial_operation.execute() - validate_task_creation_response(task_creation_response) - task_id = task_creation_response.data.task_id - - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id - ) - validate_video_result_response(final_response) - - video = get_video_from_response(final_response) - return await video_result_to_node_output(video) - - -class KlingDualCharacterVideoEffectNode(KlingVideoEffectsBase): +class KlingDualCharacterVideoEffectNode(IO.ComfyNode): """Kling Dual Character Video Effect Node""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image_left": (IO.IMAGE, {"tooltip": "Left side image"}), - "image_right": (IO.IMAGE, {"tooltip": "Right side image"}), - "effect_scene": model_field_to_node_input( - IO.COMBO, - KlingVideoEffectsRequest, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingDualCharacterVideoEffectNode", + display_name="Kling Dual Character Video Effects", + category="api node/video/Kling", + description="Achieve different special effects when generating a video based on the effect_scene. First image will be positioned on left side, second on right side of the composite.", + inputs=[ + IO.Image.Input("image_left", tooltip="Left side image"), + IO.Image.Input("image_right", tooltip="Right side image"), + IO.Combo.Input( "effect_scene", - enum_type=KlingDualCharacterEffectsScene, + options=[i.value for i in KlingDualCharacterEffectsScene], ), - "model_name": model_field_to_node_input( - IO.COMBO, - KlingDualCharacterEffectInput, + IO.Combo.Input( "model_name", - enum_type=KlingCharacterEffectModelName, + options=[i.value for i in KlingCharacterEffectModelName], + default="kling-v1", ), - "mode": model_field_to_node_input( - IO.COMBO, - KlingDualCharacterEffectInput, + IO.Combo.Input( "mode", - enum_type=KlingVideoGenMode, + options=[i.value for i in KlingVideoGenMode], + default="std", ), - "duration": model_field_to_node_input( - IO.COMBO, - KlingDualCharacterEffectInput, + IO.Combo.Input( "duration", - enum_type=KlingVideoGenDuration, + options=[i.value for i in KlingVideoGenDuration], ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - DESCRIPTION = "Achieve different special effects when generating a video based on the effect_scene. First image will be positioned on left side, second on right side of the composite." - RETURN_TYPES = ("VIDEO", "STRING") - RETURN_NAMES = ("VIDEO", "duration") - - async def api_call( - self, + @classmethod + async def execute( + cls, image_left: torch.Tensor, image_right: torch.Tensor, effect_scene: KlingDualCharacterEffectsScene, model_name: KlingCharacterEffectModelName, mode: KlingVideoGenMode, duration: KlingVideoGenDuration, - unique_id: Optional[str] = None, - **kwargs, - ): - video, _, duration = await super().api_call( + ) -> IO.NodeOutput: + video, _, duration = await execute_video_effect( + cls, dual_character=True, effect_scene=effect_scene, model_name=model_name, - mode=mode, + model_mode=mode, duration=duration, image_1=image_left, image_2=image_right, - unique_id=unique_id, - **kwargs, ) - return video, duration + return IO.NodeOutput(video, duration) -class KlingSingleImageVideoEffectNode(KlingVideoEffectsBase): +class KlingSingleImageVideoEffectNode(IO.ComfyNode): """Kling Single Image Video Effect Node""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ( - IO.IMAGE, - { - "tooltip": " Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1" - }, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingSingleImageVideoEffectNode", + display_name="Kling Video Effects", + category="api node/video/Kling", + description="Achieve different special effects when generating a video based on the effect_scene.", + inputs=[ + IO.Image.Input( + "image", + tooltip=" Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1", ), - "effect_scene": model_field_to_node_input( - IO.COMBO, - KlingVideoEffectsRequest, + IO.Combo.Input( "effect_scene", - enum_type=KlingSingleImageEffectsScene, + options=[i.value for i in KlingSingleImageEffectsScene], ), - "model_name": model_field_to_node_input( - IO.COMBO, - KlingSingleImageEffectInput, + IO.Combo.Input( "model_name", - enum_type=KlingSingleImageEffectModelName, + options=[i.value for i in KlingSingleImageEffectModelName], ), - "duration": model_field_to_node_input( - IO.COMBO, - KlingSingleImageEffectInput, + IO.Combo.Input( "duration", - enum_type=KlingVideoGenDuration, + options=[i.value for i in KlingVideoGenDuration], ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - DESCRIPTION = "Achieve different special effects when generating a video based on the effect_scene." - - async def api_call( - self, + @classmethod + async def execute( + cls, image: torch.Tensor, effect_scene: KlingSingleImageEffectsScene, model_name: KlingSingleImageEffectModelName, duration: KlingVideoGenDuration, - unique_id: Optional[str] = None, - **kwargs, - ): - return await super().api_call( - dual_character=False, - effect_scene=effect_scene, - model_name=model_name, - duration=duration, - image_1=image, - unique_id=unique_id, - **kwargs, - ) - - -class KlingLipSyncBase(KlingNodeBase): - """Kling Lip Sync Base""" - - RETURN_TYPES = ("VIDEO", "STRING", "STRING") - RETURN_NAMES = ("VIDEO", "video_id", "duration") - - def validate_lip_sync_video(self, video: VideoInput): - """ - Validates the input video adheres to the expectations of the Kling Lip Sync API: - - Video length does not exceed 10s and is not shorter than 2s - - Length and width dimensions should both be between 720px and 1920px - - See: https://app.klingai.com/global/dev/document-api/apiReference/model/videoTolip - """ - validate_video_dimensions(video, 720, 1920) - validate_video_duration(video, 2, 10) - - def validate_text(self, text: str): - if not text: - raise ValueError("Text is required") - if len(text) > MAX_PROMPT_LENGTH_LIP_SYNC: - raise ValueError( - f"Text is too long. Maximum length is {MAX_PROMPT_LENGTH_LIP_SYNC} characters." + ) -> IO.NodeOutput: + return IO.NodeOutput( + *( + await execute_video_effect( + cls, + dual_character=False, + effect_scene=effect_scene, + model_name=model_name, + duration=duration, + image_1=image, + ) ) - - async def get_response( - self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None - ) -> KlingLipSyncResponse: - """Polls the Kling API endpoint until the task reaches a terminal state.""" - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_LIP_SYNC}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=KlingLipSyncResponse, - ), - result_url_extractor=get_video_url_from_response, - estimated_duration=AVERAGE_DURATION_LIP_SYNC, - node_id=node_id, ) - async def api_call( - self, - video: VideoInput, - audio: Optional[AudioInput] = None, - voice_language: Optional[str] = None, - mode: Optional[str] = None, - text: Optional[str] = None, - voice_speed: Optional[float] = None, - voice_id: Optional[str] = None, - unique_id: Optional[str] = None, - **kwargs, - ) -> tuple[VideoFromFile, str, str]: - if text: - self.validate_text(text) - self.validate_lip_sync_video(video) - # Upload video to Comfy API and get download URL - video_url = await upload_video_to_comfyapi(video, auth_kwargs=kwargs) - logging.info("Uploaded video to Comfy API. URL: %s", video_url) - - # Upload the audio file to Comfy API and get download URL - if audio: - audio_url = await upload_audio_to_comfyapi(audio, auth_kwargs=kwargs) - logging.info("Uploaded audio to Comfy API. URL: %s", audio_url) - else: - audio_url = None - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_LIP_SYNC, - method=HttpMethod.POST, - request_model=KlingLipSyncRequest, - response_model=KlingLipSyncResponse, - ), - request=KlingLipSyncRequest( - input=KlingLipSyncInputObject( - video_url=video_url, - mode=mode, - text=text, - voice_language=voice_language, - voice_speed=voice_speed, - audio_type="url", - audio_url=audio_url, - voice_id=voice_id, - ), - ), - auth_kwargs=kwargs, - ) - - task_creation_response = await initial_operation.execute() - validate_task_creation_response(task_creation_response) - task_id = task_creation_response.data.task_id - - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id - ) - validate_video_result_response(final_response) - - video = get_video_from_response(final_response) - return await video_result_to_node_output(video) - - -class KlingLipSyncAudioToVideoNode(KlingLipSyncBase): +class KlingLipSyncAudioToVideoNode(IO.ComfyNode): """Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file.""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "video": (IO.VIDEO, {}), - "audio": (IO.AUDIO, {}), - "voice_language": model_field_to_node_input( - IO.COMBO, - KlingLipSyncInputObject, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingLipSyncAudioToVideoNode", + display_name="Kling Lip Sync Video with Audio", + category="api node/video/Kling", + description="Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file. When using, ensure that the audio contains clearly distinguishable vocals and that the video contains a distinct face. The audio file should not be larger than 5MB. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length.", + inputs=[ + IO.Video.Input("video"), + IO.Audio.Input("audio"), + IO.Combo.Input( "voice_language", - enum_type=KlingLipSyncVoiceLanguage, + options=[i.value for i in KlingLipSyncVoiceLanguage], + default="en", ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - DESCRIPTION = "Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file. When using, ensure that the audio contains clearly distinguishable vocals and that the video contains a distinct face. The audio file should not be larger than 5MB. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length." - - async def api_call( - self, - video: VideoInput, - audio: AudioInput, + @classmethod + async def execute( + cls, + video: Input.Video, + audio: Input.Audio, voice_language: str, - unique_id: Optional[str] = None, - **kwargs, - ): - return await super().api_call( + ) -> IO.NodeOutput: + return await execute_lipsync( + cls, video=video, audio=audio, voice_language=voice_language, - mode="audio2video", - unique_id=unique_id, - **kwargs, + model_mode="audio2video", ) -class KlingLipSyncTextToVideoNode(KlingLipSyncBase): +class KlingLipSyncTextToVideoNode(IO.ComfyNode): """Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt.""" - @staticmethod - def get_voice_config() -> dict[str, tuple[str, str]]: - return { - # English voices - "Melody": ("girlfriend_4_speech02", "en"), - "Sunny": ("genshin_vindi2", "en"), - "Sage": ("zhinen_xuesheng", "en"), - "Ace": ("AOT", "en"), - "Blossom": ("ai_shatang", "en"), - "Peppy": ("genshin_klee2", "en"), - "Dove": ("genshin_kirara", "en"), - "Shine": ("ai_kaiya", "en"), - "Anchor": ("oversea_male1", "en"), - "Lyric": ("ai_chenjiahao_712", "en"), - "Tender": ("chat1_female_new-3", "en"), - "Siren": ("chat_0407_5-1", "en"), - "Zippy": ("cartoon-boy-07", "en"), - "Bud": ("uk_boy1", "en"), - "Sprite": ("cartoon-girl-01", "en"), - "Candy": ("PeppaPig_platform", "en"), - "Beacon": ("ai_huangzhong_712", "en"), - "Rock": ("ai_huangyaoshi_712", "en"), - "Titan": ("ai_laoguowang_712", "en"), - "Grace": ("chengshu_jiejie", "en"), - "Helen": ("you_pingjing", "en"), - "Lore": ("calm_story1", "en"), - "Crag": ("uk_man2", "en"), - "Prattle": ("laopopo_speech02", "en"), - "Hearth": ("heainainai_speech02", "en"), - "The Reader": ("reader_en_m-v1", "en"), - "Commercial Lady": ("commercial_lady_en_f-v1", "en"), - # Chinese voices - "阳光少年": ("genshin_vindi2", "zh"), - "懂事小弟": ("zhinen_xuesheng", "zh"), - "运动少年": ("tiyuxi_xuedi", "zh"), - "青春少女": ("ai_shatang", "zh"), - "温柔小妹": ("genshin_klee2", "zh"), - "元气少女": ("genshin_kirara", "zh"), - "阳光男生": ("ai_kaiya", "zh"), - "幽默小哥": ("tiexin_nanyou", "zh"), - "文艺小哥": ("ai_chenjiahao_712", "zh"), - "甜美邻家": ("girlfriend_1_speech02", "zh"), - "温柔姐姐": ("chat1_female_new-3", "zh"), - "职场女青": ("girlfriend_2_speech02", "zh"), - "活泼男童": ("cartoon-boy-07", "zh"), - "俏皮女童": ("cartoon-girl-01", "zh"), - "稳重老爸": ("ai_huangyaoshi_712", "zh"), - "温柔妈妈": ("you_pingjing", "zh"), - "严肃上司": ("ai_laoguowang_712", "zh"), - "优雅贵妇": ("chengshu_jiejie", "zh"), - "慈祥爷爷": ("zhuxi_speech02", "zh"), - "唠叨爷爷": ("uk_oldman3", "zh"), - "唠叨奶奶": ("laopopo_speech02", "zh"), - "和蔼奶奶": ("heainainai_speech02", "zh"), - "东北老铁": ("dongbeilaotie_speech02", "zh"), - "重庆小伙": ("chongqingxiaohuo_speech02", "zh"), - "四川妹子": ("chuanmeizi_speech02", "zh"), - "潮汕大叔": ("chaoshandashu_speech02", "zh"), - "台湾男生": ("ai_taiwan_man2_speech02", "zh"), - "西安掌柜": ("xianzhanggui_speech02", "zh"), - "天津姐姐": ("tianjinjiejie_speech02", "zh"), - "新闻播报男": ("diyinnansang_DB_CN_M_04-v2", "zh"), - "译制片男": ("yizhipiannan-v1", "zh"), - "撒娇女友": ("tianmeixuemei-v1", "zh"), - "刀片烟嗓": ("daopianyansang-v1", "zh"), - "乖巧正太": ("mengwa-v1", "zh"), - } + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingLipSyncTextToVideoNode", + display_name="Kling Lip Sync Video with Text", + category="api node/video/Kling", + description="Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length.", + inputs=[ + IO.Video.Input("video"), + IO.String.Input( + "text", + multiline=True, + tooltip="Text Content for Lip-Sync Video Generation. Required when mode is text2video. Maximum length is 120 characters.", + ), + IO.Combo.Input( + "voice", + options=list(VOICES_CONFIG.keys()), + default="Melody", + ), + IO.Float.Input( + "voice_speed", + default=1, + min=0.8, + max=2.0, + display_mode=IO.NumberDisplay.slider, + tooltip="Speech Rate. Valid range: 0.8~2.0, accurate to one decimal place.", + ), + ], + outputs=[ + IO.Video.Output(), + IO.String.Output(display_name="video_id"), + IO.String.Output(display_name="duration"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - voice_options = list(s.get_voice_config().keys()) - return { - "required": { - "video": (IO.VIDEO, {}), - "text": model_field_to_node_input( - IO.STRING, KlingLipSyncInputObject, "text", multiline=True - ), - "voice": (voice_options, {"default": voice_options[0]}), - "voice_speed": model_field_to_node_input( - IO.FLOAT, KlingLipSyncInputObject, "voice_speed", slider=True - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length." - - async def api_call( - self, - video: VideoInput, + async def execute( + cls, + video: Input.Video, text: str, voice: str, voice_speed: float, - unique_id: Optional[str] = None, - **kwargs, - ): - voice_id, voice_language = KlingLipSyncTextToVideoNode.get_voice_config()[voice] - return await super().api_call( + ) -> IO.NodeOutput: + voice_id, voice_language = VOICES_CONFIG[voice] + return await execute_lipsync( + cls, video=video, text=text, voice_language=voice_language, voice_id=voice_id, voice_speed=voice_speed, - mode="text2video", - unique_id=unique_id, - **kwargs, + model_mode="text2video", ) -class KlingImageGenerationBase(KlingNodeBase): - """Kling Image Generation Base Node.""" - - RETURN_TYPES = ("IMAGE",) - CATEGORY = "api node/image/Kling" - - def validate_prompt(self, prompt: str, negative_prompt: Optional[str] = None): - if not prompt or len(prompt) > MAX_PROMPT_LENGTH_IMAGE_GEN: - raise ValueError( - f"Prompt must be less than {MAX_PROMPT_LENGTH_IMAGE_GEN} characters" - ) - if negative_prompt and len(negative_prompt) > MAX_PROMPT_LENGTH_IMAGE_GEN: - raise ValueError( - f"Negative prompt must be less than {MAX_PROMPT_LENGTH_IMAGE_GEN} characters" - ) - - -class KlingVirtualTryOnNode(KlingImageGenerationBase): +class KlingVirtualTryOnNode(IO.ComfyNode): """Kling Virtual Try On Node.""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "human_image": (IO.IMAGE, {}), - "cloth_image": (IO.IMAGE, {}), - "model_name": model_field_to_node_input( - IO.COMBO, - KlingVirtualTryOnRequest, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingVirtualTryOnNode", + display_name="Kling Virtual Try On", + category="api node/image/Kling", + description="Kling Virtual Try On Node. Input a human image and a cloth image to try on the cloth on the human. You can merge multiple clothing item pictures into one image with a white background.", + inputs=[ + IO.Image.Input("human_image"), + IO.Image.Input("cloth_image"), + IO.Combo.Input( "model_name", - enum_type=KlingVirtualTryOnModelName, + options=[i.value for i in KlingVirtualTryOnModelName], + default="kolors-virtual-try-on-v1", ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Kling Virtual Try On Node. Input a human image and a cloth image to try on the cloth on the human. You can merge multiple clothing item pictures into one image with a white background." - - async def get_response( - self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None - ) -> KlingVirtualTryOnResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_VIRTUAL_TRY_ON}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=KlingVirtualTryOnResponse, - ), - result_url_extractor=get_images_urls_from_response, - estimated_duration=AVERAGE_DURATION_VIRTUAL_TRY_ON, - node_id=node_id, + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, ) - async def api_call( - self, + @classmethod + async def execute( + cls, human_image: torch.Tensor, cloth_image: torch.Tensor, model_name: KlingVirtualTryOnModelName, - unique_id: Optional[str] = None, - **kwargs, - ): - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_VIRTUAL_TRY_ON, - method=HttpMethod.POST, - request_model=KlingVirtualTryOnRequest, - response_model=KlingVirtualTryOnResponse, - ), - request=KlingVirtualTryOnRequest( + ) -> IO.NodeOutput: + task_creation_response = await sync_op( + cls, + ApiEndpoint(path=PATH_VIRTUAL_TRY_ON, method="POST"), + response_model=KlingVirtualTryOnResponse, + data=KlingVirtualTryOnRequest( human_image=tensor_to_base64_string(human_image), cloth_image=tensor_to_base64_string(cloth_image), model_name=model_name, ), - auth_kwargs=kwargs, ) - task_creation_response = await initial_operation.execute() validate_task_creation_response(task_creation_response) task_id = task_creation_response.data.task_id - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_VIRTUAL_TRY_ON}/{task_id}"), + response_model=KlingVirtualTryOnResponse, + estimated_duration=AVERAGE_DURATION_VIRTUAL_TRY_ON, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), ) validate_image_result_response(final_response) images = get_images_from_response(final_response) - return (await image_result_to_node_output(images),) + return IO.NodeOutput(await image_result_to_node_output(images)) -class KlingImageGenerationNode(KlingImageGenerationBase): +class KlingImageGenerationNode(IO.ComfyNode): """Kling Image Generation Node. Generate an image from a text prompt with an optional reference image.""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "prompt": model_field_to_node_input( - IO.STRING, - KlingImageGenerationsRequest, - "prompt", - multiline=True, - max_length=MAX_PROMPT_LENGTH_IMAGE_GEN, + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingImageGenerationNode", + display_name="Kling Image Generation", + category="api node/image/Kling", + description="Kling Image Generation Node. Generate an image from a text prompt with an optional reference image.", + inputs=[ + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), + IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), + IO.Combo.Input( + "image_type", + options=[i.value for i in KlingImageGenImageReferenceType], ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - KlingImageGenerationsRequest, - "negative_prompt", - multiline=True, - ), - "image_type": model_field_to_node_input( - IO.COMBO, - KlingImageGenerationsRequest, - "image_reference", - enum_type=KlingImageGenImageReferenceType, - ), - "image_fidelity": model_field_to_node_input( - IO.FLOAT, - KlingImageGenerationsRequest, + IO.Float.Input( "image_fidelity", - slider=True, + default=0.5, + min=0.0, + max=1.0, step=0.01, + display_mode=IO.NumberDisplay.slider, + tooltip="Reference intensity for user-uploaded images", ), - "human_fidelity": model_field_to_node_input( - IO.FLOAT, - KlingImageGenerationsRequest, + IO.Float.Input( "human_fidelity", - slider=True, + default=0.45, + min=0.0, + max=1.0, step=0.01, + display_mode=IO.NumberDisplay.slider, + tooltip="Subject reference similarity", ), - "model_name": model_field_to_node_input( - IO.COMBO, - KlingImageGenerationsRequest, + IO.Combo.Input( "model_name", - enum_type=KlingImageGenModelName, + options=[i.value for i in KlingImageGenModelName], + default="kling-v2", ), - "aspect_ratio": model_field_to_node_input( - IO.COMBO, - KlingImageGenerationsRequest, + IO.Combo.Input( "aspect_ratio", - enum_type=KlingImageGenAspectRatio, + options=[i.value for i in KlingImageGenAspectRatio], + default="16:9", ), - "n": model_field_to_node_input( - IO.INT, - KlingImageGenerationsRequest, + IO.Int.Input( "n", + default=1, + min=1, + max=9, + tooltip="Number of generated images", ), - }, - "optional": { - "image": (IO.IMAGE, {}), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Kling Image Generation Node. Generate an image from a text prompt with an optional reference image." - - async def get_response( - self, - task_id: str, - auth_kwargs: Optional[dict[str, str]], - node_id: Optional[str] = None, - ) -> KlingImageGenerationsResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_IMAGE_GENERATIONS}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=KlingImageGenerationsResponse, - ), - result_url_extractor=get_images_urls_from_response, - estimated_duration=AVERAGE_DURATION_IMAGE_GEN, - node_id=node_id, + IO.Image.Input("image", optional=True), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, ) - async def api_call( - self, + @classmethod + async def execute( + cls, model_name: KlingImageGenModelName, prompt: str, negative_prompt: str, @@ -1693,11 +1989,10 @@ class KlingImageGenerationNode(KlingImageGenerationBase): human_fidelity: float, n: int, aspect_ratio: KlingImageGenAspectRatio, - image: Optional[torch.Tensor] = None, - unique_id: Optional[str] = None, - **kwargs, - ): - self.validate_prompt(prompt, negative_prompt) + image: torch.Tensor | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, field_name="prompt", min_length=1, max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) + validate_string(negative_prompt, field_name="negative_prompt", max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) if image is None: image_type = None @@ -1706,14 +2001,11 @@ class KlingImageGenerationNode(KlingImageGenerationBase): else: image = tensor_to_base64_string(image) - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_IMAGE_GENERATIONS, - method=HttpMethod.POST, - request_model=KlingImageGenerationsRequest, - response_model=KlingImageGenerationsResponse, - ), - request=KlingImageGenerationsRequest( + task_creation_response = await sync_op( + cls, + ApiEndpoint(path=PATH_IMAGE_GENERATIONS, method="POST"), + response_model=KlingImageGenerationsResponse, + data=KlingImageGenerationsRequest( model_name=model_name, prompt=prompt, negative_prompt=negative_prompt, @@ -1724,50 +2016,267 @@ class KlingImageGenerationNode(KlingImageGenerationBase): n=n, aspect_ratio=aspect_ratio, ), - auth_kwargs=kwargs, ) - task_creation_response = await initial_operation.execute() validate_task_creation_response(task_creation_response) task_id = task_creation_response.data.task_id - final_response = await self.get_response( - task_id, auth_kwargs=kwargs, node_id=unique_id + final_response = await poll_op( + cls, + ApiEndpoint(path=f"{PATH_IMAGE_GENERATIONS}/{task_id}"), + response_model=KlingImageGenerationsResponse, + estimated_duration=AVERAGE_DURATION_IMAGE_GEN, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), ) validate_image_result_response(final_response) images = get_images_from_response(final_response) - return (await image_result_to_node_output(images),) + return IO.NodeOutput(await image_result_to_node_output(images)) -NODE_CLASS_MAPPINGS = { - "KlingCameraControls": KlingCameraControls, - "KlingTextToVideoNode": KlingTextToVideoNode, - "KlingImage2VideoNode": KlingImage2VideoNode, - "KlingCameraControlI2VNode": KlingCameraControlI2VNode, - "KlingCameraControlT2VNode": KlingCameraControlT2VNode, - "KlingStartEndFrameNode": KlingStartEndFrameNode, - "KlingVideoExtendNode": KlingVideoExtendNode, - "KlingLipSyncAudioToVideoNode": KlingLipSyncAudioToVideoNode, - "KlingLipSyncTextToVideoNode": KlingLipSyncTextToVideoNode, - "KlingVirtualTryOnNode": KlingVirtualTryOnNode, - "KlingImageGenerationNode": KlingImageGenerationNode, - "KlingSingleImageVideoEffectNode": KlingSingleImageVideoEffectNode, - "KlingDualCharacterVideoEffectNode": KlingDualCharacterVideoEffectNode, -} +class TextToVideoWithAudio(IO.ComfyNode): -NODE_DISPLAY_NAME_MAPPINGS = { - "KlingCameraControls": "Kling Camera Controls", - "KlingTextToVideoNode": "Kling Text to Video", - "KlingImage2VideoNode": "Kling Image to Video", - "KlingCameraControlI2VNode": "Kling Image to Video (Camera Control)", - "KlingCameraControlT2VNode": "Kling Text to Video (Camera Control)", - "KlingStartEndFrameNode": "Kling Start-End Frame to Video", - "KlingVideoExtendNode": "Kling Video Extend", - "KlingLipSyncAudioToVideoNode": "Kling Lip Sync Video with Audio", - "KlingLipSyncTextToVideoNode": "Kling Lip Sync Video with Text", - "KlingVirtualTryOnNode": "Kling Virtual Try On", - "KlingImageGenerationNode": "Kling Image Generation", - "KlingSingleImageVideoEffectNode": "Kling Video Effects", - "KlingDualCharacterVideoEffectNode": "Kling Dual Character Video Effects", -} + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingTextToVideoWithAudio", + display_name="Kling Text to Video with Audio", + category="api node/video/Kling", + inputs=[ + IO.Combo.Input("model_name", options=["kling-v2-6"]), + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt."), + IO.Combo.Input("mode", options=["pro"]), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Combo.Input("duration", options=[5, 10]), + IO.Boolean.Input("generate_audio", default=True), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + mode: str, + aspect_ratio: str, + duration: int, + generate_audio: bool, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/text2video", method="POST"), + response_model=TaskStatusResponse, + data=TextToVideoWithAudioRequest( + model_name=model_name, + prompt=prompt, + mode=mode, + aspect_ratio=aspect_ratio, + duration=str(duration), + sound="on" if generate_audio else "off", + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/text2video/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + +class ImageToVideoWithAudio(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingImageToVideoWithAudio", + display_name="Kling Image(First Frame) to Video with Audio", + category="api node/video/Kling", + inputs=[ + IO.Combo.Input("model_name", options=["kling-v2-6"]), + IO.Image.Input("start_frame"), + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt."), + IO.Combo.Input("mode", options=["pro"]), + IO.Combo.Input("duration", options=[5, 10]), + IO.Boolean.Input("generate_audio", default=True), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + start_frame: Input.Image, + prompt: str, + mode: str, + duration: int, + generate_audio: bool, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + validate_image_dimensions(start_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(start_frame, (1, 2.5), (2.5, 1)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/image2video", method="POST"), + response_model=TaskStatusResponse, + data=ImageToVideoWithAudioRequest( + model_name=model_name, + image=(await upload_images_to_comfyapi(cls, start_frame))[0], + prompt=prompt, + mode=mode, + duration=str(duration), + sound="on" if generate_audio else "off", + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/image2video/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + +class MotionControl(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingMotionControl", + display_name="Kling Motion Control", + category="api node/video/Kling", + inputs=[ + IO.String.Input("prompt", multiline=True), + IO.Image.Input("reference_image"), + IO.Video.Input( + "reference_video", + tooltip="Motion reference video used to drive movement/expression.\n" + "Duration limits depend on character_orientation:\n" + " - image: 3–10s (max 10s)\n" + " - video: 3–30s (max 30s)", + ), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Combo.Input( + "character_orientation", + options=["video", "image"], + tooltip="Controls where the character's facing/orientation comes from.\n" + "video: movements, expressions, camera moves, and orientation " + "follow the motion reference video (other details via prompt).\n" + "image: movements and expressions still follow the motion reference video, " + "but the character orientation matches the reference image (camera/other details via prompt).", + ), + IO.Combo.Input("mode", options=["pro", "std"]), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + reference_image: Input.Image, + reference_video: Input.Video, + keep_original_sound: bool, + character_orientation: str, + mode: str, + ) -> IO.NodeOutput: + validate_string(prompt, max_length=2500) + validate_image_dimensions(reference_image, min_width=340, min_height=340) + validate_image_aspect_ratio(reference_image, (1, 2.5), (2.5, 1)) + if character_orientation == "image": + validate_video_duration(reference_video, min_duration=3, max_duration=10) + else: + validate_video_duration(reference_video, min_duration=3, max_duration=30) + validate_video_dimensions(reference_video, min_width=340, min_height=340, max_width=3850, max_height=3850) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/motion-control", method="POST"), + response_model=TaskStatusResponse, + data=MotionControlRequest( + prompt=prompt, + image_url=(await upload_images_to_comfyapi(cls, reference_image))[0], + video_url=await upload_video_to_comfyapi(cls, reference_video), + keep_original_sound="yes" if keep_original_sound else "no", + character_orientation=character_orientation, + mode=mode, + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/motion-control/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + +class KlingExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + KlingCameraControls, + KlingTextToVideoNode, + KlingImage2VideoNode, + KlingCameraControlI2VNode, + KlingCameraControlT2VNode, + KlingStartEndFrameNode, + KlingVideoExtendNode, + KlingLipSyncAudioToVideoNode, + KlingLipSyncTextToVideoNode, + KlingVirtualTryOnNode, + KlingImageGenerationNode, + KlingSingleImageVideoEffectNode, + KlingDualCharacterVideoEffectNode, + OmniProTextToVideoNode, + OmniProFirstLastFrameNode, + OmniProImageToVideoNode, + OmniProVideoToVideoNode, + OmniProEditVideoNode, + OmniProImageNode, + TextToVideoWithAudio, + ImageToVideoWithAudio, + MotionControl, + ] + + +async def comfy_entrypoint() -> KlingExtension: + return KlingExtension() diff --git a/comfy_api_nodes/nodes_ltxv.py b/comfy_api_nodes/nodes_ltxv.py new file mode 100644 index 000000000..7e61560dc --- /dev/null +++ b/comfy_api_nodes/nodes_ltxv.py @@ -0,0 +1,196 @@ +from io import BytesIO + +from pydantic import BaseModel, Field +from typing_extensions import override + +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl +from comfy_api_nodes.util import ( + ApiEndpoint, + get_number_of_images, + sync_op_raw, + upload_images_to_comfyapi, + validate_string, +) + +MODELS_MAP = { + "LTX-2 (Pro)": "ltx-2-pro", + "LTX-2 (Fast)": "ltx-2-fast", +} + + +class ExecuteTaskRequest(BaseModel): + prompt: str = Field(...) + model: str = Field(...) + duration: int = Field(...) + resolution: str = Field(...) + fps: int | None = Field(25) + generate_audio: bool | None = Field(True) + image_uri: str | None = Field(None) + + +class TextToVideoNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="LtxvApiTextToVideo", + display_name="LTXV Text To Video", + category="api node/video/LTXV", + description="Professional-quality videos with customizable duration and resolution.", + inputs=[ + IO.Combo.Input("model", options=list(MODELS_MAP.keys())), + IO.String.Input( + "prompt", + multiline=True, + default="", + ), + IO.Combo.Input("duration", options=[6, 8, 10, 12, 14, 16, 18, 20], default=8), + IO.Combo.Input( + "resolution", + options=[ + "1920x1080", + "2560x1440", + "3840x2160", + ], + ), + IO.Combo.Input("fps", options=[25, 50], default=25), + IO.Boolean.Input( + "generate_audio", + default=False, + optional=True, + tooltip="When true, the generated video will include AI-generated audio matching the scene.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + duration: int, + resolution: str, + fps: int = 25, + generate_audio: bool = False, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=10000) + if duration > 10 and (model != "LTX-2 (Fast)" or resolution != "1920x1080" or fps != 25): + raise ValueError( + "Durations over 10s are only available for the Fast model at 1920x1080 resolution and 25 FPS." + ) + response = await sync_op_raw( + cls, + ApiEndpoint("/proxy/ltx/v1/text-to-video", "POST"), + data=ExecuteTaskRequest( + prompt=prompt, + model=MODELS_MAP[model], + duration=duration, + resolution=resolution, + fps=fps, + generate_audio=generate_audio, + ), + as_binary=True, + max_retries=1, + ) + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(response))) + + +class ImageToVideoNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="LtxvApiImageToVideo", + display_name="LTXV Image To Video", + category="api node/video/LTXV", + description="Professional-quality videos with customizable duration and resolution based on start image.", + inputs=[ + IO.Image.Input("image", tooltip="First frame to be used for the video."), + IO.Combo.Input("model", options=list(MODELS_MAP.keys())), + IO.String.Input( + "prompt", + multiline=True, + default="", + ), + IO.Combo.Input("duration", options=[6, 8, 10, 12, 14, 16, 18, 20], default=8), + IO.Combo.Input( + "resolution", + options=[ + "1920x1080", + "2560x1440", + "3840x2160", + ], + ), + IO.Combo.Input("fps", options=[25, 50], default=25), + IO.Boolean.Input( + "generate_audio", + default=False, + optional=True, + tooltip="When true, the generated video will include AI-generated audio matching the scene.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + image: Input.Image, + model: str, + prompt: str, + duration: int, + resolution: str, + fps: int = 25, + generate_audio: bool = False, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=10000) + if duration > 10 and (model != "LTX-2 (Fast)" or resolution != "1920x1080" or fps != 25): + raise ValueError( + "Durations over 10s are only available for the Fast model at 1920x1080 resolution and 25 FPS." + ) + if get_number_of_images(image) != 1: + raise ValueError("Currently only one input image is supported.") + response = await sync_op_raw( + cls, + ApiEndpoint("/proxy/ltx/v1/image-to-video", "POST"), + data=ExecuteTaskRequest( + image_uri=(await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0], + prompt=prompt, + model=MODELS_MAP[model], + duration=duration, + resolution=resolution, + fps=fps, + generate_audio=generate_audio, + ), + as_binary=True, + max_retries=1, + ) + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(response))) + + +class LtxvApiExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + TextToVideoNode, + ImageToVideoNode, + ] + + +async def comfy_entrypoint() -> LtxvApiExtension: + return LtxvApiExtension() diff --git a/comfy_api_nodes/nodes_luma.py b/comfy_api_nodes/nodes_luma.py index 9cd02ffd2..894f2b08c 100644 --- a/comfy_api_nodes/nodes_luma.py +++ b/comfy_api_nodes/nodes_luma.py @@ -1,75 +1,57 @@ -from __future__ import annotations -from inspect import cleandoc from typing import Optional + +import torch from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api.input_impl.video_types import VideoFromFile + +from comfy_api.latest import IO, ComfyExtension from comfy_api_nodes.apis.luma_api import ( - LumaImageModel, - LumaVideoModel, - LumaVideoOutputResolution, - LumaVideoModelOutputDuration, LumaAspectRatio, - LumaState, - LumaImageGenerationRequest, - LumaGenerationRequest, - LumaGeneration, LumaCharacterRef, - LumaModifyImageRef, + LumaConceptChain, + LumaGeneration, + LumaGenerationRequest, + LumaImageGenerationRequest, LumaImageIdentity, + LumaImageModel, + LumaImageReference, + LumaIO, + LumaKeyframes, + LumaModifyImageRef, LumaReference, LumaReferenceChain, - LumaImageReference, - LumaKeyframes, - LumaConceptChain, - LumaIO, + LumaVideoModel, + LumaVideoModelOutputDuration, + LumaVideoOutputResolution, get_luma_concepts, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( + download_url_to_image_tensor, + download_url_to_video_output, + poll_op, + sync_op, upload_images_to_comfyapi, - process_image_response, validate_string, ) -from server import PromptServer - -import aiohttp -import torch -from io import BytesIO LUMA_T2V_AVERAGE_DURATION = 105 LUMA_I2V_AVERAGE_DURATION = 100 -def image_result_url_extractor(response: LumaGeneration): - return response.assets.image if hasattr(response, "assets") and hasattr(response.assets, "image") else None - -def video_result_url_extractor(response: LumaGeneration): - return response.assets.video if hasattr(response, "assets") and hasattr(response.assets, "video") else None - -class LumaReferenceNode(comfy_io.ComfyNode): - """ - Holds an image and weight for use with Luma Generate Image node. - """ +class LumaReferenceNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="LumaReferenceNode", display_name="Luma Reference", category="api node/image/Luma", - description=cleandoc(cls.__doc__ or ""), + description="Holds an image and weight for use with Luma Generate Image node.", inputs=[ - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="Image to use as reference.", ), - comfy_io.Float.Input( + IO.Float.Input( "weight", default=1.0, min=0.0, @@ -77,72 +59,56 @@ class LumaReferenceNode(comfy_io.ComfyNode): step=0.01, tooltip="Weight of image reference.", ), - comfy_io.Custom(LumaIO.LUMA_REF).Input( + IO.Custom(LumaIO.LUMA_REF).Input( "luma_ref", optional=True, ), ], - outputs=[comfy_io.Custom(LumaIO.LUMA_REF).Output(display_name="luma_ref")], - hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, - ], + outputs=[IO.Custom(LumaIO.LUMA_REF).Output(display_name="luma_ref")], ) @classmethod - def execute( - cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None - ) -> comfy_io.NodeOutput: + def execute(cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None) -> IO.NodeOutput: if luma_ref is not None: luma_ref = luma_ref.clone() else: luma_ref = LumaReferenceChain() luma_ref.add(LumaReference(image=image, weight=round(weight, 2))) - return comfy_io.NodeOutput(luma_ref) + return IO.NodeOutput(luma_ref) -class LumaConceptsNode(comfy_io.ComfyNode): - """ - Holds one or more Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes. - """ - +class LumaConceptsNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="LumaConceptsNode", display_name="Luma Concepts", category="api node/video/Luma", - description=cleandoc(cls.__doc__ or ""), + description="Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "concept1", options=get_luma_concepts(include_none=True), ), - comfy_io.Combo.Input( + IO.Combo.Input( "concept2", options=get_luma_concepts(include_none=True), ), - comfy_io.Combo.Input( + IO.Combo.Input( "concept3", options=get_luma_concepts(include_none=True), ), - comfy_io.Combo.Input( + IO.Combo.Input( "concept4", options=get_luma_concepts(include_none=True), ), - comfy_io.Custom(LumaIO.LUMA_CONCEPTS).Input( + IO.Custom(LumaIO.LUMA_CONCEPTS).Input( "luma_concepts", tooltip="Optional Camera Concepts to add to the ones chosen here.", optional=True, ), ], - outputs=[comfy_io.Custom(LumaIO.LUMA_CONCEPTS).Output(display_name="luma_concepts")], - hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, - ], + outputs=[IO.Custom(LumaIO.LUMA_CONCEPTS).Output(display_name="luma_concepts")], ) @classmethod @@ -153,42 +119,38 @@ class LumaConceptsNode(comfy_io.ComfyNode): concept3: str, concept4: str, luma_concepts: LumaConceptChain = None, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: chain = LumaConceptChain(str_list=[concept1, concept2, concept3, concept4]) if luma_concepts is not None: chain = luma_concepts.clone_and_merge(chain) - return comfy_io.NodeOutput(chain) + return IO.NodeOutput(chain) -class LumaImageGenerationNode(comfy_io.ComfyNode): - """ - Generates images synchronously based on prompt and aspect ratio. - """ - +class LumaImageGenerationNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="LumaImageNode", display_name="Luma Text to Image", category="api node/image/Luma", - description=cleandoc(cls.__doc__ or ""), + description="Generates images synchronously based on prompt and aspect ratio.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in LumaImageModel], + options=LumaImageModel, ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[ratio.value for ratio in LumaAspectRatio], + options=LumaAspectRatio, default=LumaAspectRatio.ratio_16_9, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -196,7 +158,7 @@ class LumaImageGenerationNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", ), - comfy_io.Float.Input( + IO.Float.Input( "style_image_weight", default=1.0, min=0.0, @@ -204,27 +166,27 @@ class LumaImageGenerationNode(comfy_io.ComfyNode): step=0.01, tooltip="Weight of style image. Ignored if no style_image provided.", ), - comfy_io.Custom(LumaIO.LUMA_REF).Input( + IO.Custom(LumaIO.LUMA_REF).Input( "image_luma_ref", tooltip="Luma Reference node connection to influence generation with input images; up to 4 images can be considered.", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "style_image", tooltip="Style reference image; only 1 image will be used.", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "character_image", tooltip="Character reference images; can be a batch of multiple, up to 4 images can be considered.", optional=True, ), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -237,45 +199,30 @@ class LumaImageGenerationNode(comfy_io.ComfyNode): aspect_ratio: str, seed, style_image_weight: float, - image_luma_ref: LumaReferenceChain = None, - style_image: torch.Tensor = None, - character_image: torch.Tensor = None, - ) -> comfy_io.NodeOutput: + image_luma_ref: Optional[LumaReferenceChain] = None, + style_image: Optional[torch.Tensor] = None, + character_image: Optional[torch.Tensor] = None, + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=3) - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } # handle image_luma_ref api_image_ref = None if image_luma_ref is not None: - api_image_ref = await cls._convert_luma_refs( - image_luma_ref, max_refs=4, auth_kwargs=auth_kwargs, - ) + api_image_ref = await cls._convert_luma_refs(image_luma_ref, max_refs=4) # handle style_luma_ref api_style_ref = None if style_image is not None: - api_style_ref = await cls._convert_style_image( - style_image, weight=style_image_weight, auth_kwargs=auth_kwargs, - ) + api_style_ref = await cls._convert_style_image(style_image, weight=style_image_weight) # handle character_ref images character_ref = None if character_image is not None: - download_urls = await upload_images_to_comfyapi( - character_image, max_images=4, auth_kwargs=auth_kwargs, - ) - character_ref = LumaCharacterRef( - identity0=LumaImageIdentity(images=download_urls) - ) + download_urls = await upload_images_to_comfyapi(cls, character_image, max_images=4) + character_ref = LumaCharacterRef(identity0=LumaImageIdentity(images=download_urls)) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/luma/generations/image", - method=HttpMethod.POST, - request_model=LumaImageGenerationRequest, - response_model=LumaGeneration, - ), - request=LumaImageGenerationRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/luma/generations/image", method="POST"), + response_model=LumaGeneration, + data=LumaImageGenerationRequest( prompt=prompt, model=model, aspect_ratio=aspect_ratio, @@ -283,41 +230,21 @@ class LumaImageGenerationNode(comfy_io.ComfyNode): style_ref=api_style_ref, character_ref=character_ref, ), - auth_kwargs=auth_kwargs, ) - response_api: LumaGeneration = await operation.execute() - - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/luma/generations/{response_api.id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=LumaGeneration, - ), - completed_statuses=[LumaState.completed], - failed_statuses=[LumaState.failed], + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"), + response_model=LumaGeneration, status_extractor=lambda x: x.state, - result_url_extractor=image_result_url_extractor, - node_id=cls.hidden.unique_id, - auth_kwargs=auth_kwargs, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.assets.image) as img_response: - img = process_image_response(await img_response.content.read()) - return comfy_io.NodeOutput(img) + return IO.NodeOutput(await download_url_to_image_tensor(response_poll.assets.image)) @classmethod - async def _convert_luma_refs( - cls, luma_ref: LumaReferenceChain, max_refs: int, auth_kwargs: Optional[dict[str,str]] = None - ): + async def _convert_luma_refs(cls, luma_ref: LumaReferenceChain, max_refs: int): luma_urls = [] ref_count = 0 for ref in luma_ref.refs: - download_urls = await upload_images_to_comfyapi( - ref.image, max_images=1, auth_kwargs=auth_kwargs - ) + download_urls = await upload_images_to_comfyapi(cls, ref.image, max_images=1) luma_urls.append(download_urls[0]) ref_count += 1 if ref_count >= max_refs: @@ -325,38 +252,30 @@ class LumaImageGenerationNode(comfy_io.ComfyNode): return luma_ref.create_api_model(download_urls=luma_urls, max_refs=max_refs) @classmethod - async def _convert_style_image( - cls, style_image: torch.Tensor, weight: float, auth_kwargs: Optional[dict[str,str]] = None - ): - chain = LumaReferenceChain( - first_ref=LumaReference(image=style_image, weight=weight) - ) - return await cls._convert_luma_refs(chain, max_refs=1, auth_kwargs=auth_kwargs) + async def _convert_style_image(cls, style_image: torch.Tensor, weight: float): + chain = LumaReferenceChain(first_ref=LumaReference(image=style_image, weight=weight)) + return await cls._convert_luma_refs(chain, max_refs=1) -class LumaImageModifyNode(comfy_io.ComfyNode): - """ - Modifies images synchronously based on prompt and aspect ratio. - """ - +class LumaImageModifyNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="LumaImageModifyNode", display_name="Luma Image to Image", category="api node/image/Luma", - description=cleandoc(cls.__doc__ or ""), + description="Modifies images synchronously based on prompt and aspect ratio.", inputs=[ - comfy_io.Image.Input( + IO.Image.Input( "image", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the image generation", ), - comfy_io.Float.Input( + IO.Float.Input( "image_weight", default=0.1, min=0.0, @@ -364,11 +283,11 @@ class LumaImageModifyNode(comfy_io.ComfyNode): step=0.01, tooltip="Weight of the image; the closer to 1.0, the less the image will be modified.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in LumaImageModel], + options=LumaImageModel, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -377,11 +296,11 @@ class LumaImageModifyNode(comfy_io.ComfyNode): tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", ), ], - outputs=[comfy_io.Image.Output()], + outputs=[IO.Image.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -394,99 +313,68 @@ class LumaImageModifyNode(comfy_io.ComfyNode): image: torch.Tensor, image_weight: float, seed, - ) -> comfy_io.NodeOutput: - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - # first, upload image - download_urls = await upload_images_to_comfyapi( - image, max_images=1, auth_kwargs=auth_kwargs, - ) + ) -> IO.NodeOutput: + download_urls = await upload_images_to_comfyapi(cls, image, max_images=1) image_url = download_urls[0] - # next, make Luma call with download url provided - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/luma/generations/image", - method=HttpMethod.POST, - request_model=LumaImageGenerationRequest, - response_model=LumaGeneration, - ), - request=LumaImageGenerationRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/luma/generations/image", method="POST"), + response_model=LumaGeneration, + data=LumaImageGenerationRequest( prompt=prompt, model=model, modify_image_ref=LumaModifyImageRef( - url=image_url, weight=round(max(min(1.0-image_weight, 0.98), 0.0), 2) + url=image_url, weight=round(max(min(1.0 - image_weight, 0.98), 0.0), 2) ), ), - auth_kwargs=auth_kwargs, ) - response_api: LumaGeneration = await operation.execute() - - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/luma/generations/{response_api.id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=LumaGeneration, - ), - completed_statuses=[LumaState.completed], - failed_statuses=[LumaState.failed], + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"), + response_model=LumaGeneration, status_extractor=lambda x: x.state, - result_url_extractor=image_result_url_extractor, - node_id=cls.hidden.unique_id, - auth_kwargs=auth_kwargs, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.assets.image) as img_response: - img = process_image_response(await img_response.content.read()) - return comfy_io.NodeOutput(img) + return IO.NodeOutput(await download_url_to_image_tensor(response_poll.assets.image)) -class LumaTextToVideoGenerationNode(comfy_io.ComfyNode): - """ - Generates videos synchronously based on prompt and output_size. - """ - +class LumaTextToVideoGenerationNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="LumaVideoNode", display_name="Luma Text to Video", category="api node/video/Luma", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos synchronously based on prompt and output_size.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in LumaVideoModel], + options=LumaVideoModel, ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[ratio.value for ratio in LumaAspectRatio], + options=LumaAspectRatio, default=LumaAspectRatio.ratio_16_9, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", - options=[resolution.value for resolution in LumaVideoOutputResolution], + options=LumaVideoOutputResolution, default=LumaVideoOutputResolution.res_540p, ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration", - options=[dur.value for dur in LumaVideoModelOutputDuration], + options=LumaVideoModelOutputDuration, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "loop", default=False, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -494,17 +382,17 @@ class LumaTextToVideoGenerationNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", ), - comfy_io.Custom(LumaIO.LUMA_CONCEPTS).Input( + IO.Custom(LumaIO.LUMA_CONCEPTS).Input( "luma_concepts", tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.", optional=True, - ) + ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -519,24 +407,17 @@ class LumaTextToVideoGenerationNode(comfy_io.ComfyNode): duration: str, loop: bool, seed, - luma_concepts: LumaConceptChain = None, - ) -> comfy_io.NodeOutput: + luma_concepts: Optional[LumaConceptChain] = None, + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False, min_length=3) duration = duration if model != LumaVideoModel.ray_1_6 else None resolution = resolution if model != LumaVideoModel.ray_1_6 else None - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/luma/generations", - method=HttpMethod.POST, - request_model=LumaGenerationRequest, - response_model=LumaGeneration, - ), - request=LumaGenerationRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/luma/generations", method="POST"), + response_model=LumaGeneration, + data=LumaGenerationRequest( prompt=prompt, model=model, resolution=resolution, @@ -545,77 +426,55 @@ class LumaTextToVideoGenerationNode(comfy_io.ComfyNode): loop=loop, concepts=luma_concepts.create_api_model() if luma_concepts else None, ), - auth_kwargs=auth_kwargs, ) - response_api: LumaGeneration = await operation.execute() - - if cls.hidden.unique_id: - PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id) - - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/luma/generations/{response_api.id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=LumaGeneration, - ), - completed_statuses=[LumaState.completed], - failed_statuses=[LumaState.failed], + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"), + response_model=LumaGeneration, status_extractor=lambda x: x.state, - result_url_extractor=video_result_url_extractor, - node_id=cls.hidden.unique_id, estimated_duration=LUMA_T2V_AVERAGE_DURATION, - auth_kwargs=auth_kwargs, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.assets.video) as vid_response: - return comfy_io.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) + return IO.NodeOutput(await download_url_to_video_output(response_poll.assets.video)) -class LumaImageToVideoGenerationNode(comfy_io.ComfyNode): - """ - Generates videos synchronously based on prompt, input images, and output_size. - """ - +class LumaImageToVideoGenerationNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="LumaImageToVideoNode", display_name="Luma Image to Video", category="api node/video/Luma", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos synchronously based on prompt, input images, and output_size.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in LumaVideoModel], + options=LumaVideoModel, ), - # comfy_io.Combo.Input( + # IO.Combo.Input( # "aspect_ratio", # options=[ratio.value for ratio in LumaAspectRatio], # default=LumaAspectRatio.ratio_16_9, # ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", - options=[resolution.value for resolution in LumaVideoOutputResolution], + options=LumaVideoOutputResolution, default=LumaVideoOutputResolution.res_540p, ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration", options=[dur.value for dur in LumaVideoModelOutputDuration], ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "loop", default=False, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -623,27 +482,27 @@ class LumaImageToVideoGenerationNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", ), - comfy_io.Image.Input( + IO.Image.Input( "first_image", tooltip="First frame of generated video.", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "last_image", tooltip="Last frame of generated video.", optional=True, ), - comfy_io.Custom(LumaIO.LUMA_CONCEPTS).Input( + IO.Custom(LumaIO.LUMA_CONCEPTS).Input( "luma_concepts", tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.", optional=True, - ) + ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -660,27 +519,17 @@ class LumaImageToVideoGenerationNode(comfy_io.ComfyNode): first_image: torch.Tensor = None, last_image: torch.Tensor = None, luma_concepts: LumaConceptChain = None, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: if first_image is None and last_image is None: - raise Exception( - "At least one of first_image and last_image requires an input." - ) - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - keyframes = await cls._convert_to_keyframes(first_image, last_image, auth_kwargs=auth_kwargs) + raise Exception("At least one of first_image and last_image requires an input.") + keyframes = await cls._convert_to_keyframes(first_image, last_image) duration = duration if model != LumaVideoModel.ray_1_6 else None resolution = resolution if model != LumaVideoModel.ray_1_6 else None - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/luma/generations", - method=HttpMethod.POST, - request_model=LumaGenerationRequest, - response_model=LumaGeneration, - ), - request=LumaGenerationRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/luma/generations", method="POST"), + response_model=LumaGeneration, + data=LumaGenerationRequest( prompt=prompt, model=model, aspect_ratio=LumaAspectRatio.ratio_16_9, # ignored, but still needed by the API for some reason @@ -690,61 +539,38 @@ class LumaImageToVideoGenerationNode(comfy_io.ComfyNode): keyframes=keyframes, concepts=luma_concepts.create_api_model() if luma_concepts else None, ), - auth_kwargs=auth_kwargs, ) - response_api: LumaGeneration = await operation.execute() - - if cls.hidden.unique_id: - PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id) - - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/luma/generations/{response_api.id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=LumaGeneration, - ), - completed_statuses=[LumaState.completed], - failed_statuses=[LumaState.failed], + response_poll = await poll_op( + cls, + poll_endpoint=ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"), + response_model=LumaGeneration, status_extractor=lambda x: x.state, - result_url_extractor=video_result_url_extractor, - node_id=cls.hidden.unique_id, estimated_duration=LUMA_I2V_AVERAGE_DURATION, - auth_kwargs=auth_kwargs, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.assets.video) as vid_response: - return comfy_io.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) + return IO.NodeOutput(await download_url_to_video_output(response_poll.assets.video)) @classmethod async def _convert_to_keyframes( cls, first_image: torch.Tensor = None, last_image: torch.Tensor = None, - auth_kwargs: Optional[dict[str,str]] = None, ): if first_image is None and last_image is None: return None frame0 = None frame1 = None if first_image is not None: - download_urls = await upload_images_to_comfyapi( - first_image, max_images=1, auth_kwargs=auth_kwargs, - ) + download_urls = await upload_images_to_comfyapi(cls, first_image, max_images=1) frame0 = LumaImageReference(type="image", url=download_urls[0]) if last_image is not None: - download_urls = await upload_images_to_comfyapi( - last_image, max_images=1, auth_kwargs=auth_kwargs, - ) + download_urls = await upload_images_to_comfyapi(cls, last_image, max_images=1) frame1 = LumaImageReference(type="image", url=download_urls[0]) return LumaKeyframes(frame0=frame0, frame1=frame1) class LumaExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ LumaImageGenerationNode, LumaImageModifyNode, diff --git a/comfy_api_nodes/nodes_minimax.py b/comfy_api_nodes/nodes_minimax.py index bf560661c..05cbb700f 100644 --- a/comfy_api_nodes/nodes_minimax.py +++ b/comfy_api_nodes/nodes_minimax.py @@ -1,71 +1,57 @@ -from inspect import cleandoc from typing import Optional -import logging -import torch +import torch from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api.input_impl.video_types import VideoFromFile -from comfy_api_nodes.apis import ( + +from comfy_api.latest import IO, ComfyExtension +from comfy_api_nodes.apis.minimax_api import ( + MinimaxFileRetrieveResponse, + MiniMaxModel, + MinimaxTaskResultResponse, MinimaxVideoGenerationRequest, MinimaxVideoGenerationResponse, - MinimaxFileRetrieveResponse, - MinimaxTaskResultResponse, SubjectReferenceItem, - MiniMaxModel, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( - download_url_to_bytesio, + download_url_to_video_output, + poll_op, + sync_op, upload_images_to_comfyapi, validate_string, ) -from server import PromptServer - I2V_AVERAGE_DURATION = 114 T2V_AVERAGE_DURATION = 234 async def _generate_mm_video( + cls: type[IO.ComfyNode], *, - auth: dict[str, str], - node_id: str, prompt_text: str, seed: int, model: str, - image: Optional[torch.Tensor] = None, # used for ImageToVideo - subject: Optional[torch.Tensor] = None, # used for SubjectToVideo + image: Optional[torch.Tensor] = None, # used for ImageToVideo + subject: Optional[torch.Tensor] = None, # used for SubjectToVideo average_duration: Optional[int] = None, -) -> comfy_io.NodeOutput: +) -> IO.NodeOutput: if image is None: validate_string(prompt_text, field_name="prompt_text") - # upload image, if passed in image_url = None if image is not None: - image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth))[0] + image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0] # TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model subject_reference = None if subject is not None: - subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=auth))[0] + subject_url = (await upload_images_to_comfyapi(cls, subject, max_images=1))[0] subject_reference = [SubjectReferenceItem(image=subject_url)] - - video_generate_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/minimax/video_generation", - method=HttpMethod.POST, - request_model=MinimaxVideoGenerationRequest, - response_model=MinimaxVideoGenerationResponse, - ), - request=MinimaxVideoGenerationRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"), + response_model=MinimaxVideoGenerationResponse, + data=MinimaxVideoGenerationRequest( model=MiniMaxModel(model), prompt=prompt_text, callback_url=None, @@ -73,95 +59,64 @@ async def _generate_mm_video( subject_reference=subject_reference, prompt_optimizer=None, ), - auth_kwargs=auth, ) - response = await video_generate_operation.execute() task_id = response.task_id if not task_id: raise Exception(f"MiniMax generation failed: {response.base_resp}") - video_generate_operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path="/proxy/minimax/query/video_generation", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=MinimaxTaskResultResponse, - query_params={"task_id": task_id}, - ), - completed_statuses=["Success"], - failed_statuses=["Fail"], + task_result = await poll_op( + cls, + ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}), + response_model=MinimaxTaskResultResponse, status_extractor=lambda x: x.status.value, estimated_duration=average_duration, - node_id=node_id, - auth_kwargs=auth, ) - task_result = await video_generate_operation.execute() file_id = task_result.file_id if file_id is None: raise Exception("Request was not successful. Missing file ID.") - file_retrieve_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/minimax/files/retrieve", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=MinimaxFileRetrieveResponse, - query_params={"file_id": int(file_id)}, - ), - request=EmptyRequest(), - auth_kwargs=auth, + file_result = await sync_op( + cls, + ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}), + response_model=MinimaxFileRetrieveResponse, ) - file_result = await file_retrieve_operation.execute() file_url = file_result.file.download_url if file_url is None: - raise Exception( - f"No video was found in the response. Full response: {file_result.model_dump()}" - ) - logging.info("Generated video URL: %s", file_url) - if node_id: - if hasattr(file_result.file, "backup_download_url"): - message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}" - else: - message = f"Result URL: {file_url}" - PromptServer.instance.send_progress_text(message, node_id) - - # Download and return as VideoFromFile - video_io = await download_url_to_bytesio(file_url) - if video_io is None: - error_msg = f"Failed to download video from {file_url}" - logging.error(error_msg) - raise Exception(error_msg) - return comfy_io.NodeOutput(VideoFromFile(video_io)) + raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}") + if file_result.file.backup_download_url: + try: + return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2)) + except Exception: # if we have a second URL to retrieve the result, try again using that one + return IO.NodeOutput( + await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3) + ) + return IO.NodeOutput(await download_url_to_video_output(file_url)) -class MinimaxTextToVideoNode(comfy_io.ComfyNode): - """ - Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API. - """ - +class MinimaxTextToVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MinimaxTextToVideoNode", display_name="MiniMax Text to Video", category="api node/video/MiniMax", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos synchronously based on a prompt, and optional parameters.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt_text", multiline=True, default="", tooltip="Text prompt to guide the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["T2V-01", "T2V-01-Director"], default="T2V-01", tooltip="Model to use for video generation", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -172,11 +127,11 @@ class MinimaxTextToVideoNode(comfy_io.ComfyNode): optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -187,13 +142,9 @@ class MinimaxTextToVideoNode(comfy_io.ComfyNode): prompt_text: str, model: str = "T2V-01", seed: int = 0, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: return await _generate_mm_video( - auth={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - node_id=cls.hidden.unique_id, + cls, prompt_text=prompt_text, seed=seed, model=model, @@ -203,36 +154,32 @@ class MinimaxTextToVideoNode(comfy_io.ComfyNode): ) -class MinimaxImageToVideoNode(comfy_io.ComfyNode): - """ - Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API. - """ - +class MinimaxImageToVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MinimaxImageToVideoNode", display_name="MiniMax Image to Video", category="api node/video/MiniMax", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos synchronously based on an image and prompt, and optional parameters.", inputs=[ - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="Image to use as first frame of video generation", ), - comfy_io.String.Input( + IO.String.Input( "prompt_text", multiline=True, default="", tooltip="Text prompt to guide the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["I2V-01-Director", "I2V-01", "I2V-01-live"], default="I2V-01", tooltip="Model to use for video generation", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -243,11 +190,11 @@ class MinimaxImageToVideoNode(comfy_io.ComfyNode): optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -259,13 +206,9 @@ class MinimaxImageToVideoNode(comfy_io.ComfyNode): prompt_text: str, model: str = "I2V-01", seed: int = 0, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: return await _generate_mm_video( - auth={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - node_id=cls.hidden.unique_id, + cls, prompt_text=prompt_text, seed=seed, model=model, @@ -275,36 +218,32 @@ class MinimaxImageToVideoNode(comfy_io.ComfyNode): ) -class MinimaxSubjectToVideoNode(comfy_io.ComfyNode): - """ - Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API. - """ - +class MinimaxSubjectToVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MinimaxSubjectToVideoNode", display_name="MiniMax Subject to Video", category="api node/video/MiniMax", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos synchronously based on an image and prompt, and optional parameters.", inputs=[ - comfy_io.Image.Input( + IO.Image.Input( "subject", tooltip="Image of subject to reference for video generation", ), - comfy_io.String.Input( + IO.String.Input( "prompt_text", multiline=True, default="", tooltip="Text prompt to guide the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["S2V-01"], default="S2V-01", tooltip="Model to use for video generation", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -315,11 +254,11 @@ class MinimaxSubjectToVideoNode(comfy_io.ComfyNode): optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -331,13 +270,9 @@ class MinimaxSubjectToVideoNode(comfy_io.ComfyNode): prompt_text: str, model: str = "S2V-01", seed: int = 0, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: return await _generate_mm_video( - auth={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - node_id=cls.hidden.unique_id, + cls, prompt_text=prompt_text, seed=seed, model=model, @@ -347,24 +282,22 @@ class MinimaxSubjectToVideoNode(comfy_io.ComfyNode): ) -class MinimaxHailuoVideoNode(comfy_io.ComfyNode): - """Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model.""" - +class MinimaxHailuoVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MinimaxHailuoVideoNode", display_name="MiniMax Hailuo Video", category="api node/video/MiniMax", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt_text", multiline=True, default="", tooltip="Text prompt to guide the video generation.", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -374,25 +307,25 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode): tooltip="The random seed used for creating the noise.", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "first_frame_image", tooltip="Optional image to use as the first frame to generate a video.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_optimizer", default=True, tooltip="Optimize prompt to improve generation quality when needed.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration", options=[6, 10], default=6, tooltip="The length of the output video in seconds.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=["768P", "1080P"], default="768P", @@ -400,11 +333,11 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode): optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -419,11 +352,7 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode): duration: int = 6, resolution: str = "768P", model: str = "MiniMax-Hailuo-02", - ) -> comfy_io.NodeOutput: - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } + ) -> IO.NodeOutput: if first_frame_image is None: validate_string(prompt_text, field_name="prompt_text") @@ -435,16 +364,13 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode): # upload image, if passed in image_url = None if first_frame_image is not None: - image_url = (await upload_images_to_comfyapi(first_frame_image, max_images=1, auth_kwargs=auth))[0] + image_url = (await upload_images_to_comfyapi(cls, first_frame_image, max_images=1))[0] - video_generate_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/minimax/video_generation", - method=HttpMethod.POST, - request_model=MinimaxVideoGenerationRequest, - response_model=MinimaxVideoGenerationResponse, - ), - request=MinimaxVideoGenerationRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"), + response_model=MinimaxVideoGenerationResponse, + data=MinimaxVideoGenerationRequest( model=MiniMaxModel(model), prompt=prompt_text, callback_url=None, @@ -453,72 +379,47 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode): duration=duration, resolution=resolution, ), - auth_kwargs=auth, ) - response = await video_generate_operation.execute() task_id = response.task_id if not task_id: raise Exception(f"MiniMax generation failed: {response.base_resp}") average_duration = 120 if resolution == "768P" else 240 - video_generate_operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path="/proxy/minimax/query/video_generation", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=MinimaxTaskResultResponse, - query_params={"task_id": task_id}, - ), - completed_statuses=["Success"], - failed_statuses=["Fail"], + task_result = await poll_op( + cls, + ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}), + response_model=MinimaxTaskResultResponse, status_extractor=lambda x: x.status.value, estimated_duration=average_duration, - node_id=cls.hidden.unique_id, - auth_kwargs=auth, ) - task_result = await video_generate_operation.execute() file_id = task_result.file_id if file_id is None: raise Exception("Request was not successful. Missing file ID.") - file_retrieve_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/minimax/files/retrieve", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=MinimaxFileRetrieveResponse, - query_params={"file_id": int(file_id)}, - ), - request=EmptyRequest(), - auth_kwargs=auth, + file_result = await sync_op( + cls, + ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}), + response_model=MinimaxFileRetrieveResponse, ) - file_result = await file_retrieve_operation.execute() file_url = file_result.file.download_url if file_url is None: - raise Exception( - f"No video was found in the response. Full response: {file_result.model_dump()}" - ) - logging.info(f"Generated video URL: {file_url}") - if cls.hidden.unique_id: - if hasattr(file_result.file, "backup_download_url"): - message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}" - else: - message = f"Result URL: {file_url}" - PromptServer.instance.send_progress_text(message, cls.hidden.unique_id) + raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}") - video_io = await download_url_to_bytesio(file_url) - if video_io is None: - error_msg = f"Failed to download video from {file_url}" - logging.error(error_msg) - raise Exception(error_msg) - return comfy_io.NodeOutput(VideoFromFile(video_io)) + if file_result.file.backup_download_url: + try: + return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2)) + except Exception: # if we have a second URL to retrieve the result, try again using that one + return IO.NodeOutput( + await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3) + ) + return IO.NodeOutput(await download_url_to_video_output(file_url)) class MinimaxExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ MinimaxTextToVideoNode, MinimaxImageToVideoNode, diff --git a/comfy_api_nodes/nodes_moonvalley.py b/comfy_api_nodes/nodes_moonvalley.py index 6467dd614..2771e4790 100644 --- a/comfy_api_nodes/nodes_moonvalley.py +++ b/comfy_api_nodes/nodes_moonvalley.py @@ -1,34 +1,28 @@ import logging -from typing import Any, Callable, Optional, TypeVar -import torch -from typing_extensions import override -from comfy_api_nodes.util.validation_utils import validate_image_dimensions +from typing_extensions import override + +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis import ( - MoonvalleyTextToVideoRequest, + MoonvalleyPromptResponse, MoonvalleyTextToVideoInferenceParams, + MoonvalleyTextToVideoRequest, MoonvalleyVideoToVideoInferenceParams, MoonvalleyVideoToVideoRequest, - MoonvalleyPromptResponse, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( download_url_to_video_output, + poll_op, + sync_op, + trim_video, upload_images_to_comfyapi, upload_video_to_comfyapi, + validate_container_format_is_mp4, + validate_image_dimensions, + validate_string, ) -from comfy_api.input import VideoInput -from comfy_api.latest import ComfyExtension, InputImpl, io as comfy_io -import av -import io - API_UPLOADS_ENDPOINT = "/proxy/moonvalley/uploads" API_PROMPTS_ENDPOINT = "/proxy/moonvalley/prompts" API_VIDEO2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/video-to-video" @@ -50,13 +44,6 @@ MAX_VID_HEIGHT = 10000 MAX_VIDEO_SIZE = 1024 * 1024 * 1024 # 1 GB max for in-memory video processing MOONVALLEY_MAREY_MAX_PROMPT_LENGTH = 5000 -R = TypeVar("R") - - -class MoonvalleyApiError(Exception): - """Base exception for Moonvalley API errors.""" - - pass def is_valid_task_creation_response(response: MoonvalleyPromptResponse) -> bool: @@ -68,67 +55,10 @@ def validate_task_creation_response(response) -> None: if not is_valid_task_creation_response(response): error_msg = f"Moonvalley Marey API: Initial request failed. Code: {response.code}, Message: {response.message}, Data: {response}" logging.error(error_msg) - raise MoonvalleyApiError(error_msg) + raise RuntimeError(error_msg) -def get_video_from_response(response): - video = response.output_url - logging.info( - "Moonvalley Marey API: Task %s succeeded. Video URL: %s", response.id, video - ) - return video - - -def get_video_url_from_response(response) -> Optional[str]: - """Returns the first video url from the Moonvalley video generation task result. - Will not raise an error if the response is not valid. - """ - if response: - return str(get_video_from_response(response)) - else: - return None - - -async def poll_until_finished( - auth_kwargs: dict[str, str], - api_endpoint: ApiEndpoint[Any, R], - result_url_extractor: Optional[Callable[[R], str]] = None, - node_id: Optional[str] = None, -) -> R: - """Polls the Moonvalley API endpoint until the task reaches a terminal state, then returns the response.""" - return await PollingOperation( - poll_endpoint=api_endpoint, - completed_statuses=[ - "completed", - ], - max_poll_attempts=240, # 64 minutes with 16s interval - poll_interval=16.0, - failed_statuses=["error"], - status_extractor=lambda response: ( - response.status if response and response.status else None - ), - auth_kwargs=auth_kwargs, - result_url_extractor=result_url_extractor, - node_id=node_id, - ).execute() - - -def validate_prompts( - prompt: str, negative_prompt: str, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH -): - """Verifies that the prompt isn't empty and that neither prompt is too long.""" - if not prompt: - raise ValueError("Positive prompt is empty") - if len(prompt) > max_length: - raise ValueError(f"Positive prompt is too long: {len(prompt)} characters") - if negative_prompt and len(negative_prompt) > max_length: - raise ValueError( - f"Negative prompt is too long: {len(negative_prompt)} characters" - ) - return True - - -def validate_video_to_video_input(video: VideoInput) -> VideoInput: +def validate_video_to_video_input(video: Input.Video) -> Input.Video: """ Validates and processes video input for Moonvalley Video-to-Video generation. @@ -144,12 +74,12 @@ def validate_video_to_video_input(video: VideoInput) -> VideoInput: """ width, height = _get_video_dimensions(video) _validate_video_dimensions(width, height) - _validate_container_format(video) + validate_container_format_is_mp4(video) return _validate_and_trim_duration(video) -def _get_video_dimensions(video: VideoInput) -> tuple[int, int]: +def _get_video_dimensions(video: Input.Video) -> tuple[int, int]: """Extracts video dimensions with error handling.""" try: return video.get_dimensions() @@ -169,24 +99,11 @@ def _validate_video_dimensions(width: int, height: int) -> None: } if (width, height) not in supported_resolutions: - supported_list = ", ".join( - [f"{w}x{h}" for w, h in sorted(supported_resolutions)] - ) - raise ValueError( - f"Resolution {width}x{height} not supported. Supported: {supported_list}" - ) + supported_list = ", ".join([f"{w}x{h}" for w, h in sorted(supported_resolutions)]) + raise ValueError(f"Resolution {width}x{height} not supported. Supported: {supported_list}") -def _validate_container_format(video: VideoInput) -> None: - """Validates video container format is MP4.""" - container_format = video.get_container_format() - if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]: - raise ValueError( - f"Only MP4 container format supported. Got: {container_format}" - ) - - -def _validate_and_trim_duration(video: VideoInput) -> VideoInput: +def _validate_and_trim_duration(video: Input.Video) -> Input.Video: """Validates video duration and trims to 5 seconds if needed.""" duration = video.get_duration() _validate_minimum_duration(duration) @@ -196,137 +113,16 @@ def _validate_and_trim_duration(video: VideoInput) -> VideoInput: def _validate_minimum_duration(duration: float) -> None: """Ensures video is at least 5 seconds long.""" if duration < 5: - raise MoonvalleyApiError("Input video must be at least 5 seconds long.") + raise ValueError("Input video must be at least 5 seconds long.") -def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput: +def _trim_if_too_long(video: Input.Video, duration: float) -> Input.Video: """Trims video to 5 seconds if longer.""" if duration > 5: return trim_video(video, 5) return video -def trim_video(video: VideoInput, duration_sec: float) -> VideoInput: - """ - Returns a new VideoInput object trimmed from the beginning to the specified duration, - using av to avoid loading entire video into memory. - - Args: - video: Input video to trim - duration_sec: Duration in seconds to keep from the beginning - - Returns: - VideoFromFile object that owns the output buffer - """ - output_buffer = io.BytesIO() - - input_container = None - output_container = None - - try: - # Get the stream source - this avoids loading entire video into memory - # when the source is already a file path - input_source = video.get_stream_source() - - # Open containers - input_container = av.open(input_source, mode="r") - output_container = av.open(output_buffer, mode="w", format="mp4") - - # Set up output streams for re-encoding - video_stream = None - audio_stream = None - - for stream in input_container.streams: - logging.info(f"Found stream: type={stream.type}, class={type(stream)}") - if isinstance(stream, av.VideoStream): - # Create output video stream with same parameters - video_stream = output_container.add_stream( - "h264", rate=stream.average_rate - ) - video_stream.width = stream.width - video_stream.height = stream.height - video_stream.pix_fmt = "yuv420p" - logging.info( - f"Added video stream: {stream.width}x{stream.height} @ {stream.average_rate}fps" - ) - elif isinstance(stream, av.AudioStream): - # Create output audio stream with same parameters - audio_stream = output_container.add_stream( - "aac", rate=stream.sample_rate - ) - audio_stream.sample_rate = stream.sample_rate - audio_stream.layout = stream.layout - logging.info( - f"Added audio stream: {stream.sample_rate}Hz, {stream.channels} channels" - ) - - # Calculate target frame count that's divisible by 16 - fps = input_container.streams.video[0].average_rate - estimated_frames = int(duration_sec * fps) - target_frames = ( - estimated_frames // 16 - ) * 16 # Round down to nearest multiple of 16 - - if target_frames == 0: - raise ValueError("Video too short: need at least 16 frames for Moonvalley") - - frame_count = 0 - audio_frame_count = 0 - - # Decode and re-encode video frames - if video_stream: - for frame in input_container.decode(video=0): - if frame_count >= target_frames: - break - - # Re-encode frame - for packet in video_stream.encode(frame): - output_container.mux(packet) - frame_count += 1 - - # Flush encoder - for packet in video_stream.encode(): - output_container.mux(packet) - - logging.info( - f"Encoded {frame_count} video frames (target: {target_frames})" - ) - - # Decode and re-encode audio frames - if audio_stream: - input_container.seek(0) # Reset to beginning for audio - for frame in input_container.decode(audio=0): - if frame.time >= duration_sec: - break - - # Re-encode frame - for packet in audio_stream.encode(frame): - output_container.mux(packet) - audio_frame_count += 1 - - # Flush encoder - for packet in audio_stream.encode(): - output_container.mux(packet) - - logging.info(f"Encoded {audio_frame_count} audio frames") - - # Close containers - output_container.close() - input_container.close() - - # Return as VideoFromFile using the buffer - output_buffer.seek(0) - return InputImpl.VideoFromFile(output_buffer) - - except Exception as e: - # Clean up on error - if input_container is not None: - input_container.close() - if output_container is not None: - output_container.close() - raise RuntimeError(f"Failed to trim video: {str(e)}") from e - - def parse_width_height_from_res(resolution: str): # Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict res_map = { @@ -335,7 +131,7 @@ def parse_width_height_from_res(resolution: str): "1:1 (1152 x 1152)": {"width": 1152, "height": 1152}, "4:3 (1536 x 1152)": {"width": 1536, "height": 1152}, "3:4 (1152 x 1536)": {"width": 1152, "height": 1536}, - "21:9 (2560 x 1080)": {"width": 2560, "height": 1080}, + # "21:9 (2560 x 1080)": {"width": 2560, "height": 1080}, } return res_map.get(resolution, {"width": 1920, "height": 1080}) @@ -350,52 +146,47 @@ def parse_control_parameter(value): return control_map.get(value, control_map["Motion Transfer"]) -async def get_response( - task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None -) -> MoonvalleyPromptResponse: - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{API_PROMPTS_ENDPOINT}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=MoonvalleyPromptResponse, - ), - result_url_extractor=get_video_url_from_response, - node_id=node_id, +async def get_response(cls: type[IO.ComfyNode], task_id: str) -> MoonvalleyPromptResponse: + return await poll_op( + cls, + ApiEndpoint(path=f"{API_PROMPTS_ENDPOINT}/{task_id}"), + response_model=MoonvalleyPromptResponse, + status_extractor=lambda r: (r.status if r and r.status else None), + poll_interval=16.0, + max_poll_attempts=240, ) -class MoonvalleyImg2VideoNode(comfy_io.ComfyNode): +class MoonvalleyImg2VideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MoonvalleyImg2VideoNode", display_name="Moonvalley Marey Image to Video", category="api node/video/Moonvalley Marey", description="Moonvalley Marey Image to Video Node", inputs=[ - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="The reference image used to generate the video", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default=" gopro, bright, contrast, static, overexposed, vignette, " - "artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, " - "flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, " - "cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, " - "blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, " - "wobbly, weird, low quality, plastic, stock footage, video camera, boring", + "artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, " + "flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, " + "cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, " + "blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, " + "wobbly, weird, low quality, plastic, stock footage, video camera, boring", tooltip="Negative prompt text", ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=[ "16:9 (1920 x 1080)", @@ -403,42 +194,43 @@ class MoonvalleyImg2VideoNode(comfy_io.ComfyNode): "1:1 (1152 x 1152)", "4:3 (1536 x 1152)", "3:4 (1152 x 1536)", - "21:9 (2560 x 1080)", + # "21:9 (2560 x 1080)", ], default="16:9 (1920 x 1080)", tooltip="Resolution of the output video", ), - comfy_io.Float.Input( + IO.Float.Input( "prompt_adherence", - default=10.0, + default=4.5, min=1.0, max=20.0, step=1.0, tooltip="Guidance scale for generation control", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=9, min=0, max=4294967295, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Random seed value", + control_after_generate=True, ), - comfy_io.Int.Input( + IO.Int.Input( "steps", - default=100, + default=33, min=1, max=100, step=1, tooltip="Number of denoising steps", ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -446,115 +238,94 @@ class MoonvalleyImg2VideoNode(comfy_io.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, + image: Input.Image, prompt: str, negative_prompt: str, resolution: str, prompt_adherence: float, seed: int, steps: int, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_image_dimensions(image, min_width=300, min_height=300, max_height=MAX_HEIGHT, max_width=MAX_WIDTH) - validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) + validate_string(prompt, min_length=1, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) + validate_string(negative_prompt, field_name="negative_prompt", max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) width_height = parse_width_height_from_res(resolution) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - inference_params = MoonvalleyTextToVideoInferenceParams( negative_prompt=negative_prompt, steps=steps, seed=seed, guidance_scale=prompt_adherence, - num_frames=128, width=width_height["width"], height=width_height["height"], use_negative_prompts=True, ) - """Upload image to comfy backend to have a URL available for further processing""" + # Get MIME type from tensor - assuming PNG format for image tensors mime_type = "image/png" - - image_url = ( - await upload_images_to_comfyapi( - image, max_images=1, auth_kwargs=auth, mime_type=mime_type - ) - )[0] - - request = MoonvalleyTextToVideoRequest( - image_url=image_url, prompt_text=prompt, inference_params=inference_params - ) - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=API_IMG2VIDEO_ENDPOINT, - method=HttpMethod.POST, - request_model=MoonvalleyTextToVideoRequest, - response_model=MoonvalleyPromptResponse, + image_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type=mime_type))[0] + task_creation_response = await sync_op( + cls, + endpoint=ApiEndpoint(path=API_IMG2VIDEO_ENDPOINT, method="POST"), + response_model=MoonvalleyPromptResponse, + data=MoonvalleyTextToVideoRequest( + image_url=image_url, prompt_text=prompt, inference_params=inference_params ), - request=request, - auth_kwargs=auth, ) - task_creation_response = await initial_operation.execute() validate_task_creation_response(task_creation_response) - task_id = task_creation_response.id - - final_response = await get_response( - task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id - ) + final_response = await get_response(cls, task_creation_response.id) video = await download_url_to_video_output(final_response.output_url) - return comfy_io.NodeOutput(video) + return IO.NodeOutput(video) -class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode): +class MoonvalleyVideo2VideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MoonvalleyVideo2VideoNode", display_name="Moonvalley Marey Video to Video", category="api node/video/Moonvalley Marey", description="", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="Describes the video to generate", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default=" gopro, bright, contrast, static, overexposed, vignette, " - "artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, " - "flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, " - "cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, " - "blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, " - "wobbly, weird, low quality, plastic, stock footage, video camera, boring", + "artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, " + "flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, " + "cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, " + "blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, " + "wobbly, weird, low quality, plastic, stock footage, video camera, boring", tooltip="Negative prompt text", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=9, min=0, max=4294967295, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Random seed value", control_after_generate=False, ), - comfy_io.Video.Input( + IO.Video.Input( "video", tooltip="The reference video used to generate the output video. Must be at least 5 seconds long. " - "Videos longer than 5s will be automatically trimmed. Only MP4 format supported.", + "Videos longer than 5s will be automatically trimmed. Only MP4 format supported.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "control_type", options=["Motion Transfer", "Pose Transfer"], default="Motion Transfer", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "motion_intensity", default=100, min=0, @@ -563,12 +334,21 @@ class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode): tooltip="Only used if control_type is 'Motion Transfer'", optional=True, ), + IO.Int.Input( + "steps", + default=33, + min=1, + max=100, + step=1, + display_mode=IO.NumberDisplay.number, + tooltip="Number of inference steps", + ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -579,20 +359,16 @@ class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode): prompt: str, negative_prompt: str, seed: int, - video: Optional[VideoInput] = None, + video: Input.Video | None = None, control_type: str = "Motion Transfer", - motion_intensity: Optional[int] = 100, - ) -> comfy_io.NodeOutput: - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - + motion_intensity: int | None = 100, + steps=33, + prompt_adherence=4.5, + ) -> IO.NodeOutput: validated_video = validate_video_to_video_input(video) - video_url = await upload_video_to_comfyapi(validated_video, auth_kwargs=auth) - - """Validate prompts and inference input""" - validate_prompts(prompt, negative_prompt) + video_url = await upload_video_to_comfyapi(cls, validated_video) + validate_string(prompt, min_length=1, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) + validate_string(negative_prompt, field_name="negative_prompt", max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) # Only include motion_intensity for Motion Transfer control_params = {} @@ -603,65 +379,52 @@ class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode): negative_prompt=negative_prompt, seed=seed, control_params=control_params, + steps=steps, + guidance_scale=prompt_adherence, ) - control = parse_control_parameter(control_type) - - request = MoonvalleyVideoToVideoRequest( - control_type=control, - video_url=video_url, - prompt_text=prompt, - inference_params=inference_params, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=API_VIDEO2VIDEO_ENDPOINT, - method=HttpMethod.POST, - request_model=MoonvalleyVideoToVideoRequest, - response_model=MoonvalleyPromptResponse, + task_creation_response = await sync_op( + cls, + endpoint=ApiEndpoint(path=API_VIDEO2VIDEO_ENDPOINT, method="POST"), + response_model=MoonvalleyPromptResponse, + data=MoonvalleyVideoToVideoRequest( + control_type=parse_control_parameter(control_type), + video_url=video_url, + prompt_text=prompt, + inference_params=inference_params, ), - request=request, - auth_kwargs=auth, ) - task_creation_response = await initial_operation.execute() validate_task_creation_response(task_creation_response) - task_id = task_creation_response.id - - final_response = await get_response( - task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id - ) - - video = await download_url_to_video_output(final_response.output_url) - return comfy_io.NodeOutput(video) + final_response = await get_response(cls, task_creation_response.id) + return IO.NodeOutput(await download_url_to_video_output(final_response.output_url)) -class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode): +class MoonvalleyTxt2VideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="MoonvalleyTxt2VideoNode", display_name="Moonvalley Marey Text to Video", category="api node/video/Moonvalley Marey", description="", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default=" gopro, bright, contrast, static, overexposed, vignette, " - "artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, " - "flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, " - "cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, " - "blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, " - "wobbly, weird, low quality, plastic, stock footage, video camera, boring", + "artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, " + "flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, " + "cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, " + "blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, " + "wobbly, weird, low quality, plastic, stock footage, video camera, boring", tooltip="Negative prompt text", ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=[ "16:9 (1920 x 1080)", @@ -674,37 +437,38 @@ class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode): default="16:9 (1920 x 1080)", tooltip="Resolution of the output video", ), - comfy_io.Float.Input( + IO.Float.Input( "prompt_adherence", - default=10.0, + default=4.0, min=1.0, max=20.0, step=1.0, tooltip="Guidance scale for generation control", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=9, min=0, max=4294967295, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, tooltip="Random seed value", ), - comfy_io.Int.Input( + IO.Int.Input( "steps", - default=100, + default=33, min=1, max=100, step=1, tooltip="Inference steps", ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -718,15 +482,11 @@ class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode): prompt_adherence: float, seed: int, steps: int, - ) -> comfy_io.NodeOutput: - validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) + validate_string(negative_prompt, field_name="negative_prompt", max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH) width_height = parse_width_height_from_res(resolution) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - inference_params = MoonvalleyTextToVideoInferenceParams( negative_prompt=negative_prompt, steps=steps, @@ -736,35 +496,21 @@ class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode): width=width_height["width"], height=width_height["height"], ) - request = MoonvalleyTextToVideoRequest( - prompt_text=prompt, inference_params=inference_params - ) - init_op = SynchronousOperation( - endpoint=ApiEndpoint( - path=API_TXT2VIDEO_ENDPOINT, - method=HttpMethod.POST, - request_model=MoonvalleyTextToVideoRequest, - response_model=MoonvalleyPromptResponse, - ), - request=request, - auth_kwargs=auth, + task_creation_response = await sync_op( + cls, + endpoint=ApiEndpoint(path=API_TXT2VIDEO_ENDPOINT, method="POST"), + response_model=MoonvalleyPromptResponse, + data=MoonvalleyTextToVideoRequest(prompt_text=prompt, inference_params=inference_params), ) - task_creation_response = await init_op.execute() validate_task_creation_response(task_creation_response) - task_id = task_creation_response.id - - final_response = await get_response( - task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id - ) - - video = await download_url_to_video_output(final_response.output_url) - return comfy_io.NodeOutput(video) + final_response = await get_response(cls, task_creation_response.id) + return IO.NodeOutput(await download_url_to_video_output(final_response.output_url)) class MoonvalleyExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ MoonvalleyImg2VideoNode, MoonvalleyTxt2VideoNode, diff --git a/comfy_api_nodes/nodes_openai.py b/comfy_api_nodes/nodes_openai.py index e3b81de75..a6205a34f 100644 --- a/comfy_api_nodes/nodes_openai.py +++ b/comfy_api_nodes/nodes_openai.py @@ -1,76 +1,49 @@ -import io -from typing import TypedDict, Optional -import json +import base64 import os -import time -import re -import uuid from enum import Enum -from inspect import cleandoc +from io import BytesIO + import numpy as np import torch from PIL import Image -from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict -from server import PromptServer +from typing_extensions import override + import folder_paths - - +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis import ( - OpenAIImageGenerationRequest, - OpenAIImageEditRequest, - OpenAIImageGenerationResponse, - OpenAICreateResponse, - OpenAIResponse, CreateModelResponseProperties, - Item, - Includable, - OutputContent, - InputImageContent, Detail, - InputTextContent, - InputMessage, - InputMessageContentList, InputContent, InputFileContent, + InputImageContent, + InputMessage, + InputMessageContentList, + InputTextContent, + Item, + OpenAICreateResponse, + OpenAIResponse, + OutputContent, ) - -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.apis.openai_api import ( + OpenAIImageEditRequest, + OpenAIImageGenerationRequest, + OpenAIImageGenerationResponse, +) +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) - -from comfy_api_nodes.apinode_utils import ( + download_url_to_bytesio, downscale_image_tensor, - validate_and_cast_response, - validate_string, + poll_op, + sync_op, tensor_to_base64_string, text_filepath_to_data_uri, + validate_string, ) -from comfy_api_nodes.mapper_utils import model_field_to_node_input - RESPONSES_ENDPOINT = "/proxy/openai/v1/responses" STARTING_POINT_ID_PATTERN = r"" -class HistoryEntry(TypedDict): - """Type definition for a single history entry in the chat.""" - - prompt: str - response: str - response_id: str - timestamp: float - - -class ChatHistory(TypedDict): - """Type definition for the chat history dictionary.""" - - __annotations__: dict[str, list[HistoryEntry]] - - class SupportedOpenAIModel(str, Enum): o4_mini = "o4-mini" o1 = "o1" @@ -85,98 +58,120 @@ class SupportedOpenAIModel(str, Enum): gpt_5_nano = "gpt-5-nano" -class OpenAIDalle2(ComfyNodeABC): - """ - Generates images synchronously via OpenAI's DALL·E 2 endpoint. - """ +async def validate_and_cast_response(response, timeout: int = None) -> torch.Tensor: + """Validates and casts a response to a torch.Tensor. - def __init__(self): - pass + Args: + response: The response to validate and cast. + timeout: Request timeout in seconds. Defaults to None (no timeout). + + Returns: + A torch.Tensor representing the image (1, H, W, C). + + Raises: + ValueError: If the response is not valid. + """ + # validate raw JSON response + data = response.data + if not data or len(data) == 0: + raise ValueError("No images returned from API endpoint") + + # Initialize list to store image tensors + image_tensors: list[torch.Tensor] = [] + + # Process each image in the data array + for img_data in data: + if img_data.b64_json: + img_io = BytesIO(base64.b64decode(img_data.b64_json)) + elif img_data.url: + img_io = BytesIO() + await download_url_to_bytesio(img_data.url, img_io, timeout=timeout) + else: + raise ValueError("Invalid image payload – neither URL nor base64 data present.") + + pil_img = Image.open(img_io).convert("RGBA") + arr = np.asarray(pil_img).astype(np.float32) / 255.0 + image_tensors.append(torch.from_numpy(arr)) + + return torch.stack(image_tensors, dim=0) + + +class OpenAIDalle2(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Text prompt for DALL·E", - }, + def define_schema(cls): + return IO.Schema( + node_id="OpenAIDalle2", + display_name="OpenAI DALL·E 2", + category="api node/image/OpenAI", + description="Generates images synchronously via OpenAI's DALL·E 2 endpoint.", + inputs=[ + IO.String.Input( + "prompt", + default="", + multiline=True, + tooltip="Text prompt for DALL·E", ), - }, - "optional": { - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 2**31 - 1, - "step": 1, - "display": "number", - "control_after_generate": True, - "tooltip": "not implemented yet in backend", - }, + IO.Int.Input( + "seed", + default=0, + min=0, + max=2**31 - 1, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="not implemented yet in backend", + optional=True, ), - "size": ( - IO.COMBO, - { - "options": ["256x256", "512x512", "1024x1024"], - "default": "1024x1024", - "tooltip": "Image size", - }, + IO.Combo.Input( + "size", + default="1024x1024", + options=["256x256", "512x512", "1024x1024"], + tooltip="Image size", + optional=True, ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 8, - "step": 1, - "display": "number", - "tooltip": "How many images to generate", - }, + IO.Int.Input( + "n", + default=1, + min=1, + max=8, + step=1, + tooltip="How many images to generate", + display_mode=IO.NumberDisplay.number, + optional=True, ), - "image": ( - IO.IMAGE, - { - "default": None, - "tooltip": "Optional reference image for image editing.", - }, + IO.Image.Input( + "image", + tooltip="Optional reference image for image editing.", + optional=True, ), - "mask": ( - IO.MASK, - { - "default": None, - "tooltip": "Optional mask for inpainting (white areas will be replaced)", - }, + IO.Mask.Input( + "mask", + tooltip="Optional mask for inpainting (white areas will be replaced)", + optional=True, ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "api_call" - CATEGORY = "api node/image/OpenAI" - DESCRIPTION = cleandoc(__doc__ or "") - API_NODE = True - - async def api_call( - self, + @classmethod + async def execute( + cls, prompt, seed=0, image=None, mask=None, n=1, size="1024x1024", - unique_id=None, - **kwargs, - ): + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) model = "dall-e-2" path = "/proxy/openai/images/generations" @@ -202,7 +197,7 @@ class OpenAIDalle2(ComfyNodeABC): image_np = (rgba_tensor.numpy() * 255).astype(np.uint8) img = Image.fromarray(image_np) - img_byte_arr = io.BytesIO() + img_byte_arr = BytesIO() img.save(img_byte_arr, format="PNG") img_byte_arr.seek(0) img_binary = img_byte_arr # .getvalue() @@ -210,15 +205,11 @@ class OpenAIDalle2(ComfyNodeABC): elif image is not None or mask is not None: raise Exception("Dall-E 2 image editing requires an image AND a mask") - # Build the operation - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=path, - method=HttpMethod.POST, - request_model=request_class, - response_model=OpenAIImageGenerationResponse, - ), - request=request_class( + response = await sync_op( + cls, + ApiEndpoint(path=path, method="POST"), + response_model=OpenAIImageGenerationResponse, + data=request_class( model=model, prompt=prompt, n=n, @@ -227,115 +218,95 @@ class OpenAIDalle2(ComfyNodeABC): ), files=( { - "image": img_binary, + "image": ("image.png", img_binary, "image/png"), } if img_binary else None ), content_type=content_type, - auth_kwargs=kwargs, ) - response = await operation.execute() - - img_tensor = await validate_and_cast_response(response, node_id=unique_id) - return (img_tensor,) + return IO.NodeOutput(await validate_and_cast_response(response)) -class OpenAIDalle3(ComfyNodeABC): - """ - Generates images synchronously via OpenAI's DALL·E 3 endpoint. - """ - - def __init__(self): - pass +class OpenAIDalle3(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Text prompt for DALL·E", - }, + def define_schema(cls): + return IO.Schema( + node_id="OpenAIDalle3", + display_name="OpenAI DALL·E 3", + category="api node/image/OpenAI", + description="Generates images synchronously via OpenAI's DALL·E 3 endpoint.", + inputs=[ + IO.String.Input( + "prompt", + default="", + multiline=True, + tooltip="Text prompt for DALL·E", ), - }, - "optional": { - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 2**31 - 1, - "step": 1, - "display": "number", - "control_after_generate": True, - "tooltip": "not implemented yet in backend", - }, + IO.Int.Input( + "seed", + default=0, + min=0, + max=2 ** 31 - 1, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="not implemented yet in backend", + optional=True, ), - "quality": ( - IO.COMBO, - { - "options": ["standard", "hd"], - "default": "standard", - "tooltip": "Image quality", - }, + IO.Combo.Input( + "quality", + default="standard", + options=["standard", "hd"], + tooltip="Image quality", + optional=True, ), - "style": ( - IO.COMBO, - { - "options": ["natural", "vivid"], - "default": "natural", - "tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.", - }, + IO.Combo.Input( + "style", + default="natural", + options=["natural", "vivid"], + tooltip="Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.", + optional=True, ), - "size": ( - IO.COMBO, - { - "options": ["1024x1024", "1024x1792", "1792x1024"], - "default": "1024x1024", - "tooltip": "Image size", - }, + IO.Combo.Input( + "size", + default="1024x1024", + options=["1024x1024", "1024x1792", "1792x1024"], + tooltip="Image size", + optional=True, ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "api_call" - CATEGORY = "api node/image/OpenAI" - DESCRIPTION = cleandoc(__doc__ or "") - API_NODE = True - - async def api_call( - self, + @classmethod + async def execute( + cls, prompt, seed=0, style="natural", quality="standard", size="1024x1024", - unique_id=None, - **kwargs, - ): + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) model = "dall-e-3" # build the operation - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/openai/images/generations", - method=HttpMethod.POST, - request_model=OpenAIImageGenerationRequest, - response_model=OpenAIImageGenerationResponse, - ), - request=OpenAIImageGenerationRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/openai/images/generations", method="POST"), + response_model=OpenAIImageGenerationResponse, + data=OpenAIImageGenerationRequest( model=model, prompt=prompt, quality=quality, @@ -343,146 +314,140 @@ class OpenAIDalle3(ComfyNodeABC): style=style, seed=seed, ), - auth_kwargs=kwargs, ) - response = await operation.execute() - - img_tensor = await validate_and_cast_response(response, node_id=unique_id) - return (img_tensor,) + return IO.NodeOutput(await validate_and_cast_response(response)) -class OpenAIGPTImage1(ComfyNodeABC): - """ - Generates images synchronously via OpenAI's GPT Image 1 endpoint. - """ +def calculate_tokens_price_image_1(response: OpenAIImageGenerationResponse) -> float | None: + # https://platform.openai.com/docs/pricing + return ((response.usage.input_tokens * 10.0) + (response.usage.output_tokens * 40.0)) / 1_000_000.0 - def __init__(self): - pass + +def calculate_tokens_price_image_1_5(response: OpenAIImageGenerationResponse) -> float | None: + return ((response.usage.input_tokens * 8.0) + (response.usage.output_tokens * 32.0)) / 1_000_000.0 + + +class OpenAIGPTImage1(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Text prompt for GPT Image 1", - }, + def define_schema(cls): + return IO.Schema( + node_id="OpenAIGPTImage1", + display_name="OpenAI GPT Image 1", + category="api node/image/OpenAI", + description="Generates images synchronously via OpenAI's GPT Image 1 endpoint.", + inputs=[ + IO.String.Input( + "prompt", + default="", + multiline=True, + tooltip="Text prompt for GPT Image", ), - }, - "optional": { - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 2**31 - 1, - "step": 1, - "display": "number", - "control_after_generate": True, - "tooltip": "not implemented yet in backend", - }, + IO.Int.Input( + "seed", + default=0, + min=0, + max=2 ** 31 - 1, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="not implemented yet in backend", + optional=True, ), - "quality": ( - IO.COMBO, - { - "options": ["low", "medium", "high"], - "default": "low", - "tooltip": "Image quality, affects cost and generation time.", - }, + IO.Combo.Input( + "quality", + default="low", + options=["low", "medium", "high"], + tooltip="Image quality, affects cost and generation time.", + optional=True, ), - "background": ( - IO.COMBO, - { - "options": ["opaque", "transparent"], - "default": "opaque", - "tooltip": "Return image with or without background", - }, + IO.Combo.Input( + "background", + default="auto", + options=["auto", "opaque", "transparent"], + tooltip="Return image with or without background", + optional=True, ), - "size": ( - IO.COMBO, - { - "options": ["auto", "1024x1024", "1024x1536", "1536x1024"], - "default": "auto", - "tooltip": "Image size", - }, + IO.Combo.Input( + "size", + default="auto", + options=["auto", "1024x1024", "1024x1536", "1536x1024"], + tooltip="Image size", + optional=True, ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 8, - "step": 1, - "display": "number", - "tooltip": "How many images to generate", - }, + IO.Int.Input( + "n", + default=1, + min=1, + max=8, + step=1, + tooltip="How many images to generate", + display_mode=IO.NumberDisplay.number, + optional=True, ), - "image": ( - IO.IMAGE, - { - "default": None, - "tooltip": "Optional reference image for image editing.", - }, + IO.Image.Input( + "image", + tooltip="Optional reference image for image editing.", + optional=True, ), - "mask": ( - IO.MASK, - { - "default": None, - "tooltip": "Optional mask for inpainting (white areas will be replaced)", - }, + IO.Mask.Input( + "mask", + tooltip="Optional mask for inpainting (white areas will be replaced)", + optional=True, ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + IO.Combo.Input( + "model", + options=["gpt-image-1", "gpt-image-1.5"], + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "api_call" - CATEGORY = "api node/image/OpenAI" - DESCRIPTION = cleandoc(__doc__ or "") - API_NODE = True - - async def api_call( - self, - prompt, - seed=0, - quality="low", - background="opaque", - image=None, - mask=None, - n=1, - size="1024x1024", - unique_id=None, - **kwargs, - ): + @classmethod + async def execute( + cls, + prompt: str, + seed: int = 0, + quality: str = "low", + background: str = "opaque", + image: Input.Image | None = None, + mask: Input.Image | None = None, + n: int = 1, + size: str = "1024x1024", + model: str = "gpt-image-1", + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) - model = "gpt-image-1" - path = "/proxy/openai/images/generations" - content_type = "application/json" - request_class = OpenAIImageGenerationRequest - files = [] + + if mask is not None and image is None: + raise ValueError("Cannot use a mask without an input image") + + if model == "gpt-image-1": + price_extractor = calculate_tokens_price_image_1 + elif model == "gpt-image-1.5": + price_extractor = calculate_tokens_price_image_1_5 + else: + raise ValueError(f"Unknown model: {model}") if image is not None: - path = "/proxy/openai/images/edits" - request_class = OpenAIImageEditRequest - content_type = "multipart/form-data" - + files = [] batch_size = image.shape[0] - for i in range(batch_size): - single_image = image[i : i + 1] - scaled_image = downscale_image_tensor(single_image).squeeze() + single_image = image[i: i + 1] + scaled_image = downscale_image_tensor(single_image, total_pixels=2048*2048).squeeze() image_np = (scaled_image.numpy() * 255).astype(np.uint8) img = Image.fromarray(image_np) - img_byte_arr = io.BytesIO() + img_byte_arr = BytesIO() img.save(img_byte_arr, format="PNG") img_byte_arr.seek(0) @@ -491,166 +456,121 @@ class OpenAIGPTImage1(ComfyNodeABC): else: files.append(("image[]", (f"image_{i}.png", img_byte_arr, "image/png"))) - if mask is not None: - if image is None: - raise Exception("Cannot use a mask without an input image") - if image.shape[0] != 1: - raise Exception("Cannot use a mask with multiple image") - if mask.shape[1:] != image.shape[1:-1]: - raise Exception("Mask and Image must be the same size") - batch, height, width = mask.shape - rgba_mask = torch.zeros(height, width, 4, device="cpu") - rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu() + if mask is not None: + if image.shape[0] != 1: + raise Exception("Cannot use a mask with multiple image") + if mask.shape[1:] != image.shape[1:-1]: + raise Exception("Mask and Image must be the same size") + _, height, width = mask.shape + rgba_mask = torch.zeros(height, width, 4, device="cpu") + rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu() - scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0)).squeeze() + scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0), total_pixels=2048*2048).squeeze() - mask_np = (scaled_mask.numpy() * 255).astype(np.uint8) - mask_img = Image.fromarray(mask_np) - mask_img_byte_arr = io.BytesIO() - mask_img.save(mask_img_byte_arr, format="PNG") - mask_img_byte_arr.seek(0) - files.append(("mask", ("mask.png", mask_img_byte_arr, "image/png"))) + mask_np = (scaled_mask.numpy() * 255).astype(np.uint8) + mask_img = Image.fromarray(mask_np) + mask_img_byte_arr = BytesIO() + mask_img.save(mask_img_byte_arr, format="PNG") + mask_img_byte_arr.seek(0) + files.append(("mask", ("mask.png", mask_img_byte_arr, "image/png"))) - # Build the operation - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=path, - method=HttpMethod.POST, - request_model=request_class, + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/openai/images/edits", method="POST"), response_model=OpenAIImageGenerationResponse, - ), - request=request_class( - model=model, - prompt=prompt, - quality=quality, - background=background, - n=n, - seed=seed, - size=size, - ), - files=files if files else None, - content_type=content_type, - auth_kwargs=kwargs, - ) - - response = await operation.execute() - - img_tensor = await validate_and_cast_response(response, node_id=unique_id) - return (img_tensor,) + data=OpenAIImageEditRequest( + model=model, + prompt=prompt, + quality=quality, + background=background, + n=n, + seed=seed, + size=size, + moderation="low", + ), + content_type="multipart/form-data", + files=files, + price_extractor=price_extractor, + ) + else: + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/openai/images/generations", method="POST"), + response_model=OpenAIImageGenerationResponse, + data=OpenAIImageGenerationRequest( + model=model, + prompt=prompt, + quality=quality, + background=background, + n=n, + seed=seed, + size=size, + moderation="low", + ), + price_extractor=price_extractor, + ) + return IO.NodeOutput(await validate_and_cast_response(response)) -class OpenAITextNode(ComfyNodeABC): - """ - Base class for OpenAI text generation nodes. - """ - - RETURN_TYPES = (IO.STRING,) - FUNCTION = "api_call" - CATEGORY = "api node/text/OpenAI" - API_NODE = True - - -class OpenAIChatNode(OpenAITextNode): +class OpenAIChatNode(IO.ComfyNode): """ Node to generate text responses from an OpenAI model. """ - def __init__(self) -> None: - """Initialize the chat node with a new session ID and empty history.""" - self.current_session_id: str = str(uuid.uuid4()) - self.history: dict[str, list[HistoryEntry]] = {} - self.previous_response_id: Optional[str] = None + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="OpenAIChatNode", + display_name="OpenAI ChatGPT", + category="api node/text/OpenAI", + description="Generate text responses from an OpenAI model.", + inputs=[ + IO.String.Input( + "prompt", + default="", + multiline=True, + tooltip="Text inputs to the model, used to generate a response.", + ), + IO.Boolean.Input( + "persist_context", + default=False, + tooltip="This parameter is deprecated and has no effect.", + ), + IO.Combo.Input( + "model", + options=SupportedOpenAIModel, + tooltip="The model used to generate the response", + ), + IO.Image.Input( + "images", + tooltip="Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.", + optional=True, + ), + IO.Custom("OPENAI_INPUT_FILES").Input( + "files", + optional=True, + tooltip="Optional file(s) to use as context for the model. Accepts inputs from the OpenAI Chat Input Files node.", + ), + IO.Custom("OPENAI_CHAT_CONFIG").Input( + "advanced_options", + optional=True, + tooltip="Optional configuration for the model. Accepts inputs from the OpenAI Chat Advanced Options node.", + ), + ], + outputs=[ + IO.String.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Text inputs to the model, used to generate a response.", - }, - ), - "persist_context": ( - IO.BOOLEAN, - { - "default": True, - "tooltip": "Persist chat context between calls (multi-turn conversation)", - }, - ), - "model": model_field_to_node_input( - IO.COMBO, - OpenAICreateResponse, - "model", - enum_type=SupportedOpenAIModel, - ), - }, - "optional": { - "images": ( - IO.IMAGE, - { - "default": None, - "tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.", - }, - ), - "files": ( - "OPENAI_INPUT_FILES", - { - "default": None, - "tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the OpenAI Chat Input Files node.", - }, - ), - "advanced_options": ( - "OPENAI_CHAT_CONFIG", - { - "default": None, - "tooltip": "Optional configuration for the model. Accepts inputs from the OpenAI Chat Advanced Options node.", - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Generate text responses from an OpenAI model." - - async def get_result_response( - self, - response_id: str, - include: Optional[list[Includable]] = None, - auth_kwargs: Optional[dict[str, str]] = None, - ) -> OpenAIResponse: - """ - Retrieve a model response with the given ID from the OpenAI API. - - Args: - response_id (str): The ID of the response to retrieve. - include (Optional[List[Includable]]): Additional fields to include - in the response. See the `include` parameter for Response - creation above for more information. - - """ - return await PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"{RESPONSES_ENDPOINT}/{response_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=OpenAIResponse, - query_params={"include": include}, - ), - completed_statuses=["completed"], - failed_statuses=["failed"], - status_extractor=lambda response: response.status, - auth_kwargs=auth_kwargs, - ).execute() - def get_message_content_from_response( - self, response: OpenAIResponse + cls, response: OpenAIResponse ) -> list[OutputContent]: """Extract message content from the API response.""" for output in response.output: @@ -658,8 +578,9 @@ class OpenAIChatNode(OpenAITextNode): return output.root.content raise TypeError("No output message found in response") + @classmethod def get_text_from_message_content( - self, message_content: list[OutputContent] + cls, message_content: list[OutputContent] ) -> str: """Extract text content from message content.""" for content_item in message_content: @@ -667,58 +588,9 @@ class OpenAIChatNode(OpenAITextNode): return str(content_item.root.text) return "No text output found in response" - def get_history_text(self, session_id: str) -> str: - """Convert the entire history for a given session to JSON string.""" - return json.dumps(self.history[session_id]) - - def display_history_on_node(self, session_id: str, node_id: str) -> None: - """Display formatted chat history on the node UI.""" - render_spec = { - "node_id": node_id, - "component": "ChatHistoryWidget", - "props": { - "history": self.get_history_text(session_id), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - - def add_to_history( - self, session_id: str, prompt: str, output_text: str, response_id: str - ) -> None: - """Add a new entry to the chat history.""" - if session_id not in self.history: - self.history[session_id] = [] - self.history[session_id].append( - { - "prompt": prompt, - "response": output_text, - "response_id": response_id, - "timestamp": time.time(), - } - ) - - def parse_output_text_from_response(self, response: OpenAIResponse) -> str: - """Extract text output from the API response.""" - message_contents = self.get_message_content_from_response(response) - return self.get_text_from_message_content(message_contents) - - def generate_new_session_id(self) -> str: - """Generate a new unique session ID.""" - return str(uuid.uuid4()) - - def get_session_id(self, persist_context: bool) -> str: - """Get the current or generate a new session ID based on context persistence.""" - return ( - self.current_session_id - if persist_context - else self.generate_new_session_id() - ) - + @classmethod def tensor_to_input_image_content( - self, image: torch.Tensor, detail_level: Detail = "auto" + cls, image: torch.Tensor, detail_level: Detail = "auto" ) -> InputImageContent: """Convert a tensor to an input image content object.""" return InputImageContent( @@ -727,21 +599,27 @@ class OpenAIChatNode(OpenAITextNode): type="input_image", ) + @classmethod def create_input_message_contents( - self, + cls, prompt: str, - image: Optional[torch.Tensor] = None, - files: Optional[list[InputFileContent]] = None, + image: torch.Tensor | None = None, + files: list[InputFileContent] | None = None, ) -> InputMessageContentList: """Create a list of input message contents from prompt and optional image.""" - content_list: list[InputContent] = [ + content_list: list[InputContent | InputTextContent | InputImageContent | InputFileContent] = [ InputTextContent(text=prompt, type="input_text"), ] if image is not None: for i in range(image.shape[0]): content_list.append( - self.tensor_to_input_image_content(image[i].unsqueeze(0)) + InputImageContent( + detail="auto", + image_url=f"data:image/png;base64,{tensor_to_base64_string(image[i].unsqueeze(0))}", + type="input_image", + ) ) + if files is not None: content_list.extend(files) @@ -749,80 +627,28 @@ class OpenAIChatNode(OpenAITextNode): root=content_list, ) - def parse_response_id_from_prompt(self, prompt: str) -> Optional[str]: - """Extract response ID from prompt if it exists.""" - parsed_id = re.search(STARTING_POINT_ID_PATTERN, prompt) - return parsed_id.group(1) if parsed_id else None - - def strip_response_tag_from_prompt(self, prompt: str) -> str: - """Remove the response ID tag from the prompt.""" - return re.sub(STARTING_POINT_ID_PATTERN, "", prompt.strip()) - - def delete_history_after_response_id( - self, new_start_id: str, session_id: str - ) -> None: - """Delete history entries after a specific response ID.""" - if session_id not in self.history: - return - - new_history = [] - i = 0 - while ( - i < len(self.history[session_id]) - and self.history[session_id][i]["response_id"] != new_start_id - ): - new_history.append(self.history[session_id][i]) - i += 1 - - # Since it's the new starting point (not the response being edited), we include it as well - if i < len(self.history[session_id]): - new_history.append(self.history[session_id][i]) - - self.history[session_id] = new_history - - async def api_call( - self, + @classmethod + async def execute( + cls, prompt: str, - persist_context: bool, - model: SupportedOpenAIModel, - unique_id: Optional[str] = None, - images: Optional[torch.Tensor] = None, - files: Optional[list[InputFileContent]] = None, - advanced_options: Optional[CreateModelResponseProperties] = None, - **kwargs, - ) -> tuple[str]: - # Validate inputs + persist_context: bool = False, + model: SupportedOpenAIModel = SupportedOpenAIModel.gpt_5.value, + images: torch.Tensor | None = None, + files: list[InputFileContent] | None = None, + advanced_options: CreateModelResponseProperties | None = None, + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) - session_id = self.get_session_id(persist_context) - response_id_override = self.parse_response_id_from_prompt(prompt) - if response_id_override: - is_starting_from_beginning = response_id_override == "start" - if is_starting_from_beginning: - self.history[session_id] = [] - previous_response_id = None - else: - previous_response_id = response_id_override - self.delete_history_after_response_id(response_id_override, session_id) - prompt = self.strip_response_tag_from_prompt(prompt) - elif persist_context: - previous_response_id = self.previous_response_id - else: - previous_response_id = None - # Create response - create_response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=RESPONSES_ENDPOINT, - method=HttpMethod.POST, - request_model=OpenAICreateResponse, - response_model=OpenAIResponse, - ), - request=OpenAICreateResponse( + create_response = await sync_op( + cls, + ApiEndpoint(path=RESPONSES_ENDPOINT, method="POST"), + response_model=OpenAIResponse, + data=OpenAICreateResponse( input=[ Item( root=InputMessage( - content=self.create_input_message_contents( + content=cls.create_input_message_contents( prompt, images, files ), role="user", @@ -832,36 +658,34 @@ class OpenAIChatNode(OpenAITextNode): store=True, stream=False, model=model, - previous_response_id=previous_response_id, + previous_response_id=None, **( advanced_options.model_dump(exclude_none=True) if advanced_options else {} ), ), - auth_kwargs=kwargs, - ).execute() + ) response_id = create_response.id # Get result output - result_response = await self.get_result_response(response_id, auth_kwargs=kwargs) - output_text = self.parse_output_text_from_response(result_response) - - # Update history - self.add_to_history(session_id, prompt, output_text, response_id) - self.display_history_on_node(session_id, unique_id) - self.previous_response_id = response_id - - return (output_text,) + result_response = await poll_op( + cls, + ApiEndpoint(path=f"{RESPONSES_ENDPOINT}/{response_id}"), + response_model=OpenAIResponse, + status_extractor=lambda response: response.status, + completed_statuses=["incomplete", "completed"] + ) + return IO.NodeOutput(cls.get_text_from_message_content(cls.get_message_content_from_response(result_response))) -class OpenAIInputFiles(ComfyNodeABC): +class OpenAIInputFiles(IO.ComfyNode): """ Loads and formats input files for OpenAI API. """ @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: + def define_schema(cls): """ For details about the supported file input types, see: https://platform.openai.com/docs/guides/pdf-files?api-mode=responses @@ -876,97 +700,92 @@ class OpenAIInputFiles(ComfyNodeABC): ] input_files = sorted(input_files, key=lambda x: x.name) input_files = [f.name for f in input_files] - return { - "required": { - "file": ( - IO.COMBO, - { - "tooltip": "Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.", - "options": input_files, - "default": input_files[0] if input_files else None, - }, + return IO.Schema( + node_id="OpenAIInputFiles", + display_name="OpenAI ChatGPT Input Files", + category="api node/text/OpenAI", + description="Loads and prepares input files (text, pdf, etc.) to include as inputs for the OpenAI Chat Node. The files will be read by the OpenAI model when generating a response. 🛈 TIP: Can be chained together with other OpenAI Input File nodes.", + inputs=[ + IO.Combo.Input( + "file", + options=input_files, + default=input_files[0] if input_files else None, + tooltip="Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.", ), - }, - "optional": { - "OPENAI_INPUT_FILES": ( + IO.Custom("OPENAI_INPUT_FILES").Input( "OPENAI_INPUT_FILES", - { - "tooltip": "An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.", - "default": None, - }, + tooltip="An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.", + optional=True, ), - }, - } + ], + outputs=[ + IO.Custom("OPENAI_INPUT_FILES").Output(), + ], + ) - DESCRIPTION = "Loads and prepares input files (text, pdf, etc.) to include as inputs for the OpenAI Chat Node. The files will be read by the OpenAI model when generating a response. 🛈 TIP: Can be chained together with other OpenAI Input File nodes." - RETURN_TYPES = ("OPENAI_INPUT_FILES",) - FUNCTION = "prepare_files" - CATEGORY = "api node/text/OpenAI" - - def create_input_file_content(self, file_path: str) -> InputFileContent: + @classmethod + def create_input_file_content(cls, file_path: str) -> InputFileContent: return InputFileContent( file_data=text_filepath_to_data_uri(file_path), filename=os.path.basename(file_path), type="input_file", ) - def prepare_files( - self, file: str, OPENAI_INPUT_FILES: list[InputFileContent] = [] - ) -> tuple[list[InputFileContent]]: + @classmethod + def execute(cls, file: str, OPENAI_INPUT_FILES: list[InputFileContent] = []) -> IO.NodeOutput: """ Loads and formats input files for OpenAI API. """ file_path = folder_paths.get_annotated_filepath(file) - input_file_content = self.create_input_file_content(file_path) + input_file_content = cls.create_input_file_content(file_path) files = [input_file_content] + OPENAI_INPUT_FILES - return (files,) + return IO.NodeOutput(files) -class OpenAIChatConfig(ComfyNodeABC): +class OpenAIChatConfig(IO.ComfyNode): """Allows setting additional configuration for the OpenAI Chat Node.""" - RETURN_TYPES = ("OPENAI_CHAT_CONFIG",) - FUNCTION = "configure" - DESCRIPTION = ( - "Allows specifying advanced configuration options for the OpenAI Chat Nodes." - ) - CATEGORY = "api node/text/OpenAI" - @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "truncation": ( - IO.COMBO, - { - "options": ["auto", "disabled"], - "default": "auto", - "tooltip": "The truncation strategy to use for the model response. auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.disabled: If a model response will exceed the context window size for a model, the request will fail with a 400 error", - }, + def define_schema(cls): + return IO.Schema( + node_id="OpenAIChatConfig", + display_name="OpenAI ChatGPT Advanced Options", + category="api node/text/OpenAI", + description="Allows specifying advanced configuration options for the OpenAI Chat Nodes.", + inputs=[ + IO.Combo.Input( + "truncation", + options=["auto", "disabled"], + default="auto", + tooltip="The truncation strategy to use for the model response. auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.disabled: If a model response will exceed the context window size for a model, the request will fail with a 400 error", ), - }, - "optional": { - "max_output_tokens": model_field_to_node_input( - IO.INT, - OpenAICreateResponse, + IO.Int.Input( "max_output_tokens", min=16, default=4096, max=16384, tooltip="An upper bound for the number of tokens that can be generated for a response, including visible output tokens", + optional=True, ), - "instructions": model_field_to_node_input( - IO.STRING, OpenAICreateResponse, "instructions", multiline=True + IO.String.Input( + "instructions", + multiline=True, + optional=True, + tooltip="Instructions for the model on how to generate the response", ), - }, - } + ], + outputs=[ + IO.Custom("OPENAI_CHAT_CONFIG").Output(), + ], + ) - def configure( - self, + @classmethod + def execute( + cls, truncation: bool, - instructions: Optional[str] = None, - max_output_tokens: Optional[int] = None, - ) -> tuple[CreateModelResponseProperties]: + instructions: str | None = None, + max_output_tokens: int | None = None, + ) -> IO.NodeOutput: """ Configure advanced options for the OpenAI Chat Node. @@ -976,29 +795,27 @@ class OpenAIChatConfig(ComfyNodeABC): They are not exposed as inputs at all to avoid having to manually remove depending on model choice. """ - return ( + return IO.NodeOutput( CreateModelResponseProperties( instructions=instructions, truncation=truncation, max_output_tokens=max_output_tokens, - ), + ) ) -NODE_CLASS_MAPPINGS = { - "OpenAIDalle2": OpenAIDalle2, - "OpenAIDalle3": OpenAIDalle3, - "OpenAIGPTImage1": OpenAIGPTImage1, - "OpenAIChatNode": OpenAIChatNode, - "OpenAIInputFiles": OpenAIInputFiles, - "OpenAIChatConfig": OpenAIChatConfig, -} +class OpenAIExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + OpenAIDalle2, + OpenAIDalle3, + OpenAIGPTImage1, + OpenAIChatNode, + OpenAIInputFiles, + OpenAIChatConfig, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "OpenAIDalle2": "OpenAI DALL·E 2", - "OpenAIDalle3": "OpenAI DALL·E 3", - "OpenAIGPTImage1": "OpenAI GPT Image 1", - "OpenAIChatNode": "OpenAI ChatGPT", - "OpenAIInputFiles": "OpenAI ChatGPT Input Files", - "OpenAIChatConfig": "OpenAI ChatGPT Advanced Options", -} + +async def comfy_entrypoint() -> OpenAIExtension: + return OpenAIExtension() diff --git a/comfy_api_nodes/nodes_pika.py b/comfy_api_nodes/nodes_pika.py deleted file mode 100644 index a8dc43cb3..000000000 --- a/comfy_api_nodes/nodes_pika.py +++ /dev/null @@ -1,779 +0,0 @@ -""" -Pika x ComfyUI API Nodes - -Pika API docs: https://pika-827374fb.mintlify.app/api-reference -""" -from __future__ import annotations - -import io -import logging -from typing import Optional, TypeVar - -import numpy as np -import torch - -from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeOptions -from comfy_api.input_impl import VideoFromFile -from comfy_api.input_impl.video_types import VideoCodec, VideoContainer, VideoInput -from comfy_api_nodes.apinode_utils import ( - download_url_to_video_output, - tensor_to_bytesio, -) -from comfy_api_nodes.apis import ( - IngredientsMode, - PikaBodyGenerate22C2vGenerate22PikascenesPost, - PikaBodyGenerate22I2vGenerate22I2vPost, - PikaBodyGenerate22KeyframeGenerate22PikaframesPost, - PikaBodyGenerate22T2vGenerate22T2vPost, - PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - PikaBodyGeneratePikaswapsGeneratePikaswapsPost, - PikaDurationEnum, - Pikaffect, - PikaGenerateResponse, - PikaResolutionEnum, - PikaVideoResponse, -) -from comfy_api_nodes.apis.client import ( - ApiEndpoint, - EmptyRequest, - HttpMethod, - PollingOperation, - SynchronousOperation, -) -from comfy_api_nodes.mapper_utils import model_field_to_node_input - -R = TypeVar("R") - -PATH_PIKADDITIONS = "/proxy/pika/generate/pikadditions" -PATH_PIKASWAPS = "/proxy/pika/generate/pikaswaps" -PATH_PIKAFFECTS = "/proxy/pika/generate/pikaffects" - -PIKA_API_VERSION = "2.2" -PATH_TEXT_TO_VIDEO = f"/proxy/pika/generate/{PIKA_API_VERSION}/t2v" -PATH_IMAGE_TO_VIDEO = f"/proxy/pika/generate/{PIKA_API_VERSION}/i2v" -PATH_PIKAFRAMES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikaframes" -PATH_PIKASCENES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikascenes" - -PATH_VIDEO_GET = "/proxy/pika/videos" - - -class PikaApiError(Exception): - """Exception for Pika API errors.""" - - pass - - -def is_valid_video_response(response: PikaVideoResponse) -> bool: - """Check if the video response is valid.""" - return hasattr(response, "url") and response.url is not None - - -def is_valid_initial_response(response: PikaGenerateResponse) -> bool: - """Check if the initial response is valid.""" - return hasattr(response, "video_id") and response.video_id is not None - - -class PikaNodeBase(ComfyNodeABC): - """Base class for Pika nodes.""" - - @classmethod - def get_base_inputs_types( - cls, request_model - ) -> dict[str, tuple[IO, InputTypeOptions]]: - """Get the base required inputs types common to all Pika nodes.""" - return { - "prompt_text": model_field_to_node_input( - IO.STRING, - request_model, - "promptText", - multiline=True, - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - request_model, - "negativePrompt", - multiline=True, - ), - "seed": model_field_to_node_input( - IO.INT, - request_model, - "seed", - min=0, - max=0xFFFFFFFF, - control_after_generate=True, - ), - "resolution": model_field_to_node_input( - IO.COMBO, - request_model, - "resolution", - enum_type=PikaResolutionEnum, - ), - "duration": model_field_to_node_input( - IO.COMBO, - request_model, - "duration", - enum_type=PikaDurationEnum, - ), - } - - CATEGORY = "api node/video/Pika" - API_NODE = True - FUNCTION = "api_call" - RETURN_TYPES = ("VIDEO",) - - async def poll_for_task_status( - self, - task_id: str, - auth_kwargs: Optional[dict[str, str]] = None, - node_id: Optional[str] = None, - ) -> PikaGenerateResponse: - polling_operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"{PATH_VIDEO_GET}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=PikaVideoResponse, - ), - completed_statuses=[ - "finished", - ], - failed_statuses=["failed", "cancelled"], - status_extractor=lambda response: ( - response.status.value if response.status else None - ), - progress_extractor=lambda response: ( - response.progress if hasattr(response, "progress") else None - ), - auth_kwargs=auth_kwargs, - result_url_extractor=lambda response: ( - response.url if hasattr(response, "url") else None - ), - node_id=node_id, - estimated_duration=60 - ) - return await polling_operation.execute() - - async def execute_task( - self, - initial_operation: SynchronousOperation[R, PikaGenerateResponse], - auth_kwargs: Optional[dict[str, str]] = None, - node_id: Optional[str] = None, - ) -> tuple[VideoFromFile]: - """Executes the initial operation then polls for the task status until it is completed. - - Args: - initial_operation: The initial operation to execute. - auth_kwargs: The authentication token(s) to use for the API call. - - Returns: - A tuple containing the video file as a VIDEO output. - """ - initial_response = await initial_operation.execute() - if not is_valid_initial_response(initial_response): - error_msg = f"Pika initial request failed. Code: {initial_response.code}, Message: {initial_response.message}, Data: {initial_response.data}" - logging.error(error_msg) - raise PikaApiError(error_msg) - - task_id = initial_response.video_id - final_response = await self.poll_for_task_status(task_id, auth_kwargs) - if not is_valid_video_response(final_response): - error_msg = ( - f"Pika task {task_id} succeeded but no video data found in response." - ) - logging.error(error_msg) - raise PikaApiError(error_msg) - - video_url = str(final_response.url) - logging.info("Pika task %s succeeded. Video URL: %s", task_id, video_url) - - return (await download_url_to_video_output(video_url),) - - -class PikaImageToVideoV2_2(PikaNodeBase): - """Pika 2.2 Image to Video Node.""" - - @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "image": ( - IO.IMAGE, - {"tooltip": "The image to convert to video"}, - ), - **cls.get_base_inputs_types(PikaBodyGenerate22I2vGenerate22I2vPost), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Sends an image and prompt to the Pika API v2.2 to generate a video." - - async def api_call( - self, - image: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - unique_id: str, - **kwargs, - ) -> tuple[VideoFromFile]: - # Convert image to BytesIO - image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - - pika_files = {"image": ("image.png", image_bytes_io, "image/png")} - - # Prepare non-file data - pika_request_data = PikaBodyGenerate22I2vGenerate22I2vPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_IMAGE_TO_VIDEO, - method=HttpMethod.POST, - request_model=PikaBodyGenerate22I2vGenerate22I2vPost, - response_model=PikaGenerateResponse, - ), - request=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - auth_kwargs=kwargs, - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -class PikaTextToVideoNodeV2_2(PikaNodeBase): - """Pika Text2Video v2.2 Node.""" - - @classmethod - def INPUT_TYPES(cls): - return { - "required": { - **cls.get_base_inputs_types(PikaBodyGenerate22T2vGenerate22T2vPost), - "aspect_ratio": model_field_to_node_input( - IO.FLOAT, - PikaBodyGenerate22T2vGenerate22T2vPost, - "aspectRatio", - step=0.001, - min=0.4, - max=2.5, - default=1.7777777777777777, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Sends a text prompt to the Pika API v2.2 to generate a video." - - async def api_call( - self, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - aspect_ratio: float, - unique_id: str, - **kwargs, - ) -> tuple[VideoFromFile]: - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_TEXT_TO_VIDEO, - method=HttpMethod.POST, - request_model=PikaBodyGenerate22T2vGenerate22T2vPost, - response_model=PikaGenerateResponse, - ), - request=PikaBodyGenerate22T2vGenerate22T2vPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - aspectRatio=aspect_ratio, - ), - auth_kwargs=kwargs, - content_type="application/x-www-form-urlencoded", - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -class PikaScenesV2_2(PikaNodeBase): - """PikaScenes v2.2 Node.""" - - @classmethod - def INPUT_TYPES(cls): - image_ingredient_input = ( - IO.IMAGE, - {"tooltip": "Image that will be used as ingredient to create a video."}, - ) - return { - "required": { - **cls.get_base_inputs_types( - PikaBodyGenerate22C2vGenerate22PikascenesPost, - ), - "ingredients_mode": model_field_to_node_input( - IO.COMBO, - PikaBodyGenerate22C2vGenerate22PikascenesPost, - "ingredientsMode", - enum_type=IngredientsMode, - default="creative", - ), - "aspect_ratio": model_field_to_node_input( - IO.FLOAT, - PikaBodyGenerate22C2vGenerate22PikascenesPost, - "aspectRatio", - step=0.001, - min=0.4, - max=2.5, - default=1.7777777777777777, - ), - }, - "optional": { - "image_ingredient_1": image_ingredient_input, - "image_ingredient_2": image_ingredient_input, - "image_ingredient_3": image_ingredient_input, - "image_ingredient_4": image_ingredient_input, - "image_ingredient_5": image_ingredient_input, - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Combine your images to create a video with the objects in them. Upload multiple images as ingredients and generate a high-quality video that incorporates all of them." - - async def api_call( - self, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - ingredients_mode: str, - aspect_ratio: float, - unique_id: str, - image_ingredient_1: Optional[torch.Tensor] = None, - image_ingredient_2: Optional[torch.Tensor] = None, - image_ingredient_3: Optional[torch.Tensor] = None, - image_ingredient_4: Optional[torch.Tensor] = None, - image_ingredient_5: Optional[torch.Tensor] = None, - **kwargs, - ) -> tuple[VideoFromFile]: - # Convert all passed images to BytesIO - all_image_bytes_io = [] - for image in [ - image_ingredient_1, - image_ingredient_2, - image_ingredient_3, - image_ingredient_4, - image_ingredient_5, - ]: - if image is not None: - image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - all_image_bytes_io.append(image_bytes_io) - - pika_files = [ - ("images", (f"image_{i}.png", image_bytes_io, "image/png")) - for i, image_bytes_io in enumerate(all_image_bytes_io) - ] - - pika_request_data = PikaBodyGenerate22C2vGenerate22PikascenesPost( - ingredientsMode=ingredients_mode, - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - aspectRatio=aspect_ratio, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_PIKASCENES, - method=HttpMethod.POST, - request_model=PikaBodyGenerate22C2vGenerate22PikascenesPost, - response_model=PikaGenerateResponse, - ), - request=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - auth_kwargs=kwargs, - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -class PikAdditionsNode(PikaNodeBase): - """Pika Pikadditions Node. Add an image into a video.""" - - @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "video": (IO.VIDEO, {"tooltip": "The video to add an image to."}), - "image": (IO.IMAGE, {"tooltip": "The image to add to the video."}), - "prompt_text": model_field_to_node_input( - IO.STRING, - PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - "promptText", - multiline=True, - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - "negativePrompt", - multiline=True, - ), - "seed": model_field_to_node_input( - IO.INT, - PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - "seed", - min=0, - max=0xFFFFFFFF, - control_after_generate=True, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Add any object or image into your video. Upload a video and specify what you'd like to add to create a seamlessly integrated result." - - async def api_call( - self, - video: VideoInput, - image: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - unique_id: str, - **kwargs, - ) -> tuple[VideoFromFile]: - # Convert video to BytesIO - video_bytes_io = io.BytesIO() - video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264) - video_bytes_io.seek(0) - - # Convert image to BytesIO - image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - - pika_files = { - "video": ("video.mp4", video_bytes_io, "video/mp4"), - "image": ("image.png", image_bytes_io, "image/png"), - } - - # Prepare non-file data - pika_request_data = PikaBodyGeneratePikadditionsGeneratePikadditionsPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_PIKADDITIONS, - method=HttpMethod.POST, - request_model=PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - response_model=PikaGenerateResponse, - ), - request=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - auth_kwargs=kwargs, - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -class PikaSwapsNode(PikaNodeBase): - """Pika Pikaswaps Node.""" - - @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "video": (IO.VIDEO, {"tooltip": "The video to swap an object in."}), - "image": ( - IO.IMAGE, - { - "tooltip": "The image used to replace the masked object in the video." - }, - ), - "mask": ( - IO.MASK, - {"tooltip": "Use the mask to define areas in the video to replace"}, - ), - "prompt_text": model_field_to_node_input( - IO.STRING, - PikaBodyGeneratePikaswapsGeneratePikaswapsPost, - "promptText", - multiline=True, - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - PikaBodyGeneratePikaswapsGeneratePikaswapsPost, - "negativePrompt", - multiline=True, - ), - "seed": model_field_to_node_input( - IO.INT, - PikaBodyGeneratePikaswapsGeneratePikaswapsPost, - "seed", - min=0, - max=0xFFFFFFFF, - control_after_generate=True, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Swap out any object or region of your video with a new image or object. Define areas to replace either with a mask or coordinates." - RETURN_TYPES = ("VIDEO",) - - async def api_call( - self, - video: VideoInput, - image: torch.Tensor, - mask: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - unique_id: str, - **kwargs, - ) -> tuple[VideoFromFile]: - # Convert video to BytesIO - video_bytes_io = io.BytesIO() - video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264) - video_bytes_io.seek(0) - - # Convert mask to binary mask with three channels - mask = torch.round(mask) - mask = mask.repeat(1, 3, 1, 1) - - # Convert 3-channel binary mask to BytesIO - mask_bytes_io = io.BytesIO() - mask_bytes_io.write(mask.numpy().astype(np.uint8)) - mask_bytes_io.seek(0) - - # Convert image to BytesIO - image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - - pika_files = { - "video": ("video.mp4", video_bytes_io, "video/mp4"), - "image": ("image.png", image_bytes_io, "image/png"), - "modifyRegionMask": ("mask.png", mask_bytes_io, "image/png"), - } - - # Prepare non-file data - pika_request_data = PikaBodyGeneratePikaswapsGeneratePikaswapsPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_PIKADDITIONS, - method=HttpMethod.POST, - request_model=PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - response_model=PikaGenerateResponse, - ), - request=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - auth_kwargs=kwargs, - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -class PikaffectsNode(PikaNodeBase): - """Pika Pikaffects Node.""" - - @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "image": ( - IO.IMAGE, - {"tooltip": "The reference image to apply the Pikaffect to."}, - ), - "pikaffect": model_field_to_node_input( - IO.COMBO, - PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - "pikaffect", - enum_type=Pikaffect, - default="Cake-ify", - ), - "prompt_text": model_field_to_node_input( - IO.STRING, - PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - "promptText", - multiline=True, - ), - "negative_prompt": model_field_to_node_input( - IO.STRING, - PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - "negativePrompt", - multiline=True, - ), - "seed": model_field_to_node_input( - IO.INT, - PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - "seed", - min=0, - max=0xFFFFFFFF, - control_after_generate=True, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Generate a video with a specific Pikaffect. Supported Pikaffects: Cake-ify, Crumble, Crush, Decapitate, Deflate, Dissolve, Explode, Eye-pop, Inflate, Levitate, Melt, Peel, Poke, Squish, Ta-da, Tear" - - async def api_call( - self, - image: torch.Tensor, - pikaffect: str, - prompt_text: str, - negative_prompt: str, - seed: int, - unique_id: str, - **kwargs, - ) -> tuple[VideoFromFile]: - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_PIKAFFECTS, - method=HttpMethod.POST, - request_model=PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - response_model=PikaGenerateResponse, - ), - request=PikaBodyGeneratePikaffectsGeneratePikaffectsPost( - pikaffect=pikaffect, - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - ), - files={"image": ("image.png", tensor_to_bytesio(image), "image/png")}, - content_type="multipart/form-data", - auth_kwargs=kwargs, - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -class PikaStartEndFrameNode2_2(PikaNodeBase): - """PikaFrames v2.2 Node.""" - - @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "image_start": (IO.IMAGE, {"tooltip": "The first image to combine."}), - "image_end": (IO.IMAGE, {"tooltip": "The last image to combine."}), - **cls.get_base_inputs_types( - PikaBodyGenerate22KeyframeGenerate22PikaframesPost - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - DESCRIPTION = "Generate a video by combining your first and last frame. Upload two images to define the start and end points, and let the AI create a smooth transition between them." - - async def api_call( - self, - image_start: torch.Tensor, - image_end: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - unique_id: str, - **kwargs, - ) -> tuple[VideoFromFile]: - - pika_files = [ - ("keyFrames", ("image_start.png", tensor_to_bytesio(image_start), "image/png")), - ("keyFrames", ("image_end.png", tensor_to_bytesio(image_end), "image/png")), - ] - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_PIKAFRAMES, - method=HttpMethod.POST, - request_model=PikaBodyGenerate22KeyframeGenerate22PikaframesPost, - response_model=PikaGenerateResponse, - ), - request=PikaBodyGenerate22KeyframeGenerate22PikaframesPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - ), - files=pika_files, - content_type="multipart/form-data", - auth_kwargs=kwargs, - ) - - return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id) - - -NODE_CLASS_MAPPINGS = { - "PikaImageToVideoNode2_2": PikaImageToVideoV2_2, - "PikaTextToVideoNode2_2": PikaTextToVideoNodeV2_2, - "PikaScenesV2_2": PikaScenesV2_2, - "Pikadditions": PikAdditionsNode, - "Pikaswaps": PikaSwapsNode, - "Pikaffects": PikaffectsNode, - "PikaStartEndFrameNode2_2": PikaStartEndFrameNode2_2, -} - -NODE_DISPLAY_NAME_MAPPINGS = { - "PikaImageToVideoNode2_2": "Pika Image to Video", - "PikaTextToVideoNode2_2": "Pika Text to Video", - "PikaScenesV2_2": "Pika Scenes (Video Image Composition)", - "Pikadditions": "Pikadditions (Video Object Insertion)", - "Pikaswaps": "Pika Swaps (Video Object Replacement)", - "Pikaffects": "Pikaffects (Video Effects)", - "PikaStartEndFrameNode2_2": "Pika Start and End Frame to Video", -} diff --git a/comfy_api_nodes/nodes_pixverse.py b/comfy_api_nodes/nodes_pixverse.py index eb98e9653..6e1686af0 100644 --- a/comfy_api_nodes/nodes_pixverse.py +++ b/comfy_api_nodes/nodes_pixverse.py @@ -1,7 +1,6 @@ -from inspect import cleandoc -from typing import Optional +import torch from typing_extensions import override -from io import BytesIO +from comfy_api.latest import IO, ComfyExtension from comfy_api_nodes.apis.pixverse_api import ( PixverseTextVideoRequest, PixverseImageVideoRequest, @@ -17,125 +16,91 @@ from comfy_api_nodes.apis.pixverse_api import ( PixverseIO, pixverse_templates, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( + download_url_to_video_output, + poll_op, + sync_op, tensor_to_bytesio, validate_string, ) -from comfy_api.input_impl import VideoFromFile -from comfy_api.latest import ComfyExtension, io as comfy_io - -import torch -import aiohttp - AVERAGE_DURATION_T2V = 32 AVERAGE_DURATION_I2V = 30 AVERAGE_DURATION_T2T = 52 -def get_video_url_from_response( - response: PixverseGenerationStatusResponse, -) -> Optional[str]: - if response.Resp is None or response.Resp.url is None: - return None - return str(response.Resp.url) - - -async def upload_image_to_pixverse(image: torch.Tensor, auth_kwargs=None): - # first, upload image to Pixverse and get image id to use in actual generation call - files = {"image": tensor_to_bytesio(image)} - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/pixverse/image/upload", - method=HttpMethod.POST, - request_model=EmptyRequest, - response_model=PixverseImageUploadResponse, - ), - request=EmptyRequest(), - files=files, +async def upload_image_to_pixverse(cls: type[IO.ComfyNode], image: torch.Tensor): + response_upload = await sync_op( + cls, + ApiEndpoint(path="/proxy/pixverse/image/upload", method="POST"), + response_model=PixverseImageUploadResponse, + files={"image": tensor_to_bytesio(image)}, content_type="multipart/form-data", - auth_kwargs=auth_kwargs, ) - response_upload: PixverseImageUploadResponse = await operation.execute() - if response_upload.Resp is None: - raise Exception( - f"PixVerse image upload request failed: '{response_upload.ErrMsg}'" - ) - + raise Exception(f"PixVerse image upload request failed: '{response_upload.ErrMsg}'") return response_upload.Resp.img_id -class PixverseTemplateNode(comfy_io.ComfyNode): +class PixverseTemplateNode(IO.ComfyNode): """ Select template for PixVerse Video generation. """ @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="PixverseTemplateNode", display_name="PixVerse Template", category="api node/video/PixVerse", inputs=[ - comfy_io.Combo.Input("template", options=[list(pixverse_templates.keys())]), + IO.Combo.Input("template", options=list(pixverse_templates.keys())), ], - outputs=[comfy_io.Custom(PixverseIO.TEMPLATE).Output(display_name="pixverse_template")], + outputs=[IO.Custom(PixverseIO.TEMPLATE).Output(display_name="pixverse_template")], ) @classmethod - def execute(cls, template: str) -> comfy_io.NodeOutput: + def execute(cls, template: str) -> IO.NodeOutput: template_id = pixverse_templates.get(template, None) if template_id is None: raise Exception(f"Template '{template}' is not recognized.") - # just return the integer - return comfy_io.NodeOutput(template_id) + return IO.NodeOutput(template_id) -class PixverseTextToVideoNode(comfy_io.ComfyNode): - """ - Generates videos based on prompt and output_size. - """ - +class PixverseTextToVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="PixverseTextToVideoNode", display_name="PixVerse Text to Video", category="api node/video/PixVerse", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos based on prompt and output_size.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[ratio.value for ratio in PixverseAspectRatio], + options=PixverseAspectRatio, ), - comfy_io.Combo.Input( + IO.Combo.Input( "quality", - options=[resolution.value for resolution in PixverseQuality], + options=PixverseQuality, default=PixverseQuality.res_540p, ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration_seconds", - options=[dur.value for dur in PixverseDuration], + options=PixverseDuration, ), - comfy_io.Combo.Input( + IO.Combo.Input( "motion_mode", - options=[mode.value for mode in PixverseMotionMode], + options=PixverseMotionMode, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -143,24 +108,24 @@ class PixverseTextToVideoNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="Seed for video generation.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", - force_input=True, + multiline=True, tooltip="An optional text description of undesired elements on an image.", optional=True, ), - comfy_io.Custom(PixverseIO.TEMPLATE).Input( + IO.Custom(PixverseIO.TEMPLATE).Input( "pixverse_template", tooltip="An optional template to influence style of generation, created by the PixVerse Template node.", optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -176,8 +141,8 @@ class PixverseTextToVideoNode(comfy_io.ComfyNode): seed, negative_prompt: str = None, pixverse_template: int = None, - ) -> comfy_io.NodeOutput: - validate_string(prompt, strip_whitespace=False) + ) -> IO.NodeOutput: + validate_string(prompt, strip_whitespace=False, min_length=1) # 1080p is limited to 5 seconds duration # only normal motion_mode supported for 1080p or for non-5 second duration if quality == PixverseQuality.res_1080p: @@ -186,18 +151,11 @@ class PixverseTextToVideoNode(comfy_io.ComfyNode): elif duration_seconds != PixverseDuration.dur_5: motion_mode = PixverseMotionMode.normal - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/pixverse/video/text/generate", - method=HttpMethod.POST, - request_model=PixverseTextVideoRequest, - response_model=PixverseVideoResponse, - ), - request=PixverseTextVideoRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/pixverse/video/text/generate", method="POST"), + response_model=PixverseVideoResponse, + data=PixverseTextVideoRequest( prompt=prompt, aspect_ratio=aspect_ratio, quality=quality, @@ -207,20 +165,14 @@ class PixverseTextToVideoNode(comfy_io.ComfyNode): template_id=pixverse_template, seed=seed, ), - auth_kwargs=auth, ) - response_api = await operation.execute() - if response_api.Resp is None: raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'") - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=PixverseGenerationStatusResponse, - ), + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"), + response_model=PixverseGenerationStatusResponse, completed_statuses=[PixverseStatus.successful], failed_statuses=[ PixverseStatus.contents_moderation, @@ -228,52 +180,41 @@ class PixverseTextToVideoNode(comfy_io.ComfyNode): PixverseStatus.deleted, ], status_extractor=lambda x: x.Resp.status, - auth_kwargs=auth, - node_id=cls.hidden.unique_id, - result_url_extractor=get_video_url_from_response, estimated_duration=AVERAGE_DURATION_T2V, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.Resp.url) as vid_response: - return comfy_io.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) + return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url)) -class PixverseImageToVideoNode(comfy_io.ComfyNode): - """ - Generates videos based on prompt and output_size. - """ - +class PixverseImageToVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="PixverseImageToVideoNode", display_name="PixVerse Image to Video", category="api node/video/PixVerse", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos based on prompt and output_size.", inputs=[ - comfy_io.Image.Input("image"), - comfy_io.String.Input( + IO.Image.Input("image"), + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "quality", - options=[resolution.value for resolution in PixverseQuality], + options=PixverseQuality, default=PixverseQuality.res_540p, ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration_seconds", - options=[dur.value for dur in PixverseDuration], + options=PixverseDuration, ), - comfy_io.Combo.Input( + IO.Combo.Input( "motion_mode", - options=[mode.value for mode in PixverseMotionMode], + options=PixverseMotionMode, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -281,24 +222,24 @@ class PixverseImageToVideoNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="Seed for video generation.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", - force_input=True, + multiline=True, tooltip="An optional text description of undesired elements on an image.", optional=True, ), - comfy_io.Custom(PixverseIO.TEMPLATE).Input( + IO.Custom(PixverseIO.TEMPLATE).Input( "pixverse_template", tooltip="An optional template to influence style of generation, created by the PixVerse Template node.", optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -314,13 +255,9 @@ class PixverseImageToVideoNode(comfy_io.ComfyNode): seed, negative_prompt: str = None, pixverse_template: int = None, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - img_id = await upload_image_to_pixverse(image, auth_kwargs=auth) + img_id = await upload_image_to_pixverse(cls, image) # 1080p is limited to 5 seconds duration # only normal motion_mode supported for 1080p or for non-5 second duration @@ -330,14 +267,11 @@ class PixverseImageToVideoNode(comfy_io.ComfyNode): elif duration_seconds != PixverseDuration.dur_5: motion_mode = PixverseMotionMode.normal - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/pixverse/video/img/generate", - method=HttpMethod.POST, - request_model=PixverseImageVideoRequest, - response_model=PixverseVideoResponse, - ), - request=PixverseImageVideoRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/pixverse/video/img/generate", method="POST"), + response_model=PixverseVideoResponse, + data=PixverseImageVideoRequest( img_id=img_id, prompt=prompt, quality=quality, @@ -347,20 +281,15 @@ class PixverseImageToVideoNode(comfy_io.ComfyNode): template_id=pixverse_template, seed=seed, ), - auth_kwargs=auth, ) - response_api = await operation.execute() if response_api.Resp is None: raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'") - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=PixverseGenerationStatusResponse, - ), + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"), + response_model=PixverseGenerationStatusResponse, completed_statuses=[PixverseStatus.successful], failed_statuses=[ PixverseStatus.contents_moderation, @@ -368,53 +297,42 @@ class PixverseImageToVideoNode(comfy_io.ComfyNode): PixverseStatus.deleted, ], status_extractor=lambda x: x.Resp.status, - auth_kwargs=auth, - node_id=cls.hidden.unique_id, - result_url_extractor=get_video_url_from_response, estimated_duration=AVERAGE_DURATION_I2V, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.Resp.url) as vid_response: - return comfy_io.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) + return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url)) -class PixverseTransitionVideoNode(comfy_io.ComfyNode): - """ - Generates videos based on prompt and output_size. - """ - +class PixverseTransitionVideoNode(IO.ComfyNode): @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="PixverseTransitionVideoNode", display_name="PixVerse Transition Video", category="api node/video/PixVerse", - description=cleandoc(cls.__doc__ or ""), + description="Generates videos based on prompt and output_size.", inputs=[ - comfy_io.Image.Input("first_frame"), - comfy_io.Image.Input("last_frame"), - comfy_io.String.Input( + IO.Image.Input("first_frame"), + IO.Image.Input("last_frame"), + IO.String.Input( "prompt", multiline=True, default="", tooltip="Prompt for the video generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "quality", - options=[resolution.value for resolution in PixverseQuality], + options=PixverseQuality, default=PixverseQuality.res_540p, ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration_seconds", - options=[dur.value for dur in PixverseDuration], + options=PixverseDuration, ), - comfy_io.Combo.Input( + IO.Combo.Input( "motion_mode", - options=[mode.value for mode in PixverseMotionMode], + options=PixverseMotionMode, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, @@ -422,19 +340,19 @@ class PixverseTransitionVideoNode(comfy_io.ComfyNode): control_after_generate=True, tooltip="Seed for video generation.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", - force_input=True, + multiline=True, tooltip="An optional text description of undesired elements on an image.", optional=True, ), ], - outputs=[comfy_io.Video.Output()], + outputs=[IO.Video.Output()], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -450,14 +368,10 @@ class PixverseTransitionVideoNode(comfy_io.ComfyNode): motion_mode: str, seed, negative_prompt: str = None, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - first_frame_id = await upload_image_to_pixverse(first_frame, auth_kwargs=auth) - last_frame_id = await upload_image_to_pixverse(last_frame, auth_kwargs=auth) + first_frame_id = await upload_image_to_pixverse(cls, first_frame) + last_frame_id = await upload_image_to_pixverse(cls, last_frame) # 1080p is limited to 5 seconds duration # only normal motion_mode supported for 1080p or for non-5 second duration @@ -467,14 +381,11 @@ class PixverseTransitionVideoNode(comfy_io.ComfyNode): elif duration_seconds != PixverseDuration.dur_5: motion_mode = PixverseMotionMode.normal - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/pixverse/video/transition/generate", - method=HttpMethod.POST, - request_model=PixverseTransitionVideoRequest, - response_model=PixverseVideoResponse, - ), - request=PixverseTransitionVideoRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/pixverse/video/transition/generate", method="POST"), + response_model=PixverseVideoResponse, + data=PixverseTransitionVideoRequest( first_frame_img=first_frame_id, last_frame_img=last_frame_id, prompt=prompt, @@ -484,20 +395,15 @@ class PixverseTransitionVideoNode(comfy_io.ComfyNode): negative_prompt=negative_prompt if negative_prompt else None, seed=seed, ), - auth_kwargs=auth, ) - response_api = await operation.execute() if response_api.Resp is None: raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'") - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=PixverseGenerationStatusResponse, - ), + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"), + response_model=PixverseGenerationStatusResponse, completed_statuses=[PixverseStatus.successful], failed_statuses=[ PixverseStatus.contents_moderation, @@ -505,21 +411,14 @@ class PixverseTransitionVideoNode(comfy_io.ComfyNode): PixverseStatus.deleted, ], status_extractor=lambda x: x.Resp.status, - auth_kwargs=auth, - node_id=cls.hidden.unique_id, - result_url_extractor=get_video_url_from_response, estimated_duration=AVERAGE_DURATION_T2V, ) - response_poll = await operation.execute() - - async with aiohttp.ClientSession() as session: - async with session.get(response_poll.Resp.url) as vid_response: - return comfy_io.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read()))) + return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url)) class PixVerseExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ PixverseTextToVideoNode, PixverseImageToVideoNode, diff --git a/comfy_api_nodes/nodes_recraft.py b/comfy_api_nodes/nodes_recraft.py index a006104b7..e3440b946 100644 --- a/comfy_api_nodes/nodes_recraft.py +++ b/comfy_api_nodes/nodes_recraft.py @@ -1,91 +1,83 @@ -from __future__ import annotations -from inspect import cleandoc -from typing import Optional +from io import BytesIO +from typing import Optional, Union + +import aiohttp +import torch +from PIL import UnidentifiedImageError +from typing_extensions import override + from comfy.utils import ProgressBar -from comfy_extras.nodes_images import SVG # Added -from comfy.comfy_types.node_typing import IO +from comfy_api.latest import IO, ComfyExtension from comfy_api_nodes.apis.recraft_api import ( - RecraftImageGenerationRequest, - RecraftImageGenerationResponse, - RecraftImageSize, - RecraftModel, - RecraftStyle, - RecraftStyleV3, RecraftColor, RecraftColorChain, RecraftControls, + RecraftImageGenerationRequest, + RecraftImageGenerationResponse, + RecraftImageSize, RecraftIO, + RecraftModel, + RecraftStyle, + RecraftStyleV3, get_v3_substyles, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( bytesio_to_image_tensor, - download_url_to_bytesio, - tensor_to_bytesio, + download_url_as_bytesio, resize_mask_to_image, + sync_op, + tensor_to_bytesio, validate_string, ) -from server import PromptServer - -import torch -from io import BytesIO -from PIL import UnidentifiedImageError +from comfy_extras.nodes_images import SVG async def handle_recraft_file_request( + cls: type[IO.ComfyNode], image: torch.Tensor, path: str, - mask: torch.Tensor=None, - total_pixels=4096*4096, - timeout=1024, + mask: Optional[torch.Tensor] = None, + total_pixels: int = 4096 * 4096, + timeout: int = 1024, request=None, - auth_kwargs: dict[str,str] = None, ) -> list[BytesIO]: - """ - Handle sending common Recraft file-only request to get back file bytes. - """ - if request is None: - request = EmptyRequest() + """Handle sending common Recraft file-only request to get back file bytes.""" - files = { - 'image': tensor_to_bytesio(image, total_pixels=total_pixels).read() - } + files = {"image": tensor_to_bytesio(image, total_pixels=total_pixels).read()} if mask is not None: - files['mask'] = tensor_to_bytesio(mask, total_pixels=total_pixels).read() + files["mask"] = tensor_to_bytesio(mask, total_pixels=total_pixels).read() - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=path, - method=HttpMethod.POST, - request_model=type(request), - response_model=RecraftImageGenerationResponse, - ), - request=request, + response = await sync_op( + cls, + endpoint=ApiEndpoint(path=path, method="POST"), + response_model=RecraftImageGenerationResponse, + data=request if request else None, files=files, content_type="multipart/form-data", - auth_kwargs=auth_kwargs, multipart_parser=recraft_multipart_parser, + max_retries=1, ) - response: RecraftImageGenerationResponse = await operation.execute() all_bytesio = [] if response.image is not None: - all_bytesio.append(await download_url_to_bytesio(response.image.url, timeout=timeout)) + all_bytesio.append(await download_url_as_bytesio(response.image.url, timeout=timeout)) else: for data in response.data: - all_bytesio.append(await download_url_to_bytesio(data.url, timeout=timeout)) + all_bytesio.append(await download_url_as_bytesio(data.url, timeout=timeout)) return all_bytesio -def recraft_multipart_parser(data, parent_key=None, formatter: callable=None, converted_to_check: list[list]=None, is_list=False) -> dict: +def recraft_multipart_parser( + data, + parent_key=None, + formatter: Optional[type[callable]] = None, + converted_to_check: Optional[list[list]] = None, + is_list: bool = False, + return_mode: str = "formdata", # "dict" | "formdata" +) -> Union[dict, aiohttp.FormData]: """ - Formats data such that multipart/form-data will work with requests library - when both files and data are present. + Formats data such that multipart/form-data will work with aiohttp library when both files and data are present. The OpenAI client that Recraft uses has a bizarre way of serializing lists: @@ -103,24 +95,24 @@ def recraft_multipart_parser(data, parent_key=None, formatter: callable=None, co # Modification of a function that handled a different type of multipart parsing, big ups: # https://gist.github.com/kazqvaizer/4cebebe5db654a414132809f9f88067b - def handle_converted_lists(data, parent_key, lists_to_check=tuple[list]): - # if list already exists exists, just extend list with data + def handle_converted_lists(item, parent_key, lists_to_check=list[list]): + # if list already exists, just extend list with data for check_list in lists_to_check: for conv_tuple in check_list: - if conv_tuple[0] == parent_key and type(conv_tuple[1]) is list: - conv_tuple[1].append(formatter(data)) + if conv_tuple[0] == parent_key and isinstance(conv_tuple[1], list): + conv_tuple[1].append(formatter(item)) return True return False if converted_to_check is None: converted_to_check = [] - + effective_mode = return_mode if parent_key is None else "dict" if formatter is None: formatter = lambda v: v # Multipart representation of value - if type(data) is not dict: - # if list already exists exists, just extend list with data + if not isinstance(data, dict): + # if list already exists, just extend list with data added = handle_converted_lists(data, parent_key, converted_to_check) if added: return {} @@ -136,15 +128,26 @@ def recraft_multipart_parser(data, parent_key=None, formatter: callable=None, co for key, value in data.items(): current_key = key if parent_key is None else f"{parent_key}[{key}]" - if type(value) is dict: + if isinstance(value, dict): converted.extend(recraft_multipart_parser(value, current_key, formatter, next_check).items()) - elif type(value) is list: + elif isinstance(value, list): for ind, list_value in enumerate(value): iter_key = f"{current_key}[]" - converted.extend(recraft_multipart_parser(list_value, iter_key, formatter, next_check, is_list=True).items()) + converted.extend( + recraft_multipart_parser(list_value, iter_key, formatter, next_check, is_list=True).items() + ) else: converted.append((current_key, formatter(value))) + if effective_mode == "formdata": + fd = aiohttp.FormData() + for k, v in dict(converted).items(): + if isinstance(v, list): + for item in v: + fd.add_field(k, str(item)) + else: + fd.add_field(k, str(v)) + return fd return dict(converted) @@ -152,6 +155,7 @@ class handle_recraft_image_output: """ Catch an exception related to receiving SVG data instead of image, when Infinite Style Library style_id is in use. """ + def __init__(self): pass @@ -160,243 +164,225 @@ class handle_recraft_image_output: def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None and exc_type is UnidentifiedImageError: - raise Exception("Received output data was not an image; likely an SVG. If you used style_id, make sure it is not a Vector art style.") + raise Exception( + "Received output data was not an image; likely an SVG. " + "If you used style_id, make sure it is not a Vector art style." + ) -class RecraftColorRGBNode: - """ - Create Recraft Color by choosing specific RGB values. - """ - - RETURN_TYPES = (RecraftIO.COLOR,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - RETURN_NAMES = ("recraft_color",) - FUNCTION = "create_color" - CATEGORY = "api node/image/Recraft" +class RecraftColorRGBNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftColorRGB", + display_name="Recraft Color RGB", + category="api node/image/Recraft", + description="Create Recraft Color by choosing specific RGB values.", + inputs=[ + IO.Int.Input("r", default=0, min=0, max=255, tooltip="Red value of color."), + IO.Int.Input("g", default=0, min=0, max=255, tooltip="Green value of color."), + IO.Int.Input("b", default=0, min=0, max=255, tooltip="Blue value of color."), + IO.Custom(RecraftIO.COLOR).Input("recraft_color", optional=True), + ], + outputs=[ + IO.Custom(RecraftIO.COLOR).Output(display_name="recraft_color"), + ], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "r": (IO.INT, { - "default": 0, - "min": 0, - "max": 255, - "tooltip": "Red value of color." - }), - "g": (IO.INT, { - "default": 0, - "min": 0, - "max": 255, - "tooltip": "Green value of color." - }), - "b": (IO.INT, { - "default": 0, - "min": 0, - "max": 255, - "tooltip": "Blue value of color." - }), - }, - "optional": { - "recraft_color": (RecraftIO.COLOR,), - } - } - - def create_color(self, r: int, g: int, b: int, recraft_color: RecraftColorChain=None): + def execute(cls, r: int, g: int, b: int, recraft_color: RecraftColorChain = None) -> IO.NodeOutput: recraft_color = recraft_color.clone() if recraft_color else RecraftColorChain() recraft_color.add(RecraftColor(r, g, b)) - return (recraft_color, ) + return IO.NodeOutput(recraft_color) -class RecraftControlsNode: - """ - Create Recraft Controls for customizing Recraft generation. - """ - - RETURN_TYPES = (RecraftIO.CONTROLS,) - RETURN_NAMES = ("recraft_controls",) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "create_controls" - CATEGORY = "api node/image/Recraft" +class RecraftControlsNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftControls", + display_name="Recraft Controls", + category="api node/image/Recraft", + description="Create Recraft Controls for customizing Recraft generation.", + inputs=[ + IO.Custom(RecraftIO.COLOR).Input("colors", optional=True), + IO.Custom(RecraftIO.COLOR).Input("background_color", optional=True), + ], + outputs=[ + IO.Custom(RecraftIO.CONTROLS).Output(display_name="recraft_controls"), + ], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - }, - "optional": { - "colors": (RecraftIO.COLOR,), - "background_color": (RecraftIO.COLOR,), - } - } - - def create_controls(self, colors: RecraftColorChain=None, background_color: RecraftColorChain=None): - return (RecraftControls(colors=colors, background_color=background_color), ) + def execute(cls, colors: RecraftColorChain = None, background_color: RecraftColorChain = None) -> IO.NodeOutput: + return IO.NodeOutput(RecraftControls(colors=colors, background_color=background_color)) -class RecraftStyleV3RealisticImageNode: - """ - Select realistic_image style and optional substyle. - """ - - RETURN_TYPES = (RecraftIO.STYLEV3,) - RETURN_NAMES = ("recraft_style",) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "create_style" - CATEGORY = "api node/image/Recraft" - +class RecraftStyleV3RealisticImageNode(IO.ComfyNode): RECRAFT_STYLE = RecraftStyleV3.realistic_image @classmethod - def INPUT_TYPES(s): - return { - "required": { - "substyle": (get_v3_substyles(s.RECRAFT_STYLE),), - } - } + def define_schema(cls): + return IO.Schema( + node_id="RecraftStyleV3RealisticImage", + display_name="Recraft Style - Realistic Image", + category="api node/image/Recraft", + description="Select realistic_image style and optional substyle.", + inputs=[ + IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE)), + ], + outputs=[ + IO.Custom(RecraftIO.STYLEV3).Output(display_name="recraft_style"), + ], + ) - def create_style(self, substyle: str): + @classmethod + def execute(cls, substyle: str) -> IO.NodeOutput: if substyle == "None": substyle = None - return (RecraftStyle(self.RECRAFT_STYLE, substyle),) + return IO.NodeOutput(RecraftStyle(cls.RECRAFT_STYLE, substyle)) class RecraftStyleV3DigitalIllustrationNode(RecraftStyleV3RealisticImageNode): - """ - Select digital_illustration style and optional substyle. - """ - RECRAFT_STYLE = RecraftStyleV3.digital_illustration + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftStyleV3DigitalIllustration", + display_name="Recraft Style - Digital Illustration", + category="api node/image/Recraft", + description="Select realistic_image style and optional substyle.", + inputs=[ + IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE)), + ], + outputs=[ + IO.Custom(RecraftIO.STYLEV3).Output(display_name="recraft_style"), + ], + ) + class RecraftStyleV3VectorIllustrationNode(RecraftStyleV3RealisticImageNode): - """ - Select vector_illustration style and optional substyle. - """ - RECRAFT_STYLE = RecraftStyleV3.vector_illustration + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftStyleV3VectorIllustrationNode", + display_name="Recraft Style - Realistic Image", + category="api node/image/Recraft", + description="Select realistic_image style and optional substyle.", + inputs=[ + IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE)), + ], + outputs=[ + IO.Custom(RecraftIO.STYLEV3).Output(display_name="recraft_style"), + ], + ) + class RecraftStyleV3LogoRasterNode(RecraftStyleV3RealisticImageNode): - """ - Select vector_illustration style and optional substyle. - """ - - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "substyle": (get_v3_substyles(s.RECRAFT_STYLE, include_none=False),), - } - } - RECRAFT_STYLE = RecraftStyleV3.logo_raster + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftStyleV3LogoRaster", + display_name="Recraft Style - Logo Raster", + category="api node/image/Recraft", + description="Select realistic_image style and optional substyle.", + inputs=[ + IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE, include_none=False)), + ], + outputs=[ + IO.Custom(RecraftIO.STYLEV3).Output(display_name="recraft_style"), + ], + ) -class RecraftStyleInfiniteStyleLibrary: - """ - Select style based on preexisting UUID from Recraft's Infinite Style Library. - """ - RETURN_TYPES = (RecraftIO.STYLEV3,) - RETURN_NAMES = ("recraft_style",) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "create_style" - CATEGORY = "api node/image/Recraft" +class RecraftStyleInfiniteStyleLibrary(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftStyleV3InfiniteStyleLibrary", + display_name="Recraft Style - Infinite Style Library", + category="api node/image/Recraft", + description="Select style based on preexisting UUID from Recraft's Infinite Style Library.", + inputs=[ + IO.String.Input("style_id", default="", tooltip="UUID of style from Infinite Style Library."), + ], + outputs=[ + IO.Custom(RecraftIO.STYLEV3).Output(display_name="recraft_style"), + ], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "style_id": (IO.STRING, { - "default": "", - "tooltip": "UUID of style from Infinite Style Library.", - }) - } - } - - def create_style(self, style_id: str): + def execute(cls, style_id: str) -> IO.NodeOutput: if not style_id: raise Exception("The style_id input cannot be empty.") - return (RecraftStyle(style_id=style_id),) + return IO.NodeOutput(RecraftStyle(style_id=style_id)) -class RecraftTextToImageNode: - """ - Generates images synchronously based on prompt and resolution. - """ - - RETURN_TYPES = (IO.IMAGE,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftTextToImageNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftTextToImageNode", + display_name="Recraft Text to Image", + category="api node/image/Recraft", + description="Generates images synchronously based on prompt and resolution.", + inputs=[ + IO.String.Input("prompt", multiline=True, default="", tooltip="Prompt for the image generation."), + IO.Combo.Input( + "size", + options=[res.value for res in RecraftImageSize], + default=RecraftImageSize.res_1024x1024, + tooltip="The size of the generated image.", + ), + IO.Int.Input( + "n", + default=1, + min=1, + max=6, + tooltip="The number of images to generate.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="Seed to determine if node should re-run; " + "actual results are nondeterministic regardless of seed.", + ), + IO.Custom(RecraftIO.STYLEV3).Input("recraft_style", optional=True), + IO.String.Input( + "negative_prompt", + default="", + force_input=True, + tooltip="An optional text description of undesired elements on an image.", + optional=True, + ), + IO.Custom(RecraftIO.CONTROLS).Input( + "recraft_controls", + tooltip="Optional additional controls over the generation via the Recraft Controls node.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Prompt for the image generation.", - }, - ), - "size": ( - [res.value for res in RecraftImageSize], - { - "default": RecraftImageSize.res_1024x1024, - "tooltip": "The size of the generated image.", - }, - ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 6, - "tooltip": "The number of images to generate.", - }, - ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", - }, - ), - }, - "optional": { - "recraft_style": (RecraftIO.STYLEV3,), - "negative_prompt": ( - IO.STRING, - { - "default": "", - "forceInput": True, - "tooltip": "An optional text description of undesired elements on an image.", - }, - ), - "recraft_controls": ( - RecraftIO.CONTROLS, - { - "tooltip": "Optional additional controls over the generation via the Recraft Controls node." - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - async def api_call( - self, + async def execute( + cls, prompt: str, size: str, n: int, @@ -404,9 +390,7 @@ class RecraftTextToImageNode: recraft_style: RecraftStyle = None, negative_prompt: str = None, recraft_controls: RecraftControls = None, - unique_id: Optional[str] = None, - **kwargs, - ): + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False, max_length=1000) default_style = RecraftStyle(RecraftStyleV3.realistic_image) if recraft_style is None: @@ -419,14 +403,11 @@ class RecraftTextToImageNode: if not negative_prompt: negative_prompt = None - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/recraft/image_generation", - method=HttpMethod.POST, - request_model=RecraftImageGenerationRequest, - response_model=RecraftImageGenerationResponse, - ), - request=RecraftImageGenerationRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/recraft/image_generation", method="POST"), + response_model=RecraftImageGenerationResponse, + data=RecraftImageGenerationRequest( prompt=prompt, negative_prompt=negative_prompt, model=RecraftModel.recraftv3, @@ -437,109 +418,83 @@ class RecraftTextToImageNode: style_id=recraft_style.style_id, controls=controls_api, ), - auth_kwargs=kwargs, + max_retries=1, ) - response: RecraftImageGenerationResponse = await operation.execute() images = [] - urls = [] for data in response.data: with handle_recraft_image_output(): - if unique_id and data.url: - urls.append(data.url) - urls_string = '\n'.join(urls) - PromptServer.instance.send_progress_text( - f"Result URL: {urls_string}", unique_id - ) - image = bytesio_to_image_tensor( - await download_url_to_bytesio(data.url, timeout=1024) - ) + image = bytesio_to_image_tensor(await download_url_as_bytesio(data.url, timeout=1024)) if len(image.shape) < 4: image = image.unsqueeze(0) images.append(image) - output_image = torch.cat(images, dim=0) - return (output_image,) + return IO.NodeOutput(torch.cat(images, dim=0)) -class RecraftImageToImageNode: - """ - Modify image based on prompt and strength. - """ - - RETURN_TYPES = (IO.IMAGE,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftImageToImageNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftImageToImageNode", + display_name="Recraft Image to Image", + category="api node/image/Recraft", + description="Modify image based on prompt and strength.", + inputs=[ + IO.Image.Input("image"), + IO.String.Input("prompt", multiline=True, default="", tooltip="Prompt for the image generation."), + IO.Int.Input( + "n", + default=1, + min=1, + max=6, + tooltip="The number of images to generate.", + ), + IO.Float.Input( + "strength", + default=0.5, + min=0.0, + max=1.0, + step=0.01, + tooltip="Defines the difference with the original image, should lie in [0, 1], " + "where 0 means almost identical, and 1 means miserable similarity.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="Seed to determine if node should re-run; " + "actual results are nondeterministic regardless of seed.", + ), + IO.Custom(RecraftIO.STYLEV3).Input("recraft_style", optional=True), + IO.String.Input( + "negative_prompt", + default="", + force_input=True, + tooltip="An optional text description of undesired elements on an image.", + optional=True, + ), + IO.Custom(RecraftIO.CONTROLS).Input( + "recraft_controls", + tooltip="Optional additional controls over the generation via the Recraft Controls node.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE, ), - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Prompt for the image generation.", - }, - ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 6, - "tooltip": "The number of images to generate.", - }, - ), - "strength": ( - IO.FLOAT, - { - "default": 0.5, - "min": 0.0, - "max": 1.0, - "step": 0.01, - "tooltip": "Defines the difference with the original image, should lie in [0, 1], where 0 means almost identical, and 1 means miserable similarity." - } - ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", - }, - ), - }, - "optional": { - "recraft_style": (RecraftIO.STYLEV3,), - "negative_prompt": ( - IO.STRING, - { - "default": "", - "forceInput": True, - "tooltip": "An optional text description of undesired elements on an image.", - }, - ), - "recraft_controls": ( - RecraftIO.CONTROLS, - { - "tooltip": "Optional additional controls over the generation via the Recraft Controls node." - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - }, - } - - async def api_call( - self, + async def execute( + cls, image: torch.Tensor, prompt: str, n: int, @@ -548,8 +503,7 @@ class RecraftImageToImageNode: recraft_style: RecraftStyle = None, negative_prompt: str = None, recraft_controls: RecraftControls = None, - **kwargs, - ): + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False, max_length=1000) default_style = RecraftStyle(RecraftStyleV3.realistic_image) if recraft_style is None: @@ -579,83 +533,69 @@ class RecraftImageToImageNode: pbar = ProgressBar(total) for i in range(total): sub_bytes = await handle_recraft_file_request( + cls, image=image[i], path="/proxy/recraft/images/imageToImage", request=request, - auth_kwargs=kwargs, ) with handle_recraft_image_output(): images.append(torch.cat([bytesio_to_image_tensor(x) for x in sub_bytes], dim=0)) pbar.update(1) - images_tensor = torch.cat(images, dim=0) - return (images_tensor, ) + return IO.NodeOutput(torch.cat(images, dim=0)) -class RecraftImageInpaintingNode: - """ - Modify image based on prompt and mask. - """ - - RETURN_TYPES = (IO.IMAGE,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftImageInpaintingNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftImageInpaintingNode", + display_name="Recraft Image Inpainting", + category="api node/image/Recraft", + description="Modify image based on prompt and mask.", + inputs=[ + IO.Image.Input("image"), + IO.Mask.Input("mask"), + IO.String.Input("prompt", multiline=True, default="", tooltip="Prompt for the image generation."), + IO.Int.Input( + "n", + default=1, + min=1, + max=6, + tooltip="The number of images to generate.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="Seed to determine if node should re-run; " + "actual results are nondeterministic regardless of seed.", + ), + IO.Custom(RecraftIO.STYLEV3).Input("recraft_style", optional=True), + IO.String.Input( + "negative_prompt", + default="", + force_input=True, + tooltip="An optional text description of undesired elements on an image.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE, ), - "mask": (IO.MASK, ), - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Prompt for the image generation.", - }, - ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 6, - "tooltip": "The number of images to generate.", - }, - ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", - }, - ), - }, - "optional": { - "recraft_style": (RecraftIO.STYLEV3,), - "negative_prompt": ( - IO.STRING, - { - "default": "", - "forceInput": True, - "tooltip": "An optional text description of undesired elements on an image.", - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - }, - } - - async def api_call( - self, + async def execute( + cls, image: torch.Tensor, mask: torch.Tensor, prompt: str, @@ -663,8 +603,7 @@ class RecraftImageInpaintingNode: seed, recraft_style: RecraftStyle = None, negative_prompt: str = None, - **kwargs, - ): + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False, max_length=1000) default_style = RecraftStyle(RecraftStyleV3.realistic_image) if recraft_style is None: @@ -691,96 +630,73 @@ class RecraftImageInpaintingNode: pbar = ProgressBar(total) for i in range(total): sub_bytes = await handle_recraft_file_request( + cls, image=image[i], - mask=mask[i:i+1], + mask=mask[i : i + 1], path="/proxy/recraft/images/inpaint", request=request, - auth_kwargs=kwargs, ) with handle_recraft_image_output(): images.append(torch.cat([bytesio_to_image_tensor(x) for x in sub_bytes], dim=0)) pbar.update(1) - images_tensor = torch.cat(images, dim=0) - return (images_tensor, ) + return IO.NodeOutput(torch.cat(images, dim=0)) -class RecraftTextToVectorNode: - """ - Generates SVG synchronously based on prompt and resolution. - """ - - RETURN_TYPES = ("SVG",) # Changed - DESCRIPTION = cleandoc(__doc__ or "") if 'cleandoc' in globals() else __doc__ # Keep cleandoc if other nodes use it - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftTextToVectorNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftTextToVectorNode", + display_name="Recraft Text to Vector", + category="api node/image/Recraft", + description="Generates SVG synchronously based on prompt and resolution.", + inputs=[ + IO.String.Input("prompt", default="", tooltip="Prompt for the image generation.", multiline=True), + IO.Combo.Input("substyle", options=get_v3_substyles(RecraftStyleV3.vector_illustration)), + IO.Combo.Input( + "size", + options=[res.value for res in RecraftImageSize], + default=RecraftImageSize.res_1024x1024, + tooltip="The size of the generated image.", + ), + IO.Int.Input("n", default=1, min=1, max=6, tooltip="The number of images to generate."), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="Seed to determine if node should re-run; " + "actual results are nondeterministic regardless of seed.", + ), + IO.String.Input( + "negative_prompt", + default="", + force_input=True, + tooltip="An optional text description of undesired elements on an image.", + optional=True, + ), + IO.Custom(RecraftIO.CONTROLS).Input( + "recraft_controls", + tooltip="Optional additional controls over the generation via the Recraft Controls node.", + optional=True, + ), + ], + outputs=[ + IO.SVG.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Prompt for the image generation.", - }, - ), - "substyle": (get_v3_substyles(RecraftStyleV3.vector_illustration),), - "size": ( - [res.value for res in RecraftImageSize], - { - "default": RecraftImageSize.res_1024x1024, - "tooltip": "The size of the generated image.", - }, - ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 6, - "tooltip": "The number of images to generate.", - }, - ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", - }, - ), - }, - "optional": { - "negative_prompt": ( - IO.STRING, - { - "default": "", - "forceInput": True, - "tooltip": "An optional text description of undesired elements on an image.", - }, - ), - "recraft_controls": ( - RecraftIO.CONTROLS, - { - "tooltip": "Optional additional controls over the generation via the Recraft Controls node." - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - async def api_call( - self, + async def execute( + cls, prompt: str, substyle: str, size: str, @@ -788,9 +704,7 @@ class RecraftTextToVectorNode: seed, negative_prompt: str = None, recraft_controls: RecraftControls = None, - unique_id: Optional[str] = None, - **kwargs, - ): + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False, max_length=1000) # create RecraftStyle so strings will be formatted properly (i.e. "None" will become None) recraft_style = RecraftStyle(RecraftStyleV3.vector_illustration, substyle=substyle) @@ -802,14 +716,11 @@ class RecraftTextToVectorNode: if not negative_prompt: negative_prompt = None - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/recraft/image_generation", - method=HttpMethod.POST, - request_model=RecraftImageGenerationRequest, - response_model=RecraftImageGenerationResponse, - ), - request=RecraftImageGenerationRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/recraft/image_generation", method="POST"), + response_model=RecraftImageGenerationResponse, + data=RecraftImageGenerationRequest( prompt=prompt, negative_prompt=negative_prompt, model=RecraftModel.recraftv3, @@ -819,139 +730,105 @@ class RecraftTextToVectorNode: substyle=recraft_style.substyle, controls=controls_api, ), - auth_kwargs=kwargs, + max_retries=1, ) - response: RecraftImageGenerationResponse = await operation.execute() svg_data = [] - urls = [] for data in response.data: - if unique_id and data.url: - urls.append(data.url) - # Print result on each iteration in case of error - PromptServer.instance.send_progress_text( - f"Result URL: {' '.join(urls)}", unique_id - ) - svg_data.append(await download_url_to_bytesio(data.url, timeout=1024)) + svg_data.append(await download_url_as_bytesio(data.url, timeout=1024)) - return (SVG(svg_data),) + return IO.NodeOutput(SVG(svg_data)) -class RecraftVectorizeImageNode: - """ - Generates SVG synchronously from an input image. - """ - - RETURN_TYPES = ("SVG",) # Changed - DESCRIPTION = cleandoc(__doc__ or "") if 'cleandoc' in globals() else __doc__ # Keep cleandoc if other nodes use it - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftVectorizeImageNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftVectorizeImageNode", + display_name="Recraft Vectorize Image", + category="api node/image/Recraft", + description="Generates SVG synchronously from an input image.", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.SVG.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE, ), - }, - "optional": { - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - }, - } - - async def api_call( - self, - image: torch.Tensor, - **kwargs, - ): + async def execute(cls, image: torch.Tensor) -> IO.NodeOutput: svgs = [] total = image.shape[0] pbar = ProgressBar(total) for i in range(total): sub_bytes = await handle_recraft_file_request( + cls, image=image[i], path="/proxy/recraft/images/vectorize", - auth_kwargs=kwargs, ) svgs.append(SVG(sub_bytes)) pbar.update(1) - return (SVG.combine_all(svgs), ) + return IO.NodeOutput(SVG.combine_all(svgs)) -class RecraftReplaceBackgroundNode: - """ - Replace background on image, based on provided prompt. - """ - - RETURN_TYPES = (IO.IMAGE,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftReplaceBackgroundNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftReplaceBackgroundNode", + display_name="Recraft Replace Background", + category="api node/image/Recraft", + description="Replace background on image, based on provided prompt.", + inputs=[ + IO.Image.Input("image"), + IO.String.Input("prompt", tooltip="Prompt for the image generation.", default="", multiline=True), + IO.Int.Input("n", default=1, min=1, max=6, tooltip="The number of images to generate."), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="Seed to determine if node should re-run; " + "actual results are nondeterministic regardless of seed.", + ), + IO.Custom(RecraftIO.STYLEV3).Input("recraft_style", optional=True), + IO.String.Input( + "negative_prompt", + default="", + force_input=True, + tooltip="An optional text description of undesired elements on an image.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE, ), - "prompt": ( - IO.STRING, - { - "multiline": True, - "default": "", - "tooltip": "Prompt for the image generation.", - }, - ), - "n": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 6, - "tooltip": "The number of images to generate.", - }, - ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "control_after_generate": True, - "tooltip": "Seed to determine if node should re-run; actual results are nondeterministic regardless of seed.", - }, - ), - }, - "optional": { - "recraft_style": (RecraftIO.STYLEV3,), - "negative_prompt": ( - IO.STRING, - { - "default": "", - "forceInput": True, - "tooltip": "An optional text description of undesired elements on an image.", - }, - ), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - }, - } - - async def api_call( - self, + async def execute( + cls, image: torch.Tensor, prompt: str, n: int, seed, recraft_style: RecraftStyle = None, negative_prompt: str = None, - **kwargs, - ): + ) -> IO.NodeOutput: default_style = RecraftStyle(RecraftStyleV3.realistic_image) if recraft_style is None: recraft_style = default_style @@ -974,165 +851,151 @@ class RecraftReplaceBackgroundNode: pbar = ProgressBar(total) for i in range(total): sub_bytes = await handle_recraft_file_request( + cls, image=image[i], path="/proxy/recraft/images/replaceBackground", request=request, - auth_kwargs=kwargs, ) images.append(torch.cat([bytesio_to_image_tensor(x) for x in sub_bytes], dim=0)) pbar.update(1) - images_tensor = torch.cat(images, dim=0) - return (images_tensor, ) + return IO.NodeOutput(torch.cat(images, dim=0)) -class RecraftRemoveBackgroundNode: - """ - Remove background from image, and return processed image and mask. - """ - - RETURN_TYPES = (IO.IMAGE, IO.MASK) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" +class RecraftRemoveBackgroundNode(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftRemoveBackgroundNode", + display_name="Recraft Remove Background", + category="api node/image/Recraft", + description="Remove background from image, and return processed image and mask.", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.Image.Output(), + IO.Mask.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE, ), - }, - "optional": { - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - }, - } - - async def api_call( - self, - image: torch.Tensor, - **kwargs, - ): + async def execute(cls, image: torch.Tensor) -> IO.NodeOutput: images = [] total = image.shape[0] pbar = ProgressBar(total) for i in range(total): sub_bytes = await handle_recraft_file_request( + cls, image=image[i], path="/proxy/recraft/images/removeBackground", - auth_kwargs=kwargs, ) images.append(torch.cat([bytesio_to_image_tensor(x) for x in sub_bytes], dim=0)) pbar.update(1) images_tensor = torch.cat(images, dim=0) # use alpha channel as masks, in B,H,W format - masks_tensor = images_tensor[:,:,:,-1:].squeeze(-1) - return (images_tensor, masks_tensor) + masks_tensor = images_tensor[:, :, :, -1:].squeeze(-1) + return IO.NodeOutput(images_tensor, masks_tensor) -class RecraftCrispUpscaleNode: - """ - Upscale image synchronously. - Enhances a given raster image using ‘crisp upscale’ tool, increasing image resolution, making the image sharper and cleaner. - """ - - RETURN_TYPES = (IO.IMAGE,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" - +class RecraftCrispUpscaleNode(IO.ComfyNode): RECRAFT_PATH = "/proxy/recraft/images/crispUpscale" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE, ), - }, - "optional": { - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="RecraftCrispUpscaleNode", + display_name="Recraft Crisp Upscale Image", + category="api node/image/Recraft", + description="Upscale image synchronously.\n" + "Enhances a given raster image using ‘crisp upscale’ tool, " + "increasing image resolution, making the image sharper and cleaner.", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) - async def api_call( - self, - image: torch.Tensor, - **kwargs, - ): + @classmethod + async def execute(cls, image: torch.Tensor) -> IO.NodeOutput: images = [] total = image.shape[0] pbar = ProgressBar(total) for i in range(total): sub_bytes = await handle_recraft_file_request( + cls, image=image[i], - path=self.RECRAFT_PATH, - auth_kwargs=kwargs, + path=cls.RECRAFT_PATH, ) images.append(torch.cat([bytesio_to_image_tensor(x) for x in sub_bytes], dim=0)) pbar.update(1) - images_tensor = torch.cat(images, dim=0) - return (images_tensor,) + return IO.NodeOutput(torch.cat(images, dim=0)) class RecraftCreativeUpscaleNode(RecraftCrispUpscaleNode): - """ - Upscale image synchronously. - Enhances a given raster image using ‘creative upscale’ tool, boosting resolution with a focus on refining small details and faces. - """ - - RETURN_TYPES = (IO.IMAGE,) - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "api_call" - API_NODE = True - CATEGORY = "api node/image/Recraft" - RECRAFT_PATH = "/proxy/recraft/images/creativeUpscale" + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="RecraftCreativeUpscaleNode", + display_name="Recraft Creative Upscale Image", + category="api node/image/Recraft", + description="Upscale image synchronously.\n" + "Enhances a given raster image using ‘creative upscale’ tool, " + "boosting resolution with a focus on refining small details and faces.", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) -# A dictionary that contains all nodes you want to export with their names -# NOTE: names should be globally unique -NODE_CLASS_MAPPINGS = { - "RecraftTextToImageNode": RecraftTextToImageNode, - "RecraftImageToImageNode": RecraftImageToImageNode, - "RecraftImageInpaintingNode": RecraftImageInpaintingNode, - "RecraftTextToVectorNode": RecraftTextToVectorNode, - "RecraftVectorizeImageNode": RecraftVectorizeImageNode, - "RecraftRemoveBackgroundNode": RecraftRemoveBackgroundNode, - "RecraftReplaceBackgroundNode": RecraftReplaceBackgroundNode, - "RecraftCrispUpscaleNode": RecraftCrispUpscaleNode, - "RecraftCreativeUpscaleNode": RecraftCreativeUpscaleNode, - "RecraftStyleV3RealisticImage": RecraftStyleV3RealisticImageNode, - "RecraftStyleV3DigitalIllustration": RecraftStyleV3DigitalIllustrationNode, - "RecraftStyleV3LogoRaster": RecraftStyleV3LogoRasterNode, - "RecraftStyleV3InfiniteStyleLibrary": RecraftStyleInfiniteStyleLibrary, - "RecraftColorRGB": RecraftColorRGBNode, - "RecraftControls": RecraftControlsNode, -} -# A dictionary that contains the friendly/humanly readable titles for the nodes -NODE_DISPLAY_NAME_MAPPINGS = { - "RecraftTextToImageNode": "Recraft Text to Image", - "RecraftImageToImageNode": "Recraft Image to Image", - "RecraftImageInpaintingNode": "Recraft Image Inpainting", - "RecraftTextToVectorNode": "Recraft Text to Vector", - "RecraftVectorizeImageNode": "Recraft Vectorize Image", - "RecraftRemoveBackgroundNode": "Recraft Remove Background", - "RecraftReplaceBackgroundNode": "Recraft Replace Background", - "RecraftCrispUpscaleNode": "Recraft Crisp Upscale Image", - "RecraftCreativeUpscaleNode": "Recraft Creative Upscale Image", - "RecraftStyleV3RealisticImage": "Recraft Style - Realistic Image", - "RecraftStyleV3DigitalIllustration": "Recraft Style - Digital Illustration", - "RecraftStyleV3LogoRaster": "Recraft Style - Logo Raster", - "RecraftStyleV3InfiniteStyleLibrary": "Recraft Style - Infinite Style Library", - "RecraftColorRGB": "Recraft Color RGB", - "RecraftControls": "Recraft Controls", -} +class RecraftExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + RecraftTextToImageNode, + RecraftImageToImageNode, + RecraftImageInpaintingNode, + RecraftTextToVectorNode, + RecraftVectorizeImageNode, + RecraftRemoveBackgroundNode, + RecraftReplaceBackgroundNode, + RecraftCrispUpscaleNode, + RecraftCreativeUpscaleNode, + RecraftStyleV3RealisticImageNode, + RecraftStyleV3DigitalIllustrationNode, + RecraftStyleV3LogoRasterNode, + RecraftStyleInfiniteStyleLibrary, + RecraftColorRGBNode, + RecraftControlsNode, + ] + + +async def comfy_entrypoint() -> RecraftExtension: + return RecraftExtension() diff --git a/comfy_api_nodes/nodes_rodin.py b/comfy_api_nodes/nodes_rodin.py index bd758f762..e60e7a6d6 100644 --- a/comfy_api_nodes/nodes_rodin.py +++ b/comfy_api_nodes/nodes_rodin.py @@ -5,12 +5,9 @@ Rodin API docs: https://developer.hyper3d.ai/ """ -from __future__ import annotations from inspect import cleandoc import folder_paths as comfy_paths -import aiohttp import os -import asyncio import logging import math from typing import Optional @@ -26,26 +23,26 @@ from comfy_api_nodes.apis.rodin_api import ( Rodin3DDownloadResponse, JobStatus, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( + sync_op, + poll_op, ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, + download_url_to_bytesio, ) -from comfy_api.latest import ComfyExtension, io as comfy_io +from comfy_api.latest import ComfyExtension, IO COMMON_PARAMETERS = [ - comfy_io.Int.Input( + IO.Int.Input( "Seed", default=0, min=0, max=65535, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), - comfy_io.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True), - comfy_io.Combo.Input( + IO.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True), + IO.Combo.Input( "Polygon_count", options=["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "200K-Triangle"], default="18K-Quad", @@ -121,35 +118,31 @@ def tensor_to_filelike(tensor, max_pixels: int = 2048*2048): async def create_generate_task( + cls: type[IO.ComfyNode], images=None, seed=1, material="PBR", quality_override=18000, tier="Regular", mesh_mode="Quad", - TAPose = False, - auth_kwargs: Optional[dict[str, str]] = None, + ta_pose: bool = False, ): if images is None: raise Exception("Rodin 3D generate requires at least 1 image.") if len(images) > 5: raise Exception("Rodin 3D generate requires up to 5 image.") - path = "/proxy/rodin/api/v2/rodin" - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=path, - method=HttpMethod.POST, - request_model=Rodin3DGenerateRequest, - response_model=Rodin3DGenerateResponse, - ), - request=Rodin3DGenerateRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/rodin/api/v2/rodin", method="POST"), + response_model=Rodin3DGenerateResponse, + data=Rodin3DGenerateRequest( seed=seed, tier=tier, material=material, quality_override=quality_override, mesh_mode=mesh_mode, - TAPose=TAPose, + TAPose=ta_pose, ), files=[ ( @@ -159,11 +152,8 @@ async def create_generate_task( for image in images if image is not None ], content_type="multipart/form-data", - auth_kwargs=auth_kwargs, ) - response = await operation.execute() - if hasattr(response, "error"): error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}" logging.error(error_message) @@ -172,111 +162,83 @@ async def create_generate_task( logging.info("[ Rodin3D API - Submit Jobs ] Submit Generate Task Success!") subscription_key = response.jobs.subscription_key task_uuid = response.uuid - logging.info(f"[ Rodin3D API - Submit Jobs ] UUID: {task_uuid}") + logging.info("[ Rodin3D API - Submit Jobs ] UUID: %s", task_uuid) return task_uuid, subscription_key def check_rodin_status(response: Rodin3DCheckStatusResponse) -> str: all_done = all(job.status == JobStatus.Done for job in response.jobs) status_list = [str(job.status) for job in response.jobs] - logging.info(f"[ Rodin3D API - CheckStatus ] Generate Status: {status_list}") + logging.info("[ Rodin3D API - CheckStatus ] Generate Status: %s", status_list) if any(job.status == JobStatus.Failed for job in response.jobs): - logging.error(f"[ Rodin3D API - CheckStatus ] Generate Failed: {status_list}, Please try again.") + logging.error("[ Rodin3D API - CheckStatus ] Generate Failed: %s, Please try again.", status_list) raise Exception("[ Rodin3D API ] Generate Failed, Please Try again.") if all_done: return "DONE" return "Generating" +def extract_progress(response: Rodin3DCheckStatusResponse) -> Optional[int]: + if not response.jobs: + return None + completed_count = sum(1 for job in response.jobs if job.status == JobStatus.Done) + return int((completed_count / len(response.jobs)) * 100) -async def poll_for_task_status( - subscription_key, auth_kwargs: Optional[dict[str, str]] = None, -) -> Rodin3DCheckStatusResponse: - poll_operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path="/proxy/rodin/api/v2/status", - method=HttpMethod.POST, - request_model=Rodin3DCheckStatusRequest, - response_model=Rodin3DCheckStatusResponse, - ), - request=Rodin3DCheckStatusRequest(subscription_key=subscription_key), - completed_statuses=["DONE"], - failed_statuses=["FAILED"], - status_extractor=check_rodin_status, - poll_interval=3.0, - auth_kwargs=auth_kwargs, - ) + +async def poll_for_task_status(subscription_key: str, cls: type[IO.ComfyNode]) -> Rodin3DCheckStatusResponse: logging.info("[ Rodin3D API - CheckStatus ] Generate Start!") - return await poll_operation.execute() - - -async def get_rodin_download_list(uuid, auth_kwargs: Optional[dict[str, str]] = None) -> Rodin3DDownloadResponse: - logging.info("[ Rodin3D API - Downloading ] Generate Successfully!") - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/rodin/api/v2/download", - method=HttpMethod.POST, - request_model=Rodin3DDownloadRequest, - response_model=Rodin3DDownloadResponse, - ), - request=Rodin3DDownloadRequest(task_uuid=uuid), - auth_kwargs=auth_kwargs, + return await poll_op( + cls, + ApiEndpoint(path="/proxy/rodin/api/v2/status", method="POST"), + response_model=Rodin3DCheckStatusResponse, + data=Rodin3DCheckStatusRequest(subscription_key=subscription_key), + status_extractor=check_rodin_status, + progress_extractor=extract_progress, ) - return await operation.execute() -async def download_files(url_list, task_uuid): - save_path = os.path.join(comfy_paths.get_output_directory(), f"Rodin3D_{task_uuid}") +async def get_rodin_download_list(uuid: str, cls: type[IO.ComfyNode]) -> Rodin3DDownloadResponse: + logging.info("[ Rodin3D API - Downloading ] Generate Successfully!") + return await sync_op( + cls, + ApiEndpoint(path="/proxy/rodin/api/v2/download", method="POST"), + response_model=Rodin3DDownloadResponse, + data=Rodin3DDownloadRequest(task_uuid=uuid), + monitor_progress=False, + ) + + +async def download_files(url_list, task_uuid: str): + result_folder_name = f"Rodin3D_{task_uuid}" + save_path = os.path.join(comfy_paths.get_output_directory(), result_folder_name) os.makedirs(save_path, exist_ok=True) model_file_path = None - async with aiohttp.ClientSession() as session: - for i in url_list.list: - url = i.url - file_name = i.name - file_path = os.path.join(save_path, file_name) - if file_path.endswith(".glb"): - model_file_path = file_path - logging.info(f"[ Rodin3D API - download_files ] Downloading file: {file_path}") - max_retries = 5 - for attempt in range(max_retries): - try: - async with session.get(url) as resp: - resp.raise_for_status() - with open(file_path, "wb") as f: - async for chunk in resp.content.iter_chunked(32 * 1024): - f.write(chunk) - break - except Exception as e: - logging.info(f"[ Rodin3D API - download_files ] Error downloading {file_path}:{e}") - if attempt < max_retries - 1: - logging.info("Retrying...") - await asyncio.sleep(2) - else: - logging.info( - "[ Rodin3D API - download_files ] Failed to download %s after %s attempts.", - file_path, - max_retries, - ) + for i in url_list.list: + file_path = os.path.join(save_path, i.name) + if file_path.endswith(".glb"): + model_file_path = os.path.join(result_folder_name, i.name) + await download_url_to_bytesio(i.url, file_path) return model_file_path -class Rodin3D_Regular(comfy_io.ComfyNode): +class Rodin3D_Regular(IO.ComfyNode): """Generate 3D Assets using Rodin API""" @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="Rodin3D_Regular", display_name="Rodin 3D Generate - Regular Generate", category="api node/3d/Rodin", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("Images"), + IO.Image.Input("Images"), *COMMON_PARAMETERS, ], - outputs=[comfy_io.String.Output(display_name="3D Model Path")], + outputs=[IO.String.Output(display_name="3D Model Path")], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -288,51 +250,48 @@ class Rodin3D_Regular(comfy_io.ComfyNode): Seed, Material_Type, Polygon_count, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: tier = "Regular" num_images = Images.shape[0] m_images = [] for i in range(num_images): m_images.append(Images[i]) mesh_mode, quality_override = get_quality_mode(Polygon_count) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } task_uuid, subscription_key = await create_generate_task( + cls, images=m_images, seed=Seed, material=Material_Type, quality_override=quality_override, tier=tier, mesh_mode=mesh_mode, - auth_kwargs=auth, ) - await poll_for_task_status(subscription_key, auth_kwargs=auth) - download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth) + await poll_for_task_status(subscription_key, cls) + download_list = await get_rodin_download_list(task_uuid, cls) model = await download_files(download_list, task_uuid) - return comfy_io.NodeOutput(model) + return IO.NodeOutput(model) -class Rodin3D_Detail(comfy_io.ComfyNode): +class Rodin3D_Detail(IO.ComfyNode): """Generate 3D Assets using Rodin API""" @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="Rodin3D_Detail", display_name="Rodin 3D Generate - Detail Generate", category="api node/3d/Rodin", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("Images"), + IO.Image.Input("Images"), *COMMON_PARAMETERS, ], - outputs=[comfy_io.String.Output(display_name="3D Model Path")], + outputs=[IO.String.Output(display_name="3D Model Path")], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -344,51 +303,48 @@ class Rodin3D_Detail(comfy_io.ComfyNode): Seed, Material_Type, Polygon_count, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: tier = "Detail" num_images = Images.shape[0] m_images = [] for i in range(num_images): m_images.append(Images[i]) mesh_mode, quality_override = get_quality_mode(Polygon_count) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } task_uuid, subscription_key = await create_generate_task( + cls, images=m_images, seed=Seed, material=Material_Type, quality_override=quality_override, tier=tier, mesh_mode=mesh_mode, - auth_kwargs=auth, ) - await poll_for_task_status(subscription_key, auth_kwargs=auth) - download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth) + await poll_for_task_status(subscription_key, cls) + download_list = await get_rodin_download_list(task_uuid, cls) model = await download_files(download_list, task_uuid) - return comfy_io.NodeOutput(model) + return IO.NodeOutput(model) -class Rodin3D_Smooth(comfy_io.ComfyNode): +class Rodin3D_Smooth(IO.ComfyNode): """Generate 3D Assets using Rodin API""" @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="Rodin3D_Smooth", display_name="Rodin 3D Generate - Smooth Generate", category="api node/3d/Rodin", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("Images"), + IO.Image.Input("Images"), *COMMON_PARAMETERS, ], - outputs=[comfy_io.String.Output(display_name="3D Model Path")], + outputs=[IO.String.Output(display_name="3D Model Path")], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -400,58 +356,54 @@ class Rodin3D_Smooth(comfy_io.ComfyNode): Seed, Material_Type, Polygon_count, - ) -> comfy_io.NodeOutput: - tier = "Smooth" + ) -> IO.NodeOutput: num_images = Images.shape[0] m_images = [] for i in range(num_images): m_images.append(Images[i]) mesh_mode, quality_override = get_quality_mode(Polygon_count) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } task_uuid, subscription_key = await create_generate_task( + cls, images=m_images, seed=Seed, material=Material_Type, quality_override=quality_override, - tier=tier, + tier="Smooth", mesh_mode=mesh_mode, - auth_kwargs=auth, ) - await poll_for_task_status(subscription_key, auth_kwargs=auth) - download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth) + await poll_for_task_status(subscription_key, cls) + download_list = await get_rodin_download_list(task_uuid, cls) model = await download_files(download_list, task_uuid) - return comfy_io.NodeOutput(model) + return IO.NodeOutput(model) -class Rodin3D_Sketch(comfy_io.ComfyNode): +class Rodin3D_Sketch(IO.ComfyNode): """Generate 3D Assets using Rodin API""" @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="Rodin3D_Sketch", display_name="Rodin 3D Generate - Sketch Generate", category="api node/3d/Rodin", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("Images"), - comfy_io.Int.Input( + IO.Image.Input("Images"), + IO.Int.Input( "Seed", default=0, min=0, max=65535, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), ], - outputs=[comfy_io.String.Output(display_name="3D Model Path")], + outputs=[IO.String.Output(display_name="3D Model Path")], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -461,68 +413,61 @@ class Rodin3D_Sketch(comfy_io.ComfyNode): cls, Images, Seed, - ) -> comfy_io.NodeOutput: - tier = "Sketch" + ) -> IO.NodeOutput: num_images = Images.shape[0] m_images = [] for i in range(num_images): m_images.append(Images[i]) - material_type = "PBR" - quality_override = 18000 - mesh_mode = "Quad" - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } task_uuid, subscription_key = await create_generate_task( + cls, images=m_images, seed=Seed, - material=material_type, - quality_override=quality_override, - tier=tier, - mesh_mode=mesh_mode, - auth_kwargs=auth, + material="PBR", + quality_override=18000, + tier="Sketch", + mesh_mode="Quad", ) - await poll_for_task_status(subscription_key, auth_kwargs=auth) - download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth) + await poll_for_task_status(subscription_key, cls) + download_list = await get_rodin_download_list(task_uuid, cls) model = await download_files(download_list, task_uuid) - return comfy_io.NodeOutput(model) + return IO.NodeOutput(model) -class Rodin3D_Gen2(comfy_io.ComfyNode): +class Rodin3D_Gen2(IO.ComfyNode): """Generate 3D Assets using Rodin API""" @classmethod - def define_schema(cls) -> comfy_io.Schema: - return comfy_io.Schema( + def define_schema(cls) -> IO.Schema: + return IO.Schema( node_id="Rodin3D_Gen2", display_name="Rodin 3D Generate - Gen-2 Generate", category="api node/3d/Rodin", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("Images"), - comfy_io.Int.Input( + IO.Image.Input("Images"), + IO.Int.Input( "Seed", default=0, min=0, max=65535, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, optional=True, ), - comfy_io.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True), - comfy_io.Combo.Input( + IO.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True), + IO.Combo.Input( "Polygon_count", options=["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "2K-Triangle", "20K-Triangle", "150K-Triangle", "500K-Triangle"], default="500K-Triangle", optional=True, ), - comfy_io.Boolean.Input("TAPose", default=False), + IO.Boolean.Input("TAPose", default=False), ], - outputs=[comfy_io.String.Output(display_name="3D Model Path")], + outputs=[IO.String.Output(display_name="3D Model Path")], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -535,37 +480,33 @@ class Rodin3D_Gen2(comfy_io.ComfyNode): Material_Type, Polygon_count, TAPose, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: tier = "Gen-2" num_images = Images.shape[0] m_images = [] for i in range(num_images): m_images.append(Images[i]) mesh_mode, quality_override = get_quality_mode(Polygon_count) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } task_uuid, subscription_key = await create_generate_task( + cls, images=m_images, seed=Seed, material=Material_Type, quality_override=quality_override, tier=tier, mesh_mode=mesh_mode, - TAPose=TAPose, - auth_kwargs=auth, + ta_pose=TAPose, ) - await poll_for_task_status(subscription_key, auth_kwargs=auth) - download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth) + await poll_for_task_status(subscription_key, cls) + download_list = await get_rodin_download_list(task_uuid, cls) model = await download_files(download_list, task_uuid) - return comfy_io.NodeOutput(model) + return IO.NodeOutput(model) class Rodin3DExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ Rodin3D_Regular, Rodin3D_Detail, diff --git a/comfy_api_nodes/nodes_runway.py b/comfy_api_nodes/nodes_runway.py index 27b2bf748..3c55039c9 100644 --- a/comfy_api_nodes/nodes_runway.py +++ b/comfy_api_nodes/nodes_runway.py @@ -11,17 +11,15 @@ User Guides: """ -from typing import Union, Optional, Any -from typing_extensions import override from enum import Enum -import torch +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.apis import ( RunwayImageToVideoRequest, RunwayImageToVideoResponse, RunwayTaskStatusResponse as TaskStatusResponse, - RunwayTaskStatusEnum as TaskStatus, RunwayModelEnum as Model, RunwayDurationEnum as Duration, RunwayAspectRatioEnum as AspectRatio, @@ -33,23 +31,18 @@ from comfy_api_nodes.apis import ( ReferenceImage, RunwayTextToImageAspectRatioEnum, ) -from comfy_api_nodes.apis.client import ( - ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( - upload_images_to_comfyapi, - download_url_to_video_output, +from comfy_api_nodes.util import ( image_tensor_pair_to_batch, validate_string, + validate_image_dimensions, + validate_image_aspect_ratio, + upload_images_to_comfyapi, + download_url_to_video_output, download_url_to_image_tensor, + ApiEndpoint, + sync_op, + poll_op, ) -from comfy_api.input_impl import VideoFromFile -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api_nodes.util.validation_utils import validate_image_dimensions, validate_image_aspect_ratio PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video" PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image" @@ -84,47 +77,22 @@ class RunwayGen3aAspectRatio(str, Enum): field_1280_768 = "1280:768" -def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: +def get_video_url_from_task_status(response: TaskStatusResponse) -> str | None: """Returns the video URL from the task status response if it exists.""" if hasattr(response, "output") and len(response.output) > 0: return response.output[0] return None -async def poll_until_finished( - auth_kwargs: dict[str, str], - api_endpoint: ApiEndpoint[Any, TaskStatusResponse], - estimated_duration: Optional[int] = None, - node_id: Optional[str] = None, -) -> TaskStatusResponse: - """Polls the Runway API endpoint until the task reaches a terminal state, then returns the response.""" - return await PollingOperation( - poll_endpoint=api_endpoint, - completed_statuses=[ - TaskStatus.SUCCEEDED.value, - ], - failed_statuses=[ - TaskStatus.FAILED.value, - TaskStatus.CANCELLED.value, - ], - status_extractor=lambda response: response.status.value, - auth_kwargs=auth_kwargs, - result_url_extractor=get_video_url_from_task_status, - estimated_duration=estimated_duration, - node_id=node_id, - progress_extractor=extract_progress_from_task_status, - ).execute() - - def extract_progress_from_task_status( response: TaskStatusResponse, -) -> Union[float, None]: +) -> float | None: if hasattr(response, "progress") and response.progress is not None: return response.progress * 100 return None -def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: +def get_image_url_from_task_status(response: TaskStatusResponse) -> str | None: """Returns the image URL from the task status response if it exists.""" if hasattr(response, "output") and len(response.output) > 0: return response.output[0] @@ -132,42 +100,32 @@ def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, N async def get_response( - task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None, estimated_duration: Optional[int] = None + cls: type[IO.ComfyNode], task_id: str, estimated_duration: int | None = None ) -> TaskStatusResponse: """Poll the task status until it is finished then get the response.""" - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=f"{PATH_GET_TASK_STATUS}/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=TaskStatusResponse, - ), + return await poll_op( + cls, + ApiEndpoint(path=f"{PATH_GET_TASK_STATUS}/{task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: r.status.value, estimated_duration=estimated_duration, - node_id=node_id, + progress_extractor=extract_progress_from_task_status, ) async def generate_video( + cls: type[IO.ComfyNode], request: RunwayImageToVideoRequest, - auth_kwargs: dict[str, str], - node_id: Optional[str] = None, - estimated_duration: Optional[int] = None, -) -> VideoFromFile: - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_IMAGE_TO_VIDEO, - method=HttpMethod.POST, - request_model=RunwayImageToVideoRequest, - response_model=RunwayImageToVideoResponse, - ), - request=request, - auth_kwargs=auth_kwargs, + estimated_duration: int | None = None, +) -> InputImpl.VideoFromFile: + initial_response = await sync_op( + cls, + endpoint=ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"), + response_model=RunwayImageToVideoResponse, + data=request, ) - initial_response = await initial_operation.execute() - - final_response = await get_response(initial_response.id, auth_kwargs, node_id, estimated_duration) + final_response = await get_response(cls, initial_response.id, estimated_duration) if not final_response.output: raise RunwayApiError("Runway task succeeded but no video data found in response.") @@ -175,55 +133,55 @@ async def generate_video( return await download_url_to_video_output(video_url) -class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode): +class RunwayImageToVideoNodeGen3a(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="RunwayImageToVideoNodeGen3a", display_name="Runway Image to Video (Gen3a Turbo)", category="api node/video/Runway", description="Generate a video from a single starting frame using Gen3a Turbo model. " - "Before diving in, review these best practices to ensure that " - "your input selections will set your generation up for success: " - "https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo.", + "Before diving in, review these best practices to ensure that " + "your input selections will set your generation up for success: " + "https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text prompt for the generation", ), - comfy_io.Image.Input( + IO.Image.Input( "start_frame", tooltip="Start frame to be used for the video", ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration", - options=[model.value for model in Duration], + options=Duration, ), - comfy_io.Combo.Input( + IO.Combo.Input( "ratio", - options=[model.value for model in RunwayGen3aAspectRatio], + options=RunwayGen3aAspectRatio, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967295, step=1, control_after_generate=True, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Random seed for generation", ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -232,29 +190,25 @@ class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode): async def execute( cls, prompt: str, - start_frame: torch.Tensor, + start_frame: Input.Image, duration: str, ratio: str, seed: int, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, min_length=1) validate_image_dimensions(start_frame, max_width=7999, max_height=7999) - validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0) - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } + validate_image_aspect_ratio(start_frame, (1, 2), (2, 1)) download_urls = await upload_images_to_comfyapi( + cls, start_frame, max_images=1, mime_type="image/png", - auth_kwargs=auth_kwargs, ) - return comfy_io.NodeOutput( + return IO.NodeOutput( await generate_video( + cls, RunwayImageToVideoRequest( promptText=prompt, seed=seed, @@ -262,68 +216,62 @@ class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode): duration=Duration(duration), ratio=AspectRatio(ratio), promptImage=RunwayPromptImageObject( - root=[ - RunwayPromptImageDetailedObject( - uri=str(download_urls[0]), position="first" - ) - ] + root=[RunwayPromptImageDetailedObject(uri=str(download_urls[0]), position="first")] ), ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, ) ) -class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode): +class RunwayImageToVideoNodeGen4(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="RunwayImageToVideoNodeGen4", display_name="Runway Image to Video (Gen4 Turbo)", category="api node/video/Runway", description="Generate a video from a single starting frame using Gen4 Turbo model. " - "Before diving in, review these best practices to ensure that " - "your input selections will set your generation up for success: " - "https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video.", + "Before diving in, review these best practices to ensure that " + "your input selections will set your generation up for success: " + "https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text prompt for the generation", ), - comfy_io.Image.Input( + IO.Image.Input( "start_frame", tooltip="Start frame to be used for the video", ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration", - options=[model.value for model in Duration], + options=Duration, ), - comfy_io.Combo.Input( + IO.Combo.Input( "ratio", - options=[model.value for model in RunwayGen4TurboAspectRatio], + options=RunwayGen4TurboAspectRatio, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967295, step=1, control_after_generate=True, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Random seed for generation", ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -332,29 +280,25 @@ class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode): async def execute( cls, prompt: str, - start_frame: torch.Tensor, + start_frame: Input.Image, duration: str, ratio: str, seed: int, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, min_length=1) validate_image_dimensions(start_frame, max_width=7999, max_height=7999) - validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0) - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } + validate_image_aspect_ratio(start_frame, (1, 2), (2, 1)) download_urls = await upload_images_to_comfyapi( + cls, start_frame, max_images=1, mime_type="image/png", - auth_kwargs=auth_kwargs, ) - return comfy_io.NodeOutput( + return IO.NodeOutput( await generate_video( + cls, RunwayImageToVideoRequest( promptText=prompt, seed=seed, @@ -362,76 +306,70 @@ class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode): duration=Duration(duration), ratio=AspectRatio(ratio), promptImage=RunwayPromptImageObject( - root=[ - RunwayPromptImageDetailedObject( - uri=str(download_urls[0]), position="first" - ) - ] + root=[RunwayPromptImageDetailedObject(uri=str(download_urls[0]), position="first")] ), ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, estimated_duration=AVERAGE_DURATION_FLF_SECONDS, ) ) -class RunwayFirstLastFrameNode(comfy_io.ComfyNode): +class RunwayFirstLastFrameNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="RunwayFirstLastFrameNode", display_name="Runway First-Last-Frame to Video", category="api node/video/Runway", description="Upload first and last keyframes, draft a prompt, and generate a video. " - "More complex transitions, such as cases where the Last frame is completely different " - "from the First frame, may benefit from the longer 10s duration. " - "This would give the generation more time to smoothly transition between the two inputs. " - "Before diving in, review these best practices to ensure that your input selections " - "will set your generation up for success: " - "https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3.", + "More complex transitions, such as cases where the Last frame is completely different " + "from the First frame, may benefit from the longer 10s duration. " + "This would give the generation more time to smoothly transition between the two inputs. " + "Before diving in, review these best practices to ensure that your input selections " + "will set your generation up for success: " + "https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text prompt for the generation", ), - comfy_io.Image.Input( + IO.Image.Input( "start_frame", tooltip="Start frame to be used for the video", ), - comfy_io.Image.Input( + IO.Image.Input( "end_frame", tooltip="End frame to be used for the video. Supported for gen3a_turbo only.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "duration", - options=[model.value for model in Duration], + options=Duration, ), - comfy_io.Combo.Input( + IO.Combo.Input( "ratio", - options=[model.value for model in RunwayGen3aAspectRatio], + options=RunwayGen3aAspectRatio, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967295, step=1, control_after_generate=True, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Random seed for generation", ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -440,35 +378,31 @@ class RunwayFirstLastFrameNode(comfy_io.ComfyNode): async def execute( cls, prompt: str, - start_frame: torch.Tensor, - end_frame: torch.Tensor, + start_frame: Input.Image, + end_frame: Input.Image, duration: str, ratio: str, seed: int, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, min_length=1) validate_image_dimensions(start_frame, max_width=7999, max_height=7999) validate_image_dimensions(end_frame, max_width=7999, max_height=7999) - validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0) - validate_image_aspect_ratio(end_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0) - - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } + validate_image_aspect_ratio(start_frame, (1, 2), (2, 1)) + validate_image_aspect_ratio(end_frame, (1, 2), (2, 1)) stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame) download_urls = await upload_images_to_comfyapi( + cls, stacked_input_images, max_images=2, mime_type="image/png", - auth_kwargs=auth_kwargs, ) if len(download_urls) != 2: raise RunwayApiError("Failed to upload one or more images to comfy api.") - return comfy_io.NodeOutput( + return IO.NodeOutput( await generate_video( + cls, RunwayImageToVideoRequest( promptText=prompt, seed=seed, @@ -477,56 +411,50 @@ class RunwayFirstLastFrameNode(comfy_io.ComfyNode): ratio=AspectRatio(ratio), promptImage=RunwayPromptImageObject( root=[ - RunwayPromptImageDetailedObject( - uri=str(download_urls[0]), position="first" - ), - RunwayPromptImageDetailedObject( - uri=str(download_urls[1]), position="last" - ), + RunwayPromptImageDetailedObject(uri=str(download_urls[0]), position="first"), + RunwayPromptImageDetailedObject(uri=str(download_urls[1]), position="last"), ] ), ), - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, estimated_duration=AVERAGE_DURATION_FLF_SECONDS, ) ) -class RunwayTextToImageNode(comfy_io.ComfyNode): +class RunwayTextToImageNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="RunwayTextToImageNode", display_name="Runway Text to Image", category="api node/image/Runway", description="Generate an image from a text prompt using Runway's Gen 4 model. " - "You can also include reference image to guide the generation.", + "You can also include reference image to guide the generation.", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text prompt for the generation", ), - comfy_io.Combo.Input( + IO.Combo.Input( "ratio", options=[model.value for model in RunwayTextToImageAspectRatioEnum], ), - comfy_io.Image.Input( + IO.Image.Input( "reference_image", tooltip="Optional reference image to guide the generation", optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -536,64 +464,49 @@ class RunwayTextToImageNode(comfy_io.ComfyNode): cls, prompt: str, ratio: str, - reference_image: Optional[torch.Tensor] = None, - ) -> comfy_io.NodeOutput: + reference_image: Input.Image | None = None, + ) -> IO.NodeOutput: validate_string(prompt, min_length=1) - auth_kwargs = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - # Prepare reference images if provided reference_images = None if reference_image is not None: validate_image_dimensions(reference_image, max_width=7999, max_height=7999) - validate_image_aspect_ratio(reference_image, min_aspect_ratio=0.5, max_aspect_ratio=2.0) + validate_image_aspect_ratio(reference_image, (1, 2), (2, 1)) download_urls = await upload_images_to_comfyapi( + cls, reference_image, max_images=1, mime_type="image/png", - auth_kwargs=auth_kwargs, ) reference_images = [ReferenceImage(uri=str(download_urls[0]))] - request = RunwayTextToImageRequest( - promptText=prompt, - model=Model4.gen4_image, - ratio=ratio, - referenceImages=reference_images, - ) - - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=PATH_TEXT_TO_IMAGE, - method=HttpMethod.POST, - request_model=RunwayTextToImageRequest, - response_model=RunwayTextToImageResponse, + initial_response = await sync_op( + cls, + endpoint=ApiEndpoint(path=PATH_TEXT_TO_IMAGE, method="POST"), + response_model=RunwayTextToImageResponse, + data=RunwayTextToImageRequest( + promptText=prompt, + model=Model4.gen4_image, + ratio=ratio, + referenceImages=reference_images, ), - request=request, - auth_kwargs=auth_kwargs, ) - initial_response = await initial_operation.execute() - - # Poll for completion final_response = await get_response( + cls, initial_response.id, - auth_kwargs=auth_kwargs, - node_id=cls.hidden.unique_id, estimated_duration=AVERAGE_DURATION_T2I_SECONDS, ) if not final_response.output: raise RunwayApiError("Runway task succeeded but no image data found in response.") - return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_task_status(final_response))) + return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_task_status(final_response))) class RunwayExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ RunwayFirstLastFrameNode, RunwayImageToVideoNodeGen3a, @@ -601,5 +514,6 @@ class RunwayExtension(ComfyExtension): RunwayTextToImageNode, ] + async def comfy_entrypoint() -> RunwayExtension: return RunwayExtension() diff --git a/comfy_api_nodes/nodes_sora.py b/comfy_api_nodes/nodes_sora.py new file mode 100644 index 000000000..92b225d40 --- /dev/null +++ b/comfy_api_nodes/nodes_sora.py @@ -0,0 +1,151 @@ +from typing import Optional + +import torch +from pydantic import BaseModel, Field +from typing_extensions import override + +from comfy_api.latest import IO, ComfyExtension +from comfy_api_nodes.util import ( + ApiEndpoint, + download_url_to_video_output, + get_number_of_images, + poll_op, + sync_op, + tensor_to_bytesio, +) + + +class Sora2GenerationRequest(BaseModel): + prompt: str = Field(...) + model: str = Field(...) + seconds: str = Field(...) + size: str = Field(...) + + +class Sora2GenerationResponse(BaseModel): + id: str = Field(...) + error: Optional[dict] = Field(None) + status: Optional[str] = Field(None) + + +class OpenAIVideoSora2(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="OpenAIVideoSora2", + display_name="OpenAI Sora - Video", + category="api node/video/Sora", + description="OpenAI video and audio generation.", + inputs=[ + IO.Combo.Input( + "model", + options=["sora-2", "sora-2-pro"], + default="sora-2", + ), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Guiding text; may be empty if an input image is present.", + ), + IO.Combo.Input( + "size", + options=[ + "720x1280", + "1280x720", + "1024x1792", + "1792x1024", + ], + default="1280x720", + ), + IO.Combo.Input( + "duration", + options=[4, 8, 12], + default=8, + ), + IO.Image.Input( + "image", + optional=True, + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + optional=True, + tooltip="Seed to determine if node should re-run; " + "actual results are nondeterministic regardless of seed.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + size: str = "1280x720", + duration: int = 8, + seed: int = 0, + image: Optional[torch.Tensor] = None, + ): + if model == "sora-2" and size not in ("720x1280", "1280x720"): + raise ValueError("Invalid size for sora-2 model, only 720x1280 and 1280x720 are supported.") + files_input = None + if image is not None: + if get_number_of_images(image) != 1: + raise ValueError("Currently only one input image is supported.") + files_input = {"input_reference": ("image.png", tensor_to_bytesio(image), "image/png")} + initial_response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/openai/v1/videos", method="POST"), + data=Sora2GenerationRequest( + model=model, + prompt=prompt, + seconds=str(duration), + size=size, + ), + files=files_input, + response_model=Sora2GenerationResponse, + content_type="multipart/form-data", + ) + if initial_response.error: + raise Exception(initial_response.error["message"]) + + model_time_multiplier = 1 if model == "sora-2" else 2 + await poll_op( + cls, + poll_endpoint=ApiEndpoint(path=f"/proxy/openai/v1/videos/{initial_response.id}"), + response_model=Sora2GenerationResponse, + status_extractor=lambda x: x.status, + poll_interval=8.0, + max_poll_attempts=160, + estimated_duration=int(45 * (duration / 4) * model_time_multiplier), + ) + return IO.NodeOutput( + await download_url_to_video_output(f"/proxy/openai/v1/videos/{initial_response.id}/content", cls=cls), + ) + + +class OpenAISoraExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + OpenAIVideoSora2, + ] + + +async def comfy_entrypoint() -> OpenAISoraExtension: + return OpenAISoraExtension() diff --git a/comfy_api_nodes/nodes_stability.py b/comfy_api_nodes/nodes_stability.py index 5ba5ed986..bb7ceed78 100644 --- a/comfy_api_nodes/nodes_stability.py +++ b/comfy_api_nodes/nodes_stability.py @@ -2,7 +2,7 @@ from inspect import cleandoc from typing import Optional from typing_extensions import override -from comfy_api.latest import ComfyExtension, Input, io as comfy_io +from comfy_api.latest import ComfyExtension, Input, IO from comfy_api_nodes.apis.stability_api import ( StabilityUpscaleConservativeRequest, StabilityUpscaleCreativeRequest, @@ -20,21 +20,17 @@ from comfy_api_nodes.apis.stability_api import ( StabilityAudioInpaintRequest, StabilityAudioResponse, ) -from comfy_api_nodes.apis.client import ( - ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( +from comfy_api_nodes.util import ( + validate_audio_duration, + validate_string, + audio_input_to_mp3, bytesio_to_image_tensor, tensor_to_bytesio, - validate_string, audio_bytes_to_audio_input, - audio_input_to_mp3, + sync_op, + poll_op, + ApiEndpoint, ) -from comfy_api_nodes.util.validation_utils import validate_audio_duration import torch import base64 @@ -56,20 +52,20 @@ def get_async_dummy_status(x: StabilityResultsGetResponse): return StabilityPollStatus.in_progress -class StabilityStableImageUltraNode(comfy_io.ComfyNode): +class StabilityStableImageUltraNode(IO.ComfyNode): """ Generates images synchronously based on prompt and resolution. """ @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityStableImageUltraNode", display_name="Stability AI Stable Image Ultra", category="api node/image/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", @@ -80,39 +76,39 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode): "is a value between 0 and 1. For example: `The sky was a crisp (blue:0.3) and (green:0.8)`" + "would convey a sky that was blue and green, but more green than blue.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[x.value for x in StabilityAspectRatio], - default=StabilityAspectRatio.ratio_1_1.value, + options=StabilityAspectRatio, + default=StabilityAspectRatio.ratio_1_1, tooltip="Aspect ratio of generated image.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "style_preset", options=get_stability_style_presets(), tooltip="Optional desired style of generated image.", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - comfy_io.Image.Input( + IO.Image.Input( "image", optional=True, ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", tooltip="A blurb of text describing what you do not wish to see in the output image. This is an advanced feature.", force_input=True, optional=True, ), - comfy_io.Float.Input( + IO.Float.Input( "image_denoise", default=0.5, min=0.0, @@ -123,12 +119,12 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -143,7 +139,7 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode): image: Optional[torch.Tensor] = None, negative_prompt: str = "", image_denoise: Optional[float] = 0.5, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) # prepare image binary if image present image_binary = None @@ -161,19 +157,11 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode): "image": image_binary } - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/stable-image/generate/ultra", - method=HttpMethod.POST, - request_model=StabilityStableUltraRequest, - response_model=StabilityStableUltraResponse, - ), - request=StabilityStableUltraRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/stable-image/generate/ultra", method="POST"), + response_model=StabilityStableUltraResponse, + data=StabilityStableUltraRequest( prompt=prompt, negative_prompt=negative_prompt, aspect_ratio=aspect_ratio, @@ -183,9 +171,7 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode): ), files=files, content_type="multipart/form-data", - auth_kwargs=auth, ) - response_api = await operation.execute() if response_api.finish_reason != "SUCCESS": raise Exception(f"Stable Image Ultra generation failed: {response_api.finish_reason}.") @@ -193,44 +179,44 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode): image_data = base64.b64decode(response_api.image) returned_image = bytesio_to_image_tensor(BytesIO(image_data)) - return comfy_io.NodeOutput(returned_image) + return IO.NodeOutput(returned_image) -class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): +class StabilityStableImageSD_3_5Node(IO.ComfyNode): """ Generates images synchronously based on prompt and resolution. """ @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityStableImageSD_3_5Node", display_name="Stability AI Stable Diffusion 3.5 Image", category="api node/image/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[x.value for x in Stability_SD3_5_Model], + options=Stability_SD3_5_Model, ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[x.value for x in StabilityAspectRatio], - default=StabilityAspectRatio.ratio_1_1.value, + options=StabilityAspectRatio, + default=StabilityAspectRatio.ratio_1_1, tooltip="Aspect ratio of generated image.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "style_preset", options=get_stability_style_presets(), tooltip="Optional desired style of generated image.", ), - comfy_io.Float.Input( + IO.Float.Input( "cfg_scale", default=4.0, min=1.0, @@ -238,28 +224,28 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): step=0.1, tooltip="How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - comfy_io.Image.Input( + IO.Image.Input( "image", optional=True, ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.", force_input=True, optional=True, ), - comfy_io.Float.Input( + IO.Float.Input( "image_denoise", default=0.5, min=0.0, @@ -270,12 +256,12 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -292,7 +278,7 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): image: Optional[torch.Tensor] = None, negative_prompt: str = "", image_denoise: Optional[float] = 0.5, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) # prepare image binary if image present image_binary = None @@ -313,19 +299,11 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): "image": image_binary } - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/stable-image/generate/sd3", - method=HttpMethod.POST, - request_model=StabilityStable3_5Request, - response_model=StabilityStableUltraResponse, - ), - request=StabilityStable3_5Request( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/stable-image/generate/sd3", method="POST"), + response_model=StabilityStableUltraResponse, + data=StabilityStable3_5Request( prompt=prompt, negative_prompt=negative_prompt, aspect_ratio=aspect_ratio, @@ -338,9 +316,7 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): ), files=files, content_type="multipart/form-data", - auth_kwargs=auth, ) - response_api = await operation.execute() if response_api.finish_reason != "SUCCESS": raise Exception(f"Stable Diffusion 3.5 Image generation failed: {response_api.finish_reason}.") @@ -348,30 +324,30 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode): image_data = base64.b64decode(response_api.image) returned_image = bytesio_to_image_tensor(BytesIO(image_data)) - return comfy_io.NodeOutput(returned_image) + return IO.NodeOutput(returned_image) -class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): +class StabilityUpscaleConservativeNode(IO.ComfyNode): """ Upscale image with minimal alterations to 4K resolution. """ @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityUpscaleConservativeNode", display_name="Stability AI Upscale Conservative", category="api node/image/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("image"), - comfy_io.String.Input( + IO.Image.Input("image"), + IO.String.Input( "prompt", multiline=True, default="", tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.", ), - comfy_io.Float.Input( + IO.Float.Input( "creativity", default=0.35, min=0.2, @@ -379,17 +355,17 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): step=0.01, tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.", @@ -398,12 +374,12 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -416,7 +392,7 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): creativity: float, seed: int, negative_prompt: str = "", - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read() @@ -427,19 +403,11 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): "image": image_binary } - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/stable-image/upscale/conservative", - method=HttpMethod.POST, - request_model=StabilityUpscaleConservativeRequest, - response_model=StabilityStableUltraResponse, - ), - request=StabilityUpscaleConservativeRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/conservative", method="POST"), + response_model=StabilityStableUltraResponse, + data=StabilityUpscaleConservativeRequest( prompt=prompt, negative_prompt=negative_prompt, creativity=round(creativity,2), @@ -447,9 +415,7 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): ), files=files, content_type="multipart/form-data", - auth_kwargs=auth, ) - response_api = await operation.execute() if response_api.finish_reason != "SUCCESS": raise Exception(f"Stability Upscale Conservative generation failed: {response_api.finish_reason}.") @@ -457,30 +423,30 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode): image_data = base64.b64decode(response_api.image) returned_image = bytesio_to_image_tensor(BytesIO(image_data)) - return comfy_io.NodeOutput(returned_image) + return IO.NodeOutput(returned_image) -class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): +class StabilityUpscaleCreativeNode(IO.ComfyNode): """ Upscale image with minimal alterations to 4K resolution. """ @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityUpscaleCreativeNode", display_name="Stability AI Upscale Creative", category="api node/image/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("image"), - comfy_io.String.Input( + IO.Image.Input("image"), + IO.String.Input( "prompt", multiline=True, default="", tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.", ), - comfy_io.Float.Input( + IO.Float.Input( "creativity", default=0.3, min=0.1, @@ -488,22 +454,22 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): step=0.01, tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.", ), - comfy_io.Combo.Input( + IO.Combo.Input( "style_preset", options=get_stability_style_presets(), tooltip="Optional desired style of generated image.", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for creating the noise.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", default="", tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.", @@ -512,12 +478,12 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -531,7 +497,7 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): style_preset: str, seed: int, negative_prompt: str = "", - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read() @@ -544,19 +510,11 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): "image": image_binary } - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/stable-image/upscale/creative", - method=HttpMethod.POST, - request_model=StabilityUpscaleCreativeRequest, - response_model=StabilityAsyncResponse, - ), - request=StabilityUpscaleCreativeRequest( + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/creative", method="POST"), + response_model=StabilityAsyncResponse, + data=StabilityUpscaleCreativeRequest( prompt=prompt, negative_prompt=negative_prompt, creativity=round(creativity,2), @@ -565,25 +523,15 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): ), files=files, content_type="multipart/form-data", - auth_kwargs=auth, ) - response_api = await operation.execute() - operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/stability/v2beta/results/{response_api.id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=StabilityResultsGetResponse, - ), + response_poll = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/stability/v2beta/results/{response_api.id}"), + response_model=StabilityResultsGetResponse, poll_interval=3, - completed_statuses=[StabilityPollStatus.finished], - failed_statuses=[StabilityPollStatus.failed], status_extractor=lambda x: get_async_dummy_status(x), - auth_kwargs=auth, - node_id=cls.hidden.unique_id, ) - response_poll: StabilityResultsGetResponse = await operation.execute() if response_poll.finish_reason != "SUCCESS": raise Exception(f"Stability Upscale Creative generation failed: {response_poll.finish_reason}.") @@ -591,61 +539,50 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode): image_data = base64.b64decode(response_poll.result) returned_image = bytesio_to_image_tensor(BytesIO(image_data)) - return comfy_io.NodeOutput(returned_image) + return IO.NodeOutput(returned_image) -class StabilityUpscaleFastNode(comfy_io.ComfyNode): +class StabilityUpscaleFastNode(IO.ComfyNode): """ Quickly upscales an image via Stability API call to 4x its original size; intended for upscaling low-quality/compressed images. """ @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityUpscaleFastNode", display_name="Stability AI Upscale Fast", category="api node/image/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Image.Input("image"), + IO.Image.Input("image"), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @classmethod - async def execute(cls, image: torch.Tensor) -> comfy_io.NodeOutput: + async def execute(cls, image: torch.Tensor) -> IO.NodeOutput: image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read() files = { "image": image_binary } - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/stable-image/upscale/fast", - method=HttpMethod.POST, - request_model=EmptyRequest, - response_model=StabilityStableUltraResponse, - ), - request=EmptyRequest(), + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/fast", method="POST"), + response_model=StabilityStableUltraResponse, files=files, content_type="multipart/form-data", - auth_kwargs=auth, ) - response_api = await operation.execute() if response_api.finish_reason != "SUCCESS": raise Exception(f"Stability Upscale Fast failed: {response_api.finish_reason}.") @@ -653,26 +590,26 @@ class StabilityUpscaleFastNode(comfy_io.ComfyNode): image_data = base64.b64decode(response_api.image) returned_image = bytesio_to_image_tensor(BytesIO(image_data)) - return comfy_io.NodeOutput(returned_image) + return IO.NodeOutput(returned_image) -class StabilityTextToAudio(comfy_io.ComfyNode): +class StabilityTextToAudio(IO.ComfyNode): """Generates high-quality music and sound effects from text descriptions.""" @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityTextToAudio", display_name="Stability AI Text To Audio", category="api node/audio/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["stable-audio-2.5"], ), - comfy_io.String.Input("prompt", multiline=True, default=""), - comfy_io.Int.Input( + IO.String.Input("prompt", multiline=True, default=""), + IO.Int.Input( "duration", default=190, min=1, @@ -681,18 +618,18 @@ class StabilityTextToAudio(comfy_io.ComfyNode): tooltip="Controls the duration in seconds of the generated audio.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for generation.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "steps", default=8, min=4, @@ -703,58 +640,50 @@ class StabilityTextToAudio(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Audio.Output(), + IO.Audio.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @classmethod - async def execute(cls, model: str, prompt: str, duration: int, seed: int, steps: int) -> comfy_io.NodeOutput: + async def execute(cls, model: str, prompt: str, duration: int, seed: int, steps: int) -> IO.NodeOutput: validate_string(prompt, max_length=10000) payload = StabilityTextToAudioRequest(prompt=prompt, model=model, duration=duration, seed=seed, steps=steps) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/audio/stable-audio-2/text-to-audio", - method=HttpMethod.POST, - request_model=StabilityTextToAudioRequest, - response_model=StabilityAudioResponse, - ), - request=payload, + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/text-to-audio", method="POST"), + response_model=StabilityAudioResponse, + data=payload, content_type="multipart/form-data", - auth_kwargs= { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - response_api = await operation.execute() if not response_api.audio: raise ValueError("No audio file was received in response.") - return comfy_io.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio))) + return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio))) -class StabilityAudioToAudio(comfy_io.ComfyNode): +class StabilityAudioToAudio(IO.ComfyNode): """Transforms existing audio samples into new high-quality compositions using text instructions.""" @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityAudioToAudio", display_name="Stability AI Audio To Audio", category="api node/audio/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["stable-audio-2.5"], ), - comfy_io.String.Input("prompt", multiline=True, default=""), - comfy_io.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."), - comfy_io.Int.Input( + IO.String.Input("prompt", multiline=True, default=""), + IO.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."), + IO.Int.Input( "duration", default=190, min=1, @@ -763,18 +692,18 @@ class StabilityAudioToAudio(comfy_io.ComfyNode): tooltip="Controls the duration in seconds of the generated audio.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for generation.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "steps", default=8, min=4, @@ -783,24 +712,24 @@ class StabilityAudioToAudio(comfy_io.ComfyNode): tooltip="Controls the number of sampling steps.", optional=True, ), - comfy_io.Float.Input( + IO.Float.Input( "strength", default=1, min=0.01, max=1.0, step=0.01, - display_mode=comfy_io.NumberDisplay.slider, + display_mode=IO.NumberDisplay.slider, tooltip="Parameter controls how much influence the audio parameter has on the generated audio.", optional=True, ), ], outputs=[ - comfy_io.Audio.Output(), + IO.Audio.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -808,51 +737,43 @@ class StabilityAudioToAudio(comfy_io.ComfyNode): @classmethod async def execute( cls, model: str, prompt: str, audio: Input.Audio, duration: int, seed: int, steps: int, strength: float - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, max_length=10000) validate_audio_duration(audio, 6, 190) payload = StabilityAudioToAudioRequest( prompt=prompt, model=model, duration=duration, seed=seed, steps=steps, strength=strength ) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/audio/stable-audio-2/audio-to-audio", - method=HttpMethod.POST, - request_model=StabilityAudioToAudioRequest, - response_model=StabilityAudioResponse, - ), - request=payload, + response_api = await sync_op( + cls, + ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/audio-to-audio", method="POST"), + response_model=StabilityAudioResponse, + data=payload, content_type="multipart/form-data", files={"audio": audio_input_to_mp3(audio)}, - auth_kwargs= { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - response_api = await operation.execute() if not response_api.audio: raise ValueError("No audio file was received in response.") - return comfy_io.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio))) + return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio))) -class StabilityAudioInpaint(comfy_io.ComfyNode): +class StabilityAudioInpaint(IO.ComfyNode): """Transforms part of existing audio sample using text instructions.""" @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="StabilityAudioInpaint", display_name="Stability AI Audio Inpaint", category="api node/audio/Stability AI", description=cleandoc(cls.__doc__ or ""), inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["stable-audio-2.5"], ), - comfy_io.String.Input("prompt", multiline=True, default=""), - comfy_io.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."), - comfy_io.Int.Input( + IO.String.Input("prompt", multiline=True, default=""), + IO.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."), + IO.Int.Input( "duration", default=190, min=1, @@ -861,18 +782,18 @@ class StabilityAudioInpaint(comfy_io.ComfyNode): tooltip="Controls the duration in seconds of the generated audio.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=4294967294, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="The random seed used for generation.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "steps", default=8, min=4, @@ -881,7 +802,7 @@ class StabilityAudioInpaint(comfy_io.ComfyNode): tooltip="Controls the number of sampling steps.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "mask_start", default=30, min=0, @@ -889,7 +810,7 @@ class StabilityAudioInpaint(comfy_io.ComfyNode): step=1, optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "mask_end", default=190, min=0, @@ -899,12 +820,12 @@ class StabilityAudioInpaint(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Audio.Output(), + IO.Audio.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -920,7 +841,7 @@ class StabilityAudioInpaint(comfy_io.ComfyNode): steps: int, mask_start: int, mask_end: int, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: validate_string(prompt, max_length=10000) if mask_end <= mask_start: raise ValueError(f"Value of mask_end({mask_end}) should be greater then mask_start({mask_start})") @@ -935,30 +856,22 @@ class StabilityAudioInpaint(comfy_io.ComfyNode): mask_start=mask_start, mask_end=mask_end, ) - operation = SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/stability/v2beta/audio/stable-audio-2/inpaint", - method=HttpMethod.POST, - request_model=StabilityAudioInpaintRequest, - response_model=StabilityAudioResponse, - ), - request=payload, + response_api = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/inpaint", method="POST"), + response_model=StabilityAudioResponse, + data=payload, content_type="multipart/form-data", files={"audio": audio_input_to_mp3(audio)}, - auth_kwargs={ - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, ) - response_api = await operation.execute() if not response_api.audio: raise ValueError("No audio file was received in response.") - return comfy_io.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio))) + return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio))) class StabilityExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ StabilityStableImageUltraNode, StabilityStableImageSD_3_5Node, diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py new file mode 100644 index 000000000..b04575ad8 --- /dev/null +++ b/comfy_api_nodes/nodes_topaz.py @@ -0,0 +1,439 @@ +import builtins +from io import BytesIO + +import aiohttp +import torch +from typing_extensions import override + +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.apis import topaz_api +from comfy_api_nodes.util import ( + ApiEndpoint, + download_url_to_image_tensor, + download_url_to_video_output, + get_fs_object_size, + get_number_of_images, + poll_op, + sync_op, + upload_images_to_comfyapi, + validate_container_format_is_mp4, +) + +UPSCALER_MODELS_MAP = { + "Starlight (Astra) Fast": "slf-1", + "Starlight (Astra) Creative": "slc-1", +} + + +class TopazImageEnhance(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="TopazImageEnhance", + display_name="Topaz Image Enhance", + category="api node/image/Topaz", + description="Industry-standard upscaling and image enhancement.", + inputs=[ + IO.Combo.Input("model", options=["Reimagine"]), + IO.Image.Input("image"), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Optional text prompt for creative upscaling guidance.", + optional=True, + ), + IO.Combo.Input( + "subject_detection", + options=["All", "Foreground", "Background"], + optional=True, + ), + IO.Boolean.Input( + "face_enhancement", + default=True, + optional=True, + tooltip="Enhance faces (if present) during processing.", + ), + IO.Float.Input( + "face_enhancement_creativity", + default=0.0, + min=0.0, + max=1.0, + step=0.01, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Set the creativity level for face enhancement.", + ), + IO.Float.Input( + "face_enhancement_strength", + default=1.0, + min=0.0, + max=1.0, + step=0.01, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Controls how sharp enhanced faces are relative to the background.", + ), + IO.Boolean.Input( + "crop_to_fill", + default=False, + optional=True, + tooltip="By default, the image is letterboxed when the output aspect ratio differs. " + "Enable to crop the image to fill the output dimensions.", + ), + IO.Int.Input( + "output_width", + default=0, + min=0, + max=32000, + step=1, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Zero value means to calculate automatically (usually it will be original size or output_height if specified).", + ), + IO.Int.Input( + "output_height", + default=0, + min=0, + max=32000, + step=1, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Zero value means to output in the same height as original or output width.", + ), + IO.Int.Input( + "creativity", + default=3, + min=1, + max=9, + step=1, + display_mode=IO.NumberDisplay.slider, + optional=True, + ), + IO.Boolean.Input( + "face_preservation", + default=True, + optional=True, + tooltip="Preserve subjects' facial identity.", + ), + IO.Boolean.Input( + "color_preservation", + default=True, + optional=True, + tooltip="Preserve the original colors.", + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + image: torch.Tensor, + prompt: str = "", + subject_detection: str = "All", + face_enhancement: bool = True, + face_enhancement_creativity: float = 1.0, + face_enhancement_strength: float = 0.8, + crop_to_fill: bool = False, + output_width: int = 0, + output_height: int = 0, + creativity: int = 3, + face_preservation: bool = True, + color_preservation: bool = True, + ) -> IO.NodeOutput: + if get_number_of_images(image) != 1: + raise ValueError("Only one input image is supported.") + download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png") + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"), + response_model=topaz_api.ImageAsyncTaskResponse, + data=topaz_api.ImageEnhanceRequest( + model=model, + prompt=prompt, + subject_detection=subject_detection, + face_enhancement=face_enhancement, + face_enhancement_creativity=face_enhancement_creativity, + face_enhancement_strength=face_enhancement_strength, + crop_to_fill=crop_to_fill, + output_width=output_width if output_width else None, + output_height=output_height if output_height else None, + creativity=creativity, + face_preservation=str(face_preservation).lower(), + color_preservation=str(color_preservation).lower(), + source_url=download_url[0], + output_format="png", + ), + content_type="multipart/form-data", + ) + + await poll_op( + cls, + poll_endpoint=ApiEndpoint(path=f"/proxy/topaz/image/v1/status/{initial_response.process_id}"), + response_model=topaz_api.ImageStatusResponse, + status_extractor=lambda x: x.status, + progress_extractor=lambda x: getattr(x, "progress", 0), + price_extractor=lambda x: x.credits * 0.08, + poll_interval=8.0, + max_poll_attempts=160, + estimated_duration=60, + ) + + results = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/topaz/image/v1/download/{initial_response.process_id}"), + response_model=topaz_api.ImageDownloadResponse, + monitor_progress=False, + ) + return IO.NodeOutput(await download_url_to_image_tensor(results.download_url)) + + +class TopazVideoEnhance(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="TopazVideoEnhance", + display_name="Topaz Video Enhance", + category="api node/video/Topaz", + description="Breathe new life into video with powerful upscaling and recovery technology.", + inputs=[ + IO.Video.Input("video"), + IO.Boolean.Input("upscaler_enabled", default=True), + IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())), + IO.Combo.Input("upscaler_resolution", options=["FullHD (1080p)", "4K (2160p)"]), + IO.Combo.Input( + "upscaler_creativity", + options=["low", "middle", "high"], + default="low", + tooltip="Creativity level (applies only to Starlight (Astra) Creative).", + optional=True, + ), + IO.Boolean.Input("interpolation_enabled", default=False, optional=True), + IO.Combo.Input("interpolation_model", options=["apo-8"], default="apo-8", optional=True), + IO.Int.Input( + "interpolation_slowmo", + default=1, + min=1, + max=16, + display_mode=IO.NumberDisplay.number, + tooltip="Slow-motion factor applied to the input video. " + "For example, 2 makes the output twice as slow and doubles the duration.", + optional=True, + ), + IO.Int.Input( + "interpolation_frame_rate", + default=60, + min=15, + max=240, + display_mode=IO.NumberDisplay.number, + tooltip="Output frame rate.", + optional=True, + ), + IO.Boolean.Input( + "interpolation_duplicate", + default=False, + tooltip="Analyze the input for duplicate frames and remove them.", + optional=True, + ), + IO.Float.Input( + "interpolation_duplicate_threshold", + default=0.01, + min=0.001, + max=0.1, + step=0.001, + display_mode=IO.NumberDisplay.number, + tooltip="Detection sensitivity for duplicate frames.", + optional=True, + ), + IO.Combo.Input( + "dynamic_compression_level", + options=["Low", "Mid", "High"], + default="Low", + tooltip="CQP level.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + video: Input.Video, + upscaler_enabled: bool, + upscaler_model: str, + upscaler_resolution: str, + upscaler_creativity: str = "low", + interpolation_enabled: bool = False, + interpolation_model: str = "apo-8", + interpolation_slowmo: int = 1, + interpolation_frame_rate: int = 60, + interpolation_duplicate: bool = False, + interpolation_duplicate_threshold: float = 0.01, + dynamic_compression_level: str = "Low", + ) -> IO.NodeOutput: + if upscaler_enabled is False and interpolation_enabled is False: + raise ValueError("There is nothing to do: both upscaling and interpolation are disabled.") + validate_container_format_is_mp4(video) + src_width, src_height = video.get_dimensions() + src_frame_rate = int(video.get_frame_rate()) + duration_sec = video.get_duration() + src_video_stream = video.get_stream_source() + target_width = src_width + target_height = src_height + target_frame_rate = src_frame_rate + filters = [] + if upscaler_enabled: + if "1080p" in upscaler_resolution: + target_pixel_p = 1080 + max_long_side = 1920 + else: + target_pixel_p = 2160 + max_long_side = 3840 + ar = src_width / src_height + if src_width >= src_height: + # Landscape or Square; Attempt to set height to target (e.g., 2160), calculate width + target_height = target_pixel_p + target_width = int(target_height * ar) + # Check if width exceeds standard bounds (for ultra-wide e.g., 21:9 ARs) + if target_width > max_long_side: + target_width = max_long_side + target_height = int(target_width / ar) + else: + # Portrait; Attempt to set width to target (e.g., 2160), calculate height + target_width = target_pixel_p + target_height = int(target_width / ar) + # Check if height exceeds standard bounds + if target_height > max_long_side: + target_height = max_long_side + target_width = int(target_height * ar) + if target_width % 2 != 0: + target_width += 1 + if target_height % 2 != 0: + target_height += 1 + filters.append( + topaz_api.VideoEnhancementFilter( + model=UPSCALER_MODELS_MAP[upscaler_model], + creativity=(upscaler_creativity if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None), + isOptimizedMode=(True if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None), + ), + ) + if interpolation_enabled: + target_frame_rate = interpolation_frame_rate + filters.append( + topaz_api.VideoFrameInterpolationFilter( + model=interpolation_model, + slowmo=interpolation_slowmo, + fps=interpolation_frame_rate, + duplicate=interpolation_duplicate, + duplicate_threshold=interpolation_duplicate_threshold, + ), + ) + initial_res = await sync_op( + cls, + ApiEndpoint(path="/proxy/topaz/video/", method="POST"), + response_model=topaz_api.CreateVideoResponse, + data=topaz_api.CreateVideoRequest( + source=topaz_api.CreateCreateVideoRequestSource( + container="mp4", + size=get_fs_object_size(src_video_stream), + duration=int(duration_sec), + frameCount=video.get_frame_count(), + frameRate=src_frame_rate, + resolution=topaz_api.Resolution(width=src_width, height=src_height), + ), + filters=filters, + output=topaz_api.OutputInformationVideo( + resolution=topaz_api.Resolution(width=target_width, height=target_height), + frameRate=target_frame_rate, + audioCodec="AAC", + audioTransfer="Copy", + dynamicCompressionLevel=dynamic_compression_level, + ), + ), + wait_label="Creating task", + final_label_on_success="Task created", + ) + upload_res = await sync_op( + cls, + ApiEndpoint( + path=f"/proxy/topaz/video/{initial_res.requestId}/accept", + method="PATCH", + ), + response_model=topaz_api.VideoAcceptResponse, + wait_label="Preparing upload", + final_label_on_success="Upload started", + ) + if len(upload_res.urls) > 1: + raise NotImplementedError( + "Large files are not currently supported. Please open an issue in the ComfyUI repository." + ) + async with aiohttp.ClientSession(headers={"Content-Type": "video/mp4"}) as session: + if isinstance(src_video_stream, BytesIO): + src_video_stream.seek(0) + async with session.put(upload_res.urls[0], data=src_video_stream, raise_for_status=True) as res: + upload_etag = res.headers["Etag"] + else: + with builtins.open(src_video_stream, "rb") as video_file: + async with session.put(upload_res.urls[0], data=video_file, raise_for_status=True) as res: + upload_etag = res.headers["Etag"] + await sync_op( + cls, + ApiEndpoint( + path=f"/proxy/topaz/video/{initial_res.requestId}/complete-upload", + method="PATCH", + ), + response_model=topaz_api.VideoCompleteUploadResponse, + data=topaz_api.VideoCompleteUploadRequest( + uploadResults=[ + topaz_api.VideoCompleteUploadRequestPart( + partNum=1, + eTag=upload_etag, + ), + ], + ), + wait_label="Finalizing upload", + final_label_on_success="Upload completed", + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/topaz/video/{initial_res.requestId}/status"), + response_model=topaz_api.VideoStatusResponse, + status_extractor=lambda x: x.status, + progress_extractor=lambda x: getattr(x, "progress", 0), + price_extractor=lambda x: (x.estimates.cost[0] * 0.08 if x.estimates and x.estimates.cost[0] else None), + poll_interval=10.0, + max_poll_attempts=320, + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.download.url)) + + +class TopazExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + TopazImageEnhance, + TopazVideoEnhance, + ] + + +async def comfy_entrypoint() -> TopazExtension: + return TopazExtension() diff --git a/comfy_api_nodes/nodes_tripo.py b/comfy_api_nodes/nodes_tripo.py index d08cf9007..bd3c24fb3 100644 --- a/comfy_api_nodes/nodes_tripo.py +++ b/comfy_api_nodes/nodes_tripo.py @@ -1,46 +1,39 @@ import os -from folder_paths import get_output_directory -from comfy_api_nodes.mapper_utils import model_field_to_node_input -from comfy.comfy_types.node_typing import IO -from comfy_api_nodes.apis import ( - TripoOrientation, - TripoModelVersion, -) +from typing import Optional + +import torch +from typing_extensions import override + +from comfy_api.latest import IO, ComfyExtension from comfy_api_nodes.apis.tripo_api import ( - TripoTaskType, - TripoStyle, - TripoFileReference, + TripoAnimateRetargetRequest, + TripoAnimateRigRequest, + TripoConvertModelRequest, TripoFileEmptyReference, - TripoUrlReference, + TripoFileReference, + TripoImageToModelRequest, + TripoModelVersion, + TripoMultiviewToModelRequest, + TripoOrientation, + TripoRefineModelRequest, + TripoStyle, TripoTaskResponse, TripoTaskStatus, + TripoTaskType, TripoTextToModelRequest, - TripoImageToModelRequest, - TripoMultiviewToModelRequest, TripoTextureModelRequest, - TripoRefineModelRequest, - TripoAnimateRigRequest, - TripoAnimateRetargetRequest, - TripoConvertModelRequest, + TripoUrlReference, ) - -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, -) -from comfy_api_nodes.apinode_utils import ( + download_url_as_bytesio, + poll_op, + sync_op, upload_images_to_comfyapi, - download_url_to_bytesio, ) +from folder_paths import get_output_directory -async def upload_image_to_tripo(image, **kwargs): - urls = await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs) - return TripoFileReference(TripoUrlReference(url=urls[0], type="jpeg")) - def get_model_url_from_response(response: TripoTaskResponse) -> str: if response.data is not None: for key in ["pbr_model", "model", "base_model"]: @@ -50,20 +43,18 @@ def get_model_url_from_response(response: TripoTaskResponse) -> str: async def poll_until_finished( - kwargs: dict[str, str], + node_cls: type[IO.ComfyNode], response: TripoTaskResponse, -) -> tuple[str, str]: + average_duration: Optional[int] = None, +) -> IO.NodeOutput: """Polls the Tripo API endpoint until the task reaches a terminal state, then returns the response.""" if response.code != 0: raise RuntimeError(f"Failed to generate mesh: {response.error}") task_id = response.data.task_id - response_poll = await PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/tripo/v2/openapi/task/{task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=TripoTaskResponse, - ), + response_poll = await poll_op( + node_cls, + poll_endpoint=ApiEndpoint(path=f"/proxy/tripo/v2/openapi/task/{task_id}"), + response_model=TripoTaskResponse, completed_statuses=[TripoTaskStatus.SUCCESS], failed_statuses=[ TripoTaskStatus.FAILED, @@ -73,72 +64,86 @@ async def poll_until_finished( TripoTaskStatus.EXPIRED, ], status_extractor=lambda x: x.data.status, - auth_kwargs=kwargs, - node_id=kwargs["unique_id"], - result_url_extractor=get_model_url_from_response, progress_extractor=lambda x: x.data.progress, - ).execute() + estimated_duration=average_duration, + ) if response_poll.data.status == TripoTaskStatus.SUCCESS: url = get_model_url_from_response(response_poll) - bytesio = await download_url_to_bytesio(url) + bytesio = await download_url_as_bytesio(url) # Save the downloaded model file model_file = f"tripo_model_{task_id}.glb" with open(os.path.join(get_output_directory(), model_file), "wb") as f: f.write(bytesio.getvalue()) - return model_file, task_id + return IO.NodeOutput(model_file, task_id) raise RuntimeError(f"Failed to generate mesh: {response_poll}") -class TripoTextToModelNode: +class TripoTextToModelNode(IO.ComfyNode): """ Generates 3D models synchronously based on a text prompt using Tripo's API. """ - AVERAGE_DURATION = 80 + @classmethod - def INPUT_TYPES(s): - return { - "required": { - "prompt": ("STRING", {"multiline": True}), - }, - "optional": { - "negative_prompt": ("STRING", {"multiline": True}), - "model_version": model_field_to_node_input(IO.COMBO, TripoTextToModelRequest, "model_version", enum_type=TripoModelVersion), - "style": model_field_to_node_input(IO.COMBO, TripoTextToModelRequest, "style", enum_type=TripoStyle, default="None"), - "texture": ("BOOLEAN", {"default": True}), - "pbr": ("BOOLEAN", {"default": True}), - "image_seed": ("INT", {"default": 42}), - "model_seed": ("INT", {"default": 42}), - "texture_seed": ("INT", {"default": 42}), - "texture_quality": (["standard", "detailed"], {"default": "standard"}), - "face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}), - "quad": ("BOOLEAN", {"default": False}) - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TripoTextToModelNode", + display_name="Tripo: Text to Model", + category="api node/3d/Tripo", + inputs=[ + IO.String.Input("prompt", multiline=True), + IO.String.Input("negative_prompt", multiline=True, optional=True), + IO.Combo.Input( + "model_version", options=TripoModelVersion, default=TripoModelVersion.v2_5_20250123, optional=True + ), + IO.Combo.Input("style", options=TripoStyle, default="None", optional=True), + IO.Boolean.Input("texture", default=True, optional=True), + IO.Boolean.Input("pbr", default=True, optional=True), + IO.Int.Input("image_seed", default=42, optional=True), + IO.Int.Input("model_seed", default=42, optional=True), + IO.Int.Input("texture_seed", default=42, optional=True), + IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True), + IO.Int.Input("face_limit", default=-1, min=-1, max=2000000, optional=True), + IO.Boolean.Input("quad", default=False, optional=True), + IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) - RETURN_TYPES = ("STRING", "MODEL_TASK_ID",) - RETURN_NAMES = ("model_file", "model task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - - async def generate_mesh(self, prompt, negative_prompt=None, model_version=None, style=None, texture=None, pbr=None, image_seed=None, model_seed=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs): + @classmethod + async def execute( + cls, + prompt: str, + negative_prompt: Optional[str] = None, + model_version=None, + style: Optional[str] = None, + texture: Optional[bool] = None, + pbr: Optional[bool] = None, + image_seed: Optional[int] = None, + model_seed: Optional[int] = None, + texture_seed: Optional[int] = None, + texture_quality: Optional[str] = None, + geometry_quality: Optional[str] = None, + face_limit: Optional[int] = None, + quad: Optional[bool] = None, + ) -> IO.NodeOutput: style_enum = None if style == "None" else style if not prompt: raise RuntimeError("Prompt is required") - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoTextToModelRequest, - response_model=TripoTaskResponse, - ), - request=TripoTextToModelRequest( + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoTextToModelRequest( type=TripoTaskType.TEXT_TO_MODEL, prompt=prompt, negative_prompt=negative_prompt if negative_prompt else None, @@ -151,65 +156,93 @@ class TripoTextToModelNode: texture_seed=texture_seed, texture_quality=texture_quality, face_limit=face_limit, + geometry_quality=geometry_quality, auto_size=True, - quad=quad + quad=quad, ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + ) + return await poll_until_finished(cls, response, average_duration=80) -class TripoImageToModelNode: +class TripoImageToModelNode(IO.ComfyNode): """ Generates 3D models synchronously based on a single image using Tripo's API. """ - AVERAGE_DURATION = 80 + @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - }, - "optional": { - "model_version": model_field_to_node_input(IO.COMBO, TripoImageToModelRequest, "model_version", enum_type=TripoModelVersion), - "style": model_field_to_node_input(IO.COMBO, TripoTextToModelRequest, "style", enum_type=TripoStyle, default="None"), - "texture": ("BOOLEAN", {"default": True}), - "pbr": ("BOOLEAN", {"default": True}), - "model_seed": ("INT", {"default": 42}), - "orientation": model_field_to_node_input(IO.COMBO, TripoImageToModelRequest, "orientation", enum_type=TripoOrientation), - "texture_seed": ("INT", {"default": 42}), - "texture_quality": (["standard", "detailed"], {"default": "standard"}), - "texture_alignment": (["original_image", "geometry"], {"default": "original_image"}), - "face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}), - "quad": ("BOOLEAN", {"default": False}) - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TripoImageToModelNode", + display_name="Tripo: Image to Model", + category="api node/3d/Tripo", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input( + "model_version", + options=TripoModelVersion, + tooltip="The model version to use for generation", + optional=True, + ), + IO.Combo.Input("style", options=TripoStyle, default="None", optional=True), + IO.Boolean.Input("texture", default=True, optional=True), + IO.Boolean.Input("pbr", default=True, optional=True), + IO.Int.Input("model_seed", default=42, optional=True), + IO.Combo.Input( + "orientation", options=TripoOrientation, default=TripoOrientation.DEFAULT, optional=True + ), + IO.Int.Input("texture_seed", default=42, optional=True), + IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True), + IO.Combo.Input( + "texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True + ), + IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True), + IO.Boolean.Input("quad", default=False, optional=True), + IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) - RETURN_TYPES = ("STRING", "MODEL_TASK_ID",) - RETURN_NAMES = ("model_file", "model task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - - async def generate_mesh(self, image, model_version=None, style=None, texture=None, pbr=None, model_seed=None, orientation=None, texture_alignment=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs): + @classmethod + async def execute( + cls, + image: torch.Tensor, + model_version: Optional[str] = None, + style: Optional[str] = None, + texture: Optional[bool] = None, + pbr: Optional[bool] = None, + model_seed: Optional[int] = None, + orientation=None, + texture_seed: Optional[int] = None, + texture_quality: Optional[str] = None, + geometry_quality: Optional[str] = None, + texture_alignment: Optional[str] = None, + face_limit: Optional[int] = None, + quad: Optional[bool] = None, + ) -> IO.NodeOutput: style_enum = None if style == "None" else style if image is None: raise RuntimeError("Image is required") - tripo_file = await upload_image_to_tripo(image, **kwargs) - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoImageToModelRequest, - response_model=TripoTaskResponse, - ), - request=TripoImageToModelRequest( + tripo_file = TripoFileReference( + root=TripoUrlReference( + url=(await upload_images_to_comfyapi(cls, image, max_images=1))[0], + type="jpeg", + ) + ) + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoImageToModelRequest( type=TripoTaskType.IMAGE_TO_MODEL, file=tripo_file, model_version=model_version, @@ -218,85 +251,113 @@ class TripoImageToModelNode: pbr=pbr, model_seed=model_seed, orientation=orientation, + geometry_quality=geometry_quality, texture_alignment=texture_alignment, texture_seed=texture_seed, texture_quality=texture_quality, face_limit=face_limit, auto_size=True, - quad=quad + quad=quad, ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + ) + return await poll_until_finished(cls, response, average_duration=80) -class TripoMultiviewToModelNode: +class TripoMultiviewToModelNode(IO.ComfyNode): """ Generates 3D models synchronously based on up to four images (front, left, back, right) using Tripo's API. """ - AVERAGE_DURATION = 80 + @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - }, - "optional": { - "image_left": ("IMAGE",), - "image_back": ("IMAGE",), - "image_right": ("IMAGE",), - "model_version": model_field_to_node_input(IO.COMBO, TripoMultiviewToModelRequest, "model_version", enum_type=TripoModelVersion), - "orientation": model_field_to_node_input(IO.COMBO, TripoImageToModelRequest, "orientation", enum_type=TripoOrientation), - "texture": ("BOOLEAN", {"default": True}), - "pbr": ("BOOLEAN", {"default": True}), - "model_seed": ("INT", {"default": 42}), - "texture_seed": ("INT", {"default": 42}), - "texture_quality": (["standard", "detailed"], {"default": "standard"}), - "texture_alignment": (["original_image", "geometry"], {"default": "original_image"}), - "face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}), - "quad": ("BOOLEAN", {"default": False}) - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TripoMultiviewToModelNode", + display_name="Tripo: Multiview to Model", + category="api node/3d/Tripo", + inputs=[ + IO.Image.Input("image"), + IO.Image.Input("image_left", optional=True), + IO.Image.Input("image_back", optional=True), + IO.Image.Input("image_right", optional=True), + IO.Combo.Input( + "model_version", + options=TripoModelVersion, + optional=True, + tooltip="The model version to use for generation", + ), + IO.Combo.Input( + "orientation", + options=TripoOrientation, + default=TripoOrientation.DEFAULT, + optional=True, + ), + IO.Boolean.Input("texture", default=True, optional=True), + IO.Boolean.Input("pbr", default=True, optional=True), + IO.Int.Input("model_seed", default=42, optional=True), + IO.Int.Input("texture_seed", default=42, optional=True), + IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True), + IO.Combo.Input( + "texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True + ), + IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True), + IO.Boolean.Input("quad", default=False, optional=True), + IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) - RETURN_TYPES = ("STRING", "MODEL_TASK_ID",) - RETURN_NAMES = ("model_file", "model task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - - async def generate_mesh(self, image, image_left=None, image_back=None, image_right=None, model_version=None, orientation=None, texture=None, pbr=None, model_seed=None, texture_seed=None, texture_quality=None, texture_alignment=None, face_limit=None, quad=None, **kwargs): + @classmethod + async def execute( + cls, + image: torch.Tensor, + image_left: Optional[torch.Tensor] = None, + image_back: Optional[torch.Tensor] = None, + image_right: Optional[torch.Tensor] = None, + model_version: Optional[str] = None, + orientation: Optional[str] = None, + texture: Optional[bool] = None, + pbr: Optional[bool] = None, + model_seed: Optional[int] = None, + texture_seed: Optional[int] = None, + texture_quality: Optional[str] = None, + geometry_quality: Optional[str] = None, + texture_alignment: Optional[str] = None, + face_limit: Optional[int] = None, + quad: Optional[bool] = None, + ) -> IO.NodeOutput: if image is None: raise RuntimeError("front image for multiview is required") images = [] - image_dict = { - "image": image, - "image_left": image_left, - "image_back": image_back, - "image_right": image_right - } + image_dict = {"image": image, "image_left": image_left, "image_back": image_back, "image_right": image_right} if image_left is None and image_back is None and image_right is None: raise RuntimeError("At least one of left, back, or right image must be provided for multiview") for image_name in ["image", "image_left", "image_back", "image_right"]: image_ = image_dict[image_name] if image_ is not None: - tripo_file = await upload_image_to_tripo(image_, **kwargs) - images.append(tripo_file) + images.append( + TripoFileReference( + root=TripoUrlReference( + url=(await upload_images_to_comfyapi(cls, image_, max_images=1))[0], type="jpeg" + ) + ) + ) else: images.append(TripoFileEmptyReference()) - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoMultiviewToModelRequest, - response_model=TripoTaskResponse, - ), - request=TripoMultiviewToModelRequest( + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoMultiviewToModelRequest( type=TripoTaskType.MULTIVIEW_TO_MODEL, files=images, model_version=model_version, @@ -306,276 +367,361 @@ class TripoMultiviewToModelNode: model_seed=model_seed, texture_seed=texture_seed, texture_quality=texture_quality, + geometry_quality=geometry_quality, texture_alignment=texture_alignment, face_limit=face_limit, quad=quad, ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + ) + return await poll_until_finished(cls, response, average_duration=80) -class TripoTextureNode: +class TripoTextureNode(IO.ComfyNode): + @classmethod - def INPUT_TYPES(s): - return { - "required": { - "model_task_id": ("MODEL_TASK_ID",), - }, - "optional": { - "texture": ("BOOLEAN", {"default": True}), - "pbr": ("BOOLEAN", {"default": True}), - "texture_seed": ("INT", {"default": 42}), - "texture_quality": (["standard", "detailed"], {"default": "standard"}), - "texture_alignment": (["original_image", "geometry"], {"default": "original_image"}), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TripoTextureNode", + display_name="Tripo: Texture model", + category="api node/3d/Tripo", + inputs=[ + IO.Custom("MODEL_TASK_ID").Input("model_task_id"), + IO.Boolean.Input("texture", default=True, optional=True), + IO.Boolean.Input("pbr", default=True, optional=True), + IO.Int.Input("texture_seed", default=42, optional=True), + IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True), + IO.Combo.Input( + "texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) - RETURN_TYPES = ("STRING", "MODEL_TASK_ID",) - RETURN_NAMES = ("model_file", "model task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - AVERAGE_DURATION = 80 - - async def generate_mesh(self, model_task_id, texture=None, pbr=None, texture_seed=None, texture_quality=None, texture_alignment=None, **kwargs): - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoTextureModelRequest, - response_model=TripoTaskResponse, - ), - request=TripoTextureModelRequest( + @classmethod + async def execute( + cls, + model_task_id, + texture: Optional[bool] = None, + pbr: Optional[bool] = None, + texture_seed: Optional[int] = None, + texture_quality: Optional[str] = None, + texture_alignment: Optional[str] = None, + ) -> IO.NodeOutput: + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoTextureModelRequest( original_model_task_id=model_task_id, texture=texture, pbr=pbr, texture_seed=texture_seed, texture_quality=texture_quality, - texture_alignment=texture_alignment + texture_alignment=texture_alignment, ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + ) + return await poll_until_finished(cls, response, average_duration=80) -class TripoRefineNode: +class TripoRefineNode(IO.ComfyNode): + @classmethod - def INPUT_TYPES(s): - return { - "required": { - "model_task_id": ("MODEL_TASK_ID", { - "tooltip": "Must be a v1.4 Tripo model" - }), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TripoRefineNode", + display_name="Tripo: Refine Draft model", + category="api node/3d/Tripo", + description="Refine a draft model created by v1.4 Tripo models only.", + inputs=[ + IO.Custom("MODEL_TASK_ID").Input("model_task_id", tooltip="Must be a v1.4 Tripo model"), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) - DESCRIPTION = "Refine a draft model created by v1.4 Tripo models only." - - RETURN_TYPES = ("STRING", "MODEL_TASK_ID",) - RETURN_NAMES = ("model_file", "model task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - AVERAGE_DURATION = 240 - - async def generate_mesh(self, model_task_id, **kwargs): - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoRefineModelRequest, - response_model=TripoTaskResponse, - ), - request=TripoRefineModelRequest( - draft_model_task_id=model_task_id - ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) - - -class TripoRigNode: @classmethod - def INPUT_TYPES(s): - return { - "required": { - "original_model_task_id": ("MODEL_TASK_ID",), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } - - RETURN_TYPES = ("STRING", "RIG_TASK_ID") - RETURN_NAMES = ("model_file", "rig task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - AVERAGE_DURATION = 180 - - async def generate_mesh(self, original_model_task_id, **kwargs): - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoAnimateRigRequest, - response_model=TripoTaskResponse, - ), - request=TripoAnimateRigRequest( - original_model_task_id=original_model_task_id, - out_format="glb", - spec="tripo" - ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + async def execute(cls, model_task_id) -> IO.NodeOutput: + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoRefineModelRequest(draft_model_task_id=model_task_id), + ) + return await poll_until_finished(cls, response, average_duration=240) -class TripoRetargetNode: +class TripoRigNode(IO.ComfyNode): + @classmethod - def INPUT_TYPES(s): - return { - "required": { - "original_model_task_id": ("RIG_TASK_ID",), - "animation": ([ - "preset:idle", - "preset:walk", - "preset:climb", - "preset:jump", - "preset:slash", - "preset:shoot", - "preset:hurt", - "preset:fall", - "preset:turn", - ],), - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TripoRigNode", + display_name="Tripo: Rig model", + category="api node/3d/Tripo", + inputs=[IO.Custom("MODEL_TASK_ID").Input("original_model_task_id")], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("RIG_TASK_ID").Output(display_name="rig task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) - RETURN_TYPES = ("STRING", "RETARGET_TASK_ID") - RETURN_NAMES = ("model_file", "retarget task_id") - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - AVERAGE_DURATION = 30 + @classmethod + async def execute(cls, original_model_task_id) -> IO.NodeOutput: + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoAnimateRigRequest(original_model_task_id=original_model_task_id, out_format="glb", spec="tripo"), + ) + return await poll_until_finished(cls, response, average_duration=180) - async def generate_mesh(self, animation, original_model_task_id, **kwargs): - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoAnimateRetargetRequest, - response_model=TripoTaskResponse, - ), - request=TripoAnimateRetargetRequest( + +class TripoRetargetNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="TripoRetargetNode", + display_name="Tripo: Retarget rigged model", + category="api node/3d/Tripo", + inputs=[ + IO.Custom("RIG_TASK_ID").Input("original_model_task_id"), + IO.Combo.Input( + "animation", + options=[ + "preset:idle", + "preset:walk", + "preset:run", + "preset:dive", + "preset:climb", + "preset:jump", + "preset:slash", + "preset:shoot", + "preset:hurt", + "preset:fall", + "preset:turn", + "preset:quadruped:walk", + "preset:hexapod:walk", + "preset:octopod:walk", + "preset:serpentine:march", + "preset:aquatic:march" + ], + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("RETARGET_TASK_ID").Output(display_name="retarget task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) + + @classmethod + async def execute(cls, original_model_task_id, animation: str) -> IO.NodeOutput: + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoAnimateRetargetRequest( original_model_task_id=original_model_task_id, animation=animation, out_format="glb", - bake_animation=True + bake_animation=True, ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + ) + return await poll_until_finished(cls, response, average_duration=30) -class TripoConversionNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "original_model_task_id": ("MODEL_TASK_ID,RIG_TASK_ID,RETARGET_TASK_ID",), - "format": (["GLTF", "USDZ", "FBX", "OBJ", "STL", "3MF"],), - }, - "optional": { - "quad": ("BOOLEAN", {"default": False}), - "face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}), - "texture_size": ("INT", {"min": 128, "max": 4096, "default": 4096}), - "texture_format": (["BMP", "DPX", "HDR", "JPEG", "OPEN_EXR", "PNG", "TARGA", "TIFF", "WEBP"], {"default": "JPEG"}) - }, - "hidden": { - "auth_token": "AUTH_TOKEN_COMFY_ORG", - "comfy_api_key": "API_KEY_COMFY_ORG", - "unique_id": "UNIQUE_ID", - }, - } +class TripoConversionNode(IO.ComfyNode): @classmethod - def VALIDATE_INPUTS(cls, input_types): + def define_schema(cls): + return IO.Schema( + node_id="TripoConversionNode", + display_name="Tripo: Convert model", + category="api node/3d/Tripo", + inputs=[ + IO.Custom("MODEL_TASK_ID,RIG_TASK_ID,RETARGET_TASK_ID").Input("original_model_task_id"), + IO.Combo.Input("format", options=["GLTF", "USDZ", "FBX", "OBJ", "STL", "3MF"]), + IO.Boolean.Input("quad", default=False, optional=True), + IO.Int.Input( + "face_limit", + default=-1, + min=-1, + max=2000000, + optional=True, + ), + IO.Int.Input( + "texture_size", + default=4096, + min=128, + max=4096, + optional=True, + ), + IO.Combo.Input( + "texture_format", + options=["BMP", "DPX", "HDR", "JPEG", "OPEN_EXR", "PNG", "TARGA", "TIFF", "WEBP"], + default="JPEG", + optional=True, + ), + IO.Boolean.Input("force_symmetry", default=False, optional=True), + IO.Boolean.Input("flatten_bottom", default=False, optional=True), + IO.Float.Input( + "flatten_bottom_threshold", + default=0.0, + min=0.0, + max=1.0, + optional=True, + ), + IO.Boolean.Input("pivot_to_center_bottom", default=False, optional=True), + IO.Float.Input( + "scale_factor", + default=1.0, + min=0.0, + optional=True, + ), + IO.Boolean.Input("with_animation", default=False, optional=True), + IO.Boolean.Input("pack_uv", default=False, optional=True), + IO.Boolean.Input("bake", default=False, optional=True), + IO.String.Input("part_names", default="", optional=True), # comma-separated list + IO.Combo.Input( + "fbx_preset", + options=["blender", "mixamo", "3dsmax"], + default="blender", + optional=True, + ), + IO.Boolean.Input("export_vertex_colors", default=False, optional=True), + IO.Combo.Input( + "export_orientation", + options=["align_image", "default"], + default="default", + optional=True, + ), + IO.Boolean.Input("animate_in_place", default=False, optional=True), + ], + outputs=[], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + ) + + @classmethod + def validate_inputs(cls, input_types): # The min and max of input1 and input2 are still validated because # we didn't take `input1` or `input2` as arguments if input_types["original_model_task_id"] not in ("MODEL_TASK_ID", "RIG_TASK_ID", "RETARGET_TASK_ID"): return "original_model_task_id must be MODEL_TASK_ID, RIG_TASK_ID or RETARGET_TASK_ID type" return True - RETURN_TYPES = () - FUNCTION = "generate_mesh" - CATEGORY = "api node/3d/Tripo" - API_NODE = True - OUTPUT_NODE = True - AVERAGE_DURATION = 30 - - async def generate_mesh(self, original_model_task_id, format, quad, face_limit, texture_size, texture_format, **kwargs): + @classmethod + async def execute( + cls, + original_model_task_id, + format: str, + quad: bool, + force_symmetry: bool, + face_limit: int, + flatten_bottom: bool, + flatten_bottom_threshold: float, + texture_size: int, + texture_format: str, + pivot_to_center_bottom: bool, + scale_factor: float, + with_animation: bool, + pack_uv: bool, + bake: bool, + part_names: str, + fbx_preset: str, + export_vertex_colors: bool, + export_orientation: str, + animate_in_place: bool, + ) -> IO.NodeOutput: if not original_model_task_id: raise RuntimeError("original_model_task_id is required") - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path="/proxy/tripo/v2/openapi/task", - method=HttpMethod.POST, - request_model=TripoConvertModelRequest, - response_model=TripoTaskResponse, - ), - request=TripoConvertModelRequest( + + # Parse part_names from comma-separated string to list + part_names_list = None + if part_names and part_names.strip(): + part_names_list = [name.strip() for name in part_names.split(',') if name.strip()] + + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), + response_model=TripoTaskResponse, + data=TripoConvertModelRequest( original_model_task_id=original_model_task_id, format=format, quad=quad if quad else None, + force_symmetry=force_symmetry if force_symmetry else None, face_limit=face_limit if face_limit != -1 else None, + flatten_bottom=flatten_bottom if flatten_bottom else None, + flatten_bottom_threshold=flatten_bottom_threshold if flatten_bottom_threshold != 0.0 else None, texture_size=texture_size if texture_size != 4096 else None, - texture_format=texture_format if texture_format != "JPEG" else None + texture_format=texture_format if texture_format != "JPEG" else None, + pivot_to_center_bottom=pivot_to_center_bottom if pivot_to_center_bottom else None, + scale_factor=scale_factor if scale_factor != 1.0 else None, + with_animation=with_animation if with_animation else None, + pack_uv=pack_uv if pack_uv else None, + bake=bake if bake else None, + part_names=part_names_list, + fbx_preset=fbx_preset if fbx_preset != "blender" else None, + export_vertex_colors=export_vertex_colors if export_vertex_colors else None, + export_orientation=export_orientation if export_orientation != "default" else None, + animate_in_place=animate_in_place if animate_in_place else None, ), - auth_kwargs=kwargs, - ).execute() - return await poll_until_finished(kwargs, response) + ) + return await poll_until_finished(cls, response, average_duration=30) -NODE_CLASS_MAPPINGS = { - "TripoTextToModelNode": TripoTextToModelNode, - "TripoImageToModelNode": TripoImageToModelNode, - "TripoMultiviewToModelNode": TripoMultiviewToModelNode, - "TripoTextureNode": TripoTextureNode, - "TripoRefineNode": TripoRefineNode, - "TripoRigNode": TripoRigNode, - "TripoRetargetNode": TripoRetargetNode, - "TripoConversionNode": TripoConversionNode, -} +class TripoExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + TripoTextToModelNode, + TripoImageToModelNode, + TripoMultiviewToModelNode, + TripoTextureNode, + TripoRefineNode, + TripoRigNode, + TripoRetargetNode, + TripoConversionNode, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "TripoTextToModelNode": "Tripo: Text to Model", - "TripoImageToModelNode": "Tripo: Image to Model", - "TripoMultiviewToModelNode": "Tripo: Multiview to Model", - "TripoTextureNode": "Tripo: Texture model", - "TripoRefineNode": "Tripo: Refine Draft model", - "TripoRigNode": "Tripo: Rig model", - "TripoRetargetNode": "Tripo: Retarget rigged model", - "TripoConversionNode": "Tripo: Convert model", -} + +async def comfy_entrypoint() -> TripoExtension: + return TripoExtension() diff --git a/comfy_api_nodes/nodes_veo2.py b/comfy_api_nodes/nodes_veo2.py index 251aecd42..13a6bfd91 100644 --- a/comfy_api_nodes/nodes_veo2.py +++ b/comfy_api_nodes/nodes_veo2.py @@ -1,57 +1,37 @@ -import logging import base64 -import aiohttp -import torch from io import BytesIO -from typing import Optional + from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api.input_impl.video_types import VideoFromFile -from comfy_api_nodes.apis import ( - VeoGenVidRequest, - VeoGenVidResponse, +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl +from comfy_api_nodes.apis.veo_api import ( VeoGenVidPollRequest, VeoGenVidPollResponse, + VeoGenVidRequest, + VeoGenVidResponse, + VeoRequestInstance, + VeoRequestInstanceImage, + VeoRequestParameters, ) -from comfy_api_nodes.apis.client import ( +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, -) - -from comfy_api_nodes.apinode_utils import ( - downscale_image_tensor, + download_url_to_video_output, + poll_op, + sync_op, tensor_to_base64_string, ) AVERAGE_DURATION_VIDEO_GEN = 32 - -def convert_image_to_base64(image: torch.Tensor): - if image is None: - return None - - scaled_image = downscale_image_tensor(image, total_pixels=2048*2048) - return tensor_to_base64_string(scaled_image) +MODELS_MAP = { + "veo-2.0-generate-001": "veo-2.0-generate-001", + "veo-3.1-generate": "veo-3.1-generate-preview", + "veo-3.1-fast-generate": "veo-3.1-fast-generate-preview", + "veo-3.0-generate-001": "veo-3.0-generate-001", + "veo-3.0-fast-generate-001": "veo-3.0-fast-generate-001", +} -def get_video_url_from_response(poll_response: VeoGenVidPollResponse) -> Optional[str]: - if ( - poll_response.response - and hasattr(poll_response.response, "videos") - and poll_response.response.videos - and len(poll_response.response.videos) > 0 - ): - video = poll_response.response.videos[0] - else: - return None - if hasattr(video, "gcsUri") and video.gcsUri: - return str(video.gcsUri) - return None - - -class VeoVideoGenerationNode(comfy_io.ComfyNode): +class VeoVideoGenerationNode(IO.ComfyNode): """ Generates videos from text prompts using Google's Veo API. @@ -61,71 +41,71 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="VeoVideoGenerationNode", display_name="Google Veo 2 Video Generation", category="api node/video/Veo", description="Generates videos from text prompts using Google's Veo 2 API", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text description of the video", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=["16:9", "9:16"], default="16:9", tooltip="Aspect ratio of the output video", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", tooltip="Negative text prompt to guide what to avoid in the video", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "duration_seconds", default=5, min=5, max=8, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Duration of the output video in seconds", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "enhance_prompt", default=True, tooltip="Whether to enhance the prompt with AI assistance", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "person_generation", options=["ALLOW", "BLOCK"], default="ALLOW", tooltip="Whether to allow generating people in the video", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=0xFFFFFFFF, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed for video generation (0 for random)", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="Optional reference image to guide video generation", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["veo-2.0-generate-001"], default="veo-2.0-generate-001", @@ -134,12 +114,12 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -158,21 +138,17 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode): model="veo-2.0-generate-001", generate_audio=False, ): + model = MODELS_MAP[model] # Prepare the instances for the request instances = [] - instance = { - "prompt": prompt - } + instance = {"prompt": prompt} # Add image if provided if image is not None: - image_base64 = convert_image_to_base64(image) + image_base64 = tensor_to_base64_string(image) if image_base64: - instance["image"] = { - "bytesBase64Encoded": image_base64, - "mimeType": "image/png" - } + instance["image"] = {"bytesBase64Encoded": image_base64, "mimeType": "image/png"} instances.append(instance) @@ -190,119 +166,79 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode): if seed > 0: parameters["seed"] = seed # Only add generateAudio for Veo 3 models - if "veo-3.0" in model: + if model.find("veo-2.0") == -1: parameters["generateAudio"] = generate_audio + # force "enhance_prompt" to True for Veo3 models + parameters["enhancePrompt"] = True - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - # Initial request to start video generation - initial_operation = SynchronousOperation( - endpoint=ApiEndpoint( - path=f"/proxy/veo/{model}/generate", - method=HttpMethod.POST, - request_model=VeoGenVidRequest, - response_model=VeoGenVidResponse - ), - request=VeoGenVidRequest( + initial_response = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/veo/{model}/generate", method="POST"), + response_model=VeoGenVidResponse, + data=VeoGenVidRequest( instances=instances, - parameters=parameters + parameters=parameters, ), - auth_kwargs=auth, ) - initial_response = await initial_operation.execute() - operation_name = initial_response.name - - logging.info(f"Veo generation started with operation name: {operation_name}") - - # Define status extractor function def status_extractor(response): # Only return "completed" if the operation is done, regardless of success or failure # We'll check for errors after polling completes return "completed" if response.done else "pending" - # Define progress extractor function - def progress_extractor(response): - # Could be enhanced if the API provides progress information - return None - - # Define the polling operation - poll_operation = PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/veo/{model}/poll", - method=HttpMethod.POST, - request_model=VeoGenVidPollRequest, - response_model=VeoGenVidPollResponse - ), - completed_statuses=["completed"], - failed_statuses=[], # No failed statuses, we'll handle errors after polling + poll_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/veo/{model}/poll", method="POST"), + response_model=VeoGenVidPollResponse, status_extractor=status_extractor, - progress_extractor=progress_extractor, - request=VeoGenVidPollRequest( - operationName=operation_name + data=VeoGenVidPollRequest( + operationName=initial_response.name, ), - auth_kwargs=auth, poll_interval=5.0, - result_url_extractor=get_video_url_from_response, - node_id=cls.hidden.unique_id, estimated_duration=AVERAGE_DURATION_VIDEO_GEN, ) - # Execute the polling operation - poll_response = await poll_operation.execute() - # Now check for errors in the final response # Check for error in poll response - if hasattr(poll_response, 'error') and poll_response.error: - error_message = f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})" - logging.error(error_message) - raise Exception(error_message) + if poll_response.error: + raise Exception(f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})") # Check for RAI filtered content - if (hasattr(poll_response.response, 'raiMediaFilteredCount') and - poll_response.response.raiMediaFilteredCount > 0): + if ( + hasattr(poll_response.response, "raiMediaFilteredCount") + and poll_response.response.raiMediaFilteredCount > 0 + ): # Extract reason message if available - if (hasattr(poll_response.response, 'raiMediaFilteredReasons') and - poll_response.response.raiMediaFilteredReasons): + if ( + hasattr(poll_response.response, "raiMediaFilteredReasons") + and poll_response.response.raiMediaFilteredReasons + ): reason = poll_response.response.raiMediaFilteredReasons[0] error_message = f"Content filtered by Google's Responsible AI practices: {reason} ({poll_response.response.raiMediaFilteredCount} videos filtered.)" else: error_message = f"Content filtered by Google's Responsible AI practices ({poll_response.response.raiMediaFilteredCount} videos filtered.)" - logging.error(error_message) raise Exception(error_message) # Extract video data - if poll_response.response and hasattr(poll_response.response, 'videos') and poll_response.response.videos and len(poll_response.response.videos) > 0: + if ( + poll_response.response + and hasattr(poll_response.response, "videos") + and poll_response.response.videos + and len(poll_response.response.videos) > 0 + ): video = poll_response.response.videos[0] # Check if video is provided as base64 or URL - if hasattr(video, 'bytesBase64Encoded') and video.bytesBase64Encoded: - # Decode base64 string to bytes - video_data = base64.b64decode(video.bytesBase64Encoded) - elif hasattr(video, 'gcsUri') and video.gcsUri: - # Download from URL - async with aiohttp.ClientSession() as session: - async with session.get(video.gcsUri) as video_response: - video_data = await video_response.content.read() - else: - raise Exception("Video returned but no data or URL was provided") - else: - raise Exception("Video generation completed but no video was returned") + if hasattr(video, "bytesBase64Encoded") and video.bytesBase64Encoded: + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) - if not video_data: - raise Exception("No video data was returned") + if hasattr(video, "gcsUri") and video.gcsUri: + return IO.NodeOutput(await download_url_to_video_output(video.gcsUri)) - logging.info("Video generation completed successfully") - - # Convert video data to BytesIO object - video_io = BytesIO(video_data) - - # Return VideoFromFile object - return comfy_io.NodeOutput(VideoFromFile(video_io)) + raise Exception("Video returned but no data or URL was provided") + raise Exception("Video generation completed but no video was returned") class Veo3VideoGenerationNode(VeoVideoGenerationNode): @@ -319,78 +255,83 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="Veo3VideoGenerationNode", display_name="Google Veo 3 Video Generation", category="api node/video/Veo", description="Generates videos from text prompts using Google's Veo 3 API", inputs=[ - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="Text description of the video", ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", options=["16:9", "9:16"], default="16:9", tooltip="Aspect ratio of the output video", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", tooltip="Negative text prompt to guide what to avoid in the video", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "duration_seconds", default=8, min=8, max=8, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Duration of the output video in seconds (Veo 3 only supports 8 seconds)", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "enhance_prompt", default=True, - tooltip="Whether to enhance the prompt with AI assistance", + tooltip="This parameter is deprecated and ignored.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "person_generation", options=["ALLOW", "BLOCK"], default="ALLOW", tooltip="Whether to allow generating people in the video", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=0xFFFFFFFF, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed for video generation (0 for random)", optional=True, ), - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="Optional reference image to guide video generation", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=["veo-3.0-generate-001", "veo-3.0-fast-generate-001"], + options=[ + "veo-3.1-generate", + "veo-3.1-fast-generate", + "veo-3.0-generate-001", + "veo-3.0-fast-generate-001", + ], default="veo-3.0-generate-001", tooltip="Veo 3 model to use for video generation", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "generate_audio", default=False, tooltip="Generate audio for the video. Supported by all Veo 3 models.", @@ -398,24 +339,176 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode): ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) +class Veo3FirstLastFrameNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Veo3FirstLastFrameNode", + display_name="Google Veo 3 First-Last-Frame to Video", + category="api node/video/Veo", + description="Generate video using prompt and first and last frames.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Text description of the video", + ), + IO.String.Input( + "negative_prompt", + multiline=True, + default="", + tooltip="Negative text prompt to guide what to avoid in the video", + ), + IO.Combo.Input("resolution", options=["720p", "1080p"]), + IO.Combo.Input( + "aspect_ratio", + options=["16:9", "9:16"], + default="16:9", + tooltip="Aspect ratio of the output video", + ), + IO.Int.Input( + "duration", + default=8, + min=4, + max=8, + step=2, + display_mode=IO.NumberDisplay.slider, + tooltip="Duration of the output video in seconds", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFF, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed for video generation", + ), + IO.Image.Input("first_frame", tooltip="Start frame"), + IO.Image.Input("last_frame", tooltip="End frame"), + IO.Combo.Input( + "model", + options=["veo-3.1-generate", "veo-3.1-fast-generate"], + default="veo-3.1-fast-generate", + ), + IO.Boolean.Input( + "generate_audio", + default=True, + tooltip="Generate audio for the video.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + negative_prompt: str, + resolution: str, + aspect_ratio: str, + duration: int, + seed: int, + first_frame: Input.Image, + last_frame: Input.Image, + model: str, + generate_audio: bool, + ): + model = MODELS_MAP[model] + initial_response = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/veo/{model}/generate", method="POST"), + response_model=VeoGenVidResponse, + data=VeoGenVidRequest( + instances=[ + VeoRequestInstance( + prompt=prompt, + image=VeoRequestInstanceImage( + bytesBase64Encoded=tensor_to_base64_string(first_frame), mimeType="image/png" + ), + lastFrame=VeoRequestInstanceImage( + bytesBase64Encoded=tensor_to_base64_string(last_frame), mimeType="image/png" + ), + ), + ], + parameters=VeoRequestParameters( + aspectRatio=aspect_ratio, + personGeneration="ALLOW", + durationSeconds=duration, + enhancePrompt=True, # cannot be False for Veo3 + seed=seed, + generateAudio=generate_audio, + negativePrompt=negative_prompt, + resolution=resolution, + ), + ), + ) + poll_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/veo/{model}/poll", method="POST"), + response_model=VeoGenVidPollResponse, + status_extractor=lambda r: "completed" if r.done else "pending", + data=VeoGenVidPollRequest( + operationName=initial_response.name, + ), + poll_interval=5.0, + estimated_duration=AVERAGE_DURATION_VIDEO_GEN, + ) + + if poll_response.error: + raise Exception(f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})") + + response = poll_response.response + filtered_count = response.raiMediaFilteredCount + if filtered_count: + reasons = response.raiMediaFilteredReasons or [] + reason_part = f": {reasons[0]}" if reasons else "" + raise Exception( + f"Content blocked by Google's Responsible AI filters{reason_part} " + f"({filtered_count} video{'s' if filtered_count != 1 else ''} filtered)." + ) + + if response.videos: + video = response.videos[0] + if video.bytesBase64Encoded: + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) + if video.gcsUri: + return IO.NodeOutput(await download_url_to_video_output(video.gcsUri)) + raise Exception("Video returned but no data or URL was provided") + raise Exception("Video generation completed but no video was returned") + + class VeoExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ VeoVideoGenerationNode, Veo3VideoGenerationNode, + Veo3FirstLastFrameNode, ] + async def comfy_entrypoint() -> VeoExtension: return VeoExtension() diff --git a/comfy_api_nodes/nodes_vidu.py b/comfy_api_nodes/nodes_vidu.py index 2f441948c..7a679f0d9 100644 --- a/comfy_api_nodes/nodes_vidu.py +++ b/comfy_api_nodes/nodes_vidu.py @@ -1,27 +1,23 @@ import logging from enum import Enum -from typing import Any, Callable, Optional, Literal, TypeVar -from typing_extensions import override +from typing import Literal, Optional, TypeVar import torch from pydantic import BaseModel, Field +from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api_nodes.util.validation_utils import ( - validate_aspect_ratio_closeness, - validate_image_dimensions, - validate_image_aspect_ratio_range, - get_number_of_images, -) -from comfy_api_nodes.apis.client import ( +from comfy_api.latest import IO, ComfyExtension +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, + download_url_to_video_output, + get_number_of_images, + poll_op, + sync_op, + upload_images_to_comfyapi, + validate_image_aspect_ratio, + validate_image_dimensions, + validate_images_aspect_ratio_closeness, ) -from comfy_api_nodes.apinode_utils import download_url_to_video_output, upload_images_to_comfyapi - VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video" VIDU_IMAGE_TO_VIDEO = "/proxy/vidu/img2video" @@ -31,8 +27,9 @@ VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations" R = TypeVar("R") + class VideoModelName(str, Enum): - vidu_q1 = 'viduq1' + vidu_q1 = "viduq1" class AspectRatio(str, Enum): @@ -63,17 +60,9 @@ class TaskCreationRequest(BaseModel): images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL") -class TaskStatus(str, Enum): - created = "created" - queueing = "queueing" - processing = "processing" - success = "success" - failed = "failed" - - class TaskCreationResponse(BaseModel): task_id: str = Field(...) - state: TaskStatus = Field(...) + state: str = Field(...) created_at: str = Field(...) code: Optional[int] = Field(None, description="Error code") @@ -85,32 +74,11 @@ class TaskResult(BaseModel): class TaskStatusResponse(BaseModel): - state: TaskStatus = Field(...) + state: str = Field(...) err_code: Optional[str] = Field(None) creations: list[TaskResult] = Field(..., description="Generated results") -async def poll_until_finished( - auth_kwargs: dict[str, str], - api_endpoint: ApiEndpoint[Any, R], - result_url_extractor: Optional[Callable[[R], str]] = None, - estimated_duration: Optional[int] = None, - node_id: Optional[str] = None, -) -> R: - return await PollingOperation( - poll_endpoint=api_endpoint, - completed_statuses=[TaskStatus.success.value], - failed_statuses=[TaskStatus.failed.value], - status_extractor=lambda response: response.state.value, - auth_kwargs=auth_kwargs, - result_url_extractor=result_url_extractor, - estimated_duration=estimated_duration, - node_id=node_id, - poll_interval=16.0, - max_poll_attempts=256, - ).execute() - - def get_video_url_from_response(response) -> Optional[str]: if response.creations: return response.creations[0].url @@ -127,111 +95,101 @@ def get_video_from_response(response) -> TaskResult: async def execute_task( + cls: type[IO.ComfyNode], vidu_endpoint: str, - auth_kwargs: Optional[dict[str, str]], payload: TaskCreationRequest, estimated_duration: int, - node_id: str, ) -> R: - response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=vidu_endpoint, - method=HttpMethod.POST, - request_model=TaskCreationRequest, - response_model=TaskCreationResponse, - ), - request=payload, - auth_kwargs=auth_kwargs, - ).execute() - if response.state == TaskStatus.failed: + response = await sync_op( + cls, + endpoint=ApiEndpoint(path=vidu_endpoint, method="POST"), + response_model=TaskCreationResponse, + data=payload, + ) + if response.state == "failed": error_msg = f"Vidu request failed. Code: {response.code}" logging.error(error_msg) raise RuntimeError(error_msg) - return await poll_until_finished( - auth_kwargs, - ApiEndpoint( - path=VIDU_GET_GENERATION_STATUS % response.task_id, - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=TaskStatusResponse, - ), - result_url_extractor=get_video_url_from_response, + return await poll_op( + cls, + ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % response.task_id), + response_model=TaskStatusResponse, + status_extractor=lambda r: r.state, estimated_duration=estimated_duration, - node_id=node_id, ) -class ViduTextToVideoNode(comfy_io.ComfyNode): +class ViduTextToVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ViduTextToVideoNode", display_name="Vidu Text To Video Generation", category="api node/video/Vidu", description="Generate video from text prompt", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in VideoModelName], - default=VideoModelName.vidu_q1.value, + options=VideoModelName, + default=VideoModelName.vidu_q1, tooltip="Model name", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="A textual description for video generation", ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=5, max=5, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Duration of the output video in seconds", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed for video generation (0 for random)", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[model.value for model in AspectRatio], - default=AspectRatio.r_16_9.value, + options=AspectRatio, + default=AspectRatio.r_16_9, tooltip="The aspect ratio of the output video", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", - options=[model.value for model in Resolution], - default=Resolution.r_1080p.value, + options=Resolution, + default=Resolution.r_1080p, tooltip="Supported values may vary by model & duration", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "movement_amplitude", - options=[model.value for model in MovementAmplitude], - default=MovementAmplitude.auto.value, + options=MovementAmplitude, + default=MovementAmplitude.auto, tooltip="The movement amplitude of objects in the frame", optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -246,7 +204,7 @@ class ViduTextToVideoNode(comfy_io.ComfyNode): aspect_ratio: str, resolution: str, movement_amplitude: str, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: if not prompt: raise ValueError("The prompt field is required and cannot be empty.") payload = TaskCreationRequest( @@ -258,84 +216,80 @@ class ViduTextToVideoNode(comfy_io.ComfyNode): resolution=resolution, movement_amplitude=movement_amplitude, ) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } - results = await execute_task(VIDU_TEXT_TO_VIDEO, auth, payload, 320, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload, 320) + return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) -class ViduImageToVideoNode(comfy_io.ComfyNode): +class ViduImageToVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ViduImageToVideoNode", display_name="Vidu Image To Video Generation", category="api node/video/Vidu", description="Generate video from image and optional prompt", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in VideoModelName], - default=VideoModelName.vidu_q1.value, + options=VideoModelName, + default=VideoModelName.vidu_q1, tooltip="Model name", ), - comfy_io.Image.Input( + IO.Image.Input( "image", tooltip="An image to be used as the start frame of the generated video", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", tooltip="A textual description for video generation", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=5, max=5, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Duration of the output video in seconds", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed for video generation (0 for random)", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", - options=[model.value for model in Resolution], - default=Resolution.r_1080p.value, + options=Resolution, + default=Resolution.r_1080p, tooltip="Supported values may vary by model & duration", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "movement_amplitude", - options=[model.value for model in MovementAmplitude], + options=MovementAmplitude, default=MovementAmplitude.auto.value, tooltip="The movement amplitude of objects in the frame", optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -350,10 +304,10 @@ class ViduImageToVideoNode(comfy_io.ComfyNode): seed: int, resolution: str, movement_amplitude: str, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: if get_number_of_images(image) > 1: raise ValueError("Only one input image is allowed.") - validate_image_aspect_ratio_range(image, (1, 4), (4, 1)) + validate_image_aspect_ratio(image, (1, 4), (4, 1)) payload = TaskCreationRequest( model_name=model, prompt=prompt, @@ -362,81 +316,77 @@ class ViduImageToVideoNode(comfy_io.ComfyNode): resolution=resolution, movement_amplitude=movement_amplitude, ) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } payload.images = await upload_images_to_comfyapi( + cls, image, max_images=1, mime_type="image/png", - auth_kwargs=auth, ) - results = await execute_task(VIDU_IMAGE_TO_VIDEO, auth, payload, 120, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload, 120) + return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) -class ViduReferenceVideoNode(comfy_io.ComfyNode): +class ViduReferenceVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ViduReferenceVideoNode", display_name="Vidu Reference To Video Generation", category="api node/video/Vidu", description="Generate video from multiple images and prompt", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=[model.value for model in VideoModelName], - default=VideoModelName.vidu_q1.value, + options=VideoModelName, + default=VideoModelName.vidu_q1, tooltip="Model name", ), - comfy_io.Image.Input( + IO.Image.Input( "images", tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="A textual description for video generation", ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=5, max=5, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Duration of the output video in seconds", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed for video generation (0 for random)", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "aspect_ratio", - options=[model.value for model in AspectRatio], - default=AspectRatio.r_16_9.value, + options=AspectRatio, + default=AspectRatio.r_16_9, tooltip="The aspect ratio of the output video", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=[model.value for model in Resolution], default=Resolution.r_1080p.value, tooltip="Supported values may vary by model & duration", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "movement_amplitude", options=[model.value for model in MovementAmplitude], default=MovementAmplitude.auto.value, @@ -445,12 +395,12 @@ class ViduReferenceVideoNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -466,14 +416,14 @@ class ViduReferenceVideoNode(comfy_io.ComfyNode): aspect_ratio: str, resolution: str, movement_amplitude: str, - ) -> comfy_io.NodeOutput: + ) -> IO.NodeOutput: if not prompt: raise ValueError("The prompt field is required and cannot be empty.") a = get_number_of_images(images) if a > 7: raise ValueError("Too many images, maximum allowed is 7.") for image in images: - validate_image_aspect_ratio_range(image, (1, 4), (4, 1)) + validate_image_aspect_ratio(image, (1, 4), (4, 1)) validate_image_dimensions(image, min_width=128, min_height=128) payload = TaskCreationRequest( model_name=model, @@ -484,79 +434,75 @@ class ViduReferenceVideoNode(comfy_io.ComfyNode): resolution=resolution, movement_amplitude=movement_amplitude, ) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } payload.images = await upload_images_to_comfyapi( + cls, images, max_images=7, mime_type="image/png", - auth_kwargs=auth, ) - results = await execute_task(VIDU_REFERENCE_VIDEO, auth, payload, 120, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload, 120) + return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) -class ViduStartEndToVideoNode(comfy_io.ComfyNode): +class ViduStartEndToVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="ViduStartEndToVideoNode", display_name="Vidu Start End To Video Generation", category="api node/video/Vidu", description="Generate a video from start and end frames and a prompt", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=[model.value for model in VideoModelName], default=VideoModelName.vidu_q1.value, tooltip="Model name", ), - comfy_io.Image.Input( + IO.Image.Input( "first_frame", tooltip="Start frame", ), - comfy_io.Image.Input( + IO.Image.Input( "end_frame", tooltip="End frame", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, tooltip="A textual description for video generation", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=5, max=5, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, tooltip="Duration of the output video in seconds", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed for video generation (0 for random)", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=[model.value for model in Resolution], default=Resolution.r_1080p.value, tooltip="Supported values may vary by model & duration", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "movement_amplitude", options=[model.value for model in MovementAmplitude], default=MovementAmplitude.auto.value, @@ -565,12 +511,12 @@ class ViduStartEndToVideoNode(comfy_io.ComfyNode): ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -586,8 +532,8 @@ class ViduStartEndToVideoNode(comfy_io.ComfyNode): seed: int, resolution: str, movement_amplitude: str, - ) -> comfy_io.NodeOutput: - validate_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False) + ) -> IO.NodeOutput: + validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False) payload = TaskCreationRequest( model_name=model, prompt=prompt, @@ -596,21 +542,17 @@ class ViduStartEndToVideoNode(comfy_io.ComfyNode): resolution=resolution, movement_amplitude=movement_amplitude, ) - auth = { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - } payload.images = [ - (await upload_images_to_comfyapi(frame, max_images=1, mime_type="image/png", auth_kwargs=auth))[0] + (await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0] for frame in (first_frame, end_frame) ] - results = await execute_task(VIDU_START_END_VIDEO, auth, payload, 96, cls.hidden.unique_id) - return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_START_END_VIDEO, payload, 96) + return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) class ViduExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ ViduTextToVideoNode, ViduImageToVideoNode, @@ -618,5 +560,6 @@ class ViduExtension(ComfyExtension): ViduStartEndToVideoNode, ] + async def comfy_entrypoint() -> ViduExtension: return ViduExtension() diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 0be5daadb..1675fd863 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -1,50 +1,44 @@ import re -from typing import Optional, Type, Union + +from pydantic import BaseModel, Field from typing_extensions import override -import torch -from pydantic import BaseModel, Field -from comfy_api.latest import ComfyExtension, Input, io as comfy_io -from comfy_api_nodes.apis.client import ( +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.util import ( ApiEndpoint, - HttpMethod, - SynchronousOperation, - PollingOperation, - EmptyRequest, - R, - T, -) -from comfy_api_nodes.util.validation_utils import get_number_of_images, validate_audio_duration - -from comfy_api_nodes.apinode_utils import ( + audio_to_base64_string, download_url_to_image_tensor, download_url_to_video_output, + get_number_of_images, + poll_op, + sync_op, tensor_to_base64_string, - audio_to_base64_string, + validate_audio_duration, ) + class Text2ImageInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) class Image2ImageInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) images: list[str] = Field(..., min_length=1, max_length=2) class Text2VideoInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) - audio_url: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) + audio_url: str | None = Field(None) class Image2VideoInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) img_url: str = Field(...) - audio_url: Optional[str] = Field(None) + audio_url: str | None = Field(None) class Txt2ImageParametersField(BaseModel): @@ -52,32 +46,34 @@ class Txt2ImageParametersField(BaseModel): n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) class Image2ImageParametersField(BaseModel): - size: Optional[str] = Field(None) + size: str | None = Field(None) n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) - watermark: bool = Field(True) + watermark: bool = Field(False) class Text2VideoParametersField(BaseModel): size: str = Field(...) seed: int = Field(..., ge=0, le=2147483647) - duration: int = Field(5, ge=5, le=10) + duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) - watermark: bool = Field(True) - audio: bool = Field(False, description="Should be audio generated automatically") + watermark: bool = Field(False) + audio: bool = Field(False, description="Whether to generate audio automatically.") + shot_type: str = Field("single") class Image2VideoParametersField(BaseModel): resolution: str = Field(...) seed: int = Field(..., ge=0, le=2147483647) - duration: int = Field(5, ge=5, le=10) + duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) - watermark: bool = Field(True) - audio: bool = Field(False, description="Should be audio generated automatically") + watermark: bool = Field(False) + audio: bool = Field(False, description="Whether to generate audio automatically.") + shot_type: str = Field("single") class Text2ImageTaskCreationRequest(BaseModel): @@ -110,120 +106,74 @@ class TaskCreationOutputField(BaseModel): class TaskCreationResponse(BaseModel): - output: Optional[TaskCreationOutputField] = Field(None) + output: TaskCreationOutputField | None = Field(None) request_id: str = Field(...) - code: Optional[str] = Field(None, description="The error code of the failed request.") - message: Optional[str] = Field(None, description="Details of the failed request.") + code: str | None = Field(None, description="Error code for the failed request.") + message: str | None = Field(None, description="Details about the failed request.") class TaskResult(BaseModel): - url: Optional[str] = Field(None) - code: Optional[str] = Field(None) - message: Optional[str] = Field(None) + url: str | None = Field(None) + code: str | None = Field(None) + message: str | None = Field(None) class ImageTaskStatusOutputField(TaskCreationOutputField): task_id: str = Field(...) task_status: str = Field(...) - results: Optional[list[TaskResult]] = Field(None) + results: list[TaskResult] | None = Field(None) class VideoTaskStatusOutputField(TaskCreationOutputField): task_id: str = Field(...) task_status: str = Field(...) - video_url: Optional[str] = Field(None) - code: Optional[str] = Field(None) - message: Optional[str] = Field(None) + video_url: str | None = Field(None) + code: str | None = Field(None) + message: str | None = Field(None) class ImageTaskStatusResponse(BaseModel): - output: Optional[ImageTaskStatusOutputField] = Field(None) + output: ImageTaskStatusOutputField | None = Field(None) request_id: str = Field(...) class VideoTaskStatusResponse(BaseModel): - output: Optional[VideoTaskStatusOutputField] = Field(None) + output: VideoTaskStatusOutputField | None = Field(None) request_id: str = Field(...) -RES_IN_PARENS = re.compile(r'\((\d+)\s*[x×]\s*(\d+)\)') +RES_IN_PARENS = re.compile(r"\((\d+)\s*[x×]\s*(\d+)\)") -async def process_task( - auth_kwargs: dict[str, str], - url: str, - request_model: Type[T], - response_model: Type[R], - payload: Union[ - Text2ImageTaskCreationRequest, - Image2ImageTaskCreationRequest, - Text2VideoTaskCreationRequest, - Image2VideoTaskCreationRequest, - ], - node_id: str, - estimated_duration: int, - poll_interval: int, -) -> Type[R]: - initial_response = await SynchronousOperation( - endpoint=ApiEndpoint( - path=url, - method=HttpMethod.POST, - request_model=request_model, - response_model=TaskCreationResponse, - ), - request=payload, - auth_kwargs=auth_kwargs, - ).execute() - - if not initial_response.output: - raise Exception(f"Unknown error occurred: {initial_response.code} - {initial_response.message}") - - return await PollingOperation( - poll_endpoint=ApiEndpoint( - path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}", - method=HttpMethod.GET, - request_model=EmptyRequest, - response_model=response_model, - ), - completed_statuses=["SUCCEEDED"], - failed_statuses=["FAILED", "CANCELED", "UNKNOWN"], - status_extractor=lambda x: x.output.task_status, - estimated_duration=estimated_duration, - poll_interval=poll_interval, - node_id=node_id, - auth_kwargs=auth_kwargs, - ).execute() - - -class WanTextToImageApi(comfy_io.ComfyNode): +class WanTextToImageApi(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="WanTextToImageApi", display_name="Wan Text to Image", category="api node/image/Wan", - description="Generates image based on text prompt.", + description="Generates an image based on a text prompt.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["wan2.5-t2i-preview"], default="wan2.5-t2i-preview", tooltip="Model to use.", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "width", default=1024, min=768, @@ -231,7 +181,7 @@ class WanTextToImageApi(comfy_io.ComfyNode): step=32, optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "height", default=1024, min=768, @@ -239,37 +189,37 @@ class WanTextToImageApi(comfy_io.ComfyNode): step=32, optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_extend", default=True, tooltip="Whether to enhance the prompt with AI assistance.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the result.", + default=False, + tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -284,69 +234,71 @@ class WanTextToImageApi(comfy_io.ComfyNode): height: int = 1024, seed: int = 0, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, ): - payload = Text2ImageTaskCreationRequest( - model=model, - input=Text2ImageInputField(prompt=prompt, negative_prompt=negative_prompt), - parameters=Txt2ImageParametersField( - size=f"{width}*{height}", - seed=seed, - prompt_extend=prompt_extend, - watermark=watermark, + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/text2image/image-synthesis", method="POST"), + response_model=TaskCreationResponse, + data=Text2ImageTaskCreationRequest( + model=model, + input=Text2ImageInputField(prompt=prompt, negative_prompt=negative_prompt), + parameters=Txt2ImageParametersField( + size=f"{width}*{height}", + seed=seed, + prompt_extend=prompt_extend, + watermark=watermark, + ), ), ) - response = await process_task( - { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - "/proxy/wan/api/v1/services/aigc/text2image/image-synthesis", - request_model=Text2ImageTaskCreationRequest, + if not initial_response.output: + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") + response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), response_model=ImageTaskStatusResponse, - payload=payload, - node_id=cls.hidden.unique_id, + status_extractor=lambda x: x.output.task_status, estimated_duration=9, poll_interval=3, ) - return comfy_io.NodeOutput(await download_url_to_image_tensor(str(response.output.results[0].url))) + return IO.NodeOutput(await download_url_to_image_tensor(str(response.output.results[0].url))) -class WanImageToImageApi(comfy_io.ComfyNode): +class WanImageToImageApi(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="WanImageToImageApi", display_name="Wan Image to Image", category="api node/image/Wan", description="Generates an image from one or two input images and a text prompt. " - "The output image is currently fixed at 1.6 MP; its aspect ratio matches the input image(s).", + "The output image is currently fixed at 1.6 MP, and its aspect ratio matches the input image(s).", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", options=["wan2.5-i2i-preview"], default="wan2.5-i2i-preview", tooltip="Model to use.", ), - comfy_io.Image.Input( + IO.Image.Input( "image", - tooltip="Single-image editing or multi-image fusion, maximum 2 images.", + tooltip="Single-image editing or multi-image fusion. Maximum 2 images.", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), # redo this later as an optional combo of recommended resolutions - # comfy_io.Int.Input( + # IO.Int.Input( # "width", # default=1280, # min=384, @@ -354,7 +306,7 @@ class WanImageToImageApi(comfy_io.ComfyNode): # step=16, # optional=True, # ), - # comfy_io.Int.Input( + # IO.Int.Input( # "height", # default=1280, # min=384, @@ -362,31 +314,31 @@ class WanImageToImageApi(comfy_io.ComfyNode): # step=16, # optional=True, # ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the result.", + default=False, + tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), ], outputs=[ - comfy_io.Image.Output(), + IO.Image.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -395,74 +347,76 @@ class WanImageToImageApi(comfy_io.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, negative_prompt: str = "", # width: int = 1024, # height: int = 1024, seed: int = 0, - watermark: bool = True, + watermark: bool = False, ): n_images = get_number_of_images(image) if n_images not in (1, 2): - raise ValueError(f"Expected 1 or 2 input images, got {n_images}.") + raise ValueError(f"Expected 1 or 2 input images, but got {n_images}.") images = [] for i in image: - images.append("data:image/png;base64," + tensor_to_base64_string(i, total_pixels=4096*4096)) - payload = Image2ImageTaskCreationRequest( - model=model, - input=Image2ImageInputField(prompt=prompt, negative_prompt=negative_prompt, images=images), - parameters=Image2ImageParametersField( - # size=f"{width}*{height}", - seed=seed, - watermark=watermark, + images.append("data:image/png;base64," + tensor_to_base64_string(i, total_pixels=4096 * 4096)) + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/image2image/image-synthesis", method="POST"), + response_model=TaskCreationResponse, + data=Image2ImageTaskCreationRequest( + model=model, + input=Image2ImageInputField(prompt=prompt, negative_prompt=negative_prompt, images=images), + parameters=Image2ImageParametersField( + # size=f"{width}*{height}", + seed=seed, + watermark=watermark, + ), ), ) - response = await process_task( - { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - "/proxy/wan/api/v1/services/aigc/image2image/image-synthesis", - request_model=Image2ImageTaskCreationRequest, + if not initial_response.output: + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") + response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), response_model=ImageTaskStatusResponse, - payload=payload, - node_id=cls.hidden.unique_id, + status_extractor=lambda x: x.output.task_status, estimated_duration=42, - poll_interval=3, + poll_interval=4, ) - return comfy_io.NodeOutput(await download_url_to_image_tensor(str(response.output.results[0].url))) + return IO.NodeOutput(await download_url_to_image_tensor(str(response.output.results[0].url))) -class WanTextToVideoApi(comfy_io.ComfyNode): +class WanTextToVideoApi(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="WanTextToVideoApi", display_name="Wan Text to Video", category="api node/video/Wan", - description="Generates video based on text prompt.", + description="Generates a video based on a text prompt.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=["wan2.5-t2v-preview"], - default="wan2.5-t2v-preview", + options=["wan2.5-t2v-preview", "wan2.6-t2v"], + default="wan2.6-t2v", tooltip="Model to use.", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "size", options=[ "480p: 1:1 (624x624)", @@ -479,61 +433,69 @@ class WanTextToVideoApi(comfy_io.ComfyNode): "1080p: 4:3 (1632x1248)", "1080p: 3:4 (1248x1632)", ], - default="480p: 1:1 (624x624)", + default="720p: 1:1 (960x960)", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=5, - max=10, + max=15, step=5, - display_mode=comfy_io.NumberDisplay.number, - tooltip="Available durations: 5 and 10 seconds", + display_mode=IO.NumberDisplay.number, + tooltip="A 15-second duration is available only for the Wan 2.6 model.", optional=True, ), - comfy_io.Audio.Input( + IO.Audio.Input( "audio", optional=True, - tooltip="Audio must contain a clear, loud voice, without extraneous noise, background music.", + tooltip="Audio must contain a clear, loud voice, without extraneous noise or background music.", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "generate_audio", default=False, optional=True, - tooltip="If there is no audio input, generate audio automatically.", + tooltip="If no audio input is provided, generate audio automatically.", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_extend", default=True, tooltip="Whether to enhance the prompt with AI assistance.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the result.", + default=False, + tooltip="Whether to add an AI-generated watermark to the result.", + optional=True, + ), + IO.Combo.Input( + "shot_type", + options=["single", "multi"], + tooltip="Specifies the shot type for the generated video, that is, whether the video is a " + "single continuous shot or multiple shots with cuts. " + "This parameter takes effect only when prompt_extend is True.", optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -544,140 +506,157 @@ class WanTextToVideoApi(comfy_io.ComfyNode): model: str, prompt: str, negative_prompt: str = "", - size: str = "480p: 1:1 (624x624)", + size: str = "720p: 1:1 (960x960)", duration: int = 5, - audio: Optional[Input.Audio] = None, + audio: Input.Audio | None = None, seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, + shot_type: str = "single", ): + if "480p" in size and model == "wan2.6-t2v": + raise ValueError("The Wan 2.6 model does not support 480p.") + if duration == 15 and model == "wan2.5-t2v-preview": + raise ValueError("A 15-second duration is supported only by the Wan 2.6 model.") width, height = RES_IN_PARENS.search(size).groups() audio_url = None if audio is not None: validate_audio_duration(audio, 3.0, 29.0) audio_url = "data:audio/mp3;base64," + audio_to_base64_string(audio, "mp3", "libmp3lame") - payload = Text2VideoTaskCreationRequest( - model=model, - input=Text2VideoInputField(prompt=prompt, negative_prompt=negative_prompt, audio_url=audio_url), - parameters=Text2VideoParametersField( - size=f"{width}*{height}", - duration=duration, - seed=seed, - audio=generate_audio, - prompt_extend=prompt_extend, - watermark=watermark, + + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"), + response_model=TaskCreationResponse, + data=Text2VideoTaskCreationRequest( + model=model, + input=Text2VideoInputField(prompt=prompt, negative_prompt=negative_prompt, audio_url=audio_url), + parameters=Text2VideoParametersField( + size=f"{width}*{height}", + duration=duration, + seed=seed, + audio=generate_audio, + prompt_extend=prompt_extend, + watermark=watermark, + shot_type=shot_type, + ), ), ) - response = await process_task( - { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - "/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", - request_model=Text2VideoTaskCreationRequest, + if not initial_response.output: + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") + response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), response_model=VideoTaskStatusResponse, - payload=payload, - node_id=cls.hidden.unique_id, + status_extractor=lambda x: x.output.task_status, estimated_duration=120 * int(duration / 5), poll_interval=6, ) - return comfy_io.NodeOutput(await download_url_to_video_output(response.output.video_url)) + return IO.NodeOutput(await download_url_to_video_output(response.output.video_url)) -class WanImageToVideoApi(comfy_io.ComfyNode): +class WanImageToVideoApi(IO.ComfyNode): @classmethod def define_schema(cls): - return comfy_io.Schema( + return IO.Schema( node_id="WanImageToVideoApi", display_name="Wan Image to Video", category="api node/video/Wan", - description="Generates video based on the first frame and text prompt.", + description="Generates a video from the first frame and a text prompt.", inputs=[ - comfy_io.Combo.Input( + IO.Combo.Input( "model", - options=["wan2.5-i2v-preview"], - default="wan2.5-i2v-preview", + options=["wan2.5-i2v-preview", "wan2.6-i2v"], + default="wan2.6-i2v", tooltip="Model to use.", ), - comfy_io.Image.Input( + IO.Image.Input( "image", ), - comfy_io.String.Input( + IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), - comfy_io.String.Input( + IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), - comfy_io.Combo.Input( + IO.Combo.Input( "resolution", options=[ "480P", "720P", "1080P", ], - default="480P", + default="720P", optional=True, ), - comfy_io.Int.Input( + IO.Int.Input( "duration", default=5, min=5, - max=10, + max=15, step=5, - display_mode=comfy_io.NumberDisplay.number, - tooltip="Available durations: 5 and 10 seconds", + display_mode=IO.NumberDisplay.number, + tooltip="Duration 15 available only for WAN2.6 model.", optional=True, ), - comfy_io.Audio.Input( + IO.Audio.Input( "audio", optional=True, - tooltip="Audio must contain a clear, loud voice, without extraneous noise, background music.", + tooltip="Audio must contain a clear, loud voice, without extraneous noise or background music.", ), - comfy_io.Int.Input( + IO.Int.Input( "seed", default=0, min=0, max=2147483647, step=1, - display_mode=comfy_io.NumberDisplay.number, + display_mode=IO.NumberDisplay.number, control_after_generate=True, tooltip="Seed to use for generation.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "generate_audio", default=False, optional=True, - tooltip="If there is no audio input, generate audio automatically.", + tooltip="If no audio input is provided, generate audio automatically.", ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "prompt_extend", default=True, tooltip="Whether to enhance the prompt with AI assistance.", optional=True, ), - comfy_io.Boolean.Input( + IO.Boolean.Input( "watermark", - default=True, - tooltip="Whether to add an \"AI generated\" watermark to the result.", + default=False, + tooltip="Whether to add an AI-generated watermark to the result.", + optional=True, + ), + IO.Combo.Input( + "shot_type", + options=["single", "multi"], + tooltip="Specifies the shot type for the generated video, that is, whether the video is a " + "single continuous shot or multiple shots with cuts. " + "This parameter takes effect only when prompt_extend is True.", optional=True, ), ], outputs=[ - comfy_io.Video.Output(), + IO.Video.Output(), ], hidden=[ - comfy_io.Hidden.auth_token_comfy_org, - comfy_io.Hidden.api_key_comfy_org, - comfy_io.Hidden.unique_id, + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, ], is_api_node=True, ) @@ -686,57 +665,65 @@ class WanImageToVideoApi(comfy_io.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, negative_prompt: str = "", - resolution: str = "480P", + resolution: str = "720P", duration: int = 5, - audio: Optional[Input.Audio] = None, + audio: Input.Audio | None = None, seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, + shot_type: str = "single", ): if get_number_of_images(image) != 1: raise ValueError("Exactly one input image is required.") - image_url = "data:image/png;base64," + tensor_to_base64_string(image, total_pixels=2000*2000) + if "480P" in resolution and model == "wan2.6-i2v": + raise ValueError("The Wan 2.6 model does not support 480P.") + if duration == 15 and model == "wan2.5-i2v-preview": + raise ValueError("A 15-second duration is supported only by the Wan 2.6 model.") + image_url = "data:image/png;base64," + tensor_to_base64_string(image, total_pixels=2000 * 2000) audio_url = None if audio is not None: validate_audio_duration(audio, 3.0, 29.0) audio_url = "data:audio/mp3;base64," + audio_to_base64_string(audio, "mp3", "libmp3lame") - payload = Image2VideoTaskCreationRequest( - model=model, - input=Image2VideoInputField( - prompt=prompt, negative_prompt=negative_prompt, img_url=image_url, audio_url=audio_url - ), - parameters=Image2VideoParametersField( - resolution=resolution, - duration=duration, - seed=seed, - audio=generate_audio, - prompt_extend=prompt_extend, - watermark=watermark, + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"), + response_model=TaskCreationResponse, + data=Image2VideoTaskCreationRequest( + model=model, + input=Image2VideoInputField( + prompt=prompt, negative_prompt=negative_prompt, img_url=image_url, audio_url=audio_url + ), + parameters=Image2VideoParametersField( + resolution=resolution, + duration=duration, + seed=seed, + audio=generate_audio, + prompt_extend=prompt_extend, + watermark=watermark, + shot_type=shot_type, + ), ), ) - response = await process_task( - { - "auth_token": cls.hidden.auth_token_comfy_org, - "comfy_api_key": cls.hidden.api_key_comfy_org, - }, - "/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", - request_model=Image2VideoTaskCreationRequest, + if not initial_response.output: + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") + response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), response_model=VideoTaskStatusResponse, - payload=payload, - node_id=cls.hidden.unique_id, + status_extractor=lambda x: x.output.task_status, estimated_duration=120 * int(duration / 5), poll_interval=6, ) - return comfy_io.NodeOutput(await download_url_to_video_output(response.output.video_url)) + return IO.NodeOutput(await download_url_to_video_output(response.output.video_url)) class WanApiExtension(ComfyExtension): @override - async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: + async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ WanTextToImageApi, WanImageToImageApi, diff --git a/comfy_api_nodes/util/__init__.py b/comfy_api_nodes/util/__init__.py index e69de29bb..4cc22abfb 100644 --- a/comfy_api_nodes/util/__init__.py +++ b/comfy_api_nodes/util/__init__.py @@ -0,0 +1,101 @@ +from ._helpers import get_fs_object_size +from .client import ( + ApiEndpoint, + poll_op, + poll_op_raw, + sync_op, + sync_op_raw, +) +from .conversions import ( + audio_bytes_to_audio_input, + audio_input_to_mp3, + audio_to_base64_string, + bytesio_to_image_tensor, + downscale_image_tensor, + image_tensor_pair_to_batch, + pil_to_bytesio, + resize_mask_to_image, + tensor_to_base64_string, + tensor_to_bytesio, + tensor_to_pil, + text_filepath_to_base64_string, + text_filepath_to_data_uri, + trim_video, + video_to_base64_string, +) +from .download_helpers import ( + download_url_as_bytesio, + download_url_to_bytesio, + download_url_to_image_tensor, + download_url_to_video_output, +) +from .upload_helpers import ( + upload_audio_to_comfyapi, + upload_file_to_comfyapi, + upload_images_to_comfyapi, + upload_video_to_comfyapi, +) +from .validation_utils import ( + get_image_dimensions, + get_number_of_images, + validate_aspect_ratio_string, + validate_audio_duration, + validate_container_format_is_mp4, + validate_image_aspect_ratio, + validate_image_dimensions, + validate_images_aspect_ratio_closeness, + validate_string, + validate_video_dimensions, + validate_video_duration, + validate_video_frame_count, +) + +__all__ = [ + # API client + "ApiEndpoint", + "poll_op", + "poll_op_raw", + "sync_op", + "sync_op_raw", + # Upload helpers + "upload_audio_to_comfyapi", + "upload_file_to_comfyapi", + "upload_images_to_comfyapi", + "upload_video_to_comfyapi", + # Download helpers + "download_url_as_bytesio", + "download_url_to_bytesio", + "download_url_to_image_tensor", + "download_url_to_video_output", + # Conversions + "audio_bytes_to_audio_input", + "audio_input_to_mp3", + "audio_to_base64_string", + "bytesio_to_image_tensor", + "downscale_image_tensor", + "image_tensor_pair_to_batch", + "pil_to_bytesio", + "resize_mask_to_image", + "tensor_to_base64_string", + "tensor_to_bytesio", + "tensor_to_pil", + "text_filepath_to_base64_string", + "text_filepath_to_data_uri", + "trim_video", + "video_to_base64_string", + # Validation utilities + "get_image_dimensions", + "get_number_of_images", + "validate_aspect_ratio_string", + "validate_audio_duration", + "validate_container_format_is_mp4", + "validate_image_aspect_ratio", + "validate_image_dimensions", + "validate_images_aspect_ratio_closeness", + "validate_string", + "validate_video_dimensions", + "validate_video_duration", + "validate_video_frame_count", + # Misc functions + "get_fs_object_size", +] diff --git a/comfy_api_nodes/util/_helpers.py b/comfy_api_nodes/util/_helpers.py new file mode 100644 index 000000000..648defe3d --- /dev/null +++ b/comfy_api_nodes/util/_helpers.py @@ -0,0 +1,91 @@ +import asyncio +import contextlib +import os +import re +import time +from collections.abc import Callable +from io import BytesIO + +from yarl import URL + +from comfy.cli_args import args +from comfy.model_management import processing_interrupted +from comfy_api.latest import IO + +from .common_exceptions import ProcessingInterrupted + +_HAS_PCT_ESC = re.compile(r"%[0-9A-Fa-f]{2}") # any % followed by 2 hex digits +_HAS_BAD_PCT = re.compile(r"%(?![0-9A-Fa-f]{2})") # any % not followed by 2 hex digits + + +def is_processing_interrupted() -> bool: + """Return True if user/runtime requested interruption.""" + return processing_interrupted() + + +def get_node_id(node_cls: type[IO.ComfyNode]) -> str: + return node_cls.hidden.unique_id + + +def get_auth_header(node_cls: type[IO.ComfyNode]) -> dict[str, str]: + if node_cls.hidden.auth_token_comfy_org: + return {"Authorization": f"Bearer {node_cls.hidden.auth_token_comfy_org}"} + if node_cls.hidden.api_key_comfy_org: + return {"X-API-KEY": node_cls.hidden.api_key_comfy_org} + return {} + + +def default_base_url() -> str: + return getattr(args, "comfy_api_base", "https://api.comfy.org") + + +async def sleep_with_interrupt( + seconds: float, + node_cls: type[IO.ComfyNode] | None, + label: str | None = None, + start_ts: float | None = None, + estimated_total: int | None = None, + *, + display_callback: Callable[[type[IO.ComfyNode], str, int, int | None], None] | None = None, +): + """ + Sleep in 1s slices while: + - Checking for interruption (raises ProcessingInterrupted). + - Optionally emitting time progress via display_callback (if provided). + """ + end = time.monotonic() + seconds + while True: + if is_processing_interrupted(): + raise ProcessingInterrupted("Task cancelled") + now = time.monotonic() + if start_ts is not None and label and display_callback: + with contextlib.suppress(Exception): + display_callback(node_cls, label, int(now - start_ts), estimated_total) + if now >= end: + break + await asyncio.sleep(min(1.0, end - now)) + + +def mimetype_to_extension(mime_type: str) -> str: + """Converts a MIME type to a file extension.""" + return mime_type.split("/")[-1].lower() + + +def get_fs_object_size(path_or_object: str | BytesIO) -> int: + if isinstance(path_or_object, str): + return os.path.getsize(path_or_object) + return len(path_or_object.getvalue()) + + +def to_aiohttp_url(url: str) -> URL: + """If `url` appears to be already percent-encoded (contains at least one valid %HH + escape and no malformed '%' sequences) and contains no raw whitespace/control + characters preserve the original encoding byte-for-byte (important for signed/presigned URLs). + Otherwise, return `URL(url)` and allow yarl to normalize/quote as needed.""" + if any(c.isspace() for c in url) or any(ord(c) < 0x20 for c in url): + # Avoid encoded=True if URL contains raw whitespace/control chars + return URL(url) + if _HAS_PCT_ESC.search(url) and not _HAS_BAD_PCT.search(url): + # Preserve encoding only if it appears pre-encoded AND has no invalid % sequences + return URL(url, encoded=True) + return URL(url) diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py new file mode 100644 index 000000000..f372ec7b5 --- /dev/null +++ b/comfy_api_nodes/util/client.py @@ -0,0 +1,947 @@ +import asyncio +import contextlib +import json +import logging +import time +import uuid +from collections.abc import Callable, Iterable +from dataclasses import dataclass +from enum import Enum +from io import BytesIO +from typing import Any, Literal, TypeVar +from urllib.parse import urljoin, urlparse + +import aiohttp +from aiohttp.client_exceptions import ClientError, ContentTypeError +from pydantic import BaseModel + +from comfy import utils +from comfy_api.latest import IO +from server import PromptServer + +from . import request_logger +from ._helpers import ( + default_base_url, + get_auth_header, + get_node_id, + is_processing_interrupted, + sleep_with_interrupt, +) +from .common_exceptions import ApiServerError, LocalNetworkError, ProcessingInterrupted + +M = TypeVar("M", bound=BaseModel) + + +class ApiEndpoint: + def __init__( + self, + path: str, + method: Literal["GET", "POST", "PUT", "DELETE", "PATCH"] = "GET", + *, + query_params: dict[str, Any] | None = None, + headers: dict[str, str] | None = None, + ): + self.path = path + self.method = method + self.query_params = query_params or {} + self.headers = headers or {} + + +@dataclass +class _RequestConfig: + node_cls: type[IO.ComfyNode] + endpoint: ApiEndpoint + timeout: float + content_type: str + data: dict[str, Any] | None + files: dict[str, Any] | list[tuple[str, Any]] | None + multipart_parser: Callable | None + max_retries: int + retry_delay: float + retry_backoff: float + wait_label: str = "Waiting" + monitor_progress: bool = True + estimated_total: int | None = None + final_label_on_success: str | None = "Completed" + progress_origin_ts: float | None = None + price_extractor: Callable[[dict[str, Any]], float | None] | None = None + + +@dataclass +class _PollUIState: + started: float + status_label: str = "Queued" + is_queued: bool = True + price: float | None = None + estimated_duration: int | None = None + base_processing_elapsed: float = 0.0 # sum of completed active intervals + active_since: float | None = None # start time of current active interval (None if queued) + + +_RETRY_STATUS = {408, 429, 500, 502, 503, 504} +COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"] +FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"] +QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"] + + +async def sync_op( + cls: type[IO.ComfyNode], + endpoint: ApiEndpoint, + *, + response_model: type[M], + price_extractor: Callable[[M | Any], float | None] | None = None, + data: BaseModel | None = None, + files: dict[str, Any] | list[tuple[str, Any]] | None = None, + content_type: str = "application/json", + timeout: float = 3600.0, + multipart_parser: Callable | None = None, + max_retries: int = 3, + retry_delay: float = 1.0, + retry_backoff: float = 2.0, + wait_label: str = "Waiting for server", + estimated_duration: int | None = None, + final_label_on_success: str | None = "Completed", + progress_origin_ts: float | None = None, + monitor_progress: bool = True, +) -> M: + raw = await sync_op_raw( + cls, + endpoint, + price_extractor=_wrap_model_extractor(response_model, price_extractor), + data=data, + files=files, + content_type=content_type, + timeout=timeout, + multipart_parser=multipart_parser, + max_retries=max_retries, + retry_delay=retry_delay, + retry_backoff=retry_backoff, + wait_label=wait_label, + estimated_duration=estimated_duration, + as_binary=False, + final_label_on_success=final_label_on_success, + progress_origin_ts=progress_origin_ts, + monitor_progress=monitor_progress, + ) + if not isinstance(raw, dict): + raise Exception("Expected JSON response to validate into a Pydantic model, got non-JSON (binary or text).") + return _validate_or_raise(response_model, raw) + + +async def poll_op( + cls: type[IO.ComfyNode], + poll_endpoint: ApiEndpoint, + *, + response_model: type[M], + status_extractor: Callable[[M | Any], str | int | None], + progress_extractor: Callable[[M | Any], int | None] | None = None, + price_extractor: Callable[[M | Any], float | None] | None = None, + completed_statuses: list[str | int] | None = None, + failed_statuses: list[str | int] | None = None, + queued_statuses: list[str | int] | None = None, + data: BaseModel | None = None, + poll_interval: float = 5.0, + max_poll_attempts: int = 120, + timeout_per_poll: float = 120.0, + max_retries_per_poll: int = 3, + retry_delay_per_poll: float = 1.0, + retry_backoff_per_poll: float = 2.0, + estimated_duration: int | None = None, + cancel_endpoint: ApiEndpoint | None = None, + cancel_timeout: float = 10.0, +) -> M: + raw = await poll_op_raw( + cls, + poll_endpoint=poll_endpoint, + status_extractor=_wrap_model_extractor(response_model, status_extractor), + progress_extractor=_wrap_model_extractor(response_model, progress_extractor), + price_extractor=_wrap_model_extractor(response_model, price_extractor), + completed_statuses=completed_statuses, + failed_statuses=failed_statuses, + queued_statuses=queued_statuses, + data=data, + poll_interval=poll_interval, + max_poll_attempts=max_poll_attempts, + timeout_per_poll=timeout_per_poll, + max_retries_per_poll=max_retries_per_poll, + retry_delay_per_poll=retry_delay_per_poll, + retry_backoff_per_poll=retry_backoff_per_poll, + estimated_duration=estimated_duration, + cancel_endpoint=cancel_endpoint, + cancel_timeout=cancel_timeout, + ) + if not isinstance(raw, dict): + raise Exception("Expected JSON response to validate into a Pydantic model, got non-JSON (binary or text).") + return _validate_or_raise(response_model, raw) + + +async def sync_op_raw( + cls: type[IO.ComfyNode], + endpoint: ApiEndpoint, + *, + price_extractor: Callable[[dict[str, Any]], float | None] | None = None, + data: dict[str, Any] | BaseModel | None = None, + files: dict[str, Any] | list[tuple[str, Any]] | None = None, + content_type: str = "application/json", + timeout: float = 3600.0, + multipart_parser: Callable | None = None, + max_retries: int = 3, + retry_delay: float = 1.0, + retry_backoff: float = 2.0, + wait_label: str = "Waiting for server", + estimated_duration: int | None = None, + as_binary: bool = False, + final_label_on_success: str | None = "Completed", + progress_origin_ts: float | None = None, + monitor_progress: bool = True, +) -> dict[str, Any] | bytes: + """ + Make a single network request. + - If as_binary=False (default): returns JSON dict (or {'_raw': ''} if non-JSON). + - If as_binary=True: returns bytes. + """ + if isinstance(data, BaseModel): + data = data.model_dump(exclude_none=True) + for k, v in list(data.items()): + if isinstance(v, Enum): + data[k] = v.value + cfg = _RequestConfig( + node_cls=cls, + endpoint=endpoint, + timeout=timeout, + content_type=content_type, + data=data, + files=files, + multipart_parser=multipart_parser, + max_retries=max_retries, + retry_delay=retry_delay, + retry_backoff=retry_backoff, + wait_label=wait_label, + monitor_progress=monitor_progress, + estimated_total=estimated_duration, + final_label_on_success=final_label_on_success, + progress_origin_ts=progress_origin_ts, + price_extractor=price_extractor, + ) + return await _request_base(cfg, expect_binary=as_binary) + + +async def poll_op_raw( + cls: type[IO.ComfyNode], + poll_endpoint: ApiEndpoint, + *, + status_extractor: Callable[[dict[str, Any]], str | int | None], + progress_extractor: Callable[[dict[str, Any]], int | None] | None = None, + price_extractor: Callable[[dict[str, Any]], float | None] | None = None, + completed_statuses: list[str | int] | None = None, + failed_statuses: list[str | int] | None = None, + queued_statuses: list[str | int] | None = None, + data: dict[str, Any] | BaseModel | None = None, + poll_interval: float = 5.0, + max_poll_attempts: int = 120, + timeout_per_poll: float = 120.0, + max_retries_per_poll: int = 3, + retry_delay_per_poll: float = 1.0, + retry_backoff_per_poll: float = 2.0, + estimated_duration: int | None = None, + cancel_endpoint: ApiEndpoint | None = None, + cancel_timeout: float = 10.0, +) -> dict[str, Any]: + """ + Polls an endpoint until the task reaches a terminal state. Displays time while queued/processing, + checks interruption every second, and calls Cancel endpoint (if provided) on interruption. + + Uses default complete, failed and queued states assumption. + + Returns the final JSON response from the poll endpoint. + """ + completed_states = _normalize_statuses(COMPLETED_STATUSES if completed_statuses is None else completed_statuses) + failed_states = _normalize_statuses(FAILED_STATUSES if failed_statuses is None else failed_statuses) + queued_states = _normalize_statuses(QUEUED_STATUSES if queued_statuses is None else queued_statuses) + started = time.monotonic() + consumed_attempts = 0 # counts only non-queued polls + + progress_bar = utils.ProgressBar(100) if progress_extractor else None + last_progress: int | None = None + + state = _PollUIState(started=started, estimated_duration=estimated_duration) + stop_ticker = asyncio.Event() + + async def _ticker(): + """Emit a UI update every second while polling is in progress.""" + try: + while not stop_ticker.is_set(): + if is_processing_interrupted(): + break + now = time.monotonic() + proc_elapsed = state.base_processing_elapsed + ( + (now - state.active_since) if state.active_since is not None else 0.0 + ) + _display_time_progress( + cls, + status=state.status_label, + elapsed_seconds=int(now - state.started), + estimated_total=state.estimated_duration, + price=state.price, + is_queued=state.is_queued, + processing_elapsed_seconds=int(proc_elapsed), + ) + await asyncio.sleep(1.0) + except Exception as exc: + logging.debug("Polling ticker exited: %s", exc) + + ticker_task = asyncio.create_task(_ticker()) + try: + while consumed_attempts < max_poll_attempts: + try: + resp_json = await sync_op_raw( + cls, + poll_endpoint, + data=data, + timeout=timeout_per_poll, + max_retries=max_retries_per_poll, + retry_delay=retry_delay_per_poll, + retry_backoff=retry_backoff_per_poll, + wait_label="Checking", + estimated_duration=None, + as_binary=False, + final_label_on_success=None, + monitor_progress=False, + ) + if not isinstance(resp_json, dict): + raise Exception("Polling endpoint returned non-JSON response.") + except ProcessingInterrupted: + if cancel_endpoint: + with contextlib.suppress(Exception): + await sync_op_raw( + cls, + cancel_endpoint, + timeout=cancel_timeout, + max_retries=0, + wait_label="Cancelling task", + estimated_duration=None, + as_binary=False, + final_label_on_success=None, + monitor_progress=False, + ) + raise + + try: + status = _normalize_status_value(status_extractor(resp_json)) + except Exception as e: + logging.error("Status extraction failed: %s", e) + status = None + + if price_extractor: + new_price = price_extractor(resp_json) + if new_price is not None: + state.price = new_price + + if progress_extractor: + new_progress = progress_extractor(resp_json) + if new_progress is not None and last_progress != new_progress: + progress_bar.update_absolute(new_progress, total=100) + last_progress = new_progress + + now_ts = time.monotonic() + is_queued = status in queued_states + + if is_queued: + if state.active_since is not None: # If we just moved from active -> queued, close the active interval + state.base_processing_elapsed += now_ts - state.active_since + state.active_since = None + else: + if state.active_since is None: # If we just moved from queued -> active, open a new active interval + state.active_since = now_ts + + state.is_queued = is_queued + state.status_label = status or ("Queued" if is_queued else "Processing") + if status in completed_states: + if state.active_since is not None: + state.base_processing_elapsed += now_ts - state.active_since + state.active_since = None + stop_ticker.set() + with contextlib.suppress(Exception): + await ticker_task + + if progress_bar and last_progress != 100: + progress_bar.update_absolute(100, total=100) + + _display_time_progress( + cls, + status=status if status else "Completed", + elapsed_seconds=int(now_ts - started), + estimated_total=estimated_duration, + price=state.price, + is_queued=False, + processing_elapsed_seconds=int(state.base_processing_elapsed), + ) + return resp_json + + if status in failed_states: + msg = f"Task failed: {json.dumps(resp_json)}" + logging.error(msg) + raise Exception(msg) + + try: + await sleep_with_interrupt(poll_interval, cls, None, None, None) + except ProcessingInterrupted: + if cancel_endpoint: + with contextlib.suppress(Exception): + await sync_op_raw( + cls, + cancel_endpoint, + timeout=cancel_timeout, + max_retries=0, + wait_label="Cancelling task", + estimated_duration=None, + as_binary=False, + final_label_on_success=None, + monitor_progress=False, + ) + raise + if not is_queued: + consumed_attempts += 1 + + raise Exception( + f"Polling timed out after {max_poll_attempts} non-queued attempts " + f"(~{int(max_poll_attempts * poll_interval)}s of active polling)." + ) + except ProcessingInterrupted: + raise + except (LocalNetworkError, ApiServerError): + raise + except Exception as e: + raise Exception(f"Polling aborted due to error: {e}") from e + finally: + stop_ticker.set() + with contextlib.suppress(Exception): + await ticker_task + + +def _display_text( + node_cls: type[IO.ComfyNode], + text: str | None, + *, + status: str | int | None = None, + price: float | None = None, +) -> None: + display_lines: list[str] = [] + if status: + display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}") + if price is not None: + p = f"{float(price) * 211:,.1f}".rstrip("0").rstrip(".") + if p != "0": + display_lines.append(f"Price: {p} credits") + if text is not None: + display_lines.append(text) + if display_lines: + PromptServer.instance.send_progress_text("\n".join(display_lines), get_node_id(node_cls)) + + +def _display_time_progress( + node_cls: type[IO.ComfyNode], + status: str | int | None, + elapsed_seconds: int, + estimated_total: int | None = None, + *, + price: float | None = None, + is_queued: bool | None = None, + processing_elapsed_seconds: int | None = None, +) -> None: + if estimated_total is not None and estimated_total > 0 and is_queued is False: + pe = processing_elapsed_seconds if processing_elapsed_seconds is not None else elapsed_seconds + remaining = max(0, int(estimated_total) - int(pe)) + time_line = f"Time elapsed: {int(elapsed_seconds)}s (~{remaining}s remaining)" + else: + time_line = f"Time elapsed: {int(elapsed_seconds)}s" + _display_text(node_cls, time_line, status=status, price=price) + + +async def _diagnose_connectivity() -> dict[str, bool]: + """Best-effort connectivity diagnostics to distinguish local vs. server issues.""" + results = { + "internet_accessible": False, + "api_accessible": False, + } + timeout = aiohttp.ClientTimeout(total=5.0) + async with aiohttp.ClientSession(timeout=timeout) as session: + with contextlib.suppress(ClientError, OSError): + async with session.get("https://www.google.com") as resp: + results["internet_accessible"] = resp.status < 500 + if not results["internet_accessible"]: + return results + + parsed = urlparse(default_base_url()) + health_url = f"{parsed.scheme}://{parsed.netloc}/health" + with contextlib.suppress(ClientError, OSError): + async with session.get(health_url) as resp: + results["api_accessible"] = resp.status < 500 + return results + + +def _unpack_tuple(t: tuple) -> tuple[str, Any, str]: + """Normalize (filename, value, content_type).""" + if len(t) == 2: + return t[0], t[1], "application/octet-stream" + if len(t) == 3: + return t[0], t[1], t[2] + raise ValueError("files tuple must be (filename, file[, content_type])") + + +def _merge_params(endpoint_params: dict[str, Any], method: str, data: dict[str, Any] | None) -> dict[str, Any]: + params = dict(endpoint_params or {}) + if method.upper() == "GET" and data: + for k, v in data.items(): + if v is not None: + params[k] = v + return params + + +def _friendly_http_message(status: int, body: Any) -> str: + if status == 401: + return "Unauthorized: Please login first to use this node." + if status == 402: + return "Payment Required: Please add credits to your account to use this node." + if status == 409: + return "There is a problem with your account. Please contact support@comfy.org." + if status == 429: + return "Rate Limit Exceeded: Please try again later." + try: + if isinstance(body, dict): + err = body.get("error") + if isinstance(err, dict): + msg = err.get("message") + typ = err.get("type") + if msg and typ: + return f"API Error: {msg} (Type: {typ})" + if msg: + return f"API Error: {msg}" + return f"API Error: {json.dumps(body)}" + else: + txt = str(body) + if len(txt) <= 200: + return f"API Error (raw): {txt}" + return f"API Error (status {status})" + except Exception: + return f"HTTP {status}: Unknown error" + + +def _generate_operation_id(method: str, path: str, attempt: int) -> str: + slug = path.strip("/").replace("/", "_") or "op" + return f"{method}_{slug}_try{attempt}_{uuid.uuid4().hex[:8]}" + + +def _snapshot_request_body_for_logging( + content_type: str, + method: str, + data: dict[str, Any] | None, + files: dict[str, Any] | list[tuple[str, Any]] | None, +) -> dict[str, Any] | str | None: + if method.upper() == "GET": + return None + if content_type == "multipart/form-data": + form_fields = sorted([k for k, v in (data or {}).items() if v is not None]) + file_fields: list[dict[str, str]] = [] + if files: + file_iter = files if isinstance(files, list) else list(files.items()) + for field_name, file_obj in file_iter: + if file_obj is None: + continue + if isinstance(file_obj, tuple): + filename = file_obj[0] + else: + filename = getattr(file_obj, "name", field_name) + file_fields.append({"field": field_name, "filename": str(filename or "")}) + return {"_multipart": True, "form_fields": form_fields, "file_fields": file_fields} + if content_type == "application/x-www-form-urlencoded": + return data or {} + return data or {} + + +async def _request_base(cfg: _RequestConfig, expect_binary: bool): + """Core request with retries, per-second interruption monitoring, true cancellation, and friendly errors.""" + url = cfg.endpoint.path + parsed_url = urlparse(url) + if not parsed_url.scheme and not parsed_url.netloc: # is URL relative? + url = urljoin(default_base_url().rstrip("/") + "/", url.lstrip("/")) + + method = cfg.endpoint.method + params = _merge_params(cfg.endpoint.query_params, method, cfg.data if method == "GET" else None) + + async def _monitor(stop_evt: asyncio.Event, start_ts: float): + """Every second: update elapsed time and signal interruption.""" + try: + while not stop_evt.is_set(): + if is_processing_interrupted(): + return + if cfg.monitor_progress: + _display_time_progress( + cfg.node_cls, cfg.wait_label, int(time.monotonic() - start_ts), cfg.estimated_total + ) + await asyncio.sleep(1.0) + except asyncio.CancelledError: + return # normal shutdown + + start_time = cfg.progress_origin_ts if cfg.progress_origin_ts is not None else time.monotonic() + attempt = 0 + delay = cfg.retry_delay + operation_succeeded: bool = False + final_elapsed_seconds: int | None = None + extracted_price: float | None = None + while True: + attempt += 1 + stop_event = asyncio.Event() + monitor_task: asyncio.Task | None = None + sess: aiohttp.ClientSession | None = None + + operation_id = _generate_operation_id(method, cfg.endpoint.path, attempt) + logging.debug("[DEBUG] HTTP %s %s (attempt %d)", method, url, attempt) + + payload_headers = {"Accept": "*/*"} if expect_binary else {"Accept": "application/json"} + if not parsed_url.scheme and not parsed_url.netloc: # is URL relative? + payload_headers.update(get_auth_header(cfg.node_cls)) + if cfg.endpoint.headers: + payload_headers.update(cfg.endpoint.headers) + + payload_kw: dict[str, Any] = {"headers": payload_headers} + if method == "GET": + payload_headers.pop("Content-Type", None) + request_body_log = _snapshot_request_body_for_logging(cfg.content_type, method, cfg.data, cfg.files) + try: + if cfg.monitor_progress: + monitor_task = asyncio.create_task(_monitor(stop_event, start_time)) + + timeout = aiohttp.ClientTimeout(total=cfg.timeout) + sess = aiohttp.ClientSession(timeout=timeout) + + if cfg.content_type == "multipart/form-data" and method != "GET": + # aiohttp will set Content-Type boundary; remove any fixed Content-Type + payload_headers.pop("Content-Type", None) + if cfg.multipart_parser and cfg.data: + form = cfg.multipart_parser(cfg.data) + if not isinstance(form, aiohttp.FormData): + raise ValueError("multipart_parser must return aiohttp.FormData") + else: + form = aiohttp.FormData(default_to_multipart=True) + if cfg.data: + for k, v in cfg.data.items(): + if v is None: + continue + form.add_field(k, str(v) if not isinstance(v, (bytes, bytearray)) else v) + if cfg.files: + file_iter = cfg.files if isinstance(cfg.files, list) else cfg.files.items() + for field_name, file_obj in file_iter: + if file_obj is None: + continue + if isinstance(file_obj, tuple): + filename, file_value, content_type = _unpack_tuple(file_obj) + else: + filename = getattr(file_obj, "name", field_name) + file_value = file_obj + content_type = "application/octet-stream" + # Attempt to rewind BytesIO for retries + if isinstance(file_value, BytesIO): + with contextlib.suppress(Exception): + file_value.seek(0) + form.add_field(field_name, file_value, filename=filename, content_type=content_type) + payload_kw["data"] = form + elif cfg.content_type == "application/x-www-form-urlencoded" and method != "GET": + payload_headers["Content-Type"] = "application/x-www-form-urlencoded" + payload_kw["data"] = cfg.data or {} + elif method != "GET": + payload_headers["Content-Type"] = "application/json" + payload_kw["json"] = cfg.data or {} + + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + request_headers=dict(payload_headers) if payload_headers else None, + request_params=dict(params) if params else None, + request_data=request_body_log, + ) + except Exception as _log_e: + logging.debug("[DEBUG] request logging failed: %s", _log_e) + + req_coro = sess.request(method, url, params=params, **payload_kw) + req_task = asyncio.create_task(req_coro) + + # Race: request vs. monitor (interruption) + tasks = {req_task} + if monitor_task: + tasks.add(monitor_task) + done, pending = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED) + + if monitor_task and monitor_task in done: + # Interrupted – cancel the request and abort + if req_task in pending: + req_task.cancel() + raise ProcessingInterrupted("Task cancelled") + + # Otherwise, request finished + resp = await req_task + async with resp: + if resp.status >= 400: + try: + body = await resp.json() + except (ContentTypeError, json.JSONDecodeError): + body = await resp.text() + if resp.status in _RETRY_STATUS and attempt <= cfg.max_retries: + logging.warning( + "HTTP %s %s -> %s. Retrying in %.2fs (retry %d of %d).", + method, + url, + resp.status, + delay, + attempt, + cfg.max_retries, + ) + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=body, + error_message=_friendly_http_message(resp.status, body), + ) + except Exception as _log_e: + logging.debug("[DEBUG] response logging failed: %s", _log_e) + + await sleep_with_interrupt( + delay, + cfg.node_cls, + cfg.wait_label if cfg.monitor_progress else None, + start_time if cfg.monitor_progress else None, + cfg.estimated_total, + display_callback=_display_time_progress if cfg.monitor_progress else None, + ) + delay *= cfg.retry_backoff + continue + msg = _friendly_http_message(resp.status, body) + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=body, + error_message=msg, + ) + except Exception as _log_e: + logging.debug("[DEBUG] response logging failed: %s", _log_e) + raise Exception(msg) + + if expect_binary: + buff = bytearray() + last_tick = time.monotonic() + async for chunk in resp.content.iter_chunked(64 * 1024): + buff.extend(chunk) + now = time.monotonic() + if now - last_tick >= 1.0: + last_tick = now + if is_processing_interrupted(): + raise ProcessingInterrupted("Task cancelled") + if cfg.monitor_progress: + _display_time_progress( + cfg.node_cls, cfg.wait_label, int(now - start_time), cfg.estimated_total + ) + bytes_payload = bytes(buff) + operation_succeeded = True + final_elapsed_seconds = int(time.monotonic() - start_time) + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=bytes_payload, + ) + except Exception as _log_e: + logging.debug("[DEBUG] response logging failed: %s", _log_e) + return bytes_payload + else: + try: + payload = await resp.json() + response_content_to_log: Any = payload + except (ContentTypeError, json.JSONDecodeError): + text = await resp.text() + try: + payload = json.loads(text) if text else {} + except json.JSONDecodeError: + payload = {"_raw": text} + response_content_to_log = payload if isinstance(payload, dict) else text + with contextlib.suppress(Exception): + extracted_price = cfg.price_extractor(payload) if cfg.price_extractor else None + operation_succeeded = True + final_elapsed_seconds = int(time.monotonic() - start_time) + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=response_content_to_log, + ) + except Exception as _log_e: + logging.debug("[DEBUG] response logging failed: %s", _log_e) + return payload + + except ProcessingInterrupted: + logging.debug("Polling was interrupted by user") + raise + except (ClientError, OSError) as e: + if attempt <= cfg.max_retries: + logging.warning( + "Connection error calling %s %s. Retrying in %.2fs (%d/%d): %s", + method, + url, + delay, + attempt, + cfg.max_retries, + str(e), + ) + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + request_headers=dict(payload_headers) if payload_headers else None, + request_params=dict(params) if params else None, + request_data=request_body_log, + error_message=f"{type(e).__name__}: {str(e)} (will retry)", + ) + except Exception as _log_e: + logging.debug("[DEBUG] request error logging failed: %s", _log_e) + await sleep_with_interrupt( + delay, + cfg.node_cls, + cfg.wait_label if cfg.monitor_progress else None, + start_time if cfg.monitor_progress else None, + cfg.estimated_total, + display_callback=_display_time_progress if cfg.monitor_progress else None, + ) + delay *= cfg.retry_backoff + continue + diag = await _diagnose_connectivity() + if not diag["internet_accessible"]: + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + request_headers=dict(payload_headers) if payload_headers else None, + request_params=dict(params) if params else None, + request_data=request_body_log, + error_message=f"LocalNetworkError: {str(e)}", + ) + except Exception as _log_e: + logging.debug("[DEBUG] final error logging failed: %s", _log_e) + raise LocalNetworkError( + "Unable to connect to the API server due to local network issues. " + "Please check your internet connection and try again." + ) from e + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method=method, + request_url=url, + request_headers=dict(payload_headers) if payload_headers else None, + request_params=dict(params) if params else None, + request_data=request_body_log, + error_message=f"ApiServerError: {str(e)}", + ) + except Exception as _log_e: + logging.debug("[DEBUG] final error logging failed: %s", _log_e) + raise ApiServerError( + f"The API server at {default_base_url()} is currently unreachable. " + f"The service may be experiencing issues." + ) from e + finally: + stop_event.set() + if monitor_task: + monitor_task.cancel() + with contextlib.suppress(Exception): + await monitor_task + if sess: + with contextlib.suppress(Exception): + await sess.close() + if operation_succeeded and cfg.monitor_progress and cfg.final_label_on_success: + _display_time_progress( + cfg.node_cls, + status=cfg.final_label_on_success, + elapsed_seconds=( + final_elapsed_seconds + if final_elapsed_seconds is not None + else int(time.monotonic() - start_time) + ), + estimated_total=cfg.estimated_total, + price=extracted_price, + is_queued=False, + processing_elapsed_seconds=final_elapsed_seconds, + ) + + +def _validate_or_raise(response_model: type[M], payload: Any) -> M: + try: + return response_model.model_validate(payload) + except Exception as e: + logging.error( + "Response validation failed for %s: %s", + getattr(response_model, "__name__", response_model), + e, + ) + raise Exception( + f"Response validation failed for {getattr(response_model, '__name__', response_model)}: {e}" + ) from e + + +def _wrap_model_extractor( + response_model: type[M], + extractor: Callable[[M], Any] | None, +) -> Callable[[dict[str, Any]], Any] | None: + """Wrap a typed extractor so it can be used by the dict-based poller. + Validates the dict into `response_model` before invoking `extractor`. + Uses a small per-wrapper cache keyed by `id(dict)` to avoid re-validating + the same response for multiple extractors in a single poll attempt. + """ + if extractor is None: + return None + _cache: dict[int, M] = {} + + def _wrapped(d: dict[str, Any]) -> Any: + try: + key = id(d) + model = _cache.get(key) + if model is None: + model = response_model.model_validate(d) + _cache[key] = model + return extractor(model) + except Exception as e: + logging.error("Extractor failed (typed -> dict wrapper): %s", e) + raise + + return _wrapped + + +def _normalize_statuses(values: Iterable[str | int] | None) -> set[str | int]: + if not values: + return set() + out: set[str | int] = set() + for v in values: + nv = _normalize_status_value(v) + if nv is not None: + out.add(nv) + return out + + +def _normalize_status_value(val: str | int | None) -> str | int | None: + if isinstance(val, str): + return val.strip().lower() + return val diff --git a/comfy_api_nodes/util/common_exceptions.py b/comfy_api_nodes/util/common_exceptions.py new file mode 100644 index 000000000..0606a4407 --- /dev/null +++ b/comfy_api_nodes/util/common_exceptions.py @@ -0,0 +1,14 @@ +class NetworkError(Exception): + """Base exception for network-related errors with diagnostic information.""" + + +class LocalNetworkError(NetworkError): + """Exception raised when local network connectivity issues are detected.""" + + +class ApiServerError(NetworkError): + """Exception raised when the API server is unreachable but internet is working.""" + + +class ProcessingInterrupted(Exception): + """Operation was interrupted by user/runtime via processing_interrupted().""" diff --git a/comfy_api_nodes/util/conversions.py b/comfy_api_nodes/util/conversions.py new file mode 100644 index 000000000..d64239c86 --- /dev/null +++ b/comfy_api_nodes/util/conversions.py @@ -0,0 +1,467 @@ +import base64 +import logging +import math +import mimetypes +import uuid +from io import BytesIO + +import av +import numpy as np +import torch +from PIL import Image + +from comfy.utils import common_upscale +from comfy_api.latest import Input, InputImpl, Types + +from ._helpers import mimetype_to_extension + + +def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor: + """Converts image data from BytesIO to a torch.Tensor. + + Args: + image_bytesio: BytesIO object containing the image data. + mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA"). + + Returns: + A torch.Tensor representing the image (1, H, W, C). + + Raises: + PIL.UnidentifiedImageError: If the image data cannot be identified. + ValueError: If the specified mode is invalid. + """ + image = Image.open(image_bytesio) + image = image.convert(mode) + image_array = np.array(image).astype(np.float32) / 255.0 + return torch.from_numpy(image_array).unsqueeze(0) + + +def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> torch.Tensor: + """ + Converts a pair of image tensors to a batch tensor. + If the images are not the same size, the smaller image is resized to + match the larger image. + """ + if image1.shape[1:] != image2.shape[1:]: + image2 = common_upscale( + image2.movedim(-1, 1), + image1.shape[2], + image1.shape[1], + "bilinear", + "center", + ).movedim(1, -1) + return torch.cat((image1, image2), dim=0) + + +def tensor_to_bytesio( + image: torch.Tensor, + name: str | None = None, + total_pixels: int = 2048 * 2048, + mime_type: str = "image/png", +) -> BytesIO: + """Converts a torch.Tensor image to a named BytesIO object. + + Args: + image: Input torch.Tensor image. + name: Optional filename for the BytesIO object. + total_pixels: Maximum total pixels for potential downscaling. + mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). + + Returns: + Named BytesIO object containing the image data, with pointer set to the start of buffer. + """ + if not mime_type: + mime_type = "image/png" + + pil_image = tensor_to_pil(image, total_pixels=total_pixels) + img_binary = pil_to_bytesio(pil_image, mime_type=mime_type) + img_binary.name = f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}" + return img_binary + + +def tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image: + """Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling.""" + if len(image.shape) > 3: + image = image[0] + # TODO: remove alpha if not allowed and present + input_tensor = image.cpu() + input_tensor = downscale_image_tensor(input_tensor.unsqueeze(0), total_pixels=total_pixels).squeeze() + image_np = (input_tensor.numpy() * 255).astype(np.uint8) + img = Image.fromarray(image_np) + return img + + +def tensor_to_base64_string( + image_tensor: torch.Tensor, + total_pixels: int = 2048 * 2048, + mime_type: str = "image/png", +) -> str: + """Convert [B, H, W, C] or [H, W, C] tensor to a base64 string. + + Args: + image_tensor: Input torch.Tensor image. + total_pixels: Maximum total pixels for potential downscaling. + mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). + + Returns: + Base64 encoded string of the image. + """ + pil_image = tensor_to_pil(image_tensor, total_pixels=total_pixels) + img_byte_arr = pil_to_bytesio(pil_image, mime_type=mime_type) + img_bytes = img_byte_arr.getvalue() + # Encode bytes to base64 string + base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8") + return base64_encoded_string + + +def pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO: + """Converts a PIL Image to a BytesIO object.""" + if not mime_type: + mime_type = "image/png" + + img_byte_arr = BytesIO() + # Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG') + pil_format = mime_type.split("/")[-1].upper() + if pil_format == "JPG": + pil_format = "JPEG" + img.save(img_byte_arr, format=pil_format) + img_byte_arr.seek(0) + return img_byte_arr + + +def downscale_image_tensor(image: torch.Tensor, total_pixels: int = 1536 * 1024) -> torch.Tensor: + """Downscale input image tensor to roughly the specified total pixels.""" + samples = image.movedim(-1, 1) + total = int(total_pixels) + scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) + if scale_by >= 1: + return image + width = round(samples.shape[3] * scale_by) + height = round(samples.shape[2] * scale_by) + + s = common_upscale(samples, width, height, "lanczos", "disabled") + s = s.movedim(1, -1) + return s + + +def tensor_to_data_uri( + image_tensor: torch.Tensor, + total_pixels: int = 2048 * 2048, + mime_type: str = "image/png", +) -> str: + """Converts a tensor image to a Data URI string. + + Args: + image_tensor: Input torch.Tensor image. + total_pixels: Maximum total pixels for potential downscaling. + mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp'). + + Returns: + Data URI string (e.g., 'data:image/png;base64,...'). + """ + base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type) + return f"data:{mime_type};base64,{base64_string}" + + +def audio_to_base64_string(audio: Input.Audio, container_format: str = "mp4", codec_name: str = "aac") -> str: + """Converts an audio input to a base64 string.""" + sample_rate: int = audio["sample_rate"] + waveform: torch.Tensor = audio["waveform"] + audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) + audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, container_format, codec_name) + audio_bytes = audio_bytes_io.getvalue() + return base64.b64encode(audio_bytes).decode("utf-8") + + +def video_to_base64_string( + video: Input.Video, + container_format: Types.VideoContainer | None = None, + codec: Types.VideoCodec | None = None, +) -> str: + """ + Converts a video input to a base64 string. + + Args: + video: The video input to convert + container_format: Optional container format to use (defaults to video.container if available) + codec: Optional codec to use (defaults to video.codec if available) + """ + video_bytes_io = BytesIO() + video.save_to( + video_bytes_io, + format=container_format or getattr(video, "container", Types.VideoContainer.MP4), + codec=codec or getattr(video, "codec", Types.VideoCodec.H264), + ) + video_bytes_io.seek(0) + return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8") + + +def audio_ndarray_to_bytesio( + audio_data_np: np.ndarray, + sample_rate: int, + container_format: str = "mp4", + codec_name: str = "aac", +) -> BytesIO: + """ + Encodes a numpy array of audio data into a BytesIO object. + """ + audio_bytes_io = BytesIO() + with av.open(audio_bytes_io, mode="w", format=container_format) as output_container: + audio_stream = output_container.add_stream(codec_name, rate=sample_rate) + frame = av.AudioFrame.from_ndarray( + audio_data_np, + format="fltp", + layout="stereo" if audio_data_np.shape[0] > 1 else "mono", + ) + frame.sample_rate = sample_rate + frame.pts = 0 + + for packet in audio_stream.encode(frame): + output_container.mux(packet) + + # Flush stream + for packet in audio_stream.encode(None): + output_container.mux(packet) + + audio_bytes_io.seek(0) + return audio_bytes_io + + +def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray: + """ + Prepares audio waveform for av library by converting to a contiguous numpy array. + + Args: + waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type. + + Returns: + Contiguous numpy array of the audio waveform. If the audio was batched, + the first item is taken. + """ + if waveform.ndim != 3 or waveform.shape[0] != 1: + raise ValueError("Expected waveform tensor shape (1, channels, samples)") + + # If batch is > 1, take first item + if waveform.shape[0] > 1: + waveform = waveform[0] + + # Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array + audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy() + if audio_data_np.dtype != np.float32: + audio_data_np = audio_data_np.astype(np.float32) + + return audio_data_np + + +def audio_input_to_mp3(audio: Input.Audio) -> BytesIO: + waveform = audio["waveform"].cpu() + + output_buffer = BytesIO() + output_container = av.open(output_buffer, mode="w", format="mp3") + + out_stream = output_container.add_stream("libmp3lame", rate=audio["sample_rate"]) + out_stream.bit_rate = 320000 + + frame = av.AudioFrame.from_ndarray( + waveform.movedim(0, 1).reshape(1, -1).float().numpy(), + format="flt", + layout="mono" if waveform.shape[0] == 1 else "stereo", + ) + frame.sample_rate = audio["sample_rate"] + frame.pts = 0 + output_container.mux(out_stream.encode(frame)) + output_container.mux(out_stream.encode(None)) + output_container.close() + output_buffer.seek(0) + return output_buffer + + +def trim_video(video: Input.Video, duration_sec: float) -> Input.Video: + """ + Returns a new VideoInput object trimmed from the beginning to the specified duration, + using av to avoid loading entire video into memory. + + Args: + video: Input video to trim + duration_sec: Duration in seconds to keep from the beginning + + Returns: + VideoFromFile object that owns the output buffer + """ + output_buffer = BytesIO() + input_container = None + output_container = None + + try: + # Get the stream source - this avoids loading entire video into memory + # when the source is already a file path + input_source = video.get_stream_source() + + # Open containers + input_container = av.open(input_source, mode="r") + output_container = av.open(output_buffer, mode="w", format="mp4") + + # Set up output streams for re-encoding + video_stream = None + audio_stream = None + + for stream in input_container.streams: + logging.info("Found stream: type=%s, class=%s", stream.type, type(stream)) + if isinstance(stream, av.VideoStream): + # Create output video stream with same parameters + video_stream = output_container.add_stream("h264", rate=stream.average_rate) + video_stream.width = stream.width + video_stream.height = stream.height + video_stream.pix_fmt = "yuv420p" + logging.info("Added video stream: %sx%s @ %sfps", stream.width, stream.height, stream.average_rate) + elif isinstance(stream, av.AudioStream): + # Create output audio stream with same parameters + audio_stream = output_container.add_stream("aac", rate=stream.sample_rate) + audio_stream.sample_rate = stream.sample_rate + audio_stream.layout = stream.layout + logging.info("Added audio stream: %sHz, %s channels", stream.sample_rate, stream.channels) + + # Calculate target frame count that's divisible by 16 + fps = input_container.streams.video[0].average_rate + estimated_frames = int(duration_sec * fps) + target_frames = (estimated_frames // 16) * 16 # Round down to nearest multiple of 16 + + if target_frames == 0: + raise ValueError("Video too short: need at least 16 frames for Moonvalley") + + frame_count = 0 + audio_frame_count = 0 + + # Decode and re-encode video frames + if video_stream: + for frame in input_container.decode(video=0): + if frame_count >= target_frames: + break + + # Re-encode frame + for packet in video_stream.encode(frame): + output_container.mux(packet) + frame_count += 1 + + # Flush encoder + for packet in video_stream.encode(): + output_container.mux(packet) + + logging.info("Encoded %s video frames (target: %s)", frame_count, target_frames) + + # Decode and re-encode audio frames + if audio_stream: + input_container.seek(0) # Reset to beginning for audio + for frame in input_container.decode(audio=0): + if frame.time >= duration_sec: + break + + # Re-encode frame + for packet in audio_stream.encode(frame): + output_container.mux(packet) + audio_frame_count += 1 + + # Flush encoder + for packet in audio_stream.encode(): + output_container.mux(packet) + + logging.info("Encoded %s audio frames", audio_frame_count) + + # Close containers + output_container.close() + input_container.close() + + # Return as VideoFromFile using the buffer + output_buffer.seek(0) + return InputImpl.VideoFromFile(output_buffer) + + except Exception as e: + # Clean up on error + if input_container is not None: + input_container.close() + if output_container is not None: + output_container.close() + raise RuntimeError(f"Failed to trim video: {str(e)}") from e + + +def _f32_pcm(wav: torch.Tensor) -> torch.Tensor: + """Convert audio to float 32 bits PCM format. Copy-paste from nodes_audio.py file.""" + if wav.dtype.is_floating_point: + return wav + elif wav.dtype == torch.int16: + return wav.float() / (2**15) + elif wav.dtype == torch.int32: + return wav.float() / (2**31) + raise ValueError(f"Unsupported wav dtype: {wav.dtype}") + + +def audio_bytes_to_audio_input(audio_bytes: bytes) -> dict: + """ + Decode any common audio container from bytes using PyAV and return + a Comfy AUDIO dict: {"waveform": [1, C, T] float32, "sample_rate": int}. + """ + with av.open(BytesIO(audio_bytes)) as af: + if not af.streams.audio: + raise ValueError("No audio stream found in response.") + stream = af.streams.audio[0] + + in_sr = int(stream.codec_context.sample_rate) + out_sr = in_sr + + frames: list[torch.Tensor] = [] + n_channels = stream.channels or 1 + + for frame in af.decode(streams=stream.index): + arr = frame.to_ndarray() # shape can be [C, T] or [T, C] or [T] + buf = torch.from_numpy(arr) + if buf.ndim == 1: + buf = buf.unsqueeze(0) # [T] -> [1, T] + elif buf.shape[0] != n_channels and buf.shape[-1] == n_channels: + buf = buf.transpose(0, 1).contiguous() # [T, C] -> [C, T] + elif buf.shape[0] != n_channels: + buf = buf.reshape(-1, n_channels).t().contiguous() # fallback to [C, T] + frames.append(buf) + + if not frames: + raise ValueError("Decoded zero audio frames.") + + wav = torch.cat(frames, dim=1) # [C, T] + wav = _f32_pcm(wav) + return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr} + + +def resize_mask_to_image( + mask: torch.Tensor, + image: torch.Tensor, + upscale_method="nearest-exact", + crop="disabled", + allow_gradient=True, + add_channel_dim=False, +): + """Resize mask to be the same dimensions as an image, while maintaining proper format for API calls.""" + _, height, width, _ = image.shape + mask = mask.unsqueeze(-1) + mask = mask.movedim(-1, 1) + mask = common_upscale(mask, width=width, height=height, upscale_method=upscale_method, crop=crop) + mask = mask.movedim(1, -1) + if not add_channel_dim: + mask = mask.squeeze(-1) + if not allow_gradient: + mask = (mask > 0.5).float() + return mask + + +def text_filepath_to_base64_string(filepath: str) -> str: + """Converts a text file to a base64 string.""" + with open(filepath, "rb") as f: + file_content = f.read() + return base64.b64encode(file_content).decode("utf-8") + + +def text_filepath_to_data_uri(filepath: str) -> str: + """Converts a text file to a data URI.""" + base64_string = text_filepath_to_base64_string(filepath) + mime_type, _ = mimetypes.guess_type(filepath) + if mime_type is None: + mime_type = "application/octet-stream" + return f"data:{mime_type};base64,{base64_string}" diff --git a/comfy_api_nodes/util/download_helpers.py b/comfy_api_nodes/util/download_helpers.py new file mode 100644 index 000000000..4668d14a9 --- /dev/null +++ b/comfy_api_nodes/util/download_helpers.py @@ -0,0 +1,263 @@ +import asyncio +import contextlib +import uuid +from io import BytesIO +from pathlib import Path +from typing import IO +from urllib.parse import urljoin, urlparse + +import aiohttp +import torch +from aiohttp.client_exceptions import ClientError, ContentTypeError + +from comfy_api.latest import IO as COMFY_IO +from comfy_api.latest import InputImpl + +from . import request_logger +from ._helpers import ( + default_base_url, + get_auth_header, + is_processing_interrupted, + sleep_with_interrupt, + to_aiohttp_url, +) +from .client import _diagnose_connectivity +from .common_exceptions import ApiServerError, LocalNetworkError, ProcessingInterrupted +from .conversions import bytesio_to_image_tensor + +_RETRY_STATUS = {408, 429, 500, 502, 503, 504} + + +async def download_url_to_bytesio( + url: str, + dest: BytesIO | IO[bytes] | str | Path | None, + *, + timeout: float | None = None, + max_retries: int = 5, + retry_delay: float = 1.0, + retry_backoff: float = 2.0, + cls: type[COMFY_IO.ComfyNode] = None, +) -> None: + """Stream-download a URL to `dest`. + + `dest` must be one of: + - a BytesIO (rewound to 0 after write), + - a file-like object opened in binary write mode (must implement .write()), + - a filesystem path (str | pathlib.Path), which will be opened with 'wb'. + + If `url` starts with `/proxy/`, `cls` must be provided so the URL can be expanded + to an absolute URL and authentication headers can be applied. + + Raises: + ProcessingInterrupted, LocalNetworkError, ApiServerError, Exception (HTTP and other errors) + """ + if not isinstance(dest, (str, Path)) and not hasattr(dest, "write"): + raise ValueError("dest must be a path (str|Path) or a binary-writable object providing .write().") + + attempt = 0 + delay = retry_delay + headers: dict[str, str] = {} + + parsed_url = urlparse(url) + if not parsed_url.scheme and not parsed_url.netloc: # is URL relative? + if cls is None: + raise ValueError("For relative 'cloud' paths, the `cls` parameter is required.") + url = urljoin(default_base_url().rstrip("/") + "/", url.lstrip("/")) + headers = get_auth_header(cls) + + while True: + attempt += 1 + op_id = _generate_operation_id("GET", url, attempt) + timeout_cfg = aiohttp.ClientTimeout(total=timeout) + + is_path_sink = isinstance(dest, (str, Path)) + fhandle = None + session: aiohttp.ClientSession | None = None + stop_evt: asyncio.Event | None = None + monitor_task: asyncio.Task | None = None + req_task: asyncio.Task | None = None + + try: + with contextlib.suppress(Exception): + request_logger.log_request_response(operation_id=op_id, request_method="GET", request_url=url) + + session = aiohttp.ClientSession(timeout=timeout_cfg) + stop_evt = asyncio.Event() + + async def _monitor(): + try: + while not stop_evt.is_set(): + if is_processing_interrupted(): + return + await asyncio.sleep(1.0) + except asyncio.CancelledError: + return + + monitor_task = asyncio.create_task(_monitor()) + + req_task = asyncio.create_task(session.get(to_aiohttp_url(url), headers=headers)) + done, pending = await asyncio.wait({req_task, monitor_task}, return_when=asyncio.FIRST_COMPLETED) + + if monitor_task in done and req_task in pending: + req_task.cancel() + with contextlib.suppress(Exception): + await req_task + raise ProcessingInterrupted("Task cancelled") + + try: + resp = await req_task + except asyncio.CancelledError: + raise ProcessingInterrupted("Task cancelled") from None + + async with resp: + if resp.status >= 400: + with contextlib.suppress(Exception): + try: + body = await resp.json() + except (ContentTypeError, ValueError): + text = await resp.text() + body = text if len(text) <= 4096 else f"[text {len(text)} bytes]" + request_logger.log_request_response( + operation_id=op_id, + request_method="GET", + request_url=url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=body, + error_message=f"HTTP {resp.status}", + ) + + if resp.status in _RETRY_STATUS and attempt <= max_retries: + await sleep_with_interrupt(delay, cls, None, None, None) + delay *= retry_backoff + continue + raise Exception(f"Failed to download (HTTP {resp.status}).") + + if is_path_sink: + p = Path(str(dest)) + with contextlib.suppress(Exception): + p.parent.mkdir(parents=True, exist_ok=True) + fhandle = open(p, "wb") + sink = fhandle + else: + sink = dest # BytesIO or file-like + + written = 0 + while True: + try: + chunk = await asyncio.wait_for(resp.content.read(1024 * 1024), timeout=1.0) + except asyncio.TimeoutError: + chunk = b"" + except asyncio.CancelledError: + raise ProcessingInterrupted("Task cancelled") from None + + if is_processing_interrupted(): + raise ProcessingInterrupted("Task cancelled") + + if not chunk: + if resp.content.at_eof(): + break + continue + + sink.write(chunk) + written += len(chunk) + + if isinstance(dest, BytesIO): + with contextlib.suppress(Exception): + dest.seek(0) + + with contextlib.suppress(Exception): + request_logger.log_request_response( + operation_id=op_id, + request_method="GET", + request_url=url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=f"[streamed {written} bytes to dest]", + ) + return + except asyncio.CancelledError: + raise ProcessingInterrupted("Task cancelled") from None + except (ClientError, OSError) as e: + if attempt <= max_retries: + with contextlib.suppress(Exception): + request_logger.log_request_response( + operation_id=op_id, + request_method="GET", + request_url=url, + error_message=f"{type(e).__name__}: {str(e)} (will retry)", + ) + await sleep_with_interrupt(delay, cls, None, None, None) + delay *= retry_backoff + continue + + diag = await _diagnose_connectivity() + if not diag["internet_accessible"]: + raise LocalNetworkError( + "Unable to connect to the network. Please check your internet connection and try again." + ) from e + raise ApiServerError("The remote service appears unreachable at this time.") from e + finally: + if stop_evt is not None: + stop_evt.set() + if monitor_task: + monitor_task.cancel() + with contextlib.suppress(Exception): + await monitor_task + if req_task and not req_task.done(): + req_task.cancel() + with contextlib.suppress(Exception): + await req_task + if session: + with contextlib.suppress(Exception): + await session.close() + if fhandle: + with contextlib.suppress(Exception): + fhandle.flush() + fhandle.close() + + +async def download_url_to_image_tensor( + url: str, + *, + timeout: float = None, + cls: type[COMFY_IO.ComfyNode] = None, +) -> torch.Tensor: + """Downloads an image from a URL and returns a [B, H, W, C] tensor.""" + result = BytesIO() + await download_url_to_bytesio(url, result, timeout=timeout, cls=cls) + return bytesio_to_image_tensor(result) + + +async def download_url_to_video_output( + video_url: str, + *, + timeout: float = None, + max_retries: int = 5, + cls: type[COMFY_IO.ComfyNode] = None, +) -> InputImpl.VideoFromFile: + """Downloads a video from a URL and returns a `VIDEO` output.""" + result = BytesIO() + await download_url_to_bytesio(video_url, result, timeout=timeout, max_retries=max_retries, cls=cls) + return InputImpl.VideoFromFile(result) + + +async def download_url_as_bytesio( + url: str, + *, + timeout: float = None, + cls: type[COMFY_IO.ComfyNode] = None, +) -> BytesIO: + """Downloads content from a URL and returns a new BytesIO (rewound to 0).""" + result = BytesIO() + await download_url_to_bytesio(url, result, timeout=timeout, cls=cls) + return result + + +def _generate_operation_id(method: str, url: str, attempt: int) -> str: + try: + parsed = urlparse(url) + slug = (parsed.path.rsplit("/", 1)[-1] or parsed.netloc or "download").strip("/").replace("/", "_") + except Exception: + slug = "download" + return f"{method}_{slug}_try{attempt}_{uuid.uuid4().hex[:8]}" diff --git a/comfy_api_nodes/apis/request_logger.py b/comfy_api_nodes/util/request_logger.py similarity index 96% rename from comfy_api_nodes/apis/request_logger.py rename to comfy_api_nodes/util/request_logger.py index 2e0ca5380..e0cb4428d 100644 --- a/comfy_api_nodes/apis/request_logger.py +++ b/comfy_api_nodes/util/request_logger.py @@ -1,11 +1,9 @@ -from __future__ import annotations - -import os import datetime +import hashlib import json import logging +import os import re -import hashlib from typing import Any import folder_paths @@ -21,7 +19,7 @@ def get_log_directory(): try: os.makedirs(log_dir, exist_ok=True) except Exception as e: - logger.error(f"Error creating API log directory {log_dir}: {e}") + logger.error("Error creating API log directory %s: %s", log_dir, str(e)) # Fallback to base temp directory if sub-directory creation fails return base_temp_dir return log_dir @@ -122,9 +120,9 @@ def log_request_response( try: with open(filepath, "w", encoding="utf-8") as f: f.write("\n".join(log_content)) - logger.debug(f"API log saved to: {filepath}") + logger.debug("API log saved to: %s", filepath) except Exception as e: - logger.error(f"Error writing API log to {filepath}: {e}") + logger.error("Error writing API log to %s: %s", filepath, str(e)) if __name__ == '__main__': diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py new file mode 100644 index 000000000..b8d33f4d1 --- /dev/null +++ b/comfy_api_nodes/util/upload_helpers.py @@ -0,0 +1,338 @@ +import asyncio +import contextlib +import logging +import time +import uuid +from io import BytesIO +from urllib.parse import urlparse + +import aiohttp +import torch +from pydantic import BaseModel, Field + +from comfy_api.latest import IO, Input, Types + +from . import request_logger +from ._helpers import is_processing_interrupted, sleep_with_interrupt +from .client import ( + ApiEndpoint, + _diagnose_connectivity, + _display_time_progress, + sync_op, +) +from .common_exceptions import ApiServerError, LocalNetworkError, ProcessingInterrupted +from .conversions import ( + audio_ndarray_to_bytesio, + audio_tensor_to_contiguous_ndarray, + tensor_to_bytesio, +) + + +class UploadRequest(BaseModel): + file_name: str = Field(..., description="Filename to upload") + content_type: str | None = Field( + None, + description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.", + ) + + +class UploadResponse(BaseModel): + download_url: str = Field(..., description="URL to GET uploaded file") + upload_url: str = Field(..., description="URL to PUT file to upload") + + +async def upload_images_to_comfyapi( + cls: type[IO.ComfyNode], + image: torch.Tensor, + *, + max_images: int = 8, + mime_type: str | None = None, + wait_label: str | None = "Uploading", + show_batch_index: bool = True, +) -> list[str]: + """ + Uploads images to ComfyUI API and returns download URLs. + To upload multiple images, stack them in the batch dimension first. + """ + # if batched, try to upload each file if max_images is greater than 0 + download_urls: list[str] = [] + is_batch = len(image.shape) > 3 + batch_len = image.shape[0] if is_batch else 1 + num_to_upload = min(batch_len, max_images) + batch_start_ts = time.monotonic() + + for idx in range(num_to_upload): + tensor = image[idx] if is_batch else image + img_io = tensor_to_bytesio(tensor, mime_type=mime_type) + + effective_label = wait_label + if wait_label and show_batch_index and num_to_upload > 1: + effective_label = f"{wait_label} ({idx + 1}/{num_to_upload})" + + url = await upload_file_to_comfyapi(cls, img_io, img_io.name, mime_type, effective_label, batch_start_ts) + download_urls.append(url) + return download_urls + + +async def upload_audio_to_comfyapi( + cls: type[IO.ComfyNode], + audio: Input.Audio, + *, + container_format: str = "mp4", + codec_name: str = "aac", + mime_type: str = "audio/mp4", + filename: str = "uploaded_audio.mp4", +) -> str: + """ + Uploads a single audio input to ComfyUI API and returns its download URL. + Encodes the raw waveform into the specified format before uploading. + """ + sample_rate: int = audio["sample_rate"] + waveform: torch.Tensor = audio["waveform"] + audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) + audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, container_format, codec_name) + return await upload_file_to_comfyapi(cls, audio_bytes_io, filename, mime_type) + + +async def upload_video_to_comfyapi( + cls: type[IO.ComfyNode], + video: Input.Video, + *, + container: Types.VideoContainer = Types.VideoContainer.MP4, + codec: Types.VideoCodec = Types.VideoCodec.H264, + max_duration: int | None = None, + wait_label: str | None = "Uploading", +) -> str: + """ + Uploads a single video to ComfyUI API and returns its download URL. + Uses the specified container and codec for saving the video before upload. + """ + if max_duration is not None: + try: + actual_duration = video.get_duration() + if actual_duration > max_duration: + raise ValueError( + f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)." + ) + except Exception as e: + logging.error("Error getting video duration: %s", str(e)) + raise ValueError(f"Could not verify video duration from source: {e}") from e + + upload_mime_type = f"video/{container.value.lower()}" + filename = f"uploaded_video.{container.value.lower()}" + + # Convert VideoInput to BytesIO using specified container/codec + video_bytes_io = BytesIO() + video.save_to(video_bytes_io, format=container, codec=codec) + video_bytes_io.seek(0) + + return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type, wait_label) + + +async def upload_file_to_comfyapi( + cls: type[IO.ComfyNode], + file_bytes_io: BytesIO, + filename: str, + upload_mime_type: str | None, + wait_label: str | None = "Uploading", + progress_origin_ts: float | None = None, +) -> str: + """Uploads a single file to ComfyUI API and returns its download URL.""" + if upload_mime_type is None: + request_object = UploadRequest(file_name=filename) + else: + request_object = UploadRequest(file_name=filename, content_type=upload_mime_type) + create_resp = await sync_op( + cls, + endpoint=ApiEndpoint(path="/customers/storage", method="POST"), + data=request_object, + response_model=UploadResponse, + final_label_on_success=None, + monitor_progress=False, + ) + await upload_file( + cls, + create_resp.upload_url, + file_bytes_io, + content_type=upload_mime_type, + wait_label=wait_label, + progress_origin_ts=progress_origin_ts, + ) + return create_resp.download_url + + +async def upload_file( + cls: type[IO.ComfyNode], + upload_url: str, + file: BytesIO | str, + *, + content_type: str | None = None, + max_retries: int = 3, + retry_delay: float = 1.0, + retry_backoff: float = 2.0, + wait_label: str | None = None, + progress_origin_ts: float | None = None, +) -> None: + """ + Upload a file to a signed URL (e.g., S3 pre-signed PUT) with retries, Comfy progress display, and interruption. + + Raises: + ProcessingInterrupted, LocalNetworkError, ApiServerError, Exception + """ + if isinstance(file, BytesIO): + with contextlib.suppress(Exception): + file.seek(0) + data = file.read() + elif isinstance(file, str): + with open(file, "rb") as f: + data = f.read() + else: + raise ValueError("file must be a BytesIO or a filesystem path string") + + headers: dict[str, str] = {} + skip_auto_headers: set[str] = set() + if content_type: + headers["Content-Type"] = content_type + else: + skip_auto_headers.add("Content-Type") # Don't let aiohttp add Content-Type, it can break the signed request + + attempt = 0 + delay = retry_delay + start_ts = progress_origin_ts if progress_origin_ts is not None else time.monotonic() + op_uuid = uuid.uuid4().hex[:8] + while True: + attempt += 1 + operation_id = _generate_operation_id("PUT", upload_url, attempt, op_uuid) + timeout = aiohttp.ClientTimeout(total=None) + stop_evt = asyncio.Event() + + async def _monitor(): + try: + while not stop_evt.is_set(): + if is_processing_interrupted(): + return + if wait_label: + _display_time_progress(cls, wait_label, int(time.monotonic() - start_ts), None) + await asyncio.sleep(1.0) + except asyncio.CancelledError: + return + + monitor_task = asyncio.create_task(_monitor()) + sess: aiohttp.ClientSession | None = None + try: + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method="PUT", + request_url=upload_url, + request_headers=headers or None, + request_params=None, + request_data=f"[File data {len(data)} bytes]", + ) + except Exception as e: + logging.debug("[DEBUG] upload request logging failed: %s", e) + + sess = aiohttp.ClientSession(timeout=timeout) + req = sess.put(upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers) + req_task = asyncio.create_task(req) + + done, pending = await asyncio.wait({req_task, monitor_task}, return_when=asyncio.FIRST_COMPLETED) + + if monitor_task in done and req_task in pending: + req_task.cancel() + raise ProcessingInterrupted("Upload cancelled") + + try: + resp = await req_task + except asyncio.CancelledError: + raise ProcessingInterrupted("Upload cancelled") from None + + async with resp: + if resp.status >= 400: + with contextlib.suppress(Exception): + try: + body = await resp.json() + except Exception: + body = await resp.text() + msg = f"Upload failed with status {resp.status}" + request_logger.log_request_response( + operation_id=operation_id, + request_method="PUT", + request_url=upload_url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content=body, + error_message=msg, + ) + if resp.status in {408, 429, 500, 502, 503, 504} and attempt <= max_retries: + await sleep_with_interrupt( + delay, + cls, + wait_label, + start_ts, + None, + display_callback=_display_time_progress if wait_label else None, + ) + delay *= retry_backoff + continue + raise Exception(f"Failed to upload (HTTP {resp.status}).") + try: + request_logger.log_request_response( + operation_id=operation_id, + request_method="PUT", + request_url=upload_url, + response_status_code=resp.status, + response_headers=dict(resp.headers), + response_content="File uploaded successfully.", + ) + except Exception as e: + logging.debug("[DEBUG] upload response logging failed: %s", e) + return + except asyncio.CancelledError: + raise ProcessingInterrupted("Task cancelled") from None + except (aiohttp.ClientError, OSError) as e: + if attempt <= max_retries: + with contextlib.suppress(Exception): + request_logger.log_request_response( + operation_id=operation_id, + request_method="PUT", + request_url=upload_url, + request_headers=headers or None, + request_data=f"[File data {len(data)} bytes]", + error_message=f"{type(e).__name__}: {str(e)} (will retry)", + ) + await sleep_with_interrupt( + delay, + cls, + wait_label, + start_ts, + None, + display_callback=_display_time_progress if wait_label else None, + ) + delay *= retry_backoff + continue + + diag = await _diagnose_connectivity() + if not diag["internet_accessible"]: + raise LocalNetworkError( + "Unable to connect to the network. Please check your internet connection and try again." + ) from e + raise ApiServerError("The API service appears unreachable at this time.") from e + finally: + stop_evt.set() + if monitor_task: + monitor_task.cancel() + with contextlib.suppress(Exception): + await monitor_task + if sess: + with contextlib.suppress(Exception): + await sess.close() + + +def _generate_operation_id(method: str, url: str, attempt: int, op_uuid: str) -> str: + try: + parsed = urlparse(url) + slug = (parsed.path.rsplit("/", 1)[-1] or parsed.netloc or "upload").strip("/").replace("/", "_") + except Exception: + slug = "upload" + return f"{method}_{slug}_{op_uuid}_try{attempt}" diff --git a/comfy_api_nodes/util/validation_utils.py b/comfy_api_nodes/util/validation_utils.py index ca913e9b3..f01edea96 100644 --- a/comfy_api_nodes/util/validation_utils.py +++ b/comfy_api_nodes/util/validation_utils.py @@ -1,7 +1,7 @@ import logging -from typing import Optional import torch + from comfy_api.latest import Input @@ -16,10 +16,10 @@ def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]: def validate_image_dimensions( image: torch.Tensor, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - min_height: Optional[int] = None, - max_height: Optional[int] = None, + min_width: int | None = None, + max_width: int | None = None, + min_height: int | None = None, + max_height: int | None = None, ): height, width = get_image_dimensions(image) @@ -28,84 +28,77 @@ def validate_image_dimensions( if max_width is not None and width > max_width: raise ValueError(f"Image width must be at most {max_width}px, got {width}px") if min_height is not None and height < min_height: - raise ValueError( - f"Image height must be at least {min_height}px, got {height}px" - ) + raise ValueError(f"Image height must be at least {min_height}px, got {height}px") if max_height is not None and height > max_height: raise ValueError(f"Image height must be at most {max_height}px, got {height}px") def validate_image_aspect_ratio( image: torch.Tensor, - min_aspect_ratio: Optional[float] = None, - max_aspect_ratio: Optional[float] = None, -): - width, height = get_image_dimensions(image) - aspect_ratio = width / height - - if min_aspect_ratio is not None and aspect_ratio < min_aspect_ratio: - raise ValueError( - f"Image aspect ratio must be at least {min_aspect_ratio}, got {aspect_ratio}" - ) - if max_aspect_ratio is not None and aspect_ratio > max_aspect_ratio: - raise ValueError( - f"Image aspect ratio must be at most {max_aspect_ratio}, got {aspect_ratio}" - ) - - -def validate_image_aspect_ratio_range( - image: torch.Tensor, - min_ratio: tuple[float, float], # e.g. (1, 4) - max_ratio: tuple[float, float], # e.g. (4, 1) + min_ratio: tuple[float, float] | None = None, # e.g. (1, 4) + max_ratio: tuple[float, float] | None = None, # e.g. (4, 1) *, - strict: bool = True, # True -> (min, max); False -> [min, max] + strict: bool = True, # True -> (min, max); False -> [min, max] ) -> float: - a1, b1 = min_ratio - a2, b2 = max_ratio - if a1 <= 0 or b1 <= 0 or a2 <= 0 or b2 <= 0: - raise ValueError("Ratios must be positive, like (1, 4) or (4, 1).") - lo, hi = (a1 / b1), (a2 / b2) - if lo > hi: - lo, hi = hi, lo - a1, b1, a2, b2 = a2, b2, a1, b1 # swap only for error text + """Validates that image aspect ratio is within min and max. If a bound is None, that side is not checked.""" w, h = get_image_dimensions(image) if w <= 0 or h <= 0: raise ValueError(f"Invalid image dimensions: {w}x{h}") ar = w / h - ok = (lo < ar < hi) if strict else (lo <= ar <= hi) - if not ok: - op = "<" if strict else "≤" - raise ValueError(f"Image aspect ratio {ar:.6g} is outside allowed range: {a1}:{b1} {op} ratio {op} {a2}:{b2}") + _assert_ratio_bounds(ar, min_ratio=min_ratio, max_ratio=max_ratio, strict=strict) return ar -def validate_aspect_ratio_closeness( - start_img, - end_img, - min_rel: float, - max_rel: float, +def validate_images_aspect_ratio_closeness( + first_image: torch.Tensor, + second_image: torch.Tensor, + min_rel: float, # e.g. 0.8 + max_rel: float, # e.g. 1.25 *, - strict: bool = False, # True => exclusive, False => inclusive -) -> None: - w1, h1 = get_image_dimensions(start_img) - w2, h2 = get_image_dimensions(end_img) + strict: bool = False, # True -> (min, max); False -> [min, max] +) -> float: + """ + Validates that the two images' aspect ratios are 'close'. + The closeness factor is C = max(ar1, ar2) / min(ar1, ar2) (C >= 1). + We require C <= limit, where limit = max(max_rel, 1.0 / min_rel). + + Returns the computed closeness factor C. + """ + w1, h1 = get_image_dimensions(first_image) + w2, h2 = get_image_dimensions(second_image) if min(w1, h1, w2, h2) <= 0: raise ValueError("Invalid image dimensions") ar1 = w1 / h1 ar2 = w2 / h2 - # Normalize so it is symmetric (no need to check both ar1/ar2 and ar2/ar1) closeness = max(ar1, ar2) / min(ar1, ar2) - limit = max(max_rel, 1.0 / min_rel) # for 0.8..1.25 this is 1.25 + limit = max(max_rel, 1.0 / min_rel) if (closeness >= limit) if strict else (closeness > limit): - raise ValueError(f"Aspect ratios must be close: start/end={ar1/ar2:.4f}, allowed range {min_rel}–{max_rel}.") + raise ValueError( + f"Aspect ratios must be close: ar1/ar2={ar1/ar2:.2g}, " + f"allowed range {min_rel}–{max_rel} (limit {limit:.2g})." + ) + return closeness + + +def validate_aspect_ratio_string( + aspect_ratio: str, + min_ratio: tuple[float, float] | None = None, # e.g. (1, 4) + max_ratio: tuple[float, float] | None = None, # e.g. (4, 1) + *, + strict: bool = False, # True -> (min, max); False -> [min, max] +) -> float: + """Parses 'X:Y' and validates it against optional bounds. Returns the numeric ratio.""" + ar = _parse_aspect_ratio_string(aspect_ratio) + _assert_ratio_bounds(ar, min_ratio=min_ratio, max_ratio=max_ratio, strict=strict) + return ar def validate_video_dimensions( video: Input.Video, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - min_height: Optional[int] = None, - max_height: Optional[int] = None, + min_width: int | None = None, + max_width: int | None = None, + min_height: int | None = None, + max_height: int | None = None, ): try: width, height = video.get_dimensions() @@ -118,17 +111,15 @@ def validate_video_dimensions( if max_width is not None and width > max_width: raise ValueError(f"Video width must be at most {max_width}px, got {width}px") if min_height is not None and height < min_height: - raise ValueError( - f"Video height must be at least {min_height}px, got {height}px" - ) + raise ValueError(f"Video height must be at least {min_height}px, got {height}px") if max_height is not None and height > max_height: raise ValueError(f"Video height must be at most {max_height}px, got {height}px") def validate_video_duration( video: Input.Video, - min_duration: Optional[float] = None, - max_duration: Optional[float] = None, + min_duration: float | None = None, + max_duration: float | None = None, ): try: duration = video.get_duration() @@ -138,13 +129,26 @@ def validate_video_duration( epsilon = 0.0001 if min_duration is not None and min_duration - epsilon > duration: - raise ValueError( - f"Video duration must be at least {min_duration}s, got {duration}s" - ) + raise ValueError(f"Video duration must be at least {min_duration}s, got {duration}s") if max_duration is not None and duration > max_duration + epsilon: - raise ValueError( - f"Video duration must be at most {max_duration}s, got {duration}s" - ) + raise ValueError(f"Video duration must be at most {max_duration}s, got {duration}s") + + +def validate_video_frame_count( + video: Input.Video, + min_frame_count: int | None = None, + max_frame_count: int | None = None, +): + try: + frame_count = video.get_frame_count() + except Exception as e: + logging.error("Error getting frame count of video: %s", e) + return + + if min_frame_count is not None and min_frame_count > frame_count: + raise ValueError(f"Video frame count must be at least {min_frame_count}, got {frame_count}") + if max_frame_count is not None and frame_count > max_frame_count: + raise ValueError(f"Video frame count must be at most {max_frame_count}, got {frame_count}") def get_number_of_images(images): @@ -155,8 +159,8 @@ def get_number_of_images(images): def validate_audio_duration( audio: Input.Audio, - min_duration: Optional[float] = None, - max_duration: Optional[float] = None, + min_duration: float | None = None, + max_duration: float | None = None, ) -> None: sr = int(audio["sample_rate"]) dur = int(audio["waveform"].shape[-1]) / sr @@ -165,3 +169,77 @@ def validate_audio_duration( raise ValueError(f"Audio duration must be at least {min_duration}s, got {dur + eps:.2f}s") if max_duration is not None and dur - eps > max_duration: raise ValueError(f"Audio duration must be at most {max_duration}s, got {dur - eps:.2f}s") + + +def validate_string( + string: str, + strip_whitespace=True, + field_name="prompt", + min_length=None, + max_length=None, +): + if string is None: + raise Exception(f"Field '{field_name}' cannot be empty.") + if strip_whitespace: + string = string.strip() + if min_length and len(string) < min_length: + raise Exception( + f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long." + ) + if max_length and len(string) > max_length: + raise Exception( + f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long." + ) + + +def validate_container_format_is_mp4(video: Input.Video) -> None: + """Validates video container format is MP4.""" + container_format = video.get_container_format() + if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]: + raise ValueError(f"Only MP4 container format supported. Got: {container_format}") + + +def _ratio_from_tuple(r: tuple[float, float]) -> float: + a, b = r + if a <= 0 or b <= 0: + raise ValueError(f"Ratios must be positive, got {a}:{b}.") + return a / b + + +def _assert_ratio_bounds( + ar: float, + *, + min_ratio: tuple[float, float] | None = None, + max_ratio: tuple[float, float] | None = None, + strict: bool = True, +) -> None: + """Validate a numeric aspect ratio against optional min/max ratio bounds.""" + lo = _ratio_from_tuple(min_ratio) if min_ratio is not None else None + hi = _ratio_from_tuple(max_ratio) if max_ratio is not None else None + + if lo is not None and hi is not None and lo > hi: + lo, hi = hi, lo # normalize order if caller swapped them + + if lo is not None: + if (ar <= lo) if strict else (ar < lo): + op = "<" if strict else "≤" + raise ValueError(f"Aspect ratio `{ar:.2g}` must be {op} {lo:.2g}.") + if hi is not None: + if (ar >= hi) if strict else (ar > hi): + op = "<" if strict else "≤" + raise ValueError(f"Aspect ratio `{ar:.2g}` must be {op} {hi:.2g}.") + + +def _parse_aspect_ratio_string(ar_str: str) -> float: + """Parse 'X:Y' with integer parts into a positive float ratio X/Y.""" + parts = ar_str.split(":") + if len(parts) != 2: + raise ValueError(f"Aspect ratio must be 'X:Y' (e.g., 16:9), got '{ar_str}'.") + try: + a = int(parts[0].strip()) + b = int(parts[1].strip()) + except ValueError as exc: + raise ValueError(f"Aspect ratio must contain integers separated by ':', got '{ar_str}'.") from exc + if a <= 0 or b <= 0: + raise ValueError(f"Aspect ratio parts must be positive integers, got {a}:{b}.") + return a / b diff --git a/comfy_execution/caching.py b/comfy_execution/caching.py index 41224ce3b..326a279fc 100644 --- a/comfy_execution/caching.py +++ b/comfy_execution/caching.py @@ -1,4 +1,9 @@ +import bisect +import gc import itertools +import psutil +import time +import torch from typing import Sequence, Mapping, Dict from comfy_execution.graph import DynamicPrompt from abc import ABC, abstractmethod @@ -48,7 +53,7 @@ class Unhashable: def to_hashable(obj): # So that we don't infinitely recurse since frozenset and tuples # are Sequences. - if isinstance(obj, (int, float, str, bool, type(None))): + if isinstance(obj, (int, float, str, bool, bytes, type(None))): return obj elif isinstance(obj, Mapping): return frozenset([(to_hashable(k), to_hashable(v)) for k, v in sorted(obj.items())]) @@ -188,6 +193,9 @@ class BasicCache: self._clean_cache() self._clean_subcaches() + def poll(self, **kwargs): + pass + def _set_immediate(self, node_id, value): assert self.initialized cache_key = self.cache_key_set.get_data_key(node_id) @@ -265,6 +273,29 @@ class HierarchicalCache(BasicCache): assert cache is not None return await cache._ensure_subcache(node_id, children_ids) +class NullCache: + + async def set_prompt(self, dynprompt, node_ids, is_changed_cache): + pass + + def all_node_ids(self): + return [] + + def clean_unused(self): + pass + + def poll(self, **kwargs): + pass + + def get(self, node_id): + return None + + def set(self, node_id, value): + pass + + async def ensure_subcache_for(self, node_id, children_ids): + return self + class LRUCache(BasicCache): def __init__(self, key_class, max_size=100): super().__init__(key_class) @@ -318,155 +349,75 @@ class LRUCache(BasicCache): return self -class DependencyAwareCache(BasicCache): - """ - A cache implementation that tracks dependencies between nodes and manages - their execution and caching accordingly. It extends the BasicCache class. - Nodes are removed from this cache once all of their descendants have been - executed. - """ +#Iterating the cache for usage analysis might be expensive, so if we trigger make sure +#to take a chunk out to give breathing space on high-node / low-ram-per-node flows. + +RAM_CACHE_HYSTERESIS = 1.1 + +#This is kinda in GB but not really. It needs to be non-zero for the below heuristic +#and as long as Multi GB models dwarf this it will approximate OOM scoring OK + +RAM_CACHE_DEFAULT_RAM_USAGE = 0.1 + +#Exponential bias towards evicting older workflows so garbage will be taken out +#in constantly changing setups. + +RAM_CACHE_OLD_WORKFLOW_OOM_MULTIPLIER = 1.3 + +class RAMPressureCache(LRUCache): def __init__(self, key_class): - """ - Initialize the DependencyAwareCache. - - Args: - key_class: The class used for generating cache keys. - """ - super().__init__(key_class) - self.descendants = {} # Maps node_id -> set of descendant node_ids - self.ancestors = {} # Maps node_id -> set of ancestor node_ids - self.executed_nodes = set() # Tracks nodes that have been executed - - async def set_prompt(self, dynprompt, node_ids, is_changed_cache): - """ - Clear the entire cache and rebuild the dependency graph. - - Args: - dynprompt: The dynamic prompt object containing node information. - node_ids: List of node IDs to initialize the cache for. - is_changed_cache: Flag indicating if the cache has changed. - """ - # Clear all existing cache data - self.cache.clear() - self.subcaches.clear() - self.descendants.clear() - self.ancestors.clear() - self.executed_nodes.clear() - - # Call the parent method to initialize the cache with the new prompt - await super().set_prompt(dynprompt, node_ids, is_changed_cache) - - # Rebuild the dependency graph - self._build_dependency_graph(dynprompt, node_ids) - - def _build_dependency_graph(self, dynprompt, node_ids): - """ - Build the dependency graph for all nodes. - - Args: - dynprompt: The dynamic prompt object containing node information. - node_ids: List of node IDs to build the graph for. - """ - self.descendants.clear() - self.ancestors.clear() - for node_id in node_ids: - self.descendants[node_id] = set() - self.ancestors[node_id] = set() - - for node_id in node_ids: - inputs = dynprompt.get_node(node_id)["inputs"] - for input_data in inputs.values(): - if is_link(input_data): # Check if the input is a link to another node - ancestor_id = input_data[0] - self.descendants[ancestor_id].add(node_id) - self.ancestors[node_id].add(ancestor_id) - - def set(self, node_id, value): - """ - Mark a node as executed and store its value in the cache. - - Args: - node_id: The ID of the node to store. - value: The value to store for the node. - """ - self._set_immediate(node_id, value) - self.executed_nodes.add(node_id) - self._cleanup_ancestors(node_id) - - def get(self, node_id): - """ - Retrieve the cached value for a node. - - Args: - node_id: The ID of the node to retrieve. - - Returns: - The cached value for the node. - """ - return self._get_immediate(node_id) - - async def ensure_subcache_for(self, node_id, children_ids): - """ - Ensure a subcache exists for a node and update dependencies. - - Args: - node_id: The ID of the parent node. - children_ids: List of child node IDs to associate with the parent node. - - Returns: - The subcache object for the node. - """ - subcache = await super()._ensure_subcache(node_id, children_ids) - for child_id in children_ids: - self.descendants[node_id].add(child_id) - self.ancestors[child_id].add(node_id) - return subcache - - def _cleanup_ancestors(self, node_id): - """ - Check if ancestors of a node can be removed from the cache. - - Args: - node_id: The ID of the node whose ancestors are to be checked. - """ - for ancestor_id in self.ancestors.get(node_id, []): - if ancestor_id in self.executed_nodes: - # Remove ancestor if all its descendants have been executed - if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]): - self._remove_node(ancestor_id) - - def _remove_node(self, node_id): - """ - Remove a node from the cache. - - Args: - node_id: The ID of the node to remove. - """ - cache_key = self.cache_key_set.get_data_key(node_id) - if cache_key in self.cache: - del self.cache[cache_key] - subcache_key = self.cache_key_set.get_subcache_key(node_id) - if subcache_key in self.subcaches: - del self.subcaches[subcache_key] + super().__init__(key_class, 0) + self.timestamps = {} def clean_unused(self): - """ - Clean up unused nodes. This is a no-op for this cache implementation. - """ - pass + self._clean_subcaches() - def recursive_debug_dump(self): - """ - Dump the cache and dependency graph for debugging. + def set(self, node_id, value): + self.timestamps[self.cache_key_set.get_data_key(node_id)] = time.time() + super().set(node_id, value) - Returns: - A list containing the cache state and dependency graph. - """ - result = super().recursive_debug_dump() - result.append({ - "descendants": self.descendants, - "ancestors": self.ancestors, - "executed_nodes": list(self.executed_nodes), - }) - return result + def get(self, node_id): + self.timestamps[self.cache_key_set.get_data_key(node_id)] = time.time() + return super().get(node_id) + + def poll(self, ram_headroom): + def _ram_gb(): + return psutil.virtual_memory().available / (1024**3) + + if _ram_gb() > ram_headroom: + return + gc.collect() + if _ram_gb() > ram_headroom: + return + + clean_list = [] + + for key, (outputs, _), in self.cache.items(): + oom_score = RAM_CACHE_OLD_WORKFLOW_OOM_MULTIPLIER ** (self.generation - self.used_generation[key]) + + ram_usage = RAM_CACHE_DEFAULT_RAM_USAGE + def scan_list_for_ram_usage(outputs): + nonlocal ram_usage + if outputs is None: + return + for output in outputs: + if isinstance(output, list): + scan_list_for_ram_usage(output) + elif isinstance(output, torch.Tensor) and output.device.type == 'cpu': + #score Tensors at a 50% discount for RAM usage as they are likely to + #be high value intermediates + ram_usage += (output.numel() * output.element_size()) * 0.5 + elif hasattr(output, "get_ram_usage"): + ram_usage += output.get_ram_usage() + scan_list_for_ram_usage(outputs) + + oom_score *= ram_usage + #In the case where we have no information on the node ram usage at all, + #break OOM score ties on the last touch timestamp (pure LRU) + bisect.insort(clean_list, (oom_score, self.timestamps[key], key)) + + while _ram_gb() < ram_headroom * RAM_CACHE_HYSTERESIS and clean_list: + _, _, key = clean_list.pop() + del self.cache[key] + gc.collect() diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index f4b427265..8fc5846b7 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -97,6 +97,11 @@ def get_input_info( extra_info = input_info[1] else: extra_info = {} + # if input_type is a list, it is a Combo defined in outdated format; convert it. + # NOTE: uncomment this when we are confident old format going away won't cause too much trouble. + # if isinstance(input_type, list): + # extra_info["options"] = input_type + # input_type = IO.Combo.io_type return input_type, input_category, extra_info class TopologicalSort: @@ -153,8 +158,9 @@ class TopologicalSort: continue _, _, input_info = self.get_input_info(unique_id, input_name) is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"] - if (include_lazy or not is_lazy) and not self.is_cached(from_node_id): - node_ids.append(from_node_id) + if (include_lazy or not is_lazy): + if not self.is_cached(from_node_id): + node_ids.append(from_node_id) links.append((from_node_id, from_socket, unique_id)) for link in links: @@ -194,10 +200,40 @@ class ExecutionList(TopologicalSort): super().__init__(dynprompt) self.output_cache = output_cache self.staged_node_id = None + self.execution_cache = {} + self.execution_cache_listeners = {} def is_cached(self, node_id): return self.output_cache.get(node_id) is not None + def cache_link(self, from_node_id, to_node_id): + if not to_node_id in self.execution_cache: + self.execution_cache[to_node_id] = {} + self.execution_cache[to_node_id][from_node_id] = self.output_cache.get(from_node_id) + if not from_node_id in self.execution_cache_listeners: + self.execution_cache_listeners[from_node_id] = set() + self.execution_cache_listeners[from_node_id].add(to_node_id) + + def get_cache(self, from_node_id, to_node_id): + if not to_node_id in self.execution_cache: + return None + value = self.execution_cache[to_node_id].get(from_node_id) + if value is None: + return None + #Write back to the main cache on touch. + self.output_cache.set(from_node_id, value) + return value + + def cache_update(self, node_id, value): + if node_id in self.execution_cache_listeners: + for to_node_id in self.execution_cache_listeners[node_id]: + if to_node_id in self.execution_cache: + self.execution_cache[to_node_id][node_id] = value + + def add_strong_link(self, from_node_id, from_socket, to_node_id): + super().add_strong_link(from_node_id, from_socket, to_node_id) + self.cache_link(from_node_id, to_node_id) + async def stage_node_execution(self): assert self.staged_node_id is None if self.is_empty(): @@ -277,6 +313,8 @@ class ExecutionList(TopologicalSort): def complete_node_execution(self): node_id = self.staged_node_id self.pop_node(node_id) + self.execution_cache.pop(node_id, None) + self.execution_cache_listeners.pop(node_id, None) self.staged_node_id = None def get_nodes_in_cycle(self): diff --git a/comfy_execution/jobs.py b/comfy_execution/jobs.py new file mode 100644 index 000000000..59fb49357 --- /dev/null +++ b/comfy_execution/jobs.py @@ -0,0 +1,291 @@ +""" +Job utilities for the /api/jobs endpoint. +Provides normalization and helper functions for job status tracking. +""" + +from typing import Optional + +from comfy_api.internal import prune_dict + + +class JobStatus: + """Job status constants.""" + PENDING = 'pending' + IN_PROGRESS = 'in_progress' + COMPLETED = 'completed' + FAILED = 'failed' + + ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED] + + +# Media types that can be previewed in the frontend +PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio'}) + +# 3D file extensions for preview fallback (no dedicated media_type exists) +THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb'}) + + +def _extract_job_metadata(extra_data: dict) -> tuple[Optional[int], Optional[str]]: + """Extract create_time and workflow_id from extra_data. + + Returns: + tuple: (create_time, workflow_id) + """ + create_time = extra_data.get('create_time') + extra_pnginfo = extra_data.get('extra_pnginfo', {}) + workflow_id = extra_pnginfo.get('workflow', {}).get('id') + return create_time, workflow_id + + +def is_previewable(media_type: str, item: dict) -> bool: + """ + Check if an output item is previewable. + Matches frontend logic in ComfyUI_frontend/src/stores/queueStore.ts + Maintains backwards compatibility with existing logic. + + Priority: + 1. media_type is 'images', 'video', or 'audio' + 2. format field starts with 'video/' or 'audio/' + 3. filename has a 3D extension (.obj, .fbx, .gltf, .glb) + """ + if media_type in PREVIEWABLE_MEDIA_TYPES: + return True + + # Check format field (MIME type). + # Maintains backwards compatibility with how custom node outputs are handled in the frontend. + fmt = item.get('format', '') + if fmt and (fmt.startswith('video/') or fmt.startswith('audio/')): + return True + + # Check for 3D files by extension + filename = item.get('filename', '').lower() + if any(filename.endswith(ext) for ext in THREE_D_EXTENSIONS): + return True + + return False + + +def normalize_queue_item(item: tuple, status: str) -> dict: + """Convert queue item tuple to unified job dict. + + Expects item with sensitive data already removed (5 elements). + """ + priority, prompt_id, _, extra_data, _ = item + create_time, workflow_id = _extract_job_metadata(extra_data) + + return prune_dict({ + 'id': prompt_id, + 'status': status, + 'priority': priority, + 'create_time': create_time, + 'outputs_count': 0, + 'workflow_id': workflow_id, + }) + + +def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: bool = False) -> dict: + """Convert history item dict to unified job dict. + + History items have sensitive data already removed (prompt tuple has 5 elements). + """ + prompt_tuple = history_item['prompt'] + priority, _, prompt, extra_data, _ = prompt_tuple + create_time, workflow_id = _extract_job_metadata(extra_data) + + status_info = history_item.get('status', {}) + status_str = status_info.get('status_str') if status_info else None + if status_str == 'success': + status = JobStatus.COMPLETED + elif status_str == 'error': + status = JobStatus.FAILED + else: + status = JobStatus.COMPLETED + + outputs = history_item.get('outputs', {}) + outputs_count, preview_output = get_outputs_summary(outputs) + + execution_error = None + execution_start_time = None + execution_end_time = None + if status_info: + messages = status_info.get('messages', []) + for entry in messages: + if isinstance(entry, (list, tuple)) and len(entry) >= 2: + event_name, event_data = entry[0], entry[1] + if isinstance(event_data, dict): + if event_name == 'execution_start': + execution_start_time = event_data.get('timestamp') + elif event_name in ('execution_success', 'execution_error', 'execution_interrupted'): + execution_end_time = event_data.get('timestamp') + if event_name == 'execution_error': + execution_error = event_data + + job = prune_dict({ + 'id': prompt_id, + 'status': status, + 'priority': priority, + 'create_time': create_time, + 'execution_start_time': execution_start_time, + 'execution_end_time': execution_end_time, + 'execution_error': execution_error, + 'outputs_count': outputs_count, + 'preview_output': preview_output, + 'workflow_id': workflow_id, + }) + + if include_outputs: + job['outputs'] = outputs + job['execution_status'] = status_info + job['workflow'] = { + 'prompt': prompt, + 'extra_data': extra_data, + } + + return job + + +def get_outputs_summary(outputs: dict) -> tuple[int, Optional[dict]]: + """ + Count outputs and find preview in a single pass. + Returns (outputs_count, preview_output). + + Preview priority (matching frontend): + 1. type="output" with previewable media + 2. Any previewable media + """ + count = 0 + preview_output = None + fallback_preview = None + + for node_id, node_outputs in outputs.items(): + if not isinstance(node_outputs, dict): + continue + for media_type, items in node_outputs.items(): + # 'animated' is a boolean flag, not actual output items + if media_type == 'animated' or not isinstance(items, list): + continue + + for item in items: + if not isinstance(item, dict): + continue + count += 1 + + if preview_output is None and is_previewable(media_type, item): + enriched = { + **item, + 'nodeId': node_id, + 'mediaType': media_type + } + if item.get('type') == 'output': + preview_output = enriched + elif fallback_preview is None: + fallback_preview = enriched + + return count, preview_output or fallback_preview + + +def apply_sorting(jobs: list[dict], sort_by: str, sort_order: str) -> list[dict]: + """Sort jobs list by specified field and order.""" + reverse = (sort_order == 'desc') + + if sort_by == 'execution_duration': + def get_sort_key(job): + start = job.get('execution_start_time', 0) + end = job.get('execution_end_time', 0) + return end - start if end and start else 0 + else: + def get_sort_key(job): + return job.get('create_time', 0) + + return sorted(jobs, key=get_sort_key, reverse=reverse) + + +def get_job(prompt_id: str, running: list, queued: list, history: dict) -> Optional[dict]: + """ + Get a single job by prompt_id from history or queue. + + Args: + prompt_id: The prompt ID to look up + running: List of currently running queue items + queued: List of pending queue items + history: Dict of history items keyed by prompt_id + + Returns: + Job dict with full details, or None if not found + """ + if prompt_id in history: + return normalize_history_item(prompt_id, history[prompt_id], include_outputs=True) + + for item in running: + if item[1] == prompt_id: + return normalize_queue_item(item, JobStatus.IN_PROGRESS) + + for item in queued: + if item[1] == prompt_id: + return normalize_queue_item(item, JobStatus.PENDING) + + return None + + +def get_all_jobs( + running: list, + queued: list, + history: dict, + status_filter: Optional[list[str]] = None, + workflow_id: Optional[str] = None, + sort_by: str = "created_at", + sort_order: str = "desc", + limit: Optional[int] = None, + offset: int = 0 +) -> tuple[list[dict], int]: + """ + Get all jobs (running, pending, completed) with filtering and sorting. + + Args: + running: List of currently running queue items + queued: List of pending queue items + history: Dict of history items keyed by prompt_id + status_filter: List of statuses to include (from JobStatus.ALL) + workflow_id: Filter by workflow ID + sort_by: Field to sort by ('created_at', 'execution_duration') + sort_order: 'asc' or 'desc' + limit: Maximum number of items to return + offset: Number of items to skip + + Returns: + tuple: (jobs_list, total_count) + """ + jobs = [] + + if status_filter is None: + status_filter = JobStatus.ALL + + if JobStatus.IN_PROGRESS in status_filter: + for item in running: + jobs.append(normalize_queue_item(item, JobStatus.IN_PROGRESS)) + + if JobStatus.PENDING in status_filter: + for item in queued: + jobs.append(normalize_queue_item(item, JobStatus.PENDING)) + + include_completed = JobStatus.COMPLETED in status_filter + include_failed = JobStatus.FAILED in status_filter + if include_completed or include_failed: + for prompt_id, history_item in history.items(): + is_failed = history_item.get('status', {}).get('status_str') == 'error' + if (is_failed and include_failed) or (not is_failed and include_completed): + jobs.append(normalize_history_item(prompt_id, history_item)) + + if workflow_id: + jobs = [j for j in jobs if j.get('workflow_id') == workflow_id] + + jobs = apply_sorting(jobs, sort_by, sort_order) + + total_count = len(jobs) + + if offset > 0: + jobs = jobs[offset:] + if limit is not None: + jobs = jobs[:limit] + + return (jobs, total_count) diff --git a/comfy_execution/validation.py b/comfy_execution/validation.py index cec105fc9..e73624bd1 100644 --- a/comfy_execution/validation.py +++ b/comfy_execution/validation.py @@ -1,4 +1,5 @@ from __future__ import annotations +from comfy_api.latest import IO def validate_node_input( @@ -20,9 +21,24 @@ def validate_node_input( """ # If the types are exactly the same, we can return immediately # Use pre-union behaviour: inverse of `__ne__` + # NOTE: this lets legacy '*' Any types work that override the __ne__ method of the str class. if not received_type != input_type: return True + # If one of the types is '*', we can return True immediately; this is the 'Any' type. + if received_type == IO.AnyType.io_type or input_type == IO.AnyType.io_type: + return True + + # If the received type or input_type is a MatchType, we can return True immediately; + # validation for this is handled by the frontend + if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: + return True + + # This accounts for some custom nodes that output lists of options as the type; + # if we ever want to break them on purpose, this can be removed + if isinstance(received_type, list) and input_type == IO.Combo.io_type: + return True + # Not equal, and not strings if not isinstance(received_type, str) or not isinstance(input_type, str): return False @@ -31,6 +47,10 @@ def validate_node_input( received_types = set(t.strip() for t in received_type.split(",")) input_types = set(t.strip() for t in input_type.split(",")) + # If any of the types is '*', we can return True immediately; this is the 'Any' type. + if IO.AnyType.io_type in received_types or IO.AnyType.io_type in input_types: + return True + if strict: # In strict mode, all received types must be in the input types return received_types.issubset(input_types) diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 1c868fcba..c7916443c 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -6,65 +6,80 @@ import torch import comfy.model_management import folder_paths import os -import io -import json -import random import hashlib import node_helpers import logging -from comfy.cli_args import args -from comfy.comfy_types import FileLocator +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, UI -class EmptyLatentAudio: - def __init__(self): - self.device = comfy.model_management.intermediate_device() +class EmptyLatentAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="EmptyLatentAudio", + display_name="Empty Latent Audio", + category="latent/audio", + inputs=[ + IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1), + IO.Int.Input( + "batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch." + ), + ], + outputs=[IO.Latent.Output()], + ) @classmethod - def INPUT_TYPES(s): - return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), - }} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" - - CATEGORY = "latent/audio" - - def generate(self, seconds, batch_size): + def execute(cls, seconds, batch_size) -> IO.NodeOutput: length = round((seconds * 44100 / 2048) / 2) * 2 - latent = torch.zeros([batch_size, 64, length], device=self.device) - return ({"samples":latent, "type": "audio"}, ) + latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device()) + return IO.NodeOutput({"samples":latent, "type": "audio"}) -class ConditioningStableAudio: + generate = execute # TODO: remove + + +class ConditioningStableAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}), - "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}), - }} + def define_schema(cls): + return IO.Schema( + node_id="ConditioningStableAudio", + category="conditioning", + inputs=[ + IO.Conditioning.Input("positive"), + IO.Conditioning.Input("negative"), + IO.Float.Input("seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1), + IO.Float.Input("seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ], + ) - RETURN_TYPES = ("CONDITIONING","CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "append" - - CATEGORY = "conditioning" - - def append(self, positive, negative, seconds_start, seconds_total): + @classmethod + def execute(cls, positive, negative, seconds_start, seconds_total) -> IO.NodeOutput: positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) - return (positive, negative) + return IO.NodeOutput(positive, negative) -class VAEEncodeAudio: + append = execute # TODO: remove + + +class VAEEncodeAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "encode" + def define_schema(cls): + return IO.Schema( + node_id="VAEEncodeAudio", + display_name="VAE Encode Audio", + category="latent/audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Vae.Input("vae"), + ], + outputs=[IO.Latent.Output()], + ) - CATEGORY = "latent/audio" - - def encode(self, vae, audio): + @classmethod + def execute(cls, vae, audio) -> IO.NodeOutput: sample_rate = audio["sample_rate"] if 44100 != sample_rate: waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) @@ -72,212 +87,134 @@ class VAEEncodeAudio: waveform = audio["waveform"] t = vae.encode(waveform.movedim(1, -1)) - return ({"samples":t}, ) + return IO.NodeOutput({"samples":t}) -class VAEDecodeAudio: + encode = execute # TODO: remove + + +class VAEDecodeAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} - RETURN_TYPES = ("AUDIO",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VAEDecodeAudio", + display_name="VAE Decode Audio", + category="latent/audio", + inputs=[ + IO.Latent.Input("samples"), + IO.Vae.Input("vae"), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "latent/audio" - - def decode(self, vae, samples): + @classmethod + def execute(cls, vae, samples) -> IO.NodeOutput: audio = vae.decode(samples["samples"]).movedim(-1, 1) std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std - return ({"waveform": audio, "sample_rate": 44100}, ) + return IO.NodeOutput({"waveform": audio, "sample_rate": 44100}) + + decode = execute # TODO: remove -def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"): - - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) - results: list[FileLocator] = [] - - # Prepare metadata dictionary - metadata = {} - if not args.disable_metadata: - if prompt is not None: - metadata["prompt"] = json.dumps(prompt) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata[x] = json.dumps(extra_pnginfo[x]) - - # Opus supported sample rates - OPUS_RATES = [8000, 12000, 16000, 24000, 48000] - - for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): - filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) - file = f"{filename_with_batch_num}_{counter:05}_.{format}" - output_path = os.path.join(full_output_folder, file) - - # Use original sample rate initially - sample_rate = audio["sample_rate"] - - # Handle Opus sample rate requirements - if format == "opus": - if sample_rate > 48000: - sample_rate = 48000 - elif sample_rate not in OPUS_RATES: - # Find the next highest supported rate - for rate in sorted(OPUS_RATES): - if rate > sample_rate: - sample_rate = rate - break - if sample_rate not in OPUS_RATES: # Fallback if still not supported - sample_rate = 48000 - - # Resample if necessary - if sample_rate != audio["sample_rate"]: - waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate) - - # Create output with specified format - output_buffer = io.BytesIO() - output_container = av.open(output_buffer, mode='w', format=format) - - # Set metadata on the container - for key, value in metadata.items(): - output_container.metadata[key] = value - - # Set up the output stream with appropriate properties - if format == "opus": - out_stream = output_container.add_stream("libopus", rate=sample_rate) - if quality == "64k": - out_stream.bit_rate = 64000 - elif quality == "96k": - out_stream.bit_rate = 96000 - elif quality == "128k": - out_stream.bit_rate = 128000 - elif quality == "192k": - out_stream.bit_rate = 192000 - elif quality == "320k": - out_stream.bit_rate = 320000 - elif format == "mp3": - out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) - if quality == "V0": - #TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool - out_stream.codec_context.qscale = 1 - elif quality == "128k": - out_stream.bit_rate = 128000 - elif quality == "320k": - out_stream.bit_rate = 320000 - else: #format == "flac": - out_stream = output_container.add_stream("flac", rate=sample_rate) - - frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo') - frame.sample_rate = sample_rate - frame.pts = 0 - output_container.mux(out_stream.encode(frame)) - - # Flush encoder - output_container.mux(out_stream.encode(None)) - - # Close containers - output_container.close() - - # Write the output to file - output_buffer.seek(0) - with open(output_path, 'wb') as f: - f.write(output_buffer.getbuffer()) - - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - counter += 1 - - return { "ui": { "audio": results } } - -class SaveAudio: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudio", + display_name="Save Audio (FLAC)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format) + ) - RETURN_TYPES = () - FUNCTION = "save_flac" + save_flac = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo) - -class SaveAudioMP3: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudioMP3(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudioMP3", + display_name="Save Audio (MP3)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + IO.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - "quality": (["V0", "128k", "320k"], {"default": "V0"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="128k") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui( + audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality + ) + ) - RETURN_TYPES = () - FUNCTION = "save_mp3" + save_mp3 = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) - -class SaveAudioOpus: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudioOpus(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudioOpus", + display_name="Save Audio (Opus)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + IO.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - "quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="V3") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui( + audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality + ) + ) - RETURN_TYPES = () - FUNCTION = "save_opus" + save_opus = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) - -class PreviewAudio(SaveAudio): - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() - self.type = "temp" - self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) +class PreviewAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="PreviewAudio", + display_name="Preview Audio", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": - {"audio": ("AUDIO", ), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio) -> IO.NodeOutput: + return IO.NodeOutput(ui=UI.PreviewAudio(audio, cls=cls)) + + save_flac = execute # TODO: remove + def f32_pcm(wav: torch.Tensor) -> torch.Tensor: """Convert audio to float 32 bits PCM format.""" @@ -315,26 +252,30 @@ def load(filepath: str) -> tuple[torch.Tensor, int]: wav = f32_pcm(wav) return wav, sr -class LoadAudio: +class LoadAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): + def define_schema(cls): input_dir = folder_paths.get_input_directory() files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) - return {"required": {"audio": (sorted(files), {"audio_upload": True})}} + return IO.Schema( + node_id="LoadAudio", + display_name="Load Audio", + category="audio", + inputs=[ + IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "audio" - - RETURN_TYPES = ("AUDIO", ) - FUNCTION = "load" - - def load(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} - return (audio, ) + return IO.NodeOutput(audio) @classmethod - def IS_CHANGED(s, audio): + def fingerprint_inputs(cls, audio): image_path = folder_paths.get_annotated_filepath(audio) m = hashlib.sha256() with open(image_path, 'rb') as f: @@ -342,46 +283,69 @@ class LoadAudio: return m.digest().hex() @classmethod - def VALIDATE_INPUTS(s, audio): + def validate_inputs(cls, audio): if not folder_paths.exists_annotated_filepath(audio): return "Invalid audio file: {}".format(audio) return True -class RecordAudio: + load = execute # TODO: remove + + +class RecordAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"audio": ("AUDIO_RECORD", {})}} + def define_schema(cls): + return IO.Schema( + node_id="RecordAudio", + display_name="Record Audio", + category="audio", + inputs=[ + IO.Custom("AUDIO_RECORD").Input("audio"), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "audio" - - RETURN_TYPES = ("AUDIO", ) - FUNCTION = "load" - - def load(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} - return (audio, ) + return IO.NodeOutput(audio) + + load = execute # TODO: remove -class TrimAudioDuration: +class TrimAudioDuration(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "audio": ("AUDIO",), - "start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}), - "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TrimAudioDuration", + display_name="Trim Audio Duration", + description="Trim audio tensor into chosen time range.", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Float.Input( + "start_index", + default=0.0, + min=-0xffffffffffffffff, + max=0xffffffffffffffff, + step=0.01, + tooltip="Start time in seconds, can be negative to count from the end (supports sub-seconds).", + ), + IO.Float.Input( + "duration", + default=60.0, + min=0.0, + step=0.01, + tooltip="Duration in seconds", + ), + ], + outputs=[IO.Audio.Output()], + ) - FUNCTION = "trim" - RETURN_TYPES = ("AUDIO",) - CATEGORY = "audio" - DESCRIPTION = "Trim audio tensor into chosen time range." - - def trim(self, audio, start_index, duration): + @classmethod + def execute(cls, audio, start_index, duration) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] audio_length = waveform.shape[-1] @@ -398,23 +362,30 @@ class TrimAudioDuration: if start_frame >= end_frame: raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.") - return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate}) + + trim = execute # TODO: remove -class SplitAudioChannels: +class SplitAudioChannels(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio": ("AUDIO",), - }} + def define_schema(cls): + return IO.Schema( + node_id="SplitAudioChannels", + display_name="Split Audio Channels", + description="Separates the audio into left and right channels.", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + ], + outputs=[ + IO.Audio.Output(display_name="left"), + IO.Audio.Output(display_name="right"), + ], + ) - RETURN_TYPES = ("AUDIO", "AUDIO") - RETURN_NAMES = ("left", "right") - FUNCTION = "separate" - CATEGORY = "audio" - DESCRIPTION = "Separates the audio into left and right channels." - - def separate(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] @@ -424,7 +395,9 @@ class SplitAudioChannels: left_channel = waveform[..., 0:1, :] right_channel = waveform[..., 1:2, :] - return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) + return IO.NodeOutput({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) + + separate = execute # TODO: remove def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): @@ -442,21 +415,29 @@ def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_ return waveform_1, waveform_2, output_sample_rate -class AudioConcat: +class AudioConcat(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio1": ("AUDIO",), - "audio2": ("AUDIO",), - "direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}), - }} + def define_schema(cls): + return IO.Schema( + node_id="AudioConcat", + display_name="Audio Concat", + description="Concatenates the audio1 to audio2 in the specified direction.", + category="audio", + inputs=[ + IO.Audio.Input("audio1"), + IO.Audio.Input("audio2"), + IO.Combo.Input( + "direction", + options=['after', 'before'], + default="after", + tooltip="Whether to append audio2 after or before audio1.", + ) + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "concat" - CATEGORY = "audio" - DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction." - - def concat(self, audio1, audio2, direction): + @classmethod + def execute(cls, audio1, audio2, direction) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] @@ -476,26 +457,33 @@ class AudioConcat: elif direction == 'before': concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2) - return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},) + return IO.NodeOutput({"waveform": concatenated_audio, "sample_rate": output_sample_rate}) + + concat = execute # TODO: remove -class AudioMerge: +class AudioMerge(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "audio1": ("AUDIO",), - "audio2": ("AUDIO",), - "merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="AudioMerge", + display_name="Audio Merge", + description="Combine two audio tracks by overlaying their waveforms.", + category="audio", + inputs=[ + IO.Audio.Input("audio1"), + IO.Audio.Input("audio2"), + IO.Combo.Input( + "merge_method", + options=["add", "mean", "subtract", "multiply"], + tooltip="The method used to combine the audio waveforms.", + ) + ], + outputs=[IO.Audio.Output()], + ) - FUNCTION = "merge" - RETURN_TYPES = ("AUDIO",) - CATEGORY = "audio" - DESCRIPTION = "Combine two audio tracks by overlaying their waveforms." - - def merge(self, audio1, audio2, merge_method): + @classmethod + def execute(cls, audio1, audio2, merge_method) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] @@ -529,85 +517,110 @@ class AudioMerge: if max_val > 1.0: waveform = waveform / max_val - return ({"waveform": waveform, "sample_rate": output_sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": output_sample_rate}) + + merge = execute # TODO: remove -class AudioAdjustVolume: +class AudioAdjustVolume(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio": ("AUDIO",), - "volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}), - }} + def define_schema(cls): + return IO.Schema( + node_id="AudioAdjustVolume", + display_name="Audio Adjust Volume", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Int.Input( + "volume", + default=1, + min=-100, + max=100, + tooltip="Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc", + ) + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "adjust_volume" - CATEGORY = "audio" - - def adjust_volume(self, audio, volume): + @classmethod + def execute(cls, audio, volume) -> IO.NodeOutput: if volume == 0: - return (audio,) + return IO.NodeOutput(audio) waveform = audio["waveform"] sample_rate = audio["sample_rate"] gain = 10 ** (volume / 20) waveform = waveform * gain - return ({"waveform": waveform, "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) + + adjust_volume = execute # TODO: remove -class EmptyAudio: +class EmptyAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}), - "sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}), - "channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}), - }} + def define_schema(cls): + return IO.Schema( + node_id="EmptyAudio", + display_name="Empty Audio", + category="audio", + inputs=[ + IO.Float.Input( + "duration", + default=60.0, + min=0.0, + max=0xffffffffffffffff, + step=0.01, + tooltip="Duration of the empty audio clip in seconds", + ), + IO.Int.Input( + "sample_rate", + default=44100, + tooltip="Sample rate of the empty audio clip.", + min=1, + max=192000, + ), + IO.Int.Input( + "channels", + default=2, + min=1, + max=2, + tooltip="Number of audio channels (1 for mono, 2 for stereo).", + ), + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "create_empty_audio" - CATEGORY = "audio" - - def create_empty_audio(self, duration, sample_rate, channels): + @classmethod + def execute(cls, duration, sample_rate, channels) -> IO.NodeOutput: num_samples = int(round(duration * sample_rate)) waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32) - return ({"waveform": waveform, "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) + + create_empty_audio = execute # TODO: remove -NODE_CLASS_MAPPINGS = { - "EmptyLatentAudio": EmptyLatentAudio, - "VAEEncodeAudio": VAEEncodeAudio, - "VAEDecodeAudio": VAEDecodeAudio, - "SaveAudio": SaveAudio, - "SaveAudioMP3": SaveAudioMP3, - "SaveAudioOpus": SaveAudioOpus, - "LoadAudio": LoadAudio, - "PreviewAudio": PreviewAudio, - "ConditioningStableAudio": ConditioningStableAudio, - "RecordAudio": RecordAudio, - "TrimAudioDuration": TrimAudioDuration, - "SplitAudioChannels": SplitAudioChannels, - "AudioConcat": AudioConcat, - "AudioMerge": AudioMerge, - "AudioAdjustVolume": AudioAdjustVolume, - "EmptyAudio": EmptyAudio, -} +class AudioExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + EmptyLatentAudio, + VAEEncodeAudio, + VAEDecodeAudio, + SaveAudio, + SaveAudioMP3, + SaveAudioOpus, + LoadAudio, + PreviewAudio, + ConditioningStableAudio, + RecordAudio, + TrimAudioDuration, + SplitAudioChannels, + AudioConcat, + AudioMerge, + AudioAdjustVolume, + EmptyAudio, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "EmptyLatentAudio": "Empty Latent Audio", - "VAEEncodeAudio": "VAE Encode Audio", - "VAEDecodeAudio": "VAE Decode Audio", - "PreviewAudio": "Preview Audio", - "LoadAudio": "Load Audio", - "SaveAudio": "Save Audio (FLAC)", - "SaveAudioMP3": "Save Audio (MP3)", - "SaveAudioOpus": "Save Audio (Opus)", - "RecordAudio": "Record Audio", - "TrimAudioDuration": "Trim Audio Duration", - "SplitAudioChannels": "Split Audio Channels", - "AudioConcat": "Audio Concat", - "AudioMerge": "Audio Merge", - "AudioAdjustVolume": "Audio Adjust Volume", - "EmptyAudio": "Empty Audio", -} +async def comfy_entrypoint() -> AudioExtension: + return AudioExtension() diff --git a/comfy_extras/nodes_compositing.py b/comfy_extras/nodes_compositing.py index 2f994fa11..e4e4e1cbc 100644 --- a/comfy_extras/nodes_compositing.py +++ b/comfy_extras/nodes_compositing.py @@ -1,6 +1,9 @@ import torch import comfy.utils from enum import Enum +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io + def resize_mask(mask, shape): return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1) @@ -101,24 +104,28 @@ def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_ return out_image, out_alpha -class PorterDuffImageComposite: +class PorterDuffImageComposite(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "source": ("IMAGE",), - "source_alpha": ("MASK",), - "destination": ("IMAGE",), - "destination_alpha": ("MASK",), - "mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}), - }, - } + def define_schema(cls): + return io.Schema( + node_id="PorterDuffImageComposite", + display_name="Porter-Duff Image Composite", + category="mask/compositing", + inputs=[ + io.Image.Input("source"), + io.Mask.Input("source_alpha"), + io.Image.Input("destination"), + io.Mask.Input("destination_alpha"), + io.Combo.Input("mode", options=[mode.name for mode in PorterDuffMode], default=PorterDuffMode.DST.name), + ], + outputs=[ + io.Image.Output(), + io.Mask.Output(), + ], + ) - RETURN_TYPES = ("IMAGE", "MASK") - FUNCTION = "composite" - CATEGORY = "mask/compositing" - - def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode): + @classmethod + def execute(cls, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode) -> io.NodeOutput: batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha)) out_images = [] out_alphas = [] @@ -150,45 +157,48 @@ class PorterDuffImageComposite: out_images.append(out_image) out_alphas.append(out_alpha.squeeze(2)) - result = (torch.stack(out_images), torch.stack(out_alphas)) - return result + return io.NodeOutput(torch.stack(out_images), torch.stack(out_alphas)) -class SplitImageWithAlpha: +class SplitImageWithAlpha(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - } - } + def define_schema(cls): + return io.Schema( + node_id="SplitImageWithAlpha", + display_name="Split Image with Alpha", + category="mask/compositing", + inputs=[ + io.Image.Input("image"), + ], + outputs=[ + io.Image.Output(), + io.Mask.Output(), + ], + ) - CATEGORY = "mask/compositing" - RETURN_TYPES = ("IMAGE", "MASK") - FUNCTION = "split_image_with_alpha" - - def split_image_with_alpha(self, image: torch.Tensor): + @classmethod + def execute(cls, image: torch.Tensor) -> io.NodeOutput: out_images = [i[:,:,:3] for i in image] out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image] - result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas)) - return result + return io.NodeOutput(torch.stack(out_images), 1.0 - torch.stack(out_alphas)) -class JoinImageWithAlpha: +class JoinImageWithAlpha(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "alpha": ("MASK",), - } - } + def define_schema(cls): + return io.Schema( + node_id="JoinImageWithAlpha", + display_name="Join Image with Alpha", + category="mask/compositing", + inputs=[ + io.Image.Input("image"), + io.Mask.Input("alpha"), + ], + outputs=[io.Image.Output()], + ) - CATEGORY = "mask/compositing" - RETURN_TYPES = ("IMAGE",) - FUNCTION = "join_image_with_alpha" - - def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor): + @classmethod + def execute(cls, image: torch.Tensor, alpha: torch.Tensor) -> io.NodeOutput: batch_size = min(len(image), len(alpha)) out_images = [] @@ -196,19 +206,18 @@ class JoinImageWithAlpha: for i in range(batch_size): out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2)) - result = (torch.stack(out_images),) - return result + return io.NodeOutput(torch.stack(out_images)) -NODE_CLASS_MAPPINGS = { - "PorterDuffImageComposite": PorterDuffImageComposite, - "SplitImageWithAlpha": SplitImageWithAlpha, - "JoinImageWithAlpha": JoinImageWithAlpha, -} +class CompositingExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + PorterDuffImageComposite, + SplitImageWithAlpha, + JoinImageWithAlpha, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "PorterDuffImageComposite": "Porter-Duff Image Composite", - "SplitImageWithAlpha": "Split Image with Alpha", - "JoinImageWithAlpha": "Join Image with Alpha", -} +async def comfy_entrypoint() -> CompositingExtension: + return CompositingExtension() diff --git a/comfy_extras/nodes_context_windows.py b/comfy_extras/nodes_context_windows.py index 1c3d9e697..3799a9004 100644 --- a/comfy_extras/nodes_context_windows.py +++ b/comfy_extras/nodes_context_windows.py @@ -26,6 +26,9 @@ class ContextWindowsManualNode(io.ComfyNode): io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."), io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."), io.Int.Input("dim", min=0, max=5, default=0, tooltip="The dimension to apply the context windows to."), + io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."), + #io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."), + #io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."), ], outputs=[ io.Model.Output(tooltip="The model with context windows applied during sampling."), @@ -34,7 +37,8 @@ class ContextWindowsManualNode(io.ComfyNode): ) @classmethod - def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int) -> io.Model: + def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int, freenoise: bool, + cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model: model = model.clone() model.model_options["context_handler"] = comfy.context_windows.IndexListContextHandler( context_schedule=comfy.context_windows.get_matching_context_schedule(context_schedule), @@ -43,9 +47,15 @@ class ContextWindowsManualNode(io.ComfyNode): context_overlap=context_overlap, context_stride=context_stride, closed_loop=closed_loop, - dim=dim) + dim=dim, + freenoise=freenoise, + cond_retain_index_list=cond_retain_index_list, + split_conds_to_windows=split_conds_to_windows + ) # make memory usage calculation only take into account the context window latents comfy.context_windows.create_prepare_sampling_wrapper(model) + if freenoise: # no other use for this wrapper at this time + comfy.context_windows.create_sampler_sample_wrapper(model) return io.NodeOutput(model) class WanContextWindowsManualNode(ContextWindowsManualNode): @@ -68,14 +78,18 @@ class WanContextWindowsManualNode(ContextWindowsManualNode): io.Int.Input("context_stride", min=1, default=1, tooltip="The stride of the context window; only applicable to uniform schedules."), io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."), io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."), + io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."), + #io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."), + #io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."), ] return schema @classmethod - def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str) -> io.Model: + def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, freenoise: bool, + cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model: context_length = max(((context_length - 1) // 4) + 1, 1) # at least length 1 context_overlap = max(((context_overlap - 1) // 4) + 1, 0) # at least overlap 0 - return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2) + return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2, freenoise=freenoise, cond_retain_index_list=cond_retain_index_list, split_conds_to_windows=split_conds_to_windows) class ContextWindowsExtension(ComfyExtension): diff --git a/comfy_extras/nodes_controlnet.py b/comfy_extras/nodes_controlnet.py index 2d20e1fed..e835feed7 100644 --- a/comfy_extras/nodes_controlnet.py +++ b/comfy_extras/nodes_controlnet.py @@ -1,20 +1,26 @@ from comfy.cldm.control_types import UNION_CONTROLNET_TYPES import nodes import comfy.utils +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io -class SetUnionControlNetType: +class SetUnionControlNetType(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"control_net": ("CONTROL_NET", ), - "type": (["auto"] + list(UNION_CONTROLNET_TYPES.keys()),) - }} + def define_schema(cls): + return io.Schema( + node_id="SetUnionControlNetType", + category="conditioning/controlnet", + inputs=[ + io.ControlNet.Input("control_net"), + io.Combo.Input("type", options=["auto"] + list(UNION_CONTROLNET_TYPES.keys())), + ], + outputs=[ + io.ControlNet.Output(), + ], + ) - CATEGORY = "conditioning/controlnet" - RETURN_TYPES = ("CONTROL_NET",) - - FUNCTION = "set_controlnet_type" - - def set_controlnet_type(self, control_net, type): + @classmethod + def execute(cls, control_net, type) -> io.NodeOutput: control_net = control_net.copy() type_number = UNION_CONTROLNET_TYPES.get(type, -1) if type_number >= 0: @@ -22,27 +28,36 @@ class SetUnionControlNetType: else: control_net.set_extra_arg("control_type", []) - return (control_net,) + return io.NodeOutput(control_net) -class ControlNetInpaintingAliMamaApply(nodes.ControlNetApplyAdvanced): + set_controlnet_type = execute # TODO: remove + + +class ControlNetInpaintingAliMamaApply(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "control_net": ("CONTROL_NET", ), - "vae": ("VAE", ), - "image": ("IMAGE", ), - "mask": ("MASK", ), - "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), - "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) - }} + def define_schema(cls): + return io.Schema( + node_id="ControlNetInpaintingAliMamaApply", + category="conditioning/controlnet", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.ControlNet.Input("control_net"), + io.Vae.Input("vae"), + io.Image.Input("image"), + io.Mask.Input("mask"), + io.Float.Input("strength", default=1.0, min=0.0, max=10.0, step=0.01), + io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=1.0, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + ], + ) - FUNCTION = "apply_inpaint_controlnet" - - CATEGORY = "conditioning/controlnet" - - def apply_inpaint_controlnet(self, positive, negative, control_net, vae, image, mask, strength, start_percent, end_percent): + @classmethod + def execute(cls, positive, negative, control_net, vae, image, mask, strength, start_percent, end_percent) -> io.NodeOutput: extra_concat = [] if control_net.concat_mask: mask = 1.0 - mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])) @@ -50,11 +65,20 @@ class ControlNetInpaintingAliMamaApply(nodes.ControlNetApplyAdvanced): image = image * mask_apply.movedim(1, -1).repeat(1, 1, 1, image.shape[3]) extra_concat = [mask] - return self.apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent, vae=vae, extra_concat=extra_concat) + result = nodes.ControlNetApplyAdvanced().apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent, vae=vae, extra_concat=extra_concat) + return io.NodeOutput(result[0], result[1]) + + apply_inpaint_controlnet = execute # TODO: remove +class ControlNetExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + SetUnionControlNetType, + ControlNetInpaintingAliMamaApply, + ] -NODE_CLASS_MAPPINGS = { - "SetUnionControlNetType": SetUnionControlNetType, - "ControlNetInpaintingAliMamaApply": ControlNetInpaintingAliMamaApply, -} + +async def comfy_entrypoint() -> ControlNetExtension: + return ControlNetExtension() diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index d011f433b..f19adf4b9 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -3,272 +3,313 @@ import comfy.samplers import comfy.sample from comfy.k_diffusion import sampling as k_diffusion_sampling from comfy.k_diffusion import sa_solver -from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict import latent_preview import torch import comfy.utils import node_helpers +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +import re -class BasicScheduler: +class BasicScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "scheduler": (comfy.samplers.SCHEDULER_NAMES, ), - "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="BasicScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Model.Input("model"), + io.Combo.Input("scheduler", options=comfy.samplers.SCHEDULER_NAMES), + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, model, scheduler, steps, denoise): + @classmethod + def execute(cls, model, scheduler, steps, denoise) -> io.NodeOutput: total_steps = steps if denoise < 1.0: if denoise <= 0.0: - return (torch.FloatTensor([]),) + return io.NodeOutput(torch.FloatTensor([])) total_steps = int(steps/denoise) sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu() sigmas = sigmas[-(steps + 1):] - return (sigmas, ) + return io.NodeOutput(sigmas) + + get_sigmas = execute -class KarrasScheduler: +class KarrasScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="KarrasScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("rho", default=7.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min, rho): + @classmethod + def execute(cls, steps, sigma_max, sigma_min, rho) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) - return (sigmas, ) + return io.NodeOutput(sigmas) -class ExponentialScheduler: + get_sigmas = execute + +class ExponentialScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="ExponentialScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min): + @classmethod + def execute(cls, steps, sigma_max, sigma_min) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max) - return (sigmas, ) + return io.NodeOutput(sigmas) -class PolyexponentialScheduler: + get_sigmas = execute + +class PolyexponentialScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="PolyexponentialScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("rho", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min, rho): + @classmethod + def execute(cls, steps, sigma_max, sigma_min, rho) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) - return (sigmas, ) + return io.NodeOutput(sigmas) -class LaplaceScheduler: + get_sigmas = execute + +class LaplaceScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "mu": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step":0.1, "round": False}), - "beta": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step":0.1, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="LaplaceScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("mu", default=0.0, min=-10.0, max=10.0, step=0.1, round=False), + io.Float.Input("beta", default=0.5, min=0.0, max=10.0, step=0.1, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min, mu, beta): + @classmethod + def execute(cls, steps, sigma_max, sigma_min, mu, beta) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_laplace(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, mu=mu, beta=beta) - return (sigmas, ) + return io.NodeOutput(sigmas) + + get_sigmas = execute -class SDTurboScheduler: +class SDTurboScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "steps": ("INT", {"default": 1, "min": 1, "max": 10}), - "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="SDTurboScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Model.Input("model"), + io.Int.Input("steps", default=1, min=1, max=10), + io.Float.Input("denoise", default=1.0, min=0, max=1.0, step=0.01), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, model, steps, denoise): + @classmethod + def execute(cls, model, steps, denoise) -> io.NodeOutput: start_step = 10 - int(10 * denoise) timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps] sigmas = model.get_model_object("model_sampling").sigma(timesteps) sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) - return (sigmas, ) + return io.NodeOutput(sigmas) -class BetaSamplingScheduler: + get_sigmas = execute + +class BetaSamplingScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "alpha": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 50.0, "step":0.01, "round": False}), - "beta": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 50.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="BetaSamplingScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Model.Input("model"), + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("alpha", default=0.6, min=0.0, max=50.0, step=0.01, round=False), + io.Float.Input("beta", default=0.6, min=0.0, max=50.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, model, steps, alpha, beta): + @classmethod + def execute(cls, model, steps, alpha, beta) -> io.NodeOutput: sigmas = comfy.samplers.beta_scheduler(model.get_model_object("model_sampling"), steps, alpha=alpha, beta=beta) - return (sigmas, ) + return io.NodeOutput(sigmas) -class VPScheduler: + get_sigmas = execute + +class VPScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), #TODO: fix default values - "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="VPScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("beta_d", default=19.9, min=0.0, max=5000.0, step=0.01, round=False), #TODO: fix default values + io.Float.Input("beta_min", default=0.1, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("eps_s", default=0.001, min=0.0, max=1.0, step=0.0001, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, beta_d, beta_min, eps_s): + @classmethod + def execute(cls, steps, beta_d, beta_min, eps_s) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s) - return (sigmas, ) + return io.NodeOutput(sigmas) -class SplitSigmas: + get_sigmas = execute + +class SplitSigmas(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "step": ("INT", {"default": 0, "min": 0, "max": 10000}), - } - } - RETURN_TYPES = ("SIGMAS","SIGMAS") - RETURN_NAMES = ("high_sigmas", "low_sigmas") - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="SplitSigmas", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Int.Input("step", default=0, min=0, max=10000), + ], + outputs=[ + io.Sigmas.Output(display_name="high_sigmas"), + io.Sigmas.Output(display_name="low_sigmas"), + ] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, sigmas, step): + @classmethod + def execute(cls, sigmas, step) -> io.NodeOutput: sigmas1 = sigmas[:step + 1] sigmas2 = sigmas[step:] - return (sigmas1, sigmas2) + return io.NodeOutput(sigmas1, sigmas2) -class SplitSigmasDenoise: + get_sigmas = execute + +class SplitSigmasDenoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } - RETURN_TYPES = ("SIGMAS","SIGMAS") - RETURN_NAMES = ("high_sigmas", "low_sigmas") - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="SplitSigmasDenoise", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01), + ], + outputs=[ + io.Sigmas.Output(display_name="high_sigmas"), + io.Sigmas.Output(display_name="low_sigmas"), + ] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, sigmas, denoise): + @classmethod + def execute(cls, sigmas, denoise) -> io.NodeOutput: steps = max(sigmas.shape[-1] - 1, 0) total_steps = round(steps * denoise) sigmas1 = sigmas[:-(total_steps)] sigmas2 = sigmas[-(total_steps + 1):] - return (sigmas1, sigmas2) + return io.NodeOutput(sigmas1, sigmas2) -class FlipSigmas: + get_sigmas = execute + +class FlipSigmas(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="FlipSigmas", + category="sampling/custom_sampling/sigmas", + inputs=[io.Sigmas.Input("sigmas")], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, sigmas): + @classmethod + def execute(cls, sigmas) -> io.NodeOutput: if len(sigmas) == 0: - return (sigmas,) + return io.NodeOutput(sigmas) sigmas = sigmas.flip(0) if sigmas[0] == 0: sigmas[0] = 0.0001 - return (sigmas,) + return io.NodeOutput(sigmas) -class SetFirstSigma: + get_sigmas = execute + +class SetFirstSigma(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "sigma": ("FLOAT", {"default": 136.0, "min": 0.0, "max": 20000.0, "step": 0.001, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="SetFirstSigma", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Float.Input("sigma", default=136.0, min=0.0, max=20000.0, step=0.001, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "set_first_sigma" - - def set_first_sigma(self, sigmas, sigma): + @classmethod + def execute(cls, sigmas, sigma) -> io.NodeOutput: sigmas = sigmas.clone() sigmas[0] = sigma - return (sigmas, ) + return io.NodeOutput(sigmas) -class ExtendIntermediateSigmas: + set_first_sigma = execute + +class ExtendIntermediateSigmas(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "steps": ("INT", {"default": 2, "min": 1, "max": 100}), - "start_at_sigma": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 20000.0, "step": 0.01, "round": False}), - "end_at_sigma": ("FLOAT", {"default": 12.0, "min": 0.0, "max": 20000.0, "step": 0.01, "round": False}), - "spacing": (['linear', 'cosine', 'sine'],), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="ExtendIntermediateSigmas", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Int.Input("steps", default=2, min=1, max=100), + io.Float.Input("start_at_sigma", default=-1.0, min=-1.0, max=20000.0, step=0.01, round=False), + io.Float.Input("end_at_sigma", default=12.0, min=0.0, max=20000.0, step=0.01, round=False), + io.Combo.Input("spacing", options=['linear', 'cosine', 'sine']), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "extend" - - def extend(self, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str): + @classmethod + def execute(cls, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str) -> io.NodeOutput: if start_at_sigma < 0: start_at_sigma = float("inf") @@ -299,27 +340,27 @@ class ExtendIntermediateSigmas: extended_sigmas = torch.FloatTensor(extended_sigmas) - return (extended_sigmas,) + return io.NodeOutput(extended_sigmas) + + extend = execute -class SamplingPercentToSigma: +class SamplingPercentToSigma(io.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "model": (IO.MODEL, {}), - "sampling_percent": (IO.FLOAT, {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.0001}), - "return_actual_sigma": (IO.BOOLEAN, {"default": False, "tooltip": "Return the actual sigma value instead of the value used for interval checks.\nThis only affects results at 0.0 and 1.0."}), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplingPercentToSigma", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Model.Input("model"), + io.Float.Input("sampling_percent", default=0.0, min=0.0, max=1.0, step=0.0001), + io.Boolean.Input("return_actual_sigma", default=False, tooltip="Return the actual sigma value instead of the value used for interval checks.\nThis only affects results at 0.0 and 1.0."), + ], + outputs=[io.Float.Output(display_name="sigma_value")] + ) - RETURN_TYPES = (IO.FLOAT,) - RETURN_NAMES = ("sigma_value",) - CATEGORY = "sampling/custom_sampling/sigmas" - - FUNCTION = "get_sigma" - - def get_sigma(self, model, sampling_percent, return_actual_sigma): + @classmethod + def execute(cls, model, sampling_percent, return_actual_sigma) -> io.NodeOutput: model_sampling = model.get_model_object("model_sampling") sigma_val = model_sampling.percent_to_sigma(sampling_percent) if return_actual_sigma: @@ -327,212 +368,234 @@ class SamplingPercentToSigma: sigma_val = model_sampling.sigma_max.item() elif sampling_percent == 1.0: sigma_val = model_sampling.sigma_min.item() - return (sigma_val,) + return io.NodeOutput(sigma_val) + + get_sigma = execute -class KSamplerSelect: +class KSamplerSelect(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="KSamplerSelect", + category="sampling/custom_sampling/samplers", + inputs=[io.Combo.Input("sampler_name", options=comfy.samplers.SAMPLER_NAMES)], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, sampler_name): + @classmethod + def execute(cls, sampler_name) -> io.NodeOutput: sampler = comfy.samplers.sampler_object(sampler_name) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMPP_3M_SDE: + get_sampler = execute + +class SamplerDPMPP_3M_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "noise_device": (['gpu', 'cpu'], ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_3M_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Combo.Input("noise_device", options=['gpu', 'cpu']), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise, noise_device): + @classmethod + def execute(cls, eta, s_noise, noise_device) -> io.NodeOutput: if noise_device == 'cpu': sampler_name = "dpmpp_3m_sde" else: sampler_name = "dpmpp_3m_sde_gpu" sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMPP_2M_SDE: + get_sampler = execute + +class SamplerDPMPP_2M_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"solver_type": (['midpoint', 'heun'], ), - "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "noise_device": (['gpu', 'cpu'], ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_2M_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Combo.Input("solver_type", options=['midpoint', 'heun']), + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Combo.Input("noise_device", options=['gpu', 'cpu']), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, solver_type, eta, s_noise, noise_device): + @classmethod + def execute(cls, solver_type, eta, s_noise, noise_device) -> io.NodeOutput: if noise_device == 'cpu': sampler_name = "dpmpp_2m_sde" else: sampler_name = "dpmpp_2m_sde_gpu" sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type}) - return (sampler, ) + return io.NodeOutput(sampler) + + get_sampler = execute -class SamplerDPMPP_SDE: +class SamplerDPMPP_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "noise_device": (['gpu', 'cpu'], ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("r", default=0.5, min=0.0, max=100.0, step=0.01, round=False), + io.Combo.Input("noise_device", options=['gpu', 'cpu']), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise, r, noise_device): + @classmethod + def execute(cls, eta, s_noise, r, noise_device) -> io.NodeOutput: if noise_device == 'cpu': sampler_name = "dpmpp_sde" else: sampler_name = "dpmpp_sde_gpu" sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMPP_2S_Ancestral: + get_sampler = execute + +class SamplerDPMPP_2S_Ancestral(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_2S_Ancestral", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise): + @classmethod + def execute(cls, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler("dpmpp_2s_ancestral", {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerEulerAncestral: + get_sampler = execute + +class SamplerEulerAncestral(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerEulerAncestral", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise): + @classmethod + def execute(cls, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerEulerAncestralCFGPP: + get_sampler = execute + +class SamplerEulerAncestralCFGPP(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}), - }} - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerEulerAncestralCFGPP", + display_name="SamplerEulerAncestralCFG++", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=1.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=10.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise): + @classmethod + def execute(cls, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler( "euler_ancestral_cfg_pp", {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerLMS: + get_sampler = execute + +class SamplerLMS(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"order": ("INT", {"default": 4, "min": 1, "max": 100}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerLMS", + category="sampling/custom_sampling/samplers", + inputs=[io.Int.Input("order", default=4, min=1, max=100)], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, order): + @classmethod + def execute(cls, order) -> io.NodeOutput: sampler = comfy.samplers.ksampler("lms", {"order": order}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMAdaptative: + get_sampler = execute + +class SamplerDPMAdaptative(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"order": ("INT", {"default": 3, "min": 2, "max": 3}), - "rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMAdaptative", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Int.Input("order", default=3, min=2, max=3), + io.Float.Input("rtol", default=0.05, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("atol", default=0.0078, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("h_init", default=0.05, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("pcoeff", default=0.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("icoeff", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("dcoeff", default=0.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("accept_safety", default=0.81, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("eta", default=0.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise): + @classmethod + def execute(cls, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff, "icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta, "s_noise":s_noise }) - return (sampler, ) + return io.NodeOutput(sampler) + + get_sampler = execute -class SamplerER_SDE(ComfyNodeABC): +class SamplerER_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "solver_type": (IO.COMBO, {"options": ["ER-SDE", "Reverse-time SDE", "ODE"]}), - "max_stage": (IO.INT, {"default": 3, "min": 1, "max": 3}), - "eta": ( - IO.FLOAT, - {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False, "tooltip": "Stochastic strength of reverse-time SDE.\nWhen eta=0, it reduces to deterministic ODE. This setting doesn't apply to ER-SDE solver type."}, - ), - "s_noise": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False}), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplerER_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Combo.Input("solver_type", options=["ER-SDE", "Reverse-time SDE", "ODE"]), + io.Int.Input("max_stage", default=3, min=1, max=3), + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength of reverse-time SDE.\nWhen eta=0, it reduces to deterministic ODE. This setting doesn't apply to ER-SDE solver type."), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - RETURN_TYPES = (IO.SAMPLER,) - CATEGORY = "sampling/custom_sampling/samplers" - - FUNCTION = "get_sampler" - - def get_sampler(self, solver_type, max_stage, eta, s_noise): + @classmethod + def execute(cls, solver_type, max_stage, eta, s_noise) -> io.NodeOutput: if solver_type == "ODE" or (solver_type == "Reverse-time SDE" and eta == 0): eta = 0 s_noise = 0 @@ -548,32 +611,33 @@ class SamplerER_SDE(ComfyNodeABC): sampler_name = "er_sde" sampler = comfy.samplers.ksampler(sampler_name, {"s_noise": s_noise, "noise_scaler": noise_scaler, "max_stage": max_stage}) - return (sampler,) + return io.NodeOutput(sampler) + + get_sampler = execute -class SamplerSASolver(ComfyNodeABC): +class SamplerSASolver(io.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "model": (IO.MODEL, {}), - "eta": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "round": False},), - "sde_start_percent": (IO.FLOAT, {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001},), - "sde_end_percent": (IO.FLOAT, {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.001},), - "s_noise": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False},), - "predictor_order": (IO.INT, {"default": 3, "min": 1, "max": 6}), - "corrector_order": (IO.INT, {"default": 4, "min": 0, "max": 6}), - "use_pece": (IO.BOOLEAN, {}), - "simple_order_2": (IO.BOOLEAN, {}), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplerSASolver", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Model.Input("model"), + io.Float.Input("eta", default=1.0, min=0.0, max=10.0, step=0.01, round=False), + io.Float.Input("sde_start_percent", default=0.2, min=0.0, max=1.0, step=0.001), + io.Float.Input("sde_end_percent", default=0.8, min=0.0, max=1.0, step=0.001), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Int.Input("predictor_order", default=3, min=1, max=6), + io.Int.Input("corrector_order", default=4, min=0, max=6), + io.Boolean.Input("use_pece"), + io.Boolean.Input("simple_order_2"), + ], + outputs=[io.Sampler.Output()] + ) - RETURN_TYPES = (IO.SAMPLER,) - CATEGORY = "sampling/custom_sampling/samplers" - - FUNCTION = "get_sampler" - - def get_sampler(self, model, eta, sde_start_percent, sde_end_percent, s_noise, predictor_order, corrector_order, use_pece, simple_order_2): + @classmethod + def execute(cls, model, eta, sde_start_percent, sde_end_percent, s_noise, predictor_order, corrector_order, use_pece, simple_order_2) -> io.NodeOutput: model_sampling = model.get_model_object("model_sampling") start_sigma = model_sampling.percent_to_sigma(sde_start_percent) end_sigma = model_sampling.percent_to_sigma(sde_end_percent) @@ -591,7 +655,43 @@ class SamplerSASolver(ComfyNodeABC): "simple_order_2": simple_order_2, }, ) - return (sampler,) + return io.NodeOutput(sampler) + + get_sampler = execute + + +class SamplerSEEDS2(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SamplerSEEDS2", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Combo.Input("solver_type", options=["phi_1", "phi_2"]), + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength"), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="SDE noise multiplier"), + io.Float.Input("r", default=0.5, min=0.01, max=1.0, step=0.01, round=False, tooltip="Relative step size for the intermediate stage (c2 node)"), + ], + outputs=[io.Sampler.Output()], + description=( + "This sampler node can represent multiple samplers:\n\n" + "seeds_2\n" + "- default setting\n\n" + "exp_heun_2_x0\n" + "- solver_type=phi_2, r=1.0, eta=0.0\n\n" + "exp_heun_2_x0_sde\n" + "- solver_type=phi_2, r=1.0, eta=1.0, s_noise=1.0" + ) + ) + + @classmethod + def execute(cls, solver_type, eta, s_noise, r) -> io.NodeOutput: + sampler_name = "seeds_2" + sampler = comfy.samplers.ksampler( + sampler_name, + {"eta": eta, "s_noise": s_noise, "r": r, "solver_type": solver_type}, + ) + return io.NodeOutput(sampler) class Noise_EmptyNoise: @@ -612,30 +712,31 @@ class Noise_RandomNoise: batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds) -class SamplerCustom: +class SamplerCustom(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "add_noise": ("BOOLEAN", {"default": True}), - "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}), - "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - "positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "sampler": ("SAMPLER", ), - "sigmas": ("SIGMAS", ), - "latent_image": ("LATENT", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplerCustom", + category="sampling/custom_sampling", + inputs=[ + io.Model.Input("model"), + io.Boolean.Input("add_noise", default=True), + io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True), + io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Sampler.Input("sampler"), + io.Sigmas.Input("sigmas"), + io.Latent.Input("latent_image"), + ], + outputs=[ + io.Latent.Output(display_name="output"), + io.Latent.Output(display_name="denoised_output"), + ] + ) - RETURN_TYPES = ("LATENT","LATENT") - RETURN_NAMES = ("output", "denoised_output") - - FUNCTION = "sample" - - CATEGORY = "sampling/custom_sampling" - - def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image): + @classmethod + def execute(cls, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image) -> io.NodeOutput: latent = latent_image latent_image = latent["samples"] latent = latent.copy() @@ -660,56 +761,66 @@ class SamplerCustom: out = latent.copy() out["samples"] = samples if "x0" in x0_output: + x0_out = model.model.process_latent_out(x0_output["x0"].cpu()) + if samples.is_nested: + latent_shapes = [x.shape for x in samples.unbind()] + x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes)) out_denoised = latent.copy() - out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) + out_denoised["samples"] = x0_out else: out_denoised = out - return (out, out_denoised) + return io.NodeOutput(out, out_denoised) + + sample = execute class Guider_Basic(comfy.samplers.CFGGuider): def set_conds(self, positive): self.inner_set_conds({"positive": positive}) -class BasicGuider: +class BasicGuider(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "conditioning": ("CONDITIONING", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="BasicGuider", + category="sampling/custom_sampling/guiders", + inputs=[ + io.Model.Input("model"), + io.Conditioning.Input("conditioning"), + ], + outputs=[io.Guider.Output()] + ) - RETURN_TYPES = ("GUIDER",) - - FUNCTION = "get_guider" - CATEGORY = "sampling/custom_sampling/guiders" - - def get_guider(self, model, conditioning): + @classmethod + def execute(cls, model, conditioning) -> io.NodeOutput: guider = Guider_Basic(model) guider.set_conds(conditioning) - return (guider,) + return io.NodeOutput(guider) -class CFGGuider: + get_guider = execute + +class CFGGuider(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - } - } + def define_schema(cls): + return io.Schema( + node_id="CFGGuider", + category="sampling/custom_sampling/guiders", + inputs=[ + io.Model.Input("model"), + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + ], + outputs=[io.Guider.Output()] + ) - RETURN_TYPES = ("GUIDER",) - - FUNCTION = "get_guider" - CATEGORY = "sampling/custom_sampling/guiders" - - def get_guider(self, model, positive, negative, cfg): + @classmethod + def execute(cls, model, positive, negative, cfg) -> io.NodeOutput: guider = comfy.samplers.CFGGuider(model) guider.set_conds(positive, negative) guider.set_cfg(cfg) - return (guider,) + return io.NodeOutput(guider) + + get_guider = execute class Guider_DualCFG(comfy.samplers.CFGGuider): def set_cfg(self, cfg1, cfg2, nested=False): @@ -740,84 +851,88 @@ class Guider_DualCFG(comfy.samplers.CFGGuider): out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, positive_cond], x, timestep, model_options) return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options, cond=middle_cond, uncond=negative_cond) + (out[2] - out[1]) * self.cfg1 -class DualCFGGuider: +class DualCFGGuider(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "cond1": ("CONDITIONING", ), - "cond2": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "cfg_conds": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - "cfg_cond2_negative": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - "style": (["regular", "nested"],), - } - } + def define_schema(cls): + return io.Schema( + node_id="DualCFGGuider", + category="sampling/custom_sampling/guiders", + inputs=[ + io.Model.Input("model"), + io.Conditioning.Input("cond1"), + io.Conditioning.Input("cond2"), + io.Conditioning.Input("negative"), + io.Float.Input("cfg_conds", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + io.Float.Input("cfg_cond2_negative", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + io.Combo.Input("style", options=["regular", "nested"]), + ], + outputs=[io.Guider.Output()] + ) - RETURN_TYPES = ("GUIDER",) - - FUNCTION = "get_guider" - CATEGORY = "sampling/custom_sampling/guiders" - - def get_guider(self, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative, style): + @classmethod + def execute(cls, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative, style) -> io.NodeOutput: guider = Guider_DualCFG(model) guider.set_conds(cond1, cond2, negative) guider.set_cfg(cfg_conds, cfg_cond2_negative, nested=(style == "nested")) - return (guider,) + return io.NodeOutput(guider) -class DisableNoise: + get_guider = execute + +class DisableNoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required":{ - } - } + def define_schema(cls): + return io.Schema( + node_id="DisableNoise", + category="sampling/custom_sampling/noise", + inputs=[], + outputs=[io.Noise.Output()] + ) - RETURN_TYPES = ("NOISE",) - FUNCTION = "get_noise" - CATEGORY = "sampling/custom_sampling/noise" - - def get_noise(self): - return (Noise_EmptyNoise(),) - - -class RandomNoise(DisableNoise): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "noise_seed": ("INT", { - "default": 0, - "min": 0, - "max": 0xffffffffffffffff, - "control_after_generate": True, - }), - } - } + def execute(cls) -> io.NodeOutput: + return io.NodeOutput(Noise_EmptyNoise()) - def get_noise(self, noise_seed): - return (Noise_RandomNoise(noise_seed),) + get_noise = execute -class SamplerCustomAdvanced: +class RandomNoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"noise": ("NOISE", ), - "guider": ("GUIDER", ), - "sampler": ("SAMPLER", ), - "sigmas": ("SIGMAS", ), - "latent_image": ("LATENT", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="RandomNoise", + category="sampling/custom_sampling/noise", + inputs=[io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True)], + outputs=[io.Noise.Output()] + ) - RETURN_TYPES = ("LATENT","LATENT") - RETURN_NAMES = ("output", "denoised_output") + @classmethod + def execute(cls, noise_seed) -> io.NodeOutput: + return io.NodeOutput(Noise_RandomNoise(noise_seed)) - FUNCTION = "sample" + get_noise = execute - CATEGORY = "sampling/custom_sampling" - def sample(self, noise, guider, sampler, sigmas, latent_image): +class SamplerCustomAdvanced(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SamplerCustomAdvanced", + category="sampling/custom_sampling", + inputs=[ + io.Noise.Input("noise"), + io.Guider.Input("guider"), + io.Sampler.Input("sampler"), + io.Sigmas.Input("sigmas"), + io.Latent.Input("latent_image"), + ], + outputs=[ + io.Latent.Output(display_name="output"), + io.Latent.Output(display_name="denoised_output"), + ] + ) + + @classmethod + def execute(cls, noise, guider, sampler, sigmas, latent_image) -> io.NodeOutput: latent = latent_image latent_image = latent["samples"] latent = latent.copy() @@ -838,32 +953,40 @@ class SamplerCustomAdvanced: out = latent.copy() out["samples"] = samples if "x0" in x0_output: + x0_out = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) + if samples.is_nested: + latent_shapes = [x.shape for x in samples.unbind()] + x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes)) out_denoised = latent.copy() - out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) + out_denoised["samples"] = x0_out else: out_denoised = out - return (out, out_denoised) + return io.NodeOutput(out, out_denoised) -class AddNoise: + sample = execute + +class AddNoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "noise": ("NOISE", ), - "sigmas": ("SIGMAS", ), - "latent_image": ("LATENT", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="AddNoise", + category="_for_testing/custom_sampling/noise", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.Noise.Input("noise"), + io.Sigmas.Input("sigmas"), + io.Latent.Input("latent_image"), + ], + outputs=[ + io.Latent.Output(), + ] + ) - RETURN_TYPES = ("LATENT",) - - FUNCTION = "add_noise" - - CATEGORY = "_for_testing/custom_sampling/noise" - - def add_noise(self, model, noise, sigmas, latent_image): + @classmethod + def execute(cls, model, noise, sigmas, latent_image) -> io.NodeOutput: if len(sigmas) == 0: - return latent_image + return io.NodeOutput(latent_image) latent = latent_image latent_image = latent["samples"] @@ -887,46 +1010,71 @@ class AddNoise: out = latent.copy() out["samples"] = noisy - return (out,) + return io.NodeOutput(out) + + add_noise = execute + +class ManualSigmas(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ManualSigmas", + category="_for_testing/custom_sampling", + is_experimental=True, + inputs=[ + io.String.Input("sigmas", default="1, 0.5", multiline=False) + ], + outputs=[io.Sigmas.Output()] + ) + + @classmethod + def execute(cls, sigmas) -> io.NodeOutput: + sigmas = re.findall(r"[-+]?(?:\d*\.*\d+)", sigmas) + sigmas = [float(i) for i in sigmas] + sigmas = torch.FloatTensor(sigmas) + return io.NodeOutput(sigmas) + +class CustomSamplersExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + SamplerCustom, + BasicScheduler, + KarrasScheduler, + ExponentialScheduler, + PolyexponentialScheduler, + LaplaceScheduler, + VPScheduler, + BetaSamplingScheduler, + SDTurboScheduler, + KSamplerSelect, + SamplerEulerAncestral, + SamplerEulerAncestralCFGPP, + SamplerLMS, + SamplerDPMPP_3M_SDE, + SamplerDPMPP_2M_SDE, + SamplerDPMPP_SDE, + SamplerDPMPP_2S_Ancestral, + SamplerDPMAdaptative, + SamplerER_SDE, + SamplerSASolver, + SamplerSEEDS2, + SplitSigmas, + SplitSigmasDenoise, + FlipSigmas, + SetFirstSigma, + ExtendIntermediateSigmas, + SamplingPercentToSigma, + CFGGuider, + DualCFGGuider, + BasicGuider, + RandomNoise, + DisableNoise, + AddNoise, + SamplerCustomAdvanced, + ManualSigmas, + ] -NODE_CLASS_MAPPINGS = { - "SamplerCustom": SamplerCustom, - "BasicScheduler": BasicScheduler, - "KarrasScheduler": KarrasScheduler, - "ExponentialScheduler": ExponentialScheduler, - "PolyexponentialScheduler": PolyexponentialScheduler, - "LaplaceScheduler": LaplaceScheduler, - "VPScheduler": VPScheduler, - "BetaSamplingScheduler": BetaSamplingScheduler, - "SDTurboScheduler": SDTurboScheduler, - "KSamplerSelect": KSamplerSelect, - "SamplerEulerAncestral": SamplerEulerAncestral, - "SamplerEulerAncestralCFGPP": SamplerEulerAncestralCFGPP, - "SamplerLMS": SamplerLMS, - "SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE, - "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE, - "SamplerDPMPP_SDE": SamplerDPMPP_SDE, - "SamplerDPMPP_2S_Ancestral": SamplerDPMPP_2S_Ancestral, - "SamplerDPMAdaptative": SamplerDPMAdaptative, - "SamplerER_SDE": SamplerER_SDE, - "SamplerSASolver": SamplerSASolver, - "SplitSigmas": SplitSigmas, - "SplitSigmasDenoise": SplitSigmasDenoise, - "FlipSigmas": FlipSigmas, - "SetFirstSigma": SetFirstSigma, - "ExtendIntermediateSigmas": ExtendIntermediateSigmas, - "SamplingPercentToSigma": SamplingPercentToSigma, - - "CFGGuider": CFGGuider, - "DualCFGGuider": DualCFGGuider, - "BasicGuider": BasicGuider, - "RandomNoise": RandomNoise, - "DisableNoise": DisableNoise, - "AddNoise": AddNoise, - "SamplerCustomAdvanced": SamplerCustomAdvanced, -} - -NODE_DISPLAY_NAME_MAPPINGS = { - "SamplerEulerAncestralCFGPP": "SamplerEulerAncestralCFG++", -} +async def comfy_entrypoint() -> CustomSamplersExtension: + return CustomSamplersExtension() diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py new file mode 100644 index 000000000..5ef851bd0 --- /dev/null +++ b/comfy_extras/nodes_dataset.py @@ -0,0 +1,1529 @@ +import logging +import os +import json + +import numpy as np +import torch +from PIL import Image +from typing_extensions import override + +import folder_paths +import node_helpers +from comfy_api.latest import ComfyExtension, io + + +def load_and_process_images(image_files, input_dir): + """Utility function to load and process a list of images. + + Args: + image_files: List of image filenames + input_dir: Base directory containing the images + resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad") + + Returns: + torch.Tensor: Batch of processed images + """ + if not image_files: + raise ValueError("No valid images found in input") + + output_images = [] + + for file in image_files: + image_path = os.path.join(input_dir, file) + img = node_helpers.pillow(Image.open, image_path) + + if img.mode == "I": + img = img.point(lambda i: i * (1 / 255)) + img = img.convert("RGB") + img_array = np.array(img).astype(np.float32) / 255.0 + img_tensor = torch.from_numpy(img_array)[None,] + output_images.append(img_tensor) + + return output_images + + +class LoadImageDataSetFromFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoadImageDataSetFromFolder", + display_name="Load Image Dataset from Folder", + category="dataset", + is_experimental=True, + inputs=[ + io.Combo.Input( + "folder", + options=folder_paths.get_input_subfolders(), + tooltip="The folder to load images from.", + ) + ], + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=True, + tooltip="List of loaded images", + ) + ], + ) + + @classmethod + def execute(cls, folder): + sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) + valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] + image_files = [ + f + for f in os.listdir(sub_input_dir) + if any(f.lower().endswith(ext) for ext in valid_extensions) + ] + output_tensor = load_and_process_images(image_files, sub_input_dir) + return io.NodeOutput(output_tensor) + + +class LoadImageTextDataSetFromFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoadImageTextDataSetFromFolder", + display_name="Load Image and Text Dataset from Folder", + category="dataset", + is_experimental=True, + inputs=[ + io.Combo.Input( + "folder", + options=folder_paths.get_input_subfolders(), + tooltip="The folder to load images from.", + ) + ], + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=True, + tooltip="List of loaded images", + ), + io.String.Output( + display_name="texts", + is_output_list=True, + tooltip="List of text captions", + ), + ], + ) + + @classmethod + def execute(cls, folder): + logging.info(f"Loading images from folder: {folder}") + + sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) + valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] + + image_files = [] + for item in os.listdir(sub_input_dir): + path = os.path.join(sub_input_dir, item) + if any(item.lower().endswith(ext) for ext in valid_extensions): + image_files.append(path) + elif os.path.isdir(path): + # Support kohya-ss/sd-scripts folder structure + repeat = 1 + if item.split("_")[0].isdigit(): + repeat = int(item.split("_")[0]) + image_files.extend( + [ + os.path.join(path, f) + for f in os.listdir(path) + if any(f.lower().endswith(ext) for ext in valid_extensions) + ] + * repeat + ) + + caption_file_path = [ + f.replace(os.path.splitext(f)[1], ".txt") for f in image_files + ] + captions = [] + for caption_file in caption_file_path: + caption_path = os.path.join(sub_input_dir, caption_file) + if os.path.exists(caption_path): + with open(caption_path, "r", encoding="utf-8") as f: + caption = f.read().strip() + captions.append(caption) + else: + captions.append("") + + output_tensor = load_and_process_images(image_files, sub_input_dir) + + logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.") + return io.NodeOutput(output_tensor, captions) + + +def save_images_to_folder(image_list, output_dir, prefix="image"): + """Utility function to save a list of image tensors to disk. + + Args: + image_list: List of image tensors (each [1, H, W, C] or [H, W, C] or [C, H, W]) + output_dir: Directory to save images to + prefix: Filename prefix + + Returns: + List of saved filenames + """ + os.makedirs(output_dir, exist_ok=True) + saved_files = [] + + for idx, img_tensor in enumerate(image_list): + # Handle different tensor shapes + if isinstance(img_tensor, torch.Tensor): + # Remove batch dimension if present [1, H, W, C] -> [H, W, C] + if img_tensor.dim() == 4 and img_tensor.shape[0] == 1: + img_tensor = img_tensor.squeeze(0) + + # If tensor is [C, H, W], permute to [H, W, C] + if img_tensor.dim() == 3 and img_tensor.shape[0] in [1, 3, 4]: + if ( + img_tensor.shape[0] <= 4 + and img_tensor.shape[1] > 4 + and img_tensor.shape[2] > 4 + ): + img_tensor = img_tensor.permute(1, 2, 0) + + # Convert to numpy and scale to 0-255 + img_array = img_tensor.cpu().numpy() + img_array = np.clip(img_array * 255.0, 0, 255).astype(np.uint8) + + # Convert to PIL Image + img = Image.fromarray(img_array) + else: + raise ValueError(f"Expected torch.Tensor, got {type(img_tensor)}") + + # Save image + filename = f"{prefix}_{idx:05d}.png" + filepath = os.path.join(output_dir, filename) + img.save(filepath) + saved_files.append(filename) + + return saved_files + + +class SaveImageDataSetToFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveImageDataSetToFolder", + display_name="Save Image Dataset to Folder", + category="dataset", + is_experimental=True, + is_output_node=True, + is_input_list=True, # Receive images as list + inputs=[ + io.Image.Input("images", tooltip="List of images to save."), + io.String.Input( + "folder_name", + default="dataset", + tooltip="Name of the folder to save images to (inside output directory).", + ), + io.String.Input( + "filename_prefix", + default="image", + tooltip="Prefix for saved image filenames.", + ), + ], + outputs=[], + ) + + @classmethod + def execute(cls, images, folder_name, filename_prefix): + # Extract scalar values + folder_name = folder_name[0] + filename_prefix = filename_prefix[0] + + output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + saved_files = save_images_to_folder(images, output_dir, filename_prefix) + + logging.info(f"Saved {len(saved_files)} images to {output_dir}.") + return io.NodeOutput() + + +class SaveImageTextDataSetToFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveImageTextDataSetToFolder", + display_name="Save Image and Text Dataset to Folder", + category="dataset", + is_experimental=True, + is_output_node=True, + is_input_list=True, # Receive both images and texts as lists + inputs=[ + io.Image.Input("images", tooltip="List of images to save."), + io.String.Input("texts", tooltip="List of text captions to save."), + io.String.Input( + "folder_name", + default="dataset", + tooltip="Name of the folder to save images to (inside output directory).", + ), + io.String.Input( + "filename_prefix", + default="image", + tooltip="Prefix for saved image filenames.", + ), + ], + outputs=[], + ) + + @classmethod + def execute(cls, images, texts, folder_name, filename_prefix): + # Extract scalar values + folder_name = folder_name[0] + filename_prefix = filename_prefix[0] + + output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + saved_files = save_images_to_folder(images, output_dir, filename_prefix) + + # Save captions + for idx, (filename, caption) in enumerate(zip(saved_files, texts)): + caption_filename = filename.replace(".png", ".txt") + caption_path = os.path.join(output_dir, caption_filename) + with open(caption_path, "w", encoding="utf-8") as f: + f.write(caption) + + logging.info(f"Saved {len(saved_files)} images and captions to {output_dir}.") + return io.NodeOutput() + + +# ========== Helper Functions for Transform Nodes ========== + + +def tensor_to_pil(img_tensor): + """Convert tensor to PIL Image.""" + if img_tensor.dim() == 4 and img_tensor.shape[0] == 1: + img_tensor = img_tensor.squeeze(0) + img_array = (img_tensor.cpu().numpy() * 255).clip(0, 255).astype(np.uint8) + return Image.fromarray(img_array) + + +def pil_to_tensor(img): + """Convert PIL Image to tensor.""" + img_array = np.array(img).astype(np.float32) / 255.0 + return torch.from_numpy(img_array)[None,] + + +# ========== Base Classes for Transform Nodes ========== + + +class ImageProcessingNode(io.ComfyNode): + """Base class for image processing nodes that operate on images. + + Child classes should set: + node_id: Unique node identifier (required) + display_name: Display name (optional, defaults to node_id) + description: Node description (optional) + extra_inputs: List of additional io.Input objects beyond "images" (optional) + is_group_process: None (auto-detect), True (group), or False (individual) (optional) + is_output_list: True (list output) or False (single output) (optional, default True) + + Child classes must implement ONE of: + _process(cls, image, **kwargs) -> tensor (for single-item processing) + _group_process(cls, images, **kwargs) -> list[tensor] (for group processing) + """ + + node_id = None + display_name = None + description = None + extra_inputs = [] + is_group_process = None # None = auto-detect, True/False = explicit + is_output_list = None # None = auto-detect based on processing mode + + @classmethod + def _detect_processing_mode(cls): + """Detect whether this node uses group or individual processing. + + Returns: + bool: True if group processing, False if individual processing + """ + # Explicit setting takes precedence + if cls.is_group_process is not None: + return cls.is_group_process + + # Check which method is overridden by looking at the defining class in MRO + base_class = ImageProcessingNode + + # Find which class in MRO defines _process + process_definer = None + for klass in cls.__mro__: + if "_process" in klass.__dict__: + process_definer = klass + break + + # Find which class in MRO defines _group_process + group_definer = None + for klass in cls.__mro__: + if "_group_process" in klass.__dict__: + group_definer = klass + break + + # Check what was overridden (not defined in base class) + has_process = process_definer is not None and process_definer is not base_class + has_group = group_definer is not None and group_definer is not base_class + + if has_process and has_group: + raise ValueError( + f"{cls.__name__}: Cannot override both _process and _group_process. " + "Override only one, or set is_group_process explicitly." + ) + if not has_process and not has_group: + raise ValueError( + f"{cls.__name__}: Must override either _process or _group_process" + ) + + return has_group + + @classmethod + def define_schema(cls): + if cls.node_id is None: + raise NotImplementedError(f"{cls.__name__} must set node_id class variable") + + is_group = cls._detect_processing_mode() + + # Auto-detect is_output_list if not explicitly set + # Single processing: False (backend collects results into list) + # Group processing: True by default (can be False for single-output nodes) + output_is_list = ( + cls.is_output_list if cls.is_output_list is not None else is_group + ) + + inputs = [ + io.Image.Input( + "images", + tooltip=( + "List of images to process." if is_group else "Image to process." + ), + ) + ] + inputs.extend(cls.extra_inputs) + + return io.Schema( + node_id=cls.node_id, + display_name=cls.display_name or cls.node_id, + category="dataset/image", + is_experimental=True, + is_input_list=is_group, # True for group, False for individual + inputs=inputs, + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=output_is_list, + tooltip="Processed images", + ) + ], + ) + + @classmethod + def execute(cls, images, **kwargs): + """Execute the node. Routes to _process or _group_process based on mode.""" + is_group = cls._detect_processing_mode() + + # Extract scalar values from lists for parameters + params = {} + for k, v in kwargs.items(): + if isinstance(v, list) and len(v) == 1: + params[k] = v[0] + else: + params[k] = v + + if is_group: + # Group processing: images is list, call _group_process + result = cls._group_process(images, **params) + else: + # Individual processing: images is single item, call _process + result = cls._process(images, **params) + + return io.NodeOutput(result) + + @classmethod + def _process(cls, image, **kwargs): + """Override this method for single-item processing. + + Args: + image: tensor - Single image tensor + **kwargs: Additional parameters (already extracted from lists) + + Returns: + tensor - Processed image + """ + raise NotImplementedError(f"{cls.__name__} must implement _process method") + + @classmethod + def _group_process(cls, images, **kwargs): + """Override this method for group processing. + + Args: + images: list[tensor] - List of image tensors + **kwargs: Additional parameters (already extracted from lists) + + Returns: + list[tensor] - Processed images + """ + raise NotImplementedError( + f"{cls.__name__} must implement _group_process method" + ) + + +class TextProcessingNode(io.ComfyNode): + """Base class for text processing nodes that operate on texts. + + Child classes should set: + node_id: Unique node identifier (required) + display_name: Display name (optional, defaults to node_id) + description: Node description (optional) + extra_inputs: List of additional io.Input objects beyond "texts" (optional) + is_group_process: None (auto-detect), True (group), or False (individual) (optional) + is_output_list: True (list output) or False (single output) (optional, default True) + + Child classes must implement ONE of: + _process(cls, text, **kwargs) -> str (for single-item processing) + _group_process(cls, texts, **kwargs) -> list[str] (for group processing) + """ + + node_id = None + display_name = None + description = None + extra_inputs = [] + is_group_process = None # None = auto-detect, True/False = explicit + is_output_list = None # None = auto-detect based on processing mode + + @classmethod + def _detect_processing_mode(cls): + """Detect whether this node uses group or individual processing. + + Returns: + bool: True if group processing, False if individual processing + """ + # Explicit setting takes precedence + if cls.is_group_process is not None: + return cls.is_group_process + + # Check which method is overridden by looking at the defining class in MRO + base_class = TextProcessingNode + + # Find which class in MRO defines _process + process_definer = None + for klass in cls.__mro__: + if "_process" in klass.__dict__: + process_definer = klass + break + + # Find which class in MRO defines _group_process + group_definer = None + for klass in cls.__mro__: + if "_group_process" in klass.__dict__: + group_definer = klass + break + + # Check what was overridden (not defined in base class) + has_process = process_definer is not None and process_definer is not base_class + has_group = group_definer is not None and group_definer is not base_class + + if has_process and has_group: + raise ValueError( + f"{cls.__name__}: Cannot override both _process and _group_process. " + "Override only one, or set is_group_process explicitly." + ) + if not has_process and not has_group: + raise ValueError( + f"{cls.__name__}: Must override either _process or _group_process" + ) + + return has_group + + @classmethod + def define_schema(cls): + if cls.node_id is None: + raise NotImplementedError(f"{cls.__name__} must set node_id class variable") + + is_group = cls._detect_processing_mode() + + inputs = [ + io.String.Input( + "texts", + tooltip="List of texts to process." if is_group else "Text to process.", + ) + ] + inputs.extend(cls.extra_inputs) + + return io.Schema( + node_id=cls.node_id, + display_name=cls.display_name or cls.node_id, + category="dataset/text", + is_experimental=True, + is_input_list=is_group, # True for group, False for individual + inputs=inputs, + outputs=[ + io.String.Output( + display_name="texts", + is_output_list=cls.is_output_list, + tooltip="Processed texts", + ) + ], + ) + + @classmethod + def execute(cls, texts, **kwargs): + """Execute the node. Routes to _process or _group_process based on mode.""" + is_group = cls._detect_processing_mode() + + # Extract scalar values from lists for parameters + params = {} + for k, v in kwargs.items(): + if isinstance(v, list) and len(v) == 1: + params[k] = v[0] + else: + params[k] = v + + if is_group: + # Group processing: texts is list, call _group_process + result = cls._group_process(texts, **params) + else: + # Individual processing: texts is single item, call _process + result = cls._process(texts, **params) + + # Wrap result based on is_output_list + if cls.is_output_list: + # Result should already be a list (or will be for individual) + return io.NodeOutput(result if is_group else [result]) + else: + # Single output - wrap in list for NodeOutput + return io.NodeOutput([result]) + + @classmethod + def _process(cls, text, **kwargs): + """Override this method for single-item processing. + + Args: + text: str - Single text string + **kwargs: Additional parameters (already extracted from lists) + + Returns: + str - Processed text + """ + raise NotImplementedError(f"{cls.__name__} must implement _process method") + + @classmethod + def _group_process(cls, texts, **kwargs): + """Override this method for group processing. + + Args: + texts: list[str] - List of text strings + **kwargs: Additional parameters (already extracted from lists) + + Returns: + list[str] - Processed texts + """ + raise NotImplementedError( + f"{cls.__name__} must implement _group_process method" + ) + + +# ========== Image Transform Nodes ========== + + +class ResizeImagesByShorterEdgeNode(ImageProcessingNode): + node_id = "ResizeImagesByShorterEdge" + display_name = "Resize Images by Shorter Edge" + description = "Resize images so that the shorter edge matches the specified length while preserving aspect ratio." + extra_inputs = [ + io.Int.Input( + "shorter_edge", + default=512, + min=1, + max=8192, + tooltip="Target length for the shorter edge.", + ), + ] + + @classmethod + def _process(cls, image, shorter_edge): + img = tensor_to_pil(image) + w, h = img.size + if w < h: + new_w = shorter_edge + new_h = int(h * (shorter_edge / w)) + else: + new_h = shorter_edge + new_w = int(w * (shorter_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + return pil_to_tensor(img) + + +class ResizeImagesByLongerEdgeNode(ImageProcessingNode): + node_id = "ResizeImagesByLongerEdge" + display_name = "Resize Images by Longer Edge" + description = "Resize images so that the longer edge matches the specified length while preserving aspect ratio." + extra_inputs = [ + io.Int.Input( + "longer_edge", + default=1024, + min=1, + max=8192, + tooltip="Target length for the longer edge.", + ), + ] + + @classmethod + def _process(cls, image, longer_edge): + resized_images = [] + for image_i in image: + img = tensor_to_pil(image_i) + w, h = img.size + if w > h: + new_w = longer_edge + new_h = int(h * (longer_edge / w)) + else: + new_h = longer_edge + new_w = int(w * (longer_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + resized_images.append(pil_to_tensor(img)) + return torch.cat(resized_images, dim=0) + + +class CenterCropImagesNode(ImageProcessingNode): + node_id = "CenterCropImages" + display_name = "Center Crop Images" + description = "Center crop all images to the specified dimensions." + extra_inputs = [ + io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."), + io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."), + ] + + @classmethod + def _process(cls, image, width, height): + img = tensor_to_pil(image) + left = max(0, (img.width - width) // 2) + top = max(0, (img.height - height) // 2) + right = min(img.width, left + width) + bottom = min(img.height, top + height) + img = img.crop((left, top, right, bottom)) + return pil_to_tensor(img) + + +class RandomCropImagesNode(ImageProcessingNode): + node_id = "RandomCropImages" + display_name = "Random Crop Images" + description = ( + "Randomly crop all images to the specified dimensions (for data augmentation)." + ) + extra_inputs = [ + io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."), + io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."), + io.Int.Input( + "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed." + ), + ] + + @classmethod + def _process(cls, image, width, height, seed): + np.random.seed(seed % (2**32 - 1)) + img = tensor_to_pil(image) + max_left = max(0, img.width - width) + max_top = max(0, img.height - height) + left = np.random.randint(0, max_left + 1) if max_left > 0 else 0 + top = np.random.randint(0, max_top + 1) if max_top > 0 else 0 + right = min(img.width, left + width) + bottom = min(img.height, top + height) + img = img.crop((left, top, right, bottom)) + return pil_to_tensor(img) + + +class NormalizeImagesNode(ImageProcessingNode): + node_id = "NormalizeImages" + display_name = "Normalize Images" + description = "Normalize images using mean and standard deviation." + extra_inputs = [ + io.Float.Input( + "mean", + default=0.5, + min=0.0, + max=1.0, + tooltip="Mean value for normalization.", + ), + io.Float.Input( + "std", + default=0.5, + min=0.001, + max=1.0, + tooltip="Standard deviation for normalization.", + ), + ] + + @classmethod + def _process(cls, image, mean, std): + return (image - mean) / std + + +class AdjustBrightnessNode(ImageProcessingNode): + node_id = "AdjustBrightness" + display_name = "Adjust Brightness" + description = "Adjust brightness of all images." + extra_inputs = [ + io.Float.Input( + "factor", + default=1.0, + min=0.0, + max=2.0, + tooltip="Brightness factor. 1.0 = no change, <1.0 = darker, >1.0 = brighter.", + ), + ] + + @classmethod + def _process(cls, image, factor): + return (image * factor).clamp(0.0, 1.0) + + +class AdjustContrastNode(ImageProcessingNode): + node_id = "AdjustContrast" + display_name = "Adjust Contrast" + description = "Adjust contrast of all images." + extra_inputs = [ + io.Float.Input( + "factor", + default=1.0, + min=0.0, + max=2.0, + tooltip="Contrast factor. 1.0 = no change, <1.0 = less contrast, >1.0 = more contrast.", + ), + ] + + @classmethod + def _process(cls, image, factor): + return ((image - 0.5) * factor + 0.5).clamp(0.0, 1.0) + + +class ShuffleDatasetNode(ImageProcessingNode): + node_id = "ShuffleDataset" + display_name = "Shuffle Image Dataset" + description = "Randomly shuffle the order of images in the dataset." + is_group_process = True # Requires full list to shuffle + extra_inputs = [ + io.Int.Input( + "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed." + ), + ] + + @classmethod + def _group_process(cls, images, seed): + np.random.seed(seed % (2**32 - 1)) + indices = np.random.permutation(len(images)) + return [images[i] for i in indices] + + +class ShuffleImageTextDatasetNode(io.ComfyNode): + """Special node that shuffles both images and texts together.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ShuffleImageTextDataset", + display_name="Shuffle Image-Text Dataset", + category="dataset/image", + is_experimental=True, + is_input_list=True, + inputs=[ + io.Image.Input("images", tooltip="List of images to shuffle."), + io.String.Input("texts", tooltip="List of texts to shuffle."), + io.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + tooltip="Random seed.", + ), + ], + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=True, + tooltip="Shuffled images", + ), + io.String.Output( + display_name="texts", is_output_list=True, tooltip="Shuffled texts" + ), + ], + ) + + @classmethod + def execute(cls, images, texts, seed): + seed = seed[0] # Extract scalar + np.random.seed(seed % (2**32 - 1)) + indices = np.random.permutation(len(images)) + shuffled_images = [images[i] for i in indices] + shuffled_texts = [texts[i] for i in indices] + return io.NodeOutput(shuffled_images, shuffled_texts) + + +# ========== Text Transform Nodes ========== + + +class TextToLowercaseNode(TextProcessingNode): + node_id = "TextToLowercase" + display_name = "Text to Lowercase" + description = "Convert all texts to lowercase." + + @classmethod + def _process(cls, text): + return text.lower() + + +class TextToUppercaseNode(TextProcessingNode): + node_id = "TextToUppercase" + display_name = "Text to Uppercase" + description = "Convert all texts to uppercase." + + @classmethod + def _process(cls, text): + return text.upper() + + +class TruncateTextNode(TextProcessingNode): + node_id = "TruncateText" + display_name = "Truncate Text" + description = "Truncate all texts to a maximum length." + extra_inputs = [ + io.Int.Input( + "max_length", default=77, min=1, max=10000, tooltip="Maximum text length." + ), + ] + + @classmethod + def _process(cls, text, max_length): + return text[:max_length] + + +class AddTextPrefixNode(TextProcessingNode): + node_id = "AddTextPrefix" + display_name = "Add Text Prefix" + description = "Add a prefix to all texts." + extra_inputs = [ + io.String.Input("prefix", default="", tooltip="Prefix to add."), + ] + + @classmethod + def _process(cls, text, prefix): + return prefix + text + + +class AddTextSuffixNode(TextProcessingNode): + node_id = "AddTextSuffix" + display_name = "Add Text Suffix" + description = "Add a suffix to all texts." + extra_inputs = [ + io.String.Input("suffix", default="", tooltip="Suffix to add."), + ] + + @classmethod + def _process(cls, text, suffix): + return text + suffix + + +class ReplaceTextNode(TextProcessingNode): + node_id = "ReplaceText" + display_name = "Replace Text" + description = "Replace text in all texts." + extra_inputs = [ + io.String.Input("find", default="", tooltip="Text to find."), + io.String.Input("replace", default="", tooltip="Text to replace with."), + ] + + @classmethod + def _process(cls, text, find, replace): + return text.replace(find, replace) + + +class StripWhitespaceNode(TextProcessingNode): + node_id = "StripWhitespace" + display_name = "Strip Whitespace" + description = "Strip leading and trailing whitespace from all texts." + + @classmethod + def _process(cls, text): + return text.strip() + + +# ========== Group Processing Example Nodes ========== + + +class ImageDeduplicationNode(ImageProcessingNode): + """Remove duplicate or very similar images from the dataset using perceptual hashing.""" + + node_id = "ImageDeduplication" + display_name = "Image Deduplication" + description = "Remove duplicate or very similar images from the dataset." + is_group_process = True # Requires full list to compare images + extra_inputs = [ + io.Float.Input( + "similarity_threshold", + default=0.95, + min=0.0, + max=1.0, + tooltip="Similarity threshold (0-1). Higher means more similar. Images above this threshold are considered duplicates.", + ), + ] + + @classmethod + def _group_process(cls, images, similarity_threshold): + """Remove duplicate images using perceptual hashing.""" + if len(images) == 0: + return [] + + # Compute simple perceptual hash for each image + def compute_hash(img_tensor): + """Compute a simple perceptual hash by resizing to 8x8 and comparing to average.""" + img = tensor_to_pil(img_tensor) + # Resize to 8x8 + img_small = img.resize((8, 8), Image.Resampling.LANCZOS).convert("L") + # Get pixels + pixels = list(img_small.getdata()) + # Compute average + avg = sum(pixels) / len(pixels) + # Create hash (1 if above average, 0 otherwise) + hash_bits = "".join("1" if p > avg else "0" for p in pixels) + return hash_bits + + def hamming_distance(hash1, hash2): + """Compute Hamming distance between two hash strings.""" + return sum(c1 != c2 for c1, c2 in zip(hash1, hash2)) + + # Compute hashes for all images + hashes = [compute_hash(img) for img in images] + + # Find duplicates + keep_indices = [] + for i in range(len(images)): + is_duplicate = False + for j in keep_indices: + # Compare hashes + distance = hamming_distance(hashes[i], hashes[j]) + similarity = 1.0 - (distance / 64.0) # 64 bits total + if similarity >= similarity_threshold: + is_duplicate = True + logging.info( + f"Image {i} is similar to image {j} (similarity: {similarity:.3f}), skipping" + ) + break + + if not is_duplicate: + keep_indices.append(i) + + # Return only unique images + unique_images = [images[i] for i in keep_indices] + logging.info( + f"Deduplication: kept {len(unique_images)} out of {len(images)} images" + ) + return unique_images + + +class ImageGridNode(ImageProcessingNode): + """Combine multiple images into a single grid/collage.""" + + node_id = "ImageGrid" + display_name = "Image Grid" + description = "Arrange multiple images into a grid layout." + is_group_process = True # Requires full list to create grid + is_output_list = False # Outputs single grid image + extra_inputs = [ + io.Int.Input( + "columns", + default=4, + min=1, + max=20, + tooltip="Number of columns in the grid.", + ), + io.Int.Input( + "cell_width", + default=256, + min=32, + max=2048, + tooltip="Width of each cell in the grid.", + ), + io.Int.Input( + "cell_height", + default=256, + min=32, + max=2048, + tooltip="Height of each cell in the grid.", + ), + io.Int.Input( + "padding", default=4, min=0, max=50, tooltip="Padding between images." + ), + ] + + @classmethod + def _group_process(cls, images, columns, cell_width, cell_height, padding): + """Arrange images into a grid.""" + if len(images) == 0: + raise ValueError("Cannot create grid from empty image list") + + # Calculate grid dimensions + num_images = len(images) + rows = (num_images + columns - 1) // columns # Ceiling division + + # Calculate total grid size + grid_width = columns * cell_width + (columns - 1) * padding + grid_height = rows * cell_height + (rows - 1) * padding + + # Create blank grid + grid = Image.new("RGB", (grid_width, grid_height), (0, 0, 0)) + + # Place images + for idx, img_tensor in enumerate(images): + row = idx // columns + col = idx % columns + + # Convert to PIL and resize to cell size + img = tensor_to_pil(img_tensor) + img = img.resize((cell_width, cell_height), Image.Resampling.LANCZOS) + + # Calculate position + x = col * (cell_width + padding) + y = row * (cell_height + padding) + + # Paste into grid + grid.paste(img, (x, y)) + + logging.info( + f"Created {columns}x{rows} grid with {num_images} images ({grid_width}x{grid_height})" + ) + return pil_to_tensor(grid) + + +class MergeImageListsNode(ImageProcessingNode): + """Merge multiple image lists into a single list.""" + + node_id = "MergeImageLists" + display_name = "Merge Image Lists" + description = "Concatenate multiple image lists into one." + is_group_process = True # Receives images as list + + @classmethod + def _group_process(cls, images): + """Simply return the images list (already merged by input handling).""" + # When multiple list inputs are connected, they're concatenated + # For now, this is a simple pass-through + logging.info(f"Merged image list contains {len(images)} images") + return images + + +class MergeTextListsNode(TextProcessingNode): + """Merge multiple text lists into a single list.""" + + node_id = "MergeTextLists" + display_name = "Merge Text Lists" + description = "Concatenate multiple text lists into one." + is_group_process = True # Receives texts as list + + @classmethod + def _group_process(cls, texts): + """Simply return the texts list (already merged by input handling).""" + # When multiple list inputs are connected, they're concatenated + # For now, this is a simple pass-through + logging.info(f"Merged text list contains {len(texts)} texts") + return texts + + +# ========== Training Dataset Nodes ========== + + +class ResolutionBucket(io.ComfyNode): + """Bucket latents and conditions by resolution for efficient batch training.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ResolutionBucket", + display_name="Resolution Bucket", + category="dataset", + is_experimental=True, + is_input_list=True, + inputs=[ + io.Latent.Input( + "latents", + tooltip="List of latent dicts to bucket by resolution.", + ), + io.Conditioning.Input( + "conditioning", + tooltip="List of conditioning lists (must match latents length).", + ), + ], + outputs=[ + io.Latent.Output( + display_name="latents", + is_output_list=True, + tooltip="List of batched latent dicts, one per resolution bucket.", + ), + io.Conditioning.Output( + display_name="conditioning", + is_output_list=True, + tooltip="List of condition lists, one per resolution bucket.", + ), + ], + ) + + @classmethod + def execute(cls, latents, conditioning): + # latents: list[{"samples": tensor}] where tensor is (B, C, H, W), typically B=1 + # conditioning: list[list[cond]] + + # Validate lengths match + if len(latents) != len(conditioning): + raise ValueError( + f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)})." + ) + + # Flatten latents and conditions to individual samples + flat_latents = [] # list of (C, H, W) tensors + flat_conditions = [] # list of condition lists + + for latent_dict, cond in zip(latents, conditioning): + samples = latent_dict["samples"] # (B, C, H, W) + batch_size = samples.shape[0] + + # cond is a list of conditions with length == batch_size + for i in range(batch_size): + flat_latents.append(samples[i]) # (C, H, W) + flat_conditions.append(cond[i]) # single condition + + # Group by resolution (H, W) + buckets = {} # (H, W) -> {"latents": list, "conditions": list} + + for latent, cond in zip(flat_latents, flat_conditions): + # latent shape is (..., H, W) (B, C, H, W) or (B, T, C, H ,W) + h, w = latent.shape[-2], latent.shape[-1] + key = (h, w) + + if key not in buckets: + buckets[key] = {"latents": [], "conditions": []} + + buckets[key]["latents"].append(latent) + buckets[key]["conditions"].append(cond) + + # Convert buckets to output format + output_latents = [] # list[{"samples": tensor}] where tensor is (Bi, ..., H, W) + output_conditions = [] # list[list[cond]] where each inner list has Bi conditions + + for (h, w), bucket_data in buckets.items(): + # Stack latents into batch: list of (..., H, W) -> (Bi, ..., H, W) + stacked_latents = torch.stack(bucket_data["latents"], dim=0) + output_latents.append({"samples": stacked_latents}) + + # Conditions stay as list of condition lists + output_conditions.append(bucket_data["conditions"]) + + logging.info( + f"Resolution bucket ({h}x{w}): {len(bucket_data['latents'])} samples" + ) + + logging.info(f"Created {len(buckets)} resolution buckets from {len(flat_latents)} samples") + return io.NodeOutput(output_latents, output_conditions) + + +class MakeTrainingDataset(io.ComfyNode): + """Encode images with VAE and texts with CLIP to create a training dataset.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="MakeTrainingDataset", + display_name="Make Training Dataset", + category="dataset", + is_experimental=True, + is_input_list=True, # images and texts as lists + inputs=[ + io.Image.Input("images", tooltip="List of images to encode."), + io.Vae.Input( + "vae", tooltip="VAE model for encoding images to latents." + ), + io.Clip.Input( + "clip", tooltip="CLIP model for encoding text to conditioning." + ), + io.String.Input( + "texts", + optional=True, + tooltip="List of text captions. Can be length n (matching images), 1 (repeated for all), or omitted (uses empty string).", + ), + ], + outputs=[ + io.Latent.Output( + display_name="latents", + is_output_list=True, + tooltip="List of latent dicts", + ), + io.Conditioning.Output( + display_name="conditioning", + is_output_list=True, + tooltip="List of conditioning lists", + ), + ], + ) + + @classmethod + def execute(cls, images, vae, clip, texts=None): + # Extract scalars (vae and clip are single values wrapped in lists) + vae = vae[0] + clip = clip[0] + + # Handle text list + num_images = len(images) + + if texts is None or len(texts) == 0: + # Treat as [""] for unconditional training + texts = [""] + + if len(texts) == 1 and num_images > 1: + # Repeat single text for all images + texts = texts * num_images + elif len(texts) != num_images: + raise ValueError( + f"Number of texts ({len(texts)}) does not match number of images ({num_images}). " + f"Text list should have length {num_images}, 1, or 0." + ) + + # Encode images with VAE + logging.info(f"Encoding {num_images} images with VAE...") + latents_list = [] # list[{"samples": tensor}] + for img_tensor in images: + # img_tensor is [1, H, W, 3] + latent_tensor = vae.encode(img_tensor[:, :, :, :3]) + latents_list.append({"samples": latent_tensor}) + + # Encode texts with CLIP + logging.info(f"Encoding {len(texts)} texts with CLIP...") + conditioning_list = [] # list[list[cond]] + for text in texts: + if text == "": + cond = clip.encode_from_tokens_scheduled(clip.tokenize("")) + else: + tokens = clip.tokenize(text) + cond = clip.encode_from_tokens_scheduled(tokens) + conditioning_list.append(cond) + + logging.info( + f"Created dataset with {len(latents_list)} latents and {len(conditioning_list)} conditioning." + ) + return io.NodeOutput(latents_list, conditioning_list) + + +class SaveTrainingDataset(io.ComfyNode): + """Save encoded training dataset (latents + conditioning) to disk.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveTrainingDataset", + display_name="Save Training Dataset", + category="dataset", + is_experimental=True, + is_output_node=True, + is_input_list=True, # Receive lists + inputs=[ + io.Latent.Input( + "latents", + tooltip="List of latent dicts from MakeTrainingDataset.", + ), + io.Conditioning.Input( + "conditioning", + tooltip="List of conditioning lists from MakeTrainingDataset.", + ), + io.String.Input( + "folder_name", + default="training_dataset", + tooltip="Name of folder to save dataset (inside output directory).", + ), + io.Int.Input( + "shard_size", + default=1000, + min=1, + max=100000, + tooltip="Number of samples per shard file.", + ), + ], + outputs=[], + ) + + @classmethod + def execute(cls, latents, conditioning, folder_name, shard_size): + # Extract scalars + folder_name = folder_name[0] + shard_size = shard_size[0] + + # latents: list[{"samples": tensor}] + # conditioning: list[list[cond]] + + # Validate lengths match + if len(latents) != len(conditioning): + raise ValueError( + f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)}). " + f"Something went wrong in dataset preparation." + ) + + # Create output directory + output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + os.makedirs(output_dir, exist_ok=True) + + # Prepare data pairs + num_samples = len(latents) + num_shards = (num_samples + shard_size - 1) // shard_size # Ceiling division + + logging.info( + f"Saving {num_samples} samples to {num_shards} shards in {output_dir}..." + ) + + # Save data in shards + for shard_idx in range(num_shards): + start_idx = shard_idx * shard_size + end_idx = min(start_idx + shard_size, num_samples) + + # Get shard data (list of latent dicts and conditioning lists) + shard_data = { + "latents": latents[start_idx:end_idx], + "conditioning": conditioning[start_idx:end_idx], + } + + # Save shard + shard_filename = f"shard_{shard_idx:04d}.pkl" + shard_path = os.path.join(output_dir, shard_filename) + + with open(shard_path, "wb") as f: + torch.save(shard_data, f) + + logging.info( + f"Saved shard {shard_idx + 1}/{num_shards}: {shard_filename} ({end_idx - start_idx} samples)" + ) + + # Save metadata + metadata = { + "num_samples": num_samples, + "num_shards": num_shards, + "shard_size": shard_size, + } + metadata_path = os.path.join(output_dir, "metadata.json") + with open(metadata_path, "w") as f: + json.dump(metadata, f, indent=2) + + logging.info(f"Successfully saved {num_samples} samples to {output_dir}.") + return io.NodeOutput() + + +class LoadTrainingDataset(io.ComfyNode): + """Load encoded training dataset from disk.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoadTrainingDataset", + display_name="Load Training Dataset", + category="dataset", + is_experimental=True, + inputs=[ + io.String.Input( + "folder_name", + default="training_dataset", + tooltip="Name of folder containing the saved dataset (inside output directory).", + ), + ], + outputs=[ + io.Latent.Output( + display_name="latents", + is_output_list=True, + tooltip="List of latent dicts", + ), + io.Conditioning.Output( + display_name="conditioning", + is_output_list=True, + tooltip="List of conditioning lists", + ), + ], + ) + + @classmethod + def execute(cls, folder_name): + # Get dataset directory + dataset_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + + if not os.path.exists(dataset_dir): + raise ValueError(f"Dataset directory not found: {dataset_dir}") + + # Find all shard files + shard_files = sorted( + [ + f + for f in os.listdir(dataset_dir) + if f.startswith("shard_") and f.endswith(".pkl") + ] + ) + + if not shard_files: + raise ValueError(f"No shard files found in {dataset_dir}") + + logging.info(f"Loading {len(shard_files)} shards from {dataset_dir}...") + + # Load all shards + all_latents = [] # list[{"samples": tensor}] + all_conditioning = [] # list[list[cond]] + + for shard_file in shard_files: + shard_path = os.path.join(dataset_dir, shard_file) + + with open(shard_path, "rb") as f: + shard_data = torch.load(f) + + all_latents.extend(shard_data["latents"]) + all_conditioning.extend(shard_data["conditioning"]) + + logging.info(f"Loaded {shard_file}: {len(shard_data['latents'])} samples") + + logging.info( + f"Successfully loaded {len(all_latents)} samples from {dataset_dir}." + ) + return io.NodeOutput(all_latents, all_conditioning) + + +# ========== Extension Setup ========== + + +class DatasetExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + # Data loading/saving nodes + LoadImageDataSetFromFolderNode, + LoadImageTextDataSetFromFolderNode, + SaveImageDataSetToFolderNode, + SaveImageTextDataSetToFolderNode, + # Image transform nodes + ResizeImagesByShorterEdgeNode, + ResizeImagesByLongerEdgeNode, + CenterCropImagesNode, + RandomCropImagesNode, + NormalizeImagesNode, + AdjustBrightnessNode, + AdjustContrastNode, + ShuffleDatasetNode, + ShuffleImageTextDatasetNode, + # Text transform nodes + TextToLowercaseNode, + TextToUppercaseNode, + TruncateTextNode, + AddTextPrefixNode, + AddTextSuffixNode, + ReplaceTextNode, + StripWhitespaceNode, + # Group processing examples + ImageDeduplicationNode, + ImageGridNode, + MergeImageListsNode, + MergeTextListsNode, + # Training dataset nodes + MakeTrainingDataset, + SaveTrainingDataset, + LoadTrainingDataset, + ResolutionBucket, + ] + + +async def comfy_entrypoint() -> DatasetExtension: + return DatasetExtension() diff --git a/comfy_extras/nodes_easycache.py b/comfy_extras/nodes_easycache.py index c170e9fd9..11b23ffdb 100644 --- a/comfy_extras/nodes_easycache.py +++ b/comfy_extras/nodes_easycache.py @@ -11,13 +11,13 @@ if TYPE_CHECKING: def easycache_forward_wrapper(executor, *args, **kwargs): # get values from args - x: torch.Tensor = args[0] transformer_options: dict[str] = args[-1] if not isinstance(transformer_options, dict): transformer_options = kwargs.get("transformer_options") if not transformer_options: transformer_options = args[-2] easycache: EasyCacheHolder = transformer_options["easycache"] + x: torch.Tensor = args[0][:, :easycache.output_channels] sigmas = transformer_options["sigmas"] uuids = transformer_options["uuids"] if sigmas is not None and easycache.is_past_end_timestep(sigmas): @@ -82,13 +82,13 @@ def easycache_forward_wrapper(executor, *args, **kwargs): def lazycache_predict_noise_wrapper(executor, *args, **kwargs): # get values from args - x: torch.Tensor = args[0] timestep: float = args[1] model_options: dict[str] = args[2] easycache: LazyCacheHolder = model_options["transformer_options"]["easycache"] if easycache.is_past_end_timestep(timestep): return executor(*args, **kwargs) # prepare next x_prev + x: torch.Tensor = args[0][:, :easycache.output_channels] next_x_prev = x input_change = None do_easycache = easycache.should_do_easycache(timestep) @@ -173,7 +173,7 @@ def easycache_sample_wrapper(executor, *args, **kwargs): class EasyCacheHolder: - def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False): + def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False, output_channels: int=None): self.name = "EasyCache" self.reuse_threshold = reuse_threshold self.start_percent = start_percent @@ -202,6 +202,7 @@ class EasyCacheHolder: self.allow_mismatch = True self.cut_from_start = True self.state_metadata = None + self.output_channels = output_channels def is_past_end_timestep(self, timestep: float) -> bool: return not (timestep[0] > self.end_t).item() @@ -244,6 +245,8 @@ class EasyCacheHolder: self.total_steps_skipped += 1 batch_offset = x.shape[0] // len(uuids) for i, uuid in enumerate(uuids): + # slice out only what is relevant to this cond + batch_slice = [slice(i*batch_offset,(i+1)*batch_offset)] # if cached dims don't match x dims, cut off excess and hope for the best (cosmos world2video) if x.shape[1:] != self.uuid_cache_diffs[uuid].shape[1:]: if not self.allow_mismatch: @@ -261,9 +264,8 @@ class EasyCacheHolder: slicing.append(slice(None, dim_u)) else: slicing.append(slice(None)) - slicing = [slice(i*batch_offset,(i+1)*batch_offset)] + slicing - x = x[slicing] - x += self.uuid_cache_diffs[uuid].to(x.device) + batch_slice = batch_slice + slicing + x[tuple(batch_slice)] += self.uuid_cache_diffs[uuid].to(x.device) return x def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor, uuids: list[UUID]): @@ -282,7 +284,7 @@ class EasyCacheHolder: else: slicing.append(slice(None)) skip_dim = False - x = x[slicing] + x = x[tuple(slicing)] diff = output - x batch_offset = diff.shape[0] // len(uuids) for i, uuid in enumerate(uuids): @@ -322,7 +324,7 @@ class EasyCacheHolder: return self def clone(self): - return EasyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose) + return EasyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose, output_channels=self.output_channels) class EasyCacheNode(io.ComfyNode): @@ -349,7 +351,7 @@ class EasyCacheNode(io.ComfyNode): @classmethod def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput: model = model.clone() - model.model_options["transformer_options"]["easycache"] = EasyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose) + model.model_options["transformer_options"]["easycache"] = EasyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose, output_channels=model.model.latent_format.latent_channels) model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "easycache", easycache_sample_wrapper) model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, "easycache", easycache_calc_cond_batch_wrapper) model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, "easycache", easycache_forward_wrapper) @@ -357,7 +359,7 @@ class EasyCacheNode(io.ComfyNode): class LazyCacheHolder: - def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False): + def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False, output_channels: int=None): self.name = "LazyCache" self.reuse_threshold = reuse_threshold self.start_percent = start_percent @@ -381,6 +383,7 @@ class LazyCacheHolder: self.approx_output_change_rates = [] self.total_steps_skipped = 0 self.state_metadata = None + self.output_channels = output_channels def has_cache_diff(self) -> bool: return self.cache_diff is not None @@ -455,7 +458,7 @@ class LazyCacheHolder: return self def clone(self): - return LazyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose) + return LazyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose, output_channels=self.output_channels) class LazyCacheNode(io.ComfyNode): @classmethod @@ -481,7 +484,7 @@ class LazyCacheNode(io.ComfyNode): @classmethod def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput: model = model.clone() - model.model_options["transformer_options"]["easycache"] = LazyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose) + model.model_options["transformer_options"]["easycache"] = LazyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose, output_channels=model.model.latent_format.latent_channels) model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "lazycache", easycache_sample_wrapper) model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, "lazycache", lazycache_predict_noise_wrapper) return io.NodeOutput(model) diff --git a/comfy_extras/nodes_eps.py b/comfy_extras/nodes_eps.py index 7852d85e5..4d8061741 100644 --- a/comfy_extras/nodes_eps.py +++ b/comfy_extras/nodes_eps.py @@ -1,5 +1,7 @@ +import torch from typing_extensions import override +from comfy.k_diffusion.sampling import sigma_to_half_log_snr from comfy_api.latest import ComfyExtension, io @@ -63,12 +65,105 @@ class EpsilonScaling(io.ComfyNode): return io.NodeOutput(model_clone) +def compute_tsr_rescaling_factor( + snr: torch.Tensor, tsr_k: float, tsr_variance: float +) -> torch.Tensor: + """Compute the rescaling score ratio in Temporal Score Rescaling. + + See equation (6) in https://arxiv.org/pdf/2510.01184v1. + """ + posinf_mask = torch.isposinf(snr) + rescaling_factor = (snr * tsr_variance + 1) / (snr * tsr_variance / tsr_k + 1) + return torch.where(posinf_mask, tsr_k, rescaling_factor) # when snr → inf, r = tsr_k + + +class TemporalScoreRescaling(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="TemporalScoreRescaling", + display_name="TSR - Temporal Score Rescaling", + category="model_patches/unet", + inputs=[ + io.Model.Input("model"), + io.Float.Input( + "tsr_k", + tooltip=( + "Controls the rescaling strength.\n" + "Lower k produces more detailed results; higher k produces smoother results in image generation. Setting k = 1 disables rescaling." + ), + default=0.95, + min=0.01, + max=100.0, + step=0.001, + display_mode=io.NumberDisplay.number, + ), + io.Float.Input( + "tsr_sigma", + tooltip=( + "Controls how early rescaling takes effect.\n" + "Larger values take effect earlier." + ), + default=1.0, + min=0.01, + max=100.0, + step=0.001, + display_mode=io.NumberDisplay.number, + ), + ], + outputs=[ + io.Model.Output( + display_name="patched_model", + ), + ], + description=( + "[Post-CFG Function]\n" + "TSR - Temporal Score Rescaling (2510.01184)\n\n" + "Rescaling the model's score or noise to steer the sampling diversity.\n" + ), + ) + + @classmethod + def execute(cls, model, tsr_k, tsr_sigma) -> io.NodeOutput: + tsr_variance = tsr_sigma**2 + + def temporal_score_rescaling(args): + denoised = args["denoised"] + x = args["input"] + sigma = args["sigma"] + curr_model = args["model"] + + # No rescaling (r = 1) or no noise + if tsr_k == 1 or sigma == 0: + return denoised + + model_sampling = curr_model.current_patcher.get_model_object("model_sampling") + half_log_snr = sigma_to_half_log_snr(sigma, model_sampling) + snr = (2 * half_log_snr).exp() + + # No rescaling needed (r = 1) + if snr == 0: + return denoised + + rescaling_r = compute_tsr_rescaling_factor(snr, tsr_k, tsr_variance) + + # Derived from scaled_denoised = (x - r * sigma * noise) / alpha + alpha = sigma * half_log_snr.exp() + return torch.lerp(x / alpha, denoised, rescaling_r) + + m = model.clone() + m.set_model_sampler_post_cfg_function(temporal_score_rescaling) + return io.NodeOutput(m) + + class EpsilonScalingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ EpsilonScaling, + TemporalScoreRescaling, ] + async def comfy_entrypoint() -> EpsilonScalingExtension: return EpsilonScalingExtension() diff --git a/comfy_extras/nodes_flux.py b/comfy_extras/nodes_flux.py index 25e029ffd..12c8ed3e6 100644 --- a/comfy_extras/nodes_flux.py +++ b/comfy_extras/nodes_flux.py @@ -1,60 +1,104 @@ import node_helpers import comfy.utils +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +import comfy.model_management +import torch +import math +import nodes -class CLIPTextEncodeFlux: +class CLIPTextEncodeFlux(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "clip": ("CLIP", ), - "clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step": 0.1}), - }} - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "encode" + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeFlux", + category="advanced/conditioning/flux", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("t5xxl", multiline=True, dynamic_prompts=True), + io.Float.Input("guidance", default=3.5, min=0.0, max=100.0, step=0.1), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - CATEGORY = "advanced/conditioning/flux" - - def encode(self, clip, clip_l, t5xxl, guidance): + @classmethod + def execute(cls, clip, clip_l, t5xxl, guidance) -> io.NodeOutput: tokens = clip.tokenize(clip_l) tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"] - return (clip.encode_from_tokens_scheduled(tokens, add_dict={"guidance": guidance}), ) + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens, add_dict={"guidance": guidance})) -class FluxGuidance: + encode = execute # TODO: remove + +class EmptyFlux2LatentImage(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "conditioning": ("CONDITIONING", ), - "guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step": 0.1}), - }} + def define_schema(cls): + return io.Schema( + node_id="EmptyFlux2LatentImage", + display_name="Empty Flux 2 Latent", + category="latent", + inputs=[ + io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "append" + @classmethod + def execute(cls, width, height, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 128, height // 16, width // 16], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) - CATEGORY = "advanced/conditioning/flux" +class FluxGuidance(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="FluxGuidance", + category="advanced/conditioning/flux", + inputs=[ + io.Conditioning.Input("conditioning"), + io.Float.Input("guidance", default=3.5, min=0.0, max=100.0, step=0.1), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - def append(self, conditioning, guidance): + @classmethod + def execute(cls, conditioning, guidance) -> io.NodeOutput: c = node_helpers.conditioning_set_values(conditioning, {"guidance": guidance}) - return (c, ) + return io.NodeOutput(c) + + append = execute # TODO: remove -class FluxDisableGuidance: +class FluxDisableGuidance(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "conditioning": ("CONDITIONING", ), - }} + def define_schema(cls): + return io.Schema( + node_id="FluxDisableGuidance", + category="advanced/conditioning/flux", + description="This node completely disables the guidance embed on Flux and Flux like models", + inputs=[ + io.Conditioning.Input("conditioning"), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "append" - - CATEGORY = "advanced/conditioning/flux" - DESCRIPTION = "This node completely disables the guidance embed on Flux and Flux like models" - - def append(self, conditioning): + @classmethod + def execute(cls, conditioning) -> io.NodeOutput: c = node_helpers.conditioning_set_values(conditioning, {"guidance": None}) - return (c, ) + return io.NodeOutput(c) + + append = execute # TODO: remove PREFERED_KONTEXT_RESOLUTIONS = [ @@ -78,52 +122,128 @@ PREFERED_KONTEXT_RESOLUTIONS = [ ] -class FluxKontextImageScale: +class FluxKontextImageScale(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"image": ("IMAGE", ), - }, - } + def define_schema(cls): + return io.Schema( + node_id="FluxKontextImageScale", + category="advanced/conditioning/flux", + description="This node resizes the image to one that is more optimal for flux kontext.", + inputs=[ + io.Image.Input("image"), + ], + outputs=[ + io.Image.Output(), + ], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "scale" - - CATEGORY = "advanced/conditioning/flux" - DESCRIPTION = "This node resizes the image to one that is more optimal for flux kontext." - - def scale(self, image): + @classmethod + def execute(cls, image) -> io.NodeOutput: width = image.shape[2] height = image.shape[1] aspect_ratio = width / height _, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS) image = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "lanczos", "center").movedim(1, -1) - return (image, ) + return io.NodeOutput(image) + + scale = execute # TODO: remove -class FluxKontextMultiReferenceLatentMethod: +class FluxKontextMultiReferenceLatentMethod(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "conditioning": ("CONDITIONING", ), - "reference_latents_method": (("offset", "index", "uxo/uno"), ), - }} + def define_schema(cls): + return io.Schema( + node_id="FluxKontextMultiReferenceLatentMethod", + display_name="Edit Model Reference Method", + category="advanced/conditioning/flux", + inputs=[ + io.Conditioning.Input("conditioning"), + io.Combo.Input( + "reference_latents_method", + options=["offset", "index", "uxo/uno", "index_timestep_zero"], + ), + ], + outputs=[ + io.Conditioning.Output(), + ], + is_experimental=True, + ) - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "append" - EXPERIMENTAL = True - - CATEGORY = "advanced/conditioning/flux" - - def append(self, conditioning, reference_latents_method): + @classmethod + def execute(cls, conditioning, reference_latents_method) -> io.NodeOutput: if "uxo" in reference_latents_method or "uso" in reference_latents_method: reference_latents_method = "uxo" c = node_helpers.conditioning_set_values(conditioning, {"reference_latents_method": reference_latents_method}) - return (c, ) + return io.NodeOutput(c) -NODE_CLASS_MAPPINGS = { - "CLIPTextEncodeFlux": CLIPTextEncodeFlux, - "FluxGuidance": FluxGuidance, - "FluxDisableGuidance": FluxDisableGuidance, - "FluxKontextImageScale": FluxKontextImageScale, - "FluxKontextMultiReferenceLatentMethod": FluxKontextMultiReferenceLatentMethod, -} + append = execute # TODO: remove + + +def generalized_time_snr_shift(t, mu: float, sigma: float): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + + +def compute_empirical_mu(image_seq_len: int, num_steps: int) -> float: + a1, b1 = 8.73809524e-05, 1.89833333 + a2, b2 = 0.00016927, 0.45666666 + + if image_seq_len > 4300: + mu = a2 * image_seq_len + b2 + return float(mu) + + m_200 = a2 * image_seq_len + b2 + m_10 = a1 * image_seq_len + b1 + + a = (m_200 - m_10) / 190.0 + b = m_200 - 200.0 * a + mu = a * num_steps + b + + return float(mu) + + +def get_schedule(num_steps: int, image_seq_len: int) -> list[float]: + mu = compute_empirical_mu(image_seq_len, num_steps) + timesteps = torch.linspace(1, 0, num_steps + 1) + timesteps = generalized_time_snr_shift(timesteps, mu, 1.0) + return timesteps + + +class Flux2Scheduler(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="Flux2Scheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=4096), + io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1), + io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[ + io.Sigmas.Output(), + ], + ) + + @classmethod + def execute(cls, steps, width, height) -> io.NodeOutput: + seq_len = (width * height / (16 * 16)) + sigmas = get_schedule(steps, round(seq_len)) + return io.NodeOutput(sigmas) + + +class FluxExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + CLIPTextEncodeFlux, + FluxGuidance, + FluxDisableGuidance, + FluxKontextImageScale, + FluxKontextMultiReferenceLatentMethod, + EmptyFlux2LatentImage, + Flux2Scheduler, + ] + + +async def comfy_entrypoint() -> FluxExtension: + return FluxExtension() diff --git a/comfy_extras/nodes_freelunch.py b/comfy_extras/nodes_freelunch.py index e3ac58447..3429b731e 100644 --- a/comfy_extras/nodes_freelunch.py +++ b/comfy_extras/nodes_freelunch.py @@ -2,6 +2,8 @@ import torch import logging +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO def Fourier_filter(x, threshold, scale): # FFT @@ -22,21 +24,26 @@ def Fourier_filter(x, threshold, scale): return x_filtered.to(x.dtype) -class FreeU: +class FreeU(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), - "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), - "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), - "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return IO.Schema( + node_id="FreeU", + category="model_patches/unet", + inputs=[ + IO.Model.Input("model"), + IO.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01), + IO.Float.Input("b2", default=1.2, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, b1, b2, s1, s2): + @classmethod + def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput: model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} @@ -59,23 +66,31 @@ class FreeU: m = model.clone() m.set_model_output_block_patch(output_block_patch) - return (m, ) + return IO.NodeOutput(m) -class FreeU_V2: + patch = execute # TODO: remove + + +class FreeU_V2(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), - "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), - "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), - "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return IO.Schema( + node_id="FreeU_V2", + category="model_patches/unet", + inputs=[ + IO.Model.Input("model"), + IO.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01), + IO.Float.Input("b2", default=1.4, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, b1, b2, s1, s2): + @classmethod + def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput: model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} @@ -105,9 +120,19 @@ class FreeU_V2: m = model.clone() m.set_model_output_block_patch(output_block_patch) - return (m, ) + return IO.NodeOutput(m) -NODE_CLASS_MAPPINGS = { - "FreeU": FreeU, - "FreeU_V2": FreeU_V2, -} + patch = execute # TODO: remove + + +class FreelunchExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + FreeU, + FreeU_V2, + ] + + +async def comfy_entrypoint() -> FreelunchExtension: + return FreelunchExtension() diff --git a/comfy_extras/nodes_hunyuan.py b/comfy_extras/nodes_hunyuan.py index db398cdf1..32be182f1 100644 --- a/comfy_extras/nodes_hunyuan.py +++ b/comfy_extras/nodes_hunyuan.py @@ -2,42 +2,254 @@ import nodes import node_helpers import torch import comfy.model_management +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel +import folder_paths - -class CLIPTextEncodeHunyuanDiT: +class CLIPTextEncodeHunyuanDiT(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "clip": ("CLIP", ), - "bert": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "mt5xl": ("STRING", {"multiline": True, "dynamicPrompts": True}), - }} - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "encode" + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeHunyuanDiT", + category="advanced/conditioning", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("bert", multiline=True, dynamic_prompts=True), + io.String.Input("mt5xl", multiline=True, dynamic_prompts=True), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - CATEGORY = "advanced/conditioning" - - def encode(self, clip, bert, mt5xl): + @classmethod + def execute(cls, clip, bert, mt5xl) -> io.NodeOutput: tokens = clip.tokenize(bert) tokens["mt5xl"] = clip.tokenize(mt5xl)["mt5xl"] - return (clip.encode_from_tokens_scheduled(tokens), ) + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) -class EmptyHunyuanLatentVideo: + encode = execute # TODO: remove + + +class EmptyHunyuanLatentVideo(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "length": ("INT", {"default": 25, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" + def define_schema(cls): + return io.Schema( + node_id="EmptyHunyuanLatentVideo", + display_name="Empty HunyuanVideo 1.0 Latent", + category="latent/video", + inputs=[ + io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=25, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) - CATEGORY = "latent/video" - - def generate(self, width, height, length, batch_size=1): + @classmethod + def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput: latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) - return ({"samples":latent}, ) + return io.NodeOutput({"samples":latent}) + + generate = execute # TODO: remove + + +class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo): + @classmethod + def define_schema(cls): + schema = super().define_schema() + schema.node_id = "EmptyHunyuanVideo15Latent" + schema.display_name = "Empty HunyuanVideo 1.5 Latent" + return schema + + @classmethod + def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput: + # Using scale factor of 16 instead of 8 + latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) + + +class HunyuanVideo15ImageToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="HunyuanVideo15ImageToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=33, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image", optional=True), + io.ClipVisionOutput.Input("clip_vision_output", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput: + latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device()) + + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + + encoded = vae.encode(start_image[:, :, :, :3]) + concat_latent_image = torch.zeros((latent.shape[0], 32, latent.shape[2], latent.shape[3], latent.shape[4]), device=comfy.model_management.intermediate_device()) + concat_latent_image[:, :, :encoded.shape[2], :, :] = encoded + + mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) + + if clip_vision_output is not None: + positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) + negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent) + + +class HunyuanVideo15SuperResolution(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="HunyuanVideo15SuperResolution", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae", optional=True), + io.Image.Input("start_image", optional=True), + io.ClipVisionOutput.Input("clip_vision_output", optional=True), + io.Latent.Input("latent"), + io.Float.Input("noise_augmentation", default=0.70, min=0.0, max=1.0, step=0.01), + + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, positive, negative, latent, noise_augmentation, vae=None, start_image=None, clip_vision_output=None) -> io.NodeOutput: + in_latent = latent["samples"] + in_channels = in_latent.shape[1] + cond_latent = torch.zeros([in_latent.shape[0], in_channels * 2 + 2, in_latent.shape[-3], in_latent.shape[-2], in_latent.shape[-1]], device=comfy.model_management.intermediate_device()) + cond_latent[:, in_channels + 1 : 2 * in_channels + 1] = in_latent + cond_latent[:, 2 * in_channels + 1] = 1 + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image.movedim(-1, 1), in_latent.shape[-1] * 16, in_latent.shape[-2] * 16, "bilinear", "center").movedim(1, -1) + encoded = vae.encode(start_image[:, :, :, :3]) + cond_latent[:, :in_channels, :encoded.shape[2], :, :] = encoded + cond_latent[:, in_channels + 1, 0] = 1 + + positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation}) + negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation}) + if clip_vision_output is not None: + positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) + negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) + + return io.NodeOutput(positive, negative, latent) + + +class LatentUpscaleModelLoader(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LatentUpscaleModelLoader", + display_name="Load Latent Upscale Model", + category="loaders", + inputs=[ + io.Combo.Input("model_name", options=folder_paths.get_filename_list("latent_upscale_models")), + ], + outputs=[ + io.LatentUpscaleModel.Output(), + ], + ) + + @classmethod + def execute(cls, model_name) -> io.NodeOutput: + model_path = folder_paths.get_full_path_or_raise("latent_upscale_models", model_name) + sd = comfy.utils.load_torch_file(model_path, safe_load=True) + + if "blocks.0.block.0.conv.weight" in sd: + config = { + "in_channels": sd["in_conv.conv.weight"].shape[1], + "out_channels": sd["out_conv.conv.weight"].shape[0], + "hidden_channels": sd["in_conv.conv.weight"].shape[0], + "num_blocks": len([k for k in sd.keys() if k.startswith("blocks.") and k.endswith(".block.0.conv.weight")]), + "global_residual": False, + } + model_type = "720p" + elif "up.0.block.0.conv1.conv.weight" in sd: + sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()} + config = { + "z_channels": sd["conv_in.conv.weight"].shape[1], + "out_channels": sd["conv_out.conv.weight"].shape[0], + "block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))), + } + model_type = "1080p" + + model = HunyuanVideo15SRModel(model_type, config) + model.load_sd(sd) + + return io.NodeOutput(model) + + +class HunyuanVideo15LatentUpscaleWithModel(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="HunyuanVideo15LatentUpscaleWithModel", + display_name="Hunyuan Video 15 Latent Upscale With Model", + category="latent", + inputs=[ + io.LatentUpscaleModel.Input("model"), + io.Latent.Input("samples"), + io.Combo.Input("upscale_method", options=["nearest-exact", "bilinear", "area", "bicubic", "bislerp"], default="bilinear"), + io.Int.Input("width", default=1280, min=0, max=16384, step=8), + io.Int.Input("height", default=720, min=0, max=16384, step=8), + io.Combo.Input("crop", options=["disabled", "center"]), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, model, samples, upscale_method, width, height, crop) -> io.NodeOutput: + if width == 0 and height == 0: + return io.NodeOutput(samples) + else: + if width == 0: + height = max(64, height) + width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2])) + elif height == 0: + width = max(64, width) + height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1])) + else: + width = max(64, width) + height = max(64, height) + s = comfy.utils.common_upscale(samples["samples"], width // 16, height // 16, upscale_method, crop) + s = model.resample_latent(s) + return io.NodeOutput({"samples": s.cpu().float()}) + PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = ( "<|start_header_id|>system<|end_header_id|>\n\n\nDescribe the video by detailing the following aspects according to the reference image: " @@ -50,45 +262,61 @@ PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = ( "<|start_header_id|>assistant<|end_header_id|>\n\n" ) -class TextEncodeHunyuanVideo_ImageToVideo: +class TextEncodeHunyuanVideo_ImageToVideo(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "clip": ("CLIP", ), - "clip_vision_output": ("CLIP_VISION_OUTPUT", ), - "prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "image_interleave": ("INT", {"default": 2, "min": 1, "max": 512, "tooltip": "How much the image influences things vs the text prompt. Higher number means more influence from the text prompt."}), - }} - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "encode" + def define_schema(cls): + return io.Schema( + node_id="TextEncodeHunyuanVideo_ImageToVideo", + category="advanced/conditioning", + inputs=[ + io.Clip.Input("clip"), + io.ClipVisionOutput.Input("clip_vision_output"), + io.String.Input("prompt", multiline=True, dynamic_prompts=True), + io.Int.Input( + "image_interleave", + default=2, + min=1, + max=512, + tooltip="How much the image influences things vs the text prompt. Higher number means more influence from the text prompt.", + ), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - CATEGORY = "advanced/conditioning" - - def encode(self, clip, clip_vision_output, prompt, image_interleave): + @classmethod + def execute(cls, clip, clip_vision_output, prompt, image_interleave) -> io.NodeOutput: tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected, image_interleave=image_interleave) - return (clip.encode_from_tokens_scheduled(tokens), ) + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) -class HunyuanImageToVideo: + encode = execute # TODO: remove + + +class HunyuanImageToVideo(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "vae": ("VAE", ), - "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "length": ("INT", {"default": 53, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), - "guidance_type": (["v1 (concat)", "v2 (replace)", "custom"], ) - }, - "optional": {"start_image": ("IMAGE", ), - }} + def define_schema(cls): + return io.Schema( + node_id="HunyuanImageToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Vae.Input("vae"), + io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=53, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Combo.Input("guidance_type", options=["v1 (concat)", "v2 (replace)", "custom"]), + io.Image.Input("start_image", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Latent.Output(display_name="latent"), + ], + ) - RETURN_TYPES = ("CONDITIONING", "LATENT") - RETURN_NAMES = ("positive", "latent") - FUNCTION = "encode" - - CATEGORY = "conditioning/video_models" - - def encode(self, positive, vae, width, height, length, batch_size, guidance_type, start_image=None): + @classmethod + def execute(cls, positive, vae, width, height, length, batch_size, guidance_type, start_image=None) -> io.NodeOutput: latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) out_latent = {} @@ -111,51 +339,81 @@ class HunyuanImageToVideo: positive = node_helpers.conditioning_set_values(positive, cond) out_latent["samples"] = latent - return (positive, out_latent) + return io.NodeOutput(positive, out_latent) -class EmptyHunyuanImageLatent: + encode = execute # TODO: remove + + +class EmptyHunyuanImageLatent(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "width": ("INT", {"default": 2048, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), - "height": ("INT", {"default": 2048, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" + def define_schema(cls): + return io.Schema( + node_id="EmptyHunyuanImageLatent", + category="latent", + inputs=[ + io.Int.Input("width", default=2048, min=64, max=nodes.MAX_RESOLUTION, step=32), + io.Int.Input("height", default=2048, min=64, max=nodes.MAX_RESOLUTION, step=32), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) - CATEGORY = "latent" - - def generate(self, width, height, batch_size=1): + @classmethod + def execute(cls, width, height, batch_size=1) -> io.NodeOutput: latent = torch.zeros([batch_size, 64, height // 32, width // 32], device=comfy.model_management.intermediate_device()) - return ({"samples":latent}, ) + return io.NodeOutput({"samples":latent}) -class HunyuanRefinerLatent: + generate = execute # TODO: remove + + +class HunyuanRefinerLatent(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "latent": ("LATENT", ), - "noise_augmentation": ("FLOAT", {"default": 0.10, "min": 0.0, "max": 1.0, "step": 0.01}), - }} + def define_schema(cls): + return io.Schema( + node_id="HunyuanRefinerLatent", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Latent.Input("latent"), + io.Float.Input("noise_augmentation", default=0.10, min=0.0, max=1.0, step=0.01), - RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") - RETURN_NAMES = ("positive", "negative", "latent") + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) - FUNCTION = "execute" - - def execute(self, positive, negative, latent, noise_augmentation): + @classmethod + def execute(cls, positive, negative, latent, noise_augmentation) -> io.NodeOutput: latent = latent["samples"] positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": latent, "noise_augmentation": noise_augmentation}) negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": latent, "noise_augmentation": noise_augmentation}) out_latent = {} out_latent["samples"] = torch.zeros([latent.shape[0], 32, latent.shape[-3], latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device()) - return (positive, negative, out_latent) + return io.NodeOutput(positive, negative, out_latent) -NODE_CLASS_MAPPINGS = { - "CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT, - "TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo, - "EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo, - "HunyuanImageToVideo": HunyuanImageToVideo, - "EmptyHunyuanImageLatent": EmptyHunyuanImageLatent, - "HunyuanRefinerLatent": HunyuanRefinerLatent, -} +class HunyuanExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + CLIPTextEncodeHunyuanDiT, + TextEncodeHunyuanVideo_ImageToVideo, + EmptyHunyuanLatentVideo, + EmptyHunyuanVideo15Latent, + HunyuanVideo15ImageToVideo, + HunyuanVideo15SuperResolution, + HunyuanVideo15LatentUpscaleWithModel, + LatentUpscaleModelLoader, + HunyuanImageToVideo, + EmptyHunyuanImageLatent, + HunyuanRefinerLatent, + ] + + +async def comfy_entrypoint() -> HunyuanExtension: + return HunyuanExtension() diff --git a/comfy_extras/nodes_hunyuan3d.py b/comfy_extras/nodes_hunyuan3d.py index f6e71e0a8..adca14f62 100644 --- a/comfy_extras/nodes_hunyuan3d.py +++ b/comfy_extras/nodes_hunyuan3d.py @@ -7,63 +7,79 @@ from comfy.ldm.modules.diffusionmodules.mmdit import get_1d_sincos_pos_embed_fro import folder_paths import comfy.model_management from comfy.cli_args import args +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, Types +from comfy_api.latest._util import MESH, VOXEL # only for backward compatibility if someone import it from this file (will be removed later) # noqa -class EmptyLatentHunyuan3Dv2: + +class EmptyLatentHunyuan3Dv2(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "resolution": ("INT", {"default": 3072, "min": 1, "max": 8192}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="EmptyLatentHunyuan3Dv2", + category="latent/3d", + inputs=[ + IO.Int.Input("resolution", default=3072, min=1, max=8192), + IO.Int.Input("batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."), + ], + outputs=[ + IO.Latent.Output(), + ] + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" - - CATEGORY = "latent/3d" - - def generate(self, resolution, batch_size): + @classmethod + def execute(cls, resolution, batch_size) -> IO.NodeOutput: latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device()) - return ({"samples": latent, "type": "hunyuan3dv2"}, ) + return IO.NodeOutput({"samples": latent, "type": "hunyuan3dv2"}) -class Hunyuan3Dv2Conditioning: + generate = execute # TODO: remove + + +class Hunyuan3Dv2Conditioning(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT",), - }} + def define_schema(cls): + return IO.Schema( + node_id="Hunyuan3Dv2Conditioning", + category="conditioning/video_models", + inputs=[ + IO.ClipVisionOutput.Input("clip_vision_output"), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ] + ) - RETURN_TYPES = ("CONDITIONING", "CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "encode" - - CATEGORY = "conditioning/video_models" - - def encode(self, clip_vision_output): + @classmethod + def execute(cls, clip_vision_output) -> IO.NodeOutput: embeds = clip_vision_output.last_hidden_state positive = [[embeds, {}]] negative = [[torch.zeros_like(embeds), {}]] - return (positive, negative) + return IO.NodeOutput(positive, negative) + + encode = execute # TODO: remove -class Hunyuan3Dv2ConditioningMultiView: +class Hunyuan3Dv2ConditioningMultiView(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {}, - "optional": {"front": ("CLIP_VISION_OUTPUT",), - "left": ("CLIP_VISION_OUTPUT",), - "back": ("CLIP_VISION_OUTPUT",), - "right": ("CLIP_VISION_OUTPUT",), }} + def define_schema(cls): + return IO.Schema( + node_id="Hunyuan3Dv2ConditioningMultiView", + category="conditioning/video_models", + inputs=[ + IO.ClipVisionOutput.Input("front", optional=True), + IO.ClipVisionOutput.Input("left", optional=True), + IO.ClipVisionOutput.Input("back", optional=True), + IO.ClipVisionOutput.Input("right", optional=True), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ] + ) - RETURN_TYPES = ("CONDITIONING", "CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "encode" - - CATEGORY = "conditioning/video_models" - - def encode(self, front=None, left=None, back=None, right=None): + @classmethod + def execute(cls, front=None, left=None, back=None, right=None) -> IO.NodeOutput: all_embeds = [front, left, back, right] out = [] pos_embeds = None @@ -76,29 +92,35 @@ class Hunyuan3Dv2ConditioningMultiView: embeds = torch.cat(out, dim=1) positive = [[embeds, {}]] negative = [[torch.zeros_like(embeds), {}]] - return (positive, negative) + return IO.NodeOutput(positive, negative) + + encode = execute # TODO: remove -class VOXEL: - def __init__(self, data): - self.data = data - -class VAEDecodeHunyuan3D: +class VAEDecodeHunyuan3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"samples": ("LATENT", ), - "vae": ("VAE", ), - "num_chunks": ("INT", {"default": 8000, "min": 1000, "max": 500000}), - "octree_resolution": ("INT", {"default": 256, "min": 16, "max": 512}), - }} - RETURN_TYPES = ("VOXEL",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VAEDecodeHunyuan3D", + category="latent/3d", + inputs=[ + IO.Latent.Input("samples"), + IO.Vae.Input("vae"), + IO.Int.Input("num_chunks", default=8000, min=1000, max=500000), + IO.Int.Input("octree_resolution", default=256, min=16, max=512), + ], + outputs=[ + IO.Voxel.Output(), + ] + ) - CATEGORY = "latent/3d" + @classmethod + def execute(cls, vae, samples, num_chunks, octree_resolution) -> IO.NodeOutput: + voxels = Types.VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution})) + return IO.NodeOutput(voxels) + + decode = execute # TODO: remove - def decode(self, vae, samples, num_chunks, octree_resolution): - voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution})) - return (voxels, ) def voxel_to_mesh(voxels, threshold=0.5, device=None): if device is None: @@ -396,24 +418,24 @@ def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None): return final_vertices, faces -class MESH: - def __init__(self, vertices, faces): - self.vertices = vertices - self.faces = faces - -class VoxelToMeshBasic: +class VoxelToMeshBasic(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"voxel": ("VOXEL", ), - "threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("MESH",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VoxelToMeshBasic", + category="3d", + inputs=[ + IO.Voxel.Input("voxel"), + IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01), + ], + outputs=[ + IO.Mesh.Output(), + ] + ) - CATEGORY = "3d" - - def decode(self, voxel, threshold): + @classmethod + def execute(cls, voxel, threshold) -> IO.NodeOutput: vertices = [] faces = [] for x in voxel.data: @@ -421,21 +443,29 @@ class VoxelToMeshBasic: vertices.append(v) faces.append(f) - return (MESH(torch.stack(vertices), torch.stack(faces)), ) + return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces))) -class VoxelToMesh: + decode = execute # TODO: remove + + +class VoxelToMesh(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"voxel": ("VOXEL", ), - "algorithm": (["surface net", "basic"], ), - "threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("MESH",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VoxelToMesh", + category="3d", + inputs=[ + IO.Voxel.Input("voxel"), + IO.Combo.Input("algorithm", options=["surface net", "basic"]), + IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01), + ], + outputs=[ + IO.Mesh.Output(), + ] + ) - CATEGORY = "3d" - - def decode(self, voxel, algorithm, threshold): + @classmethod + def execute(cls, voxel, algorithm, threshold) -> IO.NodeOutput: vertices = [] faces = [] @@ -449,7 +479,9 @@ class VoxelToMesh: vertices.append(v) faces.append(f) - return (MESH(torch.stack(vertices), torch.stack(faces)), ) + return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces))) + + decode = execute # TODO: remove def save_glb(vertices, faces, filepath, metadata=None): @@ -581,31 +613,32 @@ def save_glb(vertices, faces, filepath, metadata=None): return filepath -class SaveGLB: +class SaveGLB(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"mesh": ("MESH", ), - "filename_prefix": ("STRING", {"default": "mesh/ComfyUI"}), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } + def define_schema(cls): + return IO.Schema( + node_id="SaveGLB", + category="3d", + is_output_node=True, + inputs=[ + IO.Mesh.Input("mesh"), + IO.String.Input("filename_prefix", default="mesh/ComfyUI"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo] + ) - RETURN_TYPES = () - FUNCTION = "save" - - OUTPUT_NODE = True - - CATEGORY = "3d" - - def save(self, mesh, filename_prefix, prompt=None, extra_pnginfo=None): + @classmethod + def execute(cls, mesh, filename_prefix) -> IO.NodeOutput: full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory()) results = [] metadata = {} if not args.disable_metadata: - if prompt is not None: - metadata["prompt"] = json.dumps(prompt) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata[x] = json.dumps(extra_pnginfo[x]) + if cls.hidden.prompt is not None: + metadata["prompt"] = json.dumps(cls.hidden.prompt) + if cls.hidden.extra_pnginfo is not None: + for x in cls.hidden.extra_pnginfo: + metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x]) for i in range(mesh.vertices.shape[0]): f = f"{filename}_{counter:05}_.glb" @@ -616,15 +649,22 @@ class SaveGLB: "type": "output" }) counter += 1 - return {"ui": {"3d": results}} + return IO.NodeOutput(ui={"3d": results}) -NODE_CLASS_MAPPINGS = { - "EmptyLatentHunyuan3Dv2": EmptyLatentHunyuan3Dv2, - "Hunyuan3Dv2Conditioning": Hunyuan3Dv2Conditioning, - "Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView, - "VAEDecodeHunyuan3D": VAEDecodeHunyuan3D, - "VoxelToMeshBasic": VoxelToMeshBasic, - "VoxelToMesh": VoxelToMesh, - "SaveGLB": SaveGLB, -} +class Hunyuan3dExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + EmptyLatentHunyuan3Dv2, + Hunyuan3Dv2Conditioning, + Hunyuan3Dv2ConditioningMultiView, + VAEDecodeHunyuan3D, + VoxelToMeshBasic, + VoxelToMesh, + SaveGLB, + ] + + +async def comfy_entrypoint() -> Hunyuan3dExtension: + return Hunyuan3dExtension() diff --git a/comfy_extras/nodes_hypernetwork.py b/comfy_extras/nodes_hypernetwork.py index 665632292..2a6a87a81 100644 --- a/comfy_extras/nodes_hypernetwork.py +++ b/comfy_extras/nodes_hypernetwork.py @@ -2,6 +2,9 @@ import comfy.utils import folder_paths import torch import logging +from comfy_api.latest import IO, ComfyExtension +from typing_extensions import override + def load_hypernetwork_patch(path, strength): sd = comfy.utils.load_torch_file(path, safe_load=True) @@ -94,27 +97,42 @@ def load_hypernetwork_patch(path, strength): return hypernetwork_patch(out, strength) -class HypernetworkLoader: +class HypernetworkLoader(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "hypernetwork_name": (folder_paths.get_filename_list("hypernetworks"), ), - "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "load_hypernetwork" + def define_schema(cls): + return IO.Schema( + node_id="HypernetworkLoader", + category="loaders", + inputs=[ + IO.Model.Input("model"), + IO.Combo.Input("hypernetwork_name", options=folder_paths.get_filename_list("hypernetworks")), + IO.Float.Input("strength", default=1.0, min=-10.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "loaders" - - def load_hypernetwork(self, model, hypernetwork_name, strength): + @classmethod + def execute(cls, model, hypernetwork_name, strength) -> IO.NodeOutput: hypernetwork_path = folder_paths.get_full_path_or_raise("hypernetworks", hypernetwork_name) model_hypernetwork = model.clone() patch = load_hypernetwork_patch(hypernetwork_path, strength) if patch is not None: model_hypernetwork.set_model_attn1_patch(patch) model_hypernetwork.set_model_attn2_patch(patch) - return (model_hypernetwork,) + return IO.NodeOutput(model_hypernetwork) -NODE_CLASS_MAPPINGS = { - "HypernetworkLoader": HypernetworkLoader -} + load_hypernetwork = execute # TODO: remove + + +class HyperNetworkExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + HypernetworkLoader, + ] + + +async def comfy_entrypoint() -> HyperNetworkExtension: + return HyperNetworkExtension() diff --git a/comfy_extras/nodes_images.py b/comfy_extras/nodes_images.py index 392aea32c..ce21caade 100644 --- a/comfy_extras/nodes_images.py +++ b/comfy_extras/nodes_images.py @@ -2,280 +2,231 @@ from __future__ import annotations import nodes import folder_paths -from comfy.cli_args import args -from PIL import Image -from PIL.PngImagePlugin import PngInfo - -import numpy as np import json import os import re -from io import BytesIO -from inspect import cleandoc import torch import comfy.utils -from comfy.comfy_types import FileLocator, IO from server import PromptServer +from comfy_api.latest import ComfyExtension, IO, UI +from typing_extensions import override + +SVG = IO.SVG.Type # TODO: temporary solution for backward compatibility, will be removed later. MAX_RESOLUTION = nodes.MAX_RESOLUTION -class ImageCrop: +class ImageCrop(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "crop" + def define_schema(cls): + return IO.Schema( + node_id="ImageCrop", + display_name="Image Crop", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def crop(self, image, width, height, x, y): + @classmethod + def execute(cls, image, width, height, x, y) -> IO.NodeOutput: x = min(x, image.shape[2] - 1) y = min(y, image.shape[1] - 1) to_x = width + x to_y = height + y img = image[:,y:to_y, x:to_x, :] - return (img,) + return IO.NodeOutput(img) -class RepeatImageBatch: + crop = execute # TODO: remove + + +class RepeatImageBatch(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "amount": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "repeat" + def define_schema(cls): + return IO.Schema( + node_id="RepeatImageBatch", + category="image/batch", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("amount", default=1, min=1, max=4096), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/batch" - - def repeat(self, image, amount): + @classmethod + def execute(cls, image, amount) -> IO.NodeOutput: s = image.repeat((amount, 1,1,1)) - return (s,) + return IO.NodeOutput(s) -class ImageFromBatch: + repeat = execute # TODO: remove + + +class ImageFromBatch(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}), - "length": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "frombatch" + def define_schema(cls): + return IO.Schema( + node_id="ImageFromBatch", + category="image/batch", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("batch_index", default=0, min=0, max=4095), + IO.Int.Input("length", default=1, min=1, max=4096), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/batch" - - def frombatch(self, image, batch_index, length): + @classmethod + def execute(cls, image, batch_index, length) -> IO.NodeOutput: s_in = image batch_index = min(s_in.shape[0] - 1, batch_index) length = min(s_in.shape[0] - batch_index, length) s = s_in[batch_index:batch_index + length].clone() - return (s,) + return IO.NodeOutput(s) + + frombatch = execute # TODO: remove -class ImageAddNoise: +class ImageAddNoise(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}), - "strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "repeat" + def define_schema(cls): + return IO.Schema( + node_id="ImageAddNoise", + category="image", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="The random seed used for creating the noise.", + ), + IO.Float.Input("strength", default=0.5, min=0.0, max=1.0, step=0.01), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image" - - def repeat(self, image, seed, strength): + @classmethod + def execute(cls, image, seed, strength) -> IO.NodeOutput: generator = torch.manual_seed(seed) s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0) - return (s,) + return IO.NodeOutput(s) -class SaveAnimatedWEBP: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" + repeat = execute # TODO: remove - methods = {"default": 4, "fastest": 0, "slowest": 6} - @classmethod - def INPUT_TYPES(s): - return {"required": - {"images": ("IMAGE", ), - "filename_prefix": ("STRING", {"default": "ComfyUI"}), - "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), - "lossless": ("BOOLEAN", {"default": True}), - "quality": ("INT", {"default": 80, "min": 0, "max": 100}), - "method": (list(s.methods.keys()),), - # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - RETURN_TYPES = () - FUNCTION = "save_images" - - OUTPUT_NODE = True - - CATEGORY = "image/animation" - - def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): - method = self.methods.get(method) - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) - results: list[FileLocator] = [] - pil_images = [] - for image in images: - i = 255. * image.cpu().numpy() - img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) - pil_images.append(img) - - metadata = pil_images[0].getexif() - if not args.disable_metadata: - if prompt is not None: - metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) - if extra_pnginfo is not None: - inital_exif = 0x010f - for x in extra_pnginfo: - metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) - inital_exif -= 1 - - if num_frames == 0: - num_frames = len(pil_images) - - c = len(pil_images) - for i in range(0, c, num_frames): - file = f"{filename}_{counter:05}_.webp" - pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - counter += 1 - - animated = num_frames != 1 - return { "ui": { "images": results, "animated": (animated,) } } - -class SaveAnimatedPNG: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAnimatedWEBP(IO.ComfyNode): + COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6} @classmethod - def INPUT_TYPES(s): - return {"required": - {"images": ("IMAGE", ), - "filename_prefix": ("STRING", {"default": "ComfyUI"}), - "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), - "compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def define_schema(cls): + return IO.Schema( + node_id="SaveAnimatedWEBP", + category="image/animation", + inputs=[ + IO.Image.Input("images"), + IO.String.Input("filename_prefix", default="ComfyUI"), + IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01), + IO.Boolean.Input("lossless", default=True), + IO.Int.Input("quality", default=80, min=0, max=100), + IO.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())), + # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) - RETURN_TYPES = () - FUNCTION = "save_images" + @classmethod + def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.ImageSaveHelper.get_save_animated_webp_ui( + images=images, + filename_prefix=filename_prefix, + cls=cls, + fps=fps, + lossless=lossless, + quality=quality, + method=cls.COMPRESS_METHODS.get(method) + ) + ) - OUTPUT_NODE = True - - CATEGORY = "image/animation" - - def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) - results = list() - pil_images = [] - for image in images: - i = 255. * image.cpu().numpy() - img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) - pil_images.append(img) - - metadata = None - if not args.disable_metadata: - metadata = PngInfo() - if prompt is not None: - metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) - - file = f"{filename}_{counter:05}_.png" - pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - - return { "ui": { "images": results, "animated": (True,)} } - -class SVG: - """ - Stores SVG representations via a list of BytesIO objects. - """ - def __init__(self, data: list[BytesIO]): - self.data = data - - def combine(self, other: 'SVG') -> 'SVG': - return SVG(self.data + other.data) - - @staticmethod - def combine_all(svgs: list['SVG']) -> 'SVG': - all_svgs_list: list[BytesIO] = [] - for svg_item in svgs: - all_svgs_list.extend(svg_item.data) - return SVG(all_svgs_list) + save_images = execute # TODO: remove -class ImageStitch: +class SaveAnimatedPNG(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAnimatedPNG", + category="image/animation", + inputs=[ + IO.Image.Input("images"), + IO.String.Input("filename_prefix", default="ComfyUI"), + IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01), + IO.Int.Input("compress_level", default=4, min=0, max=9), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) + + @classmethod + def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.ImageSaveHelper.get_save_animated_png_ui( + images=images, + filename_prefix=filename_prefix, + cls=cls, + fps=fps, + compress_level=compress_level, + ) + ) + + save_images = execute # TODO: remove + + +class ImageStitch(IO.ComfyNode): """Upstreamed from https://github.com/kijai/ComfyUI-KJNodes""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image1": ("IMAGE",), - "direction": (["right", "down", "left", "up"], {"default": "right"}), - "match_image_size": ("BOOLEAN", {"default": True}), - "spacing_width": ( - "INT", - {"default": 0, "min": 0, "max": 1024, "step": 2}, - ), - "spacing_color": ( - ["white", "black", "red", "green", "blue"], - {"default": "white"}, - ), - }, - "optional": { - "image2": ("IMAGE",), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="ImageStitch", + display_name="Image Stitch", + description="Stitches image2 to image1 in the specified direction.\n" + "If image2 is not provided, returns image1 unchanged.\n" + "Optional spacing can be added between images.", + category="image/transform", + inputs=[ + IO.Image.Input("image1"), + IO.Combo.Input("direction", options=["right", "down", "left", "up"], default="right"), + IO.Boolean.Input("match_image_size", default=True), + IO.Int.Input("spacing_width", default=0, min=0, max=1024, step=2), + IO.Combo.Input("spacing_color", options=["white", "black", "red", "green", "blue"], default="white"), + IO.Image.Input("image2", optional=True), + ], + outputs=[IO.Image.Output()], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "stitch" - CATEGORY = "image/transform" - DESCRIPTION = """ -Stitches image2 to image1 in the specified direction. -If image2 is not provided, returns image1 unchanged. -Optional spacing can be added between images. -""" - - def stitch( - self, + @classmethod + def execute( + cls, image1, direction, match_image_size, spacing_width, spacing_color, image2=None, - ): + ) -> IO.NodeOutput: if image2 is None: - return (image1,) + return IO.NodeOutput(image1) # Handle batch size differences if image1.shape[0] != image2.shape[0]: @@ -412,36 +363,30 @@ Optional spacing can be added between images. images.insert(1, spacing) concat_dim = 2 if direction in ["left", "right"] else 1 - return (torch.cat(images, dim=concat_dim),) + return IO.NodeOutput(torch.cat(images, dim=concat_dim)) + + stitch = execute # TODO: remove + + +class ResizeAndPadImage(IO.ComfyNode): -class ResizeAndPadImage: @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "image": ("IMAGE",), - "target_width": ("INT", { - "default": 512, - "min": 1, - "max": MAX_RESOLUTION, - "step": 1 - }), - "target_height": ("INT", { - "default": 512, - "min": 1, - "max": MAX_RESOLUTION, - "step": 1 - }), - "padding_color": (["white", "black"],), - "interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ResizeAndPadImage", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("target_width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("target_height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Combo.Input("padding_color", options=["white", "black"]), + IO.Combo.Input("interpolation", options=["area", "bicubic", "nearest-exact", "bilinear", "lanczos"]), + ], + outputs=[IO.Image.Output()], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "resize_and_pad" - CATEGORY = "image/transform" - - def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation): + @classmethod + def execute(cls, image, target_width, target_height, padding_color, interpolation) -> IO.NodeOutput: batch_size, orig_height, orig_width, channels = image.shape scale_w = target_width / orig_width @@ -469,52 +414,47 @@ class ResizeAndPadImage: padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized output = padded.permute(0, 2, 3, 1) - return (output,) + return IO.NodeOutput(output) -class SaveSVGNode: - """ - Save SVG files on disk. - """ + resize_and_pad = execute # TODO: remove - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" - RETURN_TYPES = () - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "save_svg" - CATEGORY = "image/save" # Changed - OUTPUT_NODE = True +class SaveSVGNode(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "svg": ("SVG",), # Changed - "filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}) - }, - "hidden": { - "prompt": "PROMPT", - "extra_pnginfo": "EXTRA_PNGINFO" - } - } + def define_schema(cls): + return IO.Schema( + node_id="SaveSVGNode", + description="Save SVG files on disk.", + category="image/save", + inputs=[ + IO.SVG.Input("svg"), + IO.String.Input( + "filename_prefix", + default="svg/ComfyUI", + tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.", + ), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) - def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None): - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) - results = list() + @classmethod + def execute(cls, svg: IO.SVG.Type, filename_prefix="svg/ComfyUI") -> IO.NodeOutput: + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory()) + results: list[UI.SavedResult] = [] # Prepare metadata JSON metadata_dict = {} - if prompt is not None: - metadata_dict["prompt"] = prompt - if extra_pnginfo is not None: - metadata_dict.update(extra_pnginfo) + if cls.hidden.prompt is not None: + metadata_dict["prompt"] = cls.hidden.prompt + if cls.hidden.extra_pnginfo is not None: + metadata_dict.update(cls.hidden.extra_pnginfo) # Convert metadata to JSON string metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None + for batch_number, svg_bytes in enumerate(svg.data): filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) file = f"{filename_with_batch_num}_{counter:05}_.svg" @@ -544,57 +484,64 @@ class SaveSVGNode: with open(os.path.join(full_output_folder, file), 'wb') as svg_file: svg_file.write(svg_content.encode('utf-8')) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) + results.append(UI.SavedResult(filename=file, subfolder=subfolder, type=IO.FolderType.output)) counter += 1 - return { "ui": { "images": results } } + return IO.NodeOutput(ui={"images": results}) -class GetImageSize: + save_svg = execute # TODO: remove + + +class GetImageSize(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE,), - }, - "hidden": { - "unique_id": "UNIQUE_ID", - } - } + def define_schema(cls): + return IO.Schema( + node_id="GetImageSize", + display_name="Get Image Size", + description="Returns width and height of the image, and passes it through unchanged.", + category="image", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.Int.Output(display_name="width"), + IO.Int.Output(display_name="height"), + IO.Int.Output(display_name="batch_size"), + ], + hidden=[IO.Hidden.unique_id], + ) - RETURN_TYPES = (IO.INT, IO.INT, IO.INT) - RETURN_NAMES = ("width", "height", "batch_size") - FUNCTION = "get_size" - - CATEGORY = "image" - DESCRIPTION = """Returns width and height of the image, and passes it through unchanged.""" - - def get_size(self, image, unique_id=None) -> tuple[int, int]: + @classmethod + def execute(cls, image) -> IO.NodeOutput: height = image.shape[1] width = image.shape[2] batch_size = image.shape[0] # Send progress text to display size on the node - if unique_id: - PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id) + if cls.hidden.unique_id: + PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", cls.hidden.unique_id) - return width, height, batch_size + return IO.NodeOutput(width, height, batch_size) + + get_size = execute # TODO: remove + + +class ImageRotate(IO.ComfyNode): -class ImageRotate: @classmethod - def INPUT_TYPES(s): - return {"required": { "image": (IO.IMAGE,), - "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), - }} - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "rotate" + def define_schema(cls): + return IO.Schema( + node_id="ImageRotate", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("rotation", options=["none", "90 degrees", "180 degrees", "270 degrees"]), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def rotate(self, image, rotation): + @classmethod + def execute(cls, image, rotation) -> IO.NodeOutput: rotate_by = 0 if rotation.startswith("90"): rotate_by = 1 @@ -604,41 +551,57 @@ class ImageRotate: rotate_by = 3 image = torch.rot90(image, k=rotate_by, dims=[2, 1]) - return (image,) + return IO.NodeOutput(image) + + rotate = execute # TODO: remove + + +class ImageFlip(IO.ComfyNode): -class ImageFlip: @classmethod - def INPUT_TYPES(s): - return {"required": { "image": (IO.IMAGE,), - "flip_method": (["x-axis: vertically", "y-axis: horizontally"],), - }} - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "flip" + def define_schema(cls): + return IO.Schema( + node_id="ImageFlip", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("flip_method", options=["x-axis: vertically", "y-axis: horizontally"]), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def flip(self, image, flip_method): + @classmethod + def execute(cls, image, flip_method) -> IO.NodeOutput: if flip_method.startswith("x"): image = torch.flip(image, dims=[1]) elif flip_method.startswith("y"): image = torch.flip(image, dims=[2]) - return (image,) + return IO.NodeOutput(image) -class ImageScaleToMaxDimension: - upscale_methods = ["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"] + flip = execute # TODO: remove + + +class ImageScaleToMaxDimension(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"image": ("IMAGE",), - "upscale_method": (s.upscale_methods,), - "largest_size": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1})}} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "upscale" + def define_schema(cls): + return IO.Schema( + node_id="ImageScaleToMaxDimension", + category="image/upscaling", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input( + "upscale_method", + options=["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"], + ), + IO.Int.Input("largest_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/upscaling" - - def upscale(self, image, upscale_method, largest_size): + @classmethod + def execute(cls, image, upscale_method, largest_size) -> IO.NodeOutput: height = image.shape[1] width = image.shape[2] @@ -655,20 +618,30 @@ class ImageScaleToMaxDimension: samples = image.movedim(-1, 1) s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") s = s.movedim(1, -1) - return (s,) + return IO.NodeOutput(s) -NODE_CLASS_MAPPINGS = { - "ImageCrop": ImageCrop, - "RepeatImageBatch": RepeatImageBatch, - "ImageFromBatch": ImageFromBatch, - "ImageAddNoise": ImageAddNoise, - "SaveAnimatedWEBP": SaveAnimatedWEBP, - "SaveAnimatedPNG": SaveAnimatedPNG, - "SaveSVGNode": SaveSVGNode, - "ImageStitch": ImageStitch, - "ResizeAndPadImage": ResizeAndPadImage, - "GetImageSize": GetImageSize, - "ImageRotate": ImageRotate, - "ImageFlip": ImageFlip, - "ImageScaleToMaxDimension": ImageScaleToMaxDimension, -} + upscale = execute # TODO: remove + + +class ImagesExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + ImageCrop, + RepeatImageBatch, + ImageFromBatch, + ImageAddNoise, + SaveAnimatedWEBP, + SaveAnimatedPNG, + SaveSVGNode, + ImageStitch, + ResizeAndPadImage, + GetImageSize, + ImageRotate, + ImageFlip, + ImageScaleToMaxDimension, + ] + + +async def comfy_entrypoint() -> ImagesExtension: + return ImagesExtension() diff --git a/comfy_extras/nodes_kandinsky5.py b/comfy_extras/nodes_kandinsky5.py new file mode 100644 index 000000000..9cb234be1 --- /dev/null +++ b/comfy_extras/nodes_kandinsky5.py @@ -0,0 +1,136 @@ +import nodes +import node_helpers +import torch +import comfy.model_management +import comfy.utils + +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io + + +class Kandinsky5ImageToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="Kandinsky5ImageToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Int.Input("width", default=768, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=512, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent", tooltip="Empty video latent"), + io.Latent.Output(display_name="cond_latent", tooltip="Clean encoded start images, used to replace the noisy start of the model output latents"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + cond_latent_out = {} + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + encoded = vae.encode(start_image[:, :, :, :3]) + cond_latent_out["samples"] = encoded + + mask = torch.ones((1, 1, latent.shape[2], latent.shape[-2], latent.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + positive = node_helpers.conditioning_set_values(positive, {"time_dim_replace": encoded, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"time_dim_replace": encoded, "concat_mask": mask}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent, cond_latent_out) + + +def adaptive_mean_std_normalization(source, reference, clump_mean_low=0.3, clump_mean_high=0.35, clump_std_low=0.35, clump_std_high=0.5): + source_mean = source.mean(dim=(1, 3, 4), keepdim=True) # mean over C, H, W + source_std = source.std(dim=(1, 3, 4), keepdim=True) # std over C, H, W + + reference_mean = torch.clamp(reference.mean(), source_mean - clump_mean_low, source_mean + clump_mean_high) + reference_std = torch.clamp(reference.std(), source_std - clump_std_low, source_std + clump_std_high) + + # normalization + normalized = (source - source_mean) / (source_std + 1e-8) + normalized = normalized * reference_std + reference_mean + + return normalized + + +class NormalizeVideoLatentStart(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="NormalizeVideoLatentStart", + category="conditioning/video_models", + description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.", + inputs=[ + io.Latent.Input("latent"), + io.Int.Input("start_frame_count", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames to normalize, counted from the start"), + io.Int.Input("reference_frame_count", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames after the start frames to use as reference"), + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, latent, start_frame_count, reference_frame_count) -> io.NodeOutput: + if latent["samples"].shape[2] <= 1: + return io.NodeOutput(latent) + s = latent.copy() + samples = latent["samples"].clone() + + first_frames = samples[:, :, :start_frame_count] + reference_frames_data = samples[:, :, start_frame_count:start_frame_count+min(reference_frame_count, samples.shape[2]-1)] + normalized_first_frames = adaptive_mean_std_normalization(first_frames, reference_frames_data) + + samples[:, :, :start_frame_count] = normalized_first_frames + s["samples"] = samples + return io.NodeOutput(s) + + +class CLIPTextEncodeKandinsky5(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeKandinsky5", + category="advanced/conditioning/kandinsky5", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("qwen25_7b", multiline=True, dynamic_prompts=True), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) + + @classmethod + def execute(cls, clip, clip_l, qwen25_7b) -> io.NodeOutput: + tokens = clip.tokenize(clip_l) + tokens["qwen25_7b"] = clip.tokenize(qwen25_7b)["qwen25_7b"] + + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) + + +class Kandinsky5Extension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + Kandinsky5ImageToVideo, + NormalizeVideoLatentStart, + CLIPTextEncodeKandinsky5, + ] + +async def comfy_entrypoint() -> Kandinsky5Extension: + return Kandinsky5Extension() diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 0f90cf60c..9ba1c4ba8 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -2,7 +2,10 @@ import comfy.utils import comfy_extras.nodes_post_processing import torch import nodes - +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +import logging +import math def reshape_latent_to(target_shape, latent, repeat_batch=True): if latent.shape[1:] != target_shape[1:]: @@ -13,17 +16,23 @@ def reshape_latent_to(target_shape, latent, repeat_batch=True): return latent -class LatentAdd: +class LatentAdd(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} + def define_schema(cls): + return io.Schema( + node_id="LatentAdd", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples1"), + io.Latent.Input("samples2"), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples1, samples2): + @classmethod + def execute(cls, samples1, samples2) -> io.NodeOutput: samples_out = samples1.copy() s1 = samples1["samples"] @@ -31,19 +40,25 @@ class LatentAdd: s2 = reshape_latent_to(s1.shape, s2) samples_out["samples"] = s1 + s2 - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentSubtract: +class LatentSubtract(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} + def define_schema(cls): + return io.Schema( + node_id="LatentSubtract", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples1"), + io.Latent.Input("samples2"), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples1, samples2): + @classmethod + def execute(cls, samples1, samples2) -> io.NodeOutput: samples_out = samples1.copy() s1 = samples1["samples"] @@ -51,41 +66,49 @@ class LatentSubtract: s2 = reshape_latent_to(s1.shape, s2) samples_out["samples"] = s1 - s2 - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentMultiply: +class LatentMultiply(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples": ("LATENT",), - "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), - }} + def define_schema(cls): + return io.Schema( + node_id="LatentMultiply", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples"), + io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples, multiplier): + @classmethod + def execute(cls, samples, multiplier) -> io.NodeOutput: samples_out = samples.copy() s1 = samples["samples"] samples_out["samples"] = s1 * multiplier - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentInterpolate: +class LatentInterpolate(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples1": ("LATENT",), - "samples2": ("LATENT",), - "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - }} + def define_schema(cls): + return io.Schema( + node_id="LatentInterpolate", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples1"), + io.Latent.Input("samples2"), + io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples1, samples2, ratio): + @classmethod + def execute(cls, samples1, samples2, ratio) -> io.NodeOutput: samples_out = samples1.copy() s1 = samples1["samples"] @@ -104,19 +127,26 @@ class LatentInterpolate: st = torch.nan_to_num(t / mt) samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio)) - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentConcat: +class LatentConcat(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",), "dim": (["x", "-x", "y", "-y", "t", "-t"], )}} + def define_schema(cls): + return io.Schema( + node_id="LatentConcat", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples1"), + io.Latent.Input("samples2"), + io.Combo.Input("dim", options=["x", "-x", "y", "-y", "t", "-t"]), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples1, samples2, dim): + @classmethod + def execute(cls, samples1, samples2, dim) -> io.NodeOutput: samples_out = samples1.copy() s1 = samples1["samples"] @@ -136,22 +166,27 @@ class LatentConcat: dim = -3 samples_out["samples"] = torch.cat(c, dim=dim) - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentCut: +class LatentCut(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"samples": ("LATENT",), - "dim": (["x", "y", "t"], ), - "index": ("INT", {"default": 0, "min": -nodes.MAX_RESOLUTION, "max": nodes.MAX_RESOLUTION, "step": 1}), - "amount": ("INT", {"default": 1, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 1})}} + def define_schema(cls): + return io.Schema( + node_id="LatentCut", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples"), + io.Combo.Input("dim", options=["x", "y", "t"]), + io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1), + io.Int.Input("amount", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples, dim, index, amount): + @classmethod + def execute(cls, samples, dim, index, amount) -> io.NodeOutput: samples_out = samples.copy() s1 = samples["samples"] @@ -171,19 +206,67 @@ class LatentCut: amount = min(-index, amount) samples_out["samples"] = torch.narrow(s1, dim, index, amount) - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentBatch: +class LatentCutToBatch(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} + def define_schema(cls): + return io.Schema( + node_id="LatentCutToBatch", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples"), + io.Combo.Input("dim", options=["t", "x", "y"]), + io.Int.Input("slice_size", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "batch" + @classmethod + def execute(cls, samples, dim, slice_size) -> io.NodeOutput: + samples_out = samples.copy() - CATEGORY = "latent/batch" + s1 = samples["samples"] - def batch(self, samples1, samples2): + if "x" in dim: + dim = s1.ndim - 1 + elif "y" in dim: + dim = s1.ndim - 2 + elif "t" in dim: + dim = s1.ndim - 3 + + if dim < 2: + return io.NodeOutput(samples) + + s = s1.movedim(dim, 1) + if s.shape[1] < slice_size: + slice_size = s.shape[1] + elif s.shape[1] % slice_size != 0: + s = s[:, :math.floor(s.shape[1] / slice_size) * slice_size] + new_shape = [-1, slice_size] + list(s.shape[2:]) + samples_out["samples"] = s.reshape(new_shape).movedim(1, dim) + return io.NodeOutput(samples_out) + +class LatentBatch(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LatentBatch", + category="latent/batch", + is_deprecated=True, + inputs=[ + io.Latent.Input("samples1"), + io.Latent.Input("samples2"), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, samples1, samples2) -> io.NodeOutput: samples_out = samples1.copy() s1 = samples1["samples"] s2 = samples2["samples"] @@ -192,20 +275,25 @@ class LatentBatch: s = torch.cat((s1, s2), dim=0) samples_out["samples"] = s samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])]) - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentBatchSeedBehavior: +class LatentBatchSeedBehavior(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples": ("LATENT",), - "seed_behavior": (["random", "fixed"],{"default": "fixed"}),}} + def define_schema(cls): + return io.Schema( + node_id="LatentBatchSeedBehavior", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples"), + io.Combo.Input("seed_behavior", options=["random", "fixed"], default="fixed"), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced" - - def op(self, samples, seed_behavior): + @classmethod + def execute(cls, samples, seed_behavior) -> io.NodeOutput: samples_out = samples.copy() latent = samples["samples"] if seed_behavior == "random": @@ -215,41 +303,50 @@ class LatentBatchSeedBehavior: batch_number = samples_out.get("batch_index", [0])[0] samples_out["batch_index"] = [batch_number] * latent.shape[0] - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentApplyOperation: +class LatentApplyOperation(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples": ("LATENT",), - "operation": ("LATENT_OPERATION",), - }} + def define_schema(cls): + return io.Schema( + node_id="LatentApplyOperation", + category="latent/advanced/operations", + is_experimental=True, + inputs=[ + io.Latent.Input("samples"), + io.LatentOperation.Input("operation"), + ], + outputs=[ + io.Latent.Output(), + ], + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "op" - - CATEGORY = "latent/advanced/operations" - EXPERIMENTAL = True - - def op(self, samples, operation): + @classmethod + def execute(cls, samples, operation) -> io.NodeOutput: samples_out = samples.copy() s1 = samples["samples"] samples_out["samples"] = operation(latent=s1) - return (samples_out,) + return io.NodeOutput(samples_out) -class LatentApplyOperationCFG: +class LatentApplyOperationCFG(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "operation": ("LATENT_OPERATION",), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return io.Schema( + node_id="LatentApplyOperationCFG", + category="latent/advanced/operations", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.LatentOperation.Input("operation"), + ], + outputs=[ + io.Model.Output(), + ], + ) - CATEGORY = "latent/advanced/operations" - EXPERIMENTAL = True - - def patch(self, model, operation): + @classmethod + def execute(cls, model, operation) -> io.NodeOutput: m = model.clone() def pre_cfg_function(args): @@ -261,21 +358,25 @@ class LatentApplyOperationCFG: return conds_out m.set_model_sampler_pre_cfg_function(pre_cfg_function) - return (m, ) + return io.NodeOutput(m) -class LatentOperationTonemapReinhard: +class LatentOperationTonemapReinhard(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), - }} + def define_schema(cls): + return io.Schema( + node_id="LatentOperationTonemapReinhard", + category="latent/advanced/operations", + is_experimental=True, + inputs=[ + io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01), + ], + outputs=[ + io.LatentOperation.Output(), + ], + ) - RETURN_TYPES = ("LATENT_OPERATION",) - FUNCTION = "op" - - CATEGORY = "latent/advanced/operations" - EXPERIMENTAL = True - - def op(self, multiplier): + @classmethod + def execute(cls, multiplier) -> io.NodeOutput: def tonemap_reinhard(latent, **kwargs): latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None] normalized_latent = latent / latent_vector_magnitude @@ -291,39 +392,27 @@ class LatentOperationTonemapReinhard: new_magnitude *= top return normalized_latent * new_magnitude - return (tonemap_reinhard,) + return io.NodeOutput(tonemap_reinhard) -class LatentOperationSharpen: +class LatentOperationSharpen(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "sharpen_radius": ("INT", { - "default": 9, - "min": 1, - "max": 31, - "step": 1 - }), - "sigma": ("FLOAT", { - "default": 1.0, - "min": 0.1, - "max": 10.0, - "step": 0.1 - }), - "alpha": ("FLOAT", { - "default": 0.1, - "min": 0.0, - "max": 5.0, - "step": 0.01 - }), - }} + def define_schema(cls): + return io.Schema( + node_id="LatentOperationSharpen", + category="latent/advanced/operations", + is_experimental=True, + inputs=[ + io.Int.Input("sharpen_radius", default=9, min=1, max=31, step=1), + io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1), + io.Float.Input("alpha", default=0.1, min=0.0, max=5.0, step=0.01), + ], + outputs=[ + io.LatentOperation.Output(), + ], + ) - RETURN_TYPES = ("LATENT_OPERATION",) - FUNCTION = "op" - - CATEGORY = "latent/advanced/operations" - EXPERIMENTAL = True - - def op(self, sharpen_radius, sigma, alpha): + @classmethod + def execute(cls, sharpen_radius, sigma, alpha) -> io.NodeOutput: def sharpen(latent, **kwargs): luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None] normalized_latent = latent / luminance @@ -340,19 +429,65 @@ class LatentOperationSharpen: sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] return luminance * sharpened - return (sharpen,) + return io.NodeOutput(sharpen) -NODE_CLASS_MAPPINGS = { - "LatentAdd": LatentAdd, - "LatentSubtract": LatentSubtract, - "LatentMultiply": LatentMultiply, - "LatentInterpolate": LatentInterpolate, - "LatentConcat": LatentConcat, - "LatentCut": LatentCut, - "LatentBatch": LatentBatch, - "LatentBatchSeedBehavior": LatentBatchSeedBehavior, - "LatentApplyOperation": LatentApplyOperation, - "LatentApplyOperationCFG": LatentApplyOperationCFG, - "LatentOperationTonemapReinhard": LatentOperationTonemapReinhard, - "LatentOperationSharpen": LatentOperationSharpen, -} +class ReplaceVideoLatentFrames(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ReplaceVideoLatentFrames", + category="latent/batch", + inputs=[ + io.Latent.Input("destination", tooltip="The destination latent where frames will be replaced."), + io.Latent.Input("source", optional=True, tooltip="The source latent providing frames to insert into the destination latent. If not provided, the destination latent is returned unchanged."), + io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1, tooltip="The starting latent frame index in the destination latent where the source latent frames will be placed. Negative values count from the end."), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, destination, index, source=None) -> io.NodeOutput: + if source is None: + return io.NodeOutput(destination) + dest_frames = destination["samples"].shape[2] + source_frames = source["samples"].shape[2] + if index < 0: + index = dest_frames + index + if index > dest_frames: + logging.warning(f"ReplaceVideoLatentFrames: Index {index} is out of bounds for destination latent frames {dest_frames}.") + return io.NodeOutput(destination) + if index + source_frames > dest_frames: + logging.warning(f"ReplaceVideoLatentFrames: Source latent frames {source_frames} do not fit within destination latent frames {dest_frames} at the specified index {index}.") + return io.NodeOutput(destination) + s = source.copy() + s_source = source["samples"] + s_destination = destination["samples"].clone() + s_destination[:, :, index:index + s_source.shape[2]] = s_source + s["samples"] = s_destination + return io.NodeOutput(s) + +class LatentExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + LatentAdd, + LatentSubtract, + LatentMultiply, + LatentInterpolate, + LatentConcat, + LatentCut, + LatentCutToBatch, + LatentBatch, + LatentBatchSeedBehavior, + LatentApplyOperation, + LatentApplyOperationCFG, + LatentOperationTonemapReinhard, + LatentOperationSharpen, + ReplaceVideoLatentFrames + ] + + +async def comfy_entrypoint() -> LatentExtension: + return LatentExtension() diff --git a/comfy_extras/nodes_load_3d.py b/comfy_extras/nodes_load_3d.py index 899608149..545588ef8 100644 --- a/comfy_extras/nodes_load_3d.py +++ b/comfy_extras/nodes_load_3d.py @@ -2,8 +2,8 @@ import nodes import folder_paths import os -from comfy.comfy_types import IO -from comfy_api.input_impl import VideoFromFile +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, InputImpl, UI from pathlib import Path @@ -11,9 +11,9 @@ from pathlib import Path def normalize_path(path): return path.replace('\\', '/') -class Load3D(): +class Load3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): + def define_schema(cls): input_dir = os.path.join(folder_paths.get_input_directory(), "3d") os.makedirs(input_dir, exist_ok=True) @@ -26,157 +26,84 @@ class Load3D(): for file_path in input_path.rglob("*") if file_path.suffix.lower() in {'.gltf', '.glb', '.obj', '.fbx', '.stl'} ] + return IO.Schema( + node_id="Load3D", + display_name="Load 3D & Animation", + category="3d", + is_experimental=True, + inputs=[ + IO.Combo.Input("model_file", options=sorted(files), upload=IO.UploadType.model), + IO.Load3D.Input("image"), + IO.Int.Input("width", default=1024, min=1, max=4096, step=1), + IO.Int.Input("height", default=1024, min=1, max=4096, step=1), + ], + outputs=[ + IO.Image.Output(display_name="image"), + IO.Mask.Output(display_name="mask"), + IO.String.Output(display_name="mesh_path"), + IO.Image.Output(display_name="normal"), + IO.Load3DCamera.Output(display_name="camera_info"), + IO.Video.Output(display_name="recording_video"), + ], + ) - return {"required": { - "model_file": (sorted(files), {"file_upload": True}), - "image": ("LOAD_3D", {}), - "width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - }} - - RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO) - RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart", "camera_info", "recording_video") - - FUNCTION = "process" - EXPERIMENTAL = True - - CATEGORY = "3d" - - def process(self, model_file, image, **kwargs): + @classmethod + def execute(cls, model_file, image, **kwargs) -> IO.NodeOutput: image_path = folder_paths.get_annotated_filepath(image['image']) mask_path = folder_paths.get_annotated_filepath(image['mask']) normal_path = folder_paths.get_annotated_filepath(image['normal']) - lineart_path = folder_paths.get_annotated_filepath(image['lineart']) load_image_node = nodes.LoadImage() output_image, ignore_mask = load_image_node.load_image(image=image_path) ignore_image, output_mask = load_image_node.load_image(image=mask_path) normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path) - lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path) video = None if image['recording'] != "": recording_video_path = folder_paths.get_annotated_filepath(image['recording']) - video = VideoFromFile(recording_video_path) + video = InputImpl.VideoFromFile(recording_video_path) - return output_image, output_mask, model_file, normal_image, lineart_image, image['camera_info'], video + return IO.NodeOutput(output_image, output_mask, model_file, normal_image, image['camera_info'], video) -class Load3DAnimation(): + process = execute # TODO: remove + + +class Preview3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - input_dir = os.path.join(folder_paths.get_input_directory(), "3d") + def define_schema(cls): + return IO.Schema( + node_id="Preview3D", + display_name="Preview 3D & Animation", + category="3d", + is_experimental=True, + is_output_node=True, + inputs=[ + IO.String.Input("model_file", default="", multiline=False), + IO.Load3DCamera.Input("camera_info", optional=True), + IO.Image.Input("bg_image", optional=True), + ], + outputs=[], + ) - os.makedirs(input_dir, exist_ok=True) + @classmethod + def execute(cls, model_file, **kwargs) -> IO.NodeOutput: + camera_info = kwargs.get("camera_info", None) + bg_image = kwargs.get("bg_image", None) + return IO.NodeOutput(ui=UI.PreviewUI3D(model_file, camera_info, bg_image=bg_image)) - input_path = Path(input_dir) - base_path = Path(folder_paths.get_input_directory()) + process = execute # TODO: remove - files = [ - normalize_path(str(file_path.relative_to(base_path))) - for file_path in input_path.rglob("*") - if file_path.suffix.lower() in {'.gltf', '.glb', '.fbx'} + +class Load3DExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + Load3D, + Preview3D, ] - return {"required": { - "model_file": (sorted(files), {"file_upload": True}), - "image": ("LOAD_3D_ANIMATION", {}), - "width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - }} - RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO) - RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info", "recording_video") - - FUNCTION = "process" - EXPERIMENTAL = True - - CATEGORY = "3d" - - def process(self, model_file, image, **kwargs): - image_path = folder_paths.get_annotated_filepath(image['image']) - mask_path = folder_paths.get_annotated_filepath(image['mask']) - normal_path = folder_paths.get_annotated_filepath(image['normal']) - - load_image_node = nodes.LoadImage() - output_image, ignore_mask = load_image_node.load_image(image=image_path) - ignore_image, output_mask = load_image_node.load_image(image=mask_path) - normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path) - - video = None - - if image['recording'] != "": - recording_video_path = folder_paths.get_annotated_filepath(image['recording']) - - video = VideoFromFile(recording_video_path) - - return output_image, output_mask, model_file, normal_image, image['camera_info'], video - -class Preview3D(): - @classmethod - def INPUT_TYPES(s): - return {"required": { - "model_file": ("STRING", {"default": "", "multiline": False}), - }, - "optional": { - "camera_info": ("LOAD3D_CAMERA", {}) - }} - - OUTPUT_NODE = True - RETURN_TYPES = () - - CATEGORY = "3d" - - FUNCTION = "process" - EXPERIMENTAL = True - - def process(self, model_file, **kwargs): - camera_info = kwargs.get("camera_info", None) - - return { - "ui": { - "result": [model_file, camera_info] - } - } - -class Preview3DAnimation(): - @classmethod - def INPUT_TYPES(s): - return {"required": { - "model_file": ("STRING", {"default": "", "multiline": False}), - }, - "optional": { - "camera_info": ("LOAD3D_CAMERA", {}) - }} - - OUTPUT_NODE = True - RETURN_TYPES = () - - CATEGORY = "3d" - - FUNCTION = "process" - EXPERIMENTAL = True - - def process(self, model_file, **kwargs): - camera_info = kwargs.get("camera_info", None) - - return { - "ui": { - "result": [model_file, camera_info] - } - } - -NODE_CLASS_MAPPINGS = { - "Load3D": Load3D, - "Load3DAnimation": Load3DAnimation, - "Preview3D": Preview3D, - "Preview3DAnimation": Preview3DAnimation -} - -NODE_DISPLAY_NAME_MAPPINGS = { - "Load3D": "Load 3D", - "Load3DAnimation": "Load 3D - Animation", - "Preview3D": "Preview 3D", - "Preview3DAnimation": "Preview 3D - Animation" -} +async def comfy_entrypoint() -> Load3DExtension: + return Load3DExtension() diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py new file mode 100644 index 000000000..eb888316a --- /dev/null +++ b/comfy_extras/nodes_logic.py @@ -0,0 +1,268 @@ +from __future__ import annotations +from typing import TypedDict +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_api.latest import _io + +# sentinel for missing inputs +MISSING = object() + + +class SwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySwitchNode", + display_name="Switch", + category="logic", + is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True), + io.MatchType.Input("on_true", template=template, lazy=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=None, on_true=None): + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def execute(cls, switch, on_true, on_false) -> io.NodeOutput: + return io.NodeOutput(on_true if switch else on_false) + + +class SoftSwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySoftSwitchNode", + display_name="Soft Switch", + category="logic", + is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True, optional=True), + io.MatchType.Input("on_true", template=template, lazy=True, optional=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=MISSING, on_true=MISSING): + # We use MISSING instead of None, as None is passed for connected-but-unevaluated inputs. + # This trick allows us to ignore the value of the switch and still be able to run execute(). + + # One of the inputs may be missing, in which case we need to evaluate the other input + if on_false is MISSING: + return ["on_true"] + if on_true is MISSING: + return ["on_false"] + # Normal lazy switch operation + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def validate_inputs(cls, switch, on_false=MISSING, on_true=MISSING): + # This check happens before check_lazy_status(), so we can eliminate the case where + # both inputs are missing. + if on_false is MISSING and on_true is MISSING: + return "At least one of on_false or on_true must be connected to Switch node" + return True + + @classmethod + def execute(cls, switch, on_true=MISSING, on_false=MISSING) -> io.NodeOutput: + if on_true is MISSING: + return io.NodeOutput(on_false) + if on_false is MISSING: + return io.NodeOutput(on_true) + return io.NodeOutput(on_true if switch else on_false) + + +class CustomComboNode(io.ComfyNode): + """ + Frontend node that allows user to write their own options for a combo. + This is here to make sure the node has a backend-representation to avoid some annoyances. + """ + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CustomCombo", + display_name="Custom Combo", + category="utils", + is_experimental=True, + inputs=[io.Combo.Input("choice", options=[])], + outputs=[io.String.Output()] + ) + + @classmethod + def validate_inputs(cls, choice: io.Combo.Type) -> bool: + # NOTE: DO NOT DO THIS unless you want to skip validation entirely on the node's inputs. + # I am doing that here because the widgets (besides the combo dropdown) on this node are fully frontend defined. + # I need to skip checking that the chosen combo option is in the options list, since those are defined by the user. + return True + + @classmethod + def execute(cls, choice: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(choice) + + +class DCTestNode(io.ComfyNode): + class DCValues(TypedDict): + combo: str + string: str + integer: int + image: io.Image.Type + subcombo: dict[str] + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="DCTestNode", + display_name="DCTest", + category="logic", + is_output_node=True, + inputs=[io.DynamicCombo.Input("combo", options=[ + io.DynamicCombo.Option("option1", [io.String.Input("string")]), + io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), + io.DynamicCombo.Option("option3", [io.Image.Input("image")]), + io.DynamicCombo.Option("option4", [ + io.DynamicCombo.Input("subcombo", options=[ + io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), + io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), + ]) + ])] + )], + outputs=[io.AnyType.Output()], + ) + + @classmethod + def execute(cls, combo: DCValues) -> io.NodeOutput: + combo_val = combo["combo"] + if combo_val == "option1": + return io.NodeOutput(combo["string"]) + elif combo_val == "option2": + return io.NodeOutput(combo["integer"]) + elif combo_val == "option3": + return io.NodeOutput(combo["image"]) + elif combo_val == "option4": + return io.NodeOutput(f"{combo['subcombo']}") + else: + raise ValueError(f"Invalid combo: {combo_val}") + + +class AutogrowNamesTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = _io.Autogrow.TemplateNames(input=io.Float.Input("float"), names=["a", "b", "c"]) + return io.Schema( + node_id="AutogrowNamesTestNode", + display_name="AutogrowNamesTest", + category="logic", + inputs=[ + _io.Autogrow.Input("autogrow", template=template) + ], + outputs=[io.String.Output()], + ) + + @classmethod + def execute(cls, autogrow: _io.Autogrow.Type) -> io.NodeOutput: + vals = list(autogrow.values()) + combined = ",".join([str(x) for x in vals]) + return io.NodeOutput(combined) + +class AutogrowPrefixTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = _io.Autogrow.TemplatePrefix(input=io.Float.Input("float"), prefix="float", min=1, max=10) + return io.Schema( + node_id="AutogrowPrefixTestNode", + display_name="AutogrowPrefixTest", + category="logic", + inputs=[ + _io.Autogrow.Input("autogrow", template=template) + ], + outputs=[io.String.Output()], + ) + + @classmethod + def execute(cls, autogrow: _io.Autogrow.Type) -> io.NodeOutput: + vals = list(autogrow.values()) + combined = ",".join([str(x) for x in vals]) + return io.NodeOutput(combined) + +class ComboOutputTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ComboOptionTestNode", + display_name="ComboOptionTest", + category="logic", + inputs=[io.Combo.Input("combo", options=["option1", "option2", "option3"]), + io.Combo.Input("combo2", options=["option4", "option5", "option6"])], + outputs=[io.Combo.Output(), io.Combo.Output()], + ) + + @classmethod + def execute(cls, combo: io.Combo.Type, combo2: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(combo, combo2) + +class ConvertStringToComboNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ConvertStringToComboNode", + display_name="Convert String to Combo", + category="logic", + inputs=[io.String.Input("string")], + outputs=[io.Combo.Output()], + ) + + @classmethod + def execute(cls, string: str) -> io.NodeOutput: + return io.NodeOutput(string) + +class InvertBooleanNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="InvertBooleanNode", + display_name="Invert Boolean", + category="logic", + inputs=[io.Boolean.Input("boolean")], + outputs=[io.Boolean.Output()], + ) + + @classmethod + def execute(cls, boolean: bool) -> io.NodeOutput: + return io.NodeOutput(not boolean) + +class LogicExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + SwitchNode, + CustomComboNode, + # SoftSwitchNode, + # ConvertStringToComboNode, + # DCTestNode, + # AutogrowNamesTestNode, + # AutogrowPrefixTestNode, + # ComboOutputTestNode, + # InvertBooleanNode, + ] + +async def comfy_entrypoint() -> LogicExtension: + return LogicExtension() diff --git a/comfy_extras/nodes_lora_extract.py b/comfy_extras/nodes_lora_extract.py index dfd4fe9f4..a2375cba7 100644 --- a/comfy_extras/nodes_lora_extract.py +++ b/comfy_extras/nodes_lora_extract.py @@ -5,6 +5,8 @@ import folder_paths import os import logging from enum import Enum +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io CLAMP_QUANTILE = 0.99 @@ -71,32 +73,40 @@ def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu() return output_sd -class LoraSave: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() +class LoraSave(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoraSave", + display_name="Extract and Save Lora", + category="_for_testing", + inputs=[ + io.String.Input("filename_prefix", default="loras/ComfyUI_extracted_lora"), + io.Int.Input("rank", default=8, min=1, max=4096, step=1), + io.Combo.Input("lora_type", options=tuple(LORA_TYPES.keys())), + io.Boolean.Input("bias_diff", default=True), + io.Model.Input( + "model_diff", + tooltip="The ModelSubtract output to be converted to a lora.", + optional=True, + ), + io.Clip.Input( + "text_encoder_diff", + tooltip="The CLIPSubtract output to be converted to a lora.", + optional=True, + ), + ], + is_experimental=True, + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}), - "rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}), - "lora_type": (tuple(LORA_TYPES.keys()),), - "bias_diff": ("BOOLEAN", {"default": True}), - }, - "optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}), - "text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})}, - } - RETURN_TYPES = () - FUNCTION = "save" - OUTPUT_NODE = True - - CATEGORY = "_for_testing" - - def save(self, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None): + def execute(cls, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None) -> io.NodeOutput: if model_diff is None and text_encoder_diff is None: - return {} + return io.NodeOutput() lora_type = LORA_TYPES.get(lora_type) - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory()) output_sd = {} if model_diff is not None: @@ -108,12 +118,16 @@ class LoraSave: output_checkpoint = os.path.join(full_output_folder, output_checkpoint) comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None) - return {} + return io.NodeOutput() -NODE_CLASS_MAPPINGS = { - "LoraSave": LoraSave -} -NODE_DISPLAY_NAME_MAPPINGS = { - "LoraSave": "Extract and Save Lora" -} +class LoraSaveExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + LoraSave, + ] + + +async def comfy_entrypoint() -> LoraSaveExtension: + return LoraSaveExtension() diff --git a/comfy_extras/nodes_lt.py b/comfy_extras/nodes_lt.py index b51d15804..50da5f4eb 100644 --- a/comfy_extras/nodes_lt.py +++ b/comfy_extras/nodes_lt.py @@ -34,6 +34,7 @@ class EmptyLTXVLatentVideo(io.ComfyNode): latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) return io.NodeOutput({"samples": latent}) + generate = execute # TODO: remove class LTXVImgToVideo(io.ComfyNode): @classmethod @@ -77,6 +78,8 @@ class LTXVImgToVideo(io.ComfyNode): return io.NodeOutput(positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}) + generate = execute # TODO: remove + def conditioning_get_any_value(conditioning, key, default=None): for t in conditioning: @@ -264,6 +267,8 @@ class LTXVAddGuide(io.ComfyNode): return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) + generate = execute # TODO: remove + class LTXVCropGuides(io.ComfyNode): @classmethod @@ -300,6 +305,8 @@ class LTXVCropGuides(io.ComfyNode): return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) + crop = execute # TODO: remove + class LTXVConditioning(io.ComfyNode): @classmethod @@ -498,6 +505,7 @@ class LTXVPreprocess(io.ComfyNode): output_images.append(preprocess(image[i], img_compression)) return io.NodeOutput(torch.stack(output_images)) + preprocess = execute # TODO: remove class LtxvExtension(ComfyExtension): @override diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py index a5e405008..290e6f55e 100644 --- a/comfy_extras/nodes_mask.py +++ b/comfy_extras/nodes_mask.py @@ -3,11 +3,10 @@ import scipy.ndimage import torch import comfy.utils import node_helpers -import folder_paths -import random +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, UI import nodes -from nodes import MAX_RESOLUTION def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False): source = source.to(destination.device) @@ -46,202 +45,213 @@ def composite(destination, source, x, y, mask = None, multiplier = 8, resize_sou destination[..., top:bottom, left:right] = source_portion + destination_portion return destination -class LatentCompositeMasked: +class LatentCompositeMasked(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "destination": ("LATENT",), - "source": ("LATENT",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), - "resize_source": ("BOOLEAN", {"default": False}), - }, - "optional": { - "mask": ("MASK",), - } - } - RETURN_TYPES = ("LATENT",) - FUNCTION = "composite" + def define_schema(cls): + return IO.Schema( + node_id="LatentCompositeMasked", + category="latent", + inputs=[ + IO.Latent.Input("destination"), + IO.Latent.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), + IO.Boolean.Input("resize_source", default=False), + IO.Mask.Input("mask", optional=True), + ], + outputs=[IO.Latent.Output()], + ) - CATEGORY = "latent" - - def composite(self, destination, source, x, y, resize_source, mask = None): + @classmethod + def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: output = destination.copy() destination = destination["samples"].clone() source = source["samples"] output["samples"] = composite(destination, source, x, y, mask, 8, resize_source) - return (output,) + return IO.NodeOutput(output) -class ImageCompositeMasked: + composite = execute # TODO: remove + + +class ImageCompositeMasked(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "destination": ("IMAGE",), - "source": ("IMAGE",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "resize_source": ("BOOLEAN", {"default": False}), - }, - "optional": { - "mask": ("MASK",), - } - } - RETURN_TYPES = ("IMAGE",) - FUNCTION = "composite" + def define_schema(cls): + return IO.Schema( + node_id="ImageCompositeMasked", + category="image", + inputs=[ + IO.Image.Input("destination"), + IO.Image.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Boolean.Input("resize_source", default=False), + IO.Mask.Input("mask", optional=True), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image" - - def composite(self, destination, source, x, y, resize_source, mask = None): + @classmethod + def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: destination, source = node_helpers.image_alpha_fix(destination, source) destination = destination.clone().movedim(-1, 1) output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) - return (output,) + return IO.NodeOutput(output) -class MaskToImage: + composite = execute # TODO: remove + + +class MaskToImage(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "mask": ("MASK",), - } - } + def define_schema(cls): + return IO.Schema( + node_id="MaskToImage", + display_name="Convert Mask to Image", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("IMAGE",) - FUNCTION = "mask_to_image" - - def mask_to_image(self, mask): + @classmethod + def execute(cls, mask) -> IO.NodeOutput: result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) - return (result,) + return IO.NodeOutput(result) -class ImageToMask: + mask_to_image = execute # TODO: remove + + +class ImageToMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "channel": (["red", "green", "blue", "alpha"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ImageToMask", + display_name="Convert Image to Mask", + category="mask", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("channel", options=["red", "green", "blue", "alpha"]), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, image, channel): + @classmethod + def execute(cls, image, channel) -> IO.NodeOutput: channels = ["red", "green", "blue", "alpha"] mask = image[:, :, :, channels.index(channel)] - return (mask,) + return IO.NodeOutput(mask) -class ImageColorToMask: + image_to_mask = execute # TODO: remove + + +class ImageColorToMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ImageColorToMask", + category="mask", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("color", default=0, min=0, max=0xFFFFFF, step=1, display_mode=IO.NumberDisplay.number), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, image, color): + @classmethod + def execute(cls, image, color) -> IO.NodeOutput: temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2] mask = torch.where(temp == color, 1.0, 0).float() - return (mask,) + return IO.NodeOutput(mask) -class SolidMask: + image_to_mask = execute # TODO: remove + + +class SolidMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="SolidMask", + category="mask", + inputs=[ + IO.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "solid" - - def solid(self, value, width, height): + @classmethod + def execute(cls, value, width, height) -> IO.NodeOutput: out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu") - return (out,) + return IO.NodeOutput(out) -class InvertMask: + solid = execute # TODO: remove + + +class InvertMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - } - } + def define_schema(cls): + return IO.Schema( + node_id="InvertMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "invert" - - def invert(self, mask): + @classmethod + def execute(cls, mask) -> IO.NodeOutput: out = 1.0 - mask - return (out,) + return IO.NodeOutput(out) -class CropMask: + invert = execute # TODO: remove + + +class CropMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="CropMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "crop" - - def crop(self, mask, x, y, width, height): + @classmethod + def execute(cls, mask, x, y, width, height) -> IO.NodeOutput: mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = mask[:, y:y + height, x:x + width] - return (out,) + return IO.NodeOutput(out) -class MaskComposite: + crop = execute # TODO: remove + + +class MaskComposite(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "destination": ("MASK",), - "source": ("MASK",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "operation": (["multiply", "add", "subtract", "and", "or", "xor"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="MaskComposite", + category="mask", + inputs=[ + IO.Mask.Input("destination"), + IO.Mask.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "combine" - - def combine(self, destination, source, x, y, operation): + @classmethod + def execute(cls, destination, source, x, y, operation) -> IO.NodeOutput: output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone() source = source.reshape((-1, source.shape[-2], source.shape[-1])) @@ -267,28 +277,29 @@ class MaskComposite: output = torch.clamp(output, 0.0, 1.0) - return (output,) + return IO.NodeOutput(output) -class FeatherMask: + combine = execute # TODO: remove + + +class FeatherMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="FeatherMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "feather" - - def feather(self, mask, left, top, right, bottom): + @classmethod + def execute(cls, mask, left, top, right, bottom) -> IO.NodeOutput: output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() left = min(left, output.shape[-1]) @@ -312,26 +323,28 @@ class FeatherMask: feather_rate = (y + 1) / bottom output[:, -y, :] *= feather_rate - return (output,) + return IO.NodeOutput(output) -class GrowMask: + feather = execute # TODO: remove + + +class GrowMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}), - "tapered_corners": ("BOOLEAN", {"default": True}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="GrowMask", + display_name="Grow Mask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1), + IO.Boolean.Input("tapered_corners", default=True), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "expand_mask" - - def expand_mask(self, mask, expand, tapered_corners): + @classmethod + def execute(cls, mask, expand, tapered_corners) -> IO.NodeOutput: c = 0 if tapered_corners else 1 kernel = np.array([[c, 1, c], [1, 1, 1], @@ -347,69 +360,74 @@ class GrowMask: output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) - return (torch.stack(out, dim=0),) + return IO.NodeOutput(torch.stack(out, dim=0)) -class ThresholdMask: + expand_mask = execute # TODO: remove + + +class ThresholdMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "mask": ("MASK",), - "value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ThresholdMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, mask, value): + @classmethod + def execute(cls, mask, value) -> IO.NodeOutput: mask = (mask > value).float() - return (mask,) + return IO.NodeOutput(mask) + + image_to_mask = execute # TODO: remove + # Mask Preview - original implement from # https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81 # upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes -class MaskPreview(nodes.SaveImage): - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() - self.type = "temp" - self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) - self.compress_level = 4 +class MaskPreview(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MaskPreview", + display_name="Preview Mask", + category="mask", + description="Saves the input images to your ComfyUI output directory.", + inputs=[ + IO.Mask.Input("mask"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": {"mask": ("MASK",), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - - FUNCTION = "execute" - CATEGORY = "mask" - - def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): - preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) - return self.save_images(preview, filename_prefix, prompt, extra_pnginfo) + def execute(cls, mask, filename_prefix="ComfyUI") -> IO.NodeOutput: + return IO.NodeOutput(ui=UI.PreviewMask(mask)) -NODE_CLASS_MAPPINGS = { - "LatentCompositeMasked": LatentCompositeMasked, - "ImageCompositeMasked": ImageCompositeMasked, - "MaskToImage": MaskToImage, - "ImageToMask": ImageToMask, - "ImageColorToMask": ImageColorToMask, - "SolidMask": SolidMask, - "InvertMask": InvertMask, - "CropMask": CropMask, - "MaskComposite": MaskComposite, - "FeatherMask": FeatherMask, - "GrowMask": GrowMask, - "ThresholdMask": ThresholdMask, - "MaskPreview": MaskPreview -} +class MaskExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + LatentCompositeMasked, + ImageCompositeMasked, + MaskToImage, + ImageToMask, + ImageColorToMask, + SolidMask, + InvertMask, + CropMask, + MaskComposite, + FeatherMask, + GrowMask, + ThresholdMask, + MaskPreview, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "ImageToMask": "Convert Image to Mask", - "MaskToImage": "Convert Mask to Image", -} + +async def comfy_entrypoint() -> MaskExtension: + return MaskExtension() diff --git a/comfy_extras/nodes_model_downscale.py b/comfy_extras/nodes_model_downscale.py index 49420dee9..dec2ae841 100644 --- a/comfy_extras/nodes_model_downscale.py +++ b/comfy_extras/nodes_model_downscale.py @@ -1,24 +1,33 @@ +from typing_extensions import override import comfy.utils +from comfy_api.latest import ComfyExtension, io -class PatchModelAddDownscale: - upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] + +class PatchModelAddDownscale(io.ComfyNode): + UPSCALE_METHODS = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}), - "downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}), - "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}), - "downscale_after_skip": ("BOOLEAN", {"default": True}), - "downscale_method": (s.upscale_methods,), - "upscale_method": (s.upscale_methods,), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return io.Schema( + node_id="PatchModelAddDownscale", + display_name="PatchModelAddDownscale (Kohya Deep Shrink)", + category="model_patches/unet", + inputs=[ + io.Model.Input("model"), + io.Int.Input("block_number", default=3, min=1, max=32, step=1), + io.Float.Input("downscale_factor", default=2.0, min=0.1, max=9.0, step=0.001), + io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=0.35, min=0.0, max=1.0, step=0.001), + io.Boolean.Input("downscale_after_skip", default=True), + io.Combo.Input("downscale_method", options=cls.UPSCALE_METHODS), + io.Combo.Input("upscale_method", options=cls.UPSCALE_METHODS), + ], + outputs=[ + io.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method): + @classmethod + def execute(cls, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method) -> io.NodeOutput: model_sampling = model.get_model_object("model_sampling") sigma_start = model_sampling.percent_to_sigma(start_percent) sigma_end = model_sampling.percent_to_sigma(end_percent) @@ -41,13 +50,16 @@ class PatchModelAddDownscale: else: m.set_model_input_block_patch(input_block_patch) m.set_model_output_block_patch(output_block_patch) - return (m, ) + return io.NodeOutput(m) -NODE_CLASS_MAPPINGS = { - "PatchModelAddDownscale": PatchModelAddDownscale, -} -NODE_DISPLAY_NAME_MAPPINGS = { - # Sampling - "PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)", -} +class ModelDownscaleExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + PatchModelAddDownscale, + ] + + +async def comfy_entrypoint() -> ModelDownscaleExtension: + return ModelDownscaleExtension() diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index 783c59b6b..1355b3c93 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -6,6 +6,7 @@ import comfy.ops import comfy.model_management import comfy.ldm.common_dit import comfy.latent_formats +import comfy.ldm.lumina.controlnet class BlockWiseControlBlock(torch.nn.Module): @@ -189,6 +190,35 @@ class SigLIPMultiFeatProjModel(torch.nn.Module): return embedding +def z_image_convert(sd): + replace_keys = {".attention.to_out.0.bias": ".attention.out.bias", + ".attention.norm_k.weight": ".attention.k_norm.weight", + ".attention.norm_q.weight": ".attention.q_norm.weight", + ".attention.to_out.0.weight": ".attention.out.weight" + } + + out_sd = {} + for k in sorted(sd.keys()): + w = sd[k] + + k_out = k + if k_out.endswith(".attention.to_k.weight"): + cc = [w] + continue + if k_out.endswith(".attention.to_q.weight"): + cc = [w] + cc + continue + if k_out.endswith(".attention.to_v.weight"): + cc = cc + [w] + w = torch.cat(cc, dim=0) + k_out = k_out.replace(".attention.to_v.weight", ".attention.qkv.weight") + + for r, rr in replace_keys.items(): + k_out = k_out.replace(r, rr) + out_sd[k_out] = w + + return out_sd + class ModelPatchLoader: @classmethod def INPUT_TYPES(s): @@ -211,6 +241,18 @@ class ModelPatchLoader: elif 'feature_embedder.mid_layer_norm.bias' in sd: sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True) model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) + elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet + sd = z_image_convert(sd) + config = {} + if 'control_layers.14.adaLN_modulation.0.weight' in sd: + config['n_control_layers'] = 15 + config['additional_in_dim'] = 17 + config['refiner_control'] = True + ref_weight = sd.get("control_noise_refiner.0.after_proj.weight", None) + if ref_weight is not None: + if torch.count_nonzero(ref_weight) == 0: + config['broken'] = True + model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config) model.load_state_dict(sd) model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) @@ -263,6 +305,129 @@ class DiffSynthCnetPatch: def models(self): return [self.model_patch] +class ZImageControlPatch: + def __init__(self, model_patch, vae, image, strength, inpaint_image=None, mask=None): + self.model_patch = model_patch + self.vae = vae + self.image = image + self.inpaint_image = inpaint_image + self.mask = mask + self.strength = strength + self.is_inpaint = self.model_patch.model.additional_in_dim > 0 + + skip_encoding = False + if self.image is not None and self.inpaint_image is not None: + if self.image.shape != self.inpaint_image.shape: + skip_encoding = True + + if skip_encoding: + self.encoded_image = None + else: + self.encoded_image = self.encode_latent_cond(self.image, self.inpaint_image) + if self.image is None: + self.encoded_image_size = (self.inpaint_image.shape[1], self.inpaint_image.shape[2]) + else: + self.encoded_image_size = (self.image.shape[1], self.image.shape[2]) + self.temp_data = None + + def encode_latent_cond(self, control_image=None, inpaint_image=None): + latent_image = None + if control_image is not None: + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image)) + + if self.is_inpaint: + if inpaint_image is None: + inpaint_image = torch.ones_like(control_image) * 0.5 + + if self.mask is not None: + mask_inpaint = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image.shape[-2], inpaint_image.shape[-3], "bilinear", "center") + inpaint_image = ((inpaint_image - 0.5) * mask_inpaint.movedim(1, -1).round()) + 0.5 + + inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image)) + + if self.mask is None: + mask_ = torch.zeros_like(inpaint_image_latent)[:, :1] + else: + mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True).to(device=inpaint_image_latent.device), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center") + + if latent_image is None: + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(torch.ones_like(inpaint_image) * 0.5)) + + return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1) + else: + return latent_image + + def __call__(self, kwargs): + x = kwargs.get("x") + img = kwargs.get("img") + img_input = kwargs.get("img_input") + txt = kwargs.get("txt") + pe = kwargs.get("pe") + vec = kwargs.get("vec") + block_index = kwargs.get("block_index") + block_type = kwargs.get("block_type", "") + spacial_compression = self.vae.spacial_compression_encode() + if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): + image_scaled = None + if self.image is not None: + image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1) + self.encoded_image_size = (image_scaled.shape[-3], image_scaled.shape[-2]) + + inpaint_scaled = None + if self.inpaint_image is not None: + inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1) + self.encoded_image_size = (inpaint_scaled.shape[-3], inpaint_scaled.shape[-2]) + + loaded_models = comfy.model_management.loaded_models(only_currently_used=True) + self.encoded_image = self.encode_latent_cond(image_scaled, inpaint_scaled) + comfy.model_management.load_models_gpu(loaded_models) + + cnet_blocks = self.model_patch.model.n_control_layers + div = round(30 / cnet_blocks) + + cnet_index = (block_index // div) + cnet_index_float = (block_index / div) + + kwargs.pop("img") # we do ops in place + kwargs.pop("txt") + + if cnet_index_float > (cnet_blocks - 1): + self.temp_data = None + return kwargs + + if self.temp_data is None or self.temp_data[0] > cnet_index: + if block_type == "noise_refiner": + self.temp_data = (-3, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) + else: + self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) + + if block_type == "noise_refiner": + next_layer = self.temp_data[0] + 1 + self.temp_data = (next_layer, self.model_patch.model.forward_noise_refiner_block(block_index, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) + if self.temp_data[1][0] is not None: + img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) + else: + while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks: + next_layer = self.temp_data[0] + 1 + self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) + + if cnet_index_float == self.temp_data[0]: + img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) + if cnet_blocks == self.temp_data[0] + 1: + self.temp_data = None + + return kwargs + + def to(self, device_or_dtype): + if isinstance(device_or_dtype, torch.device): + if self.encoded_image is not None: + self.encoded_image = self.encoded_image.to(device_or_dtype) + self.temp_data = None + return self + + def models(self): + return [self.model_patch] + class QwenImageDiffsynthControlnet: @classmethod def INPUT_TYPES(s): @@ -279,9 +444,12 @@ class QwenImageDiffsynthControlnet: CATEGORY = "advanced/loaders/qwen" - def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None): + def diffsynth_controlnet(self, model, model_patch, vae, image=None, strength=1.0, inpaint_image=None, mask=None): model_patched = model.clone() - image = image[:, :, :, :3] + if image is not None: + image = image[:, :, :, :3] + if inpaint_image is not None: + inpaint_image = inpaint_image[:, :, :, :3] if mask is not None: if mask.ndim == 3: mask = mask.unsqueeze(1) @@ -289,9 +457,25 @@ class QwenImageDiffsynthControlnet: mask = mask.unsqueeze(2) mask = 1.0 - mask - model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) + if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control): + patch = ZImageControlPatch(model_patch, vae, image, strength, inpaint_image=inpaint_image, mask=mask) + model_patched.set_model_noise_refiner_patch(patch) + model_patched.set_model_double_block_patch(patch) + else: + model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) +class ZImageFunControlnet(QwenImageDiffsynthControlnet): + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "model_patch": ("MODEL_PATCH",), + "vae": ("VAE",), + "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }, + "optional": {"image": ("IMAGE",), "inpaint_image": ("IMAGE",), "mask": ("MASK",)}} + + CATEGORY = "advanced/loaders/zimage" class UsoStyleProjectorPatch: def __init__(self, model_patch, encoded_image): @@ -339,5 +523,6 @@ class USOStyleReference: NODE_CLASS_MAPPINGS = { "ModelPatchLoader": ModelPatchLoader, "QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet, + "ZImageFunControlnet": ZImageFunControlnet, "USOStyleReference": USOStyleReference, } diff --git a/comfy_extras/nodes_nop.py b/comfy_extras/nodes_nop.py new file mode 100644 index 000000000..953061bcb --- /dev/null +++ b/comfy_extras/nodes_nop.py @@ -0,0 +1,39 @@ +from comfy_api.latest import ComfyExtension, io +from typing_extensions import override +# If you write a node that is so useless that it breaks ComfyUI it will be featured in this exclusive list + +# "native" block swap nodes are placebo at best and break the ComfyUI memory management system. +# They are also considered harmful because instead of users reporting issues with the built in +# memory management they install these stupid nodes and complain even harder. Now it completely +# breaks with some of the new ComfyUI memory optimizations so I have made the decision to NOP it +# out of all workflows. +class wanBlockSwap(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="wanBlockSwap", + category="", + description="NOP", + inputs=[ + io.Model.Input("model"), + ], + outputs=[ + io.Model.Output(), + ], + is_deprecated=True, + ) + + @classmethod + def execute(cls, model) -> io.NodeOutput: + return io.NodeOutput(model) + + +class NopExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + wanBlockSwap + ] + +async def comfy_entrypoint() -> NopExtension: + return NopExtension() diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 34c388a5a..01afa13a1 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -4,11 +4,15 @@ import torch import torch.nn.functional as F from PIL import Image import math +from enum import Enum +from typing import TypedDict, Literal import comfy.utils import comfy.model_management +from comfy_extras.nodes_latent import reshape_latent_to import node_helpers from comfy_api.latest import ComfyExtension, io +from nodes import MAX_RESOLUTION class Blend(io.ComfyNode): @classmethod @@ -221,6 +225,7 @@ class ImageScaleToTotalPixels(io.ComfyNode): io.Image.Input("image"), io.Combo.Input("upscale_method", options=cls.upscale_methods), io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + io.Int.Input("resolution_steps", default=1, min=1, max=256), ], outputs=[ io.Image.Output(), @@ -228,18 +233,365 @@ class ImageScaleToTotalPixels(io.ComfyNode): ) @classmethod - def execute(cls, image, upscale_method, megapixels) -> io.NodeOutput: + def execute(cls, image, upscale_method, megapixels, resolution_steps) -> io.NodeOutput: samples = image.movedim(-1,1) - total = int(megapixels * 1024 * 1024) + total = megapixels * 1024 * 1024 scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) - width = round(samples.shape[3] * scale_by) - height = round(samples.shape[2] * scale_by) + width = round(samples.shape[3] * scale_by / resolution_steps) * resolution_steps + height = round(samples.shape[2] * scale_by / resolution_steps) * resolution_steps - s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") + s = comfy.utils.common_upscale(samples, int(width), int(height), upscale_method, "disabled") s = s.movedim(1,-1) return io.NodeOutput(s) +class ResizeType(str, Enum): + SCALE_BY = "scale by multiplier" + SCALE_DIMENSIONS = "scale dimensions" + SCALE_LONGER_DIMENSION = "scale longer dimension" + SCALE_SHORTER_DIMENSION = "scale shorter dimension" + SCALE_WIDTH = "scale width" + SCALE_HEIGHT = "scale height" + SCALE_TOTAL_PIXELS = "scale total pixels" + MATCH_SIZE = "match size" + +def is_image(input: torch.Tensor) -> bool: + # images have 4 dimensions: [batch, height, width, channels] + # masks have 3 dimensions: [batch, height, width] + return len(input.shape) == 4 + +def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(-1, 1) + else: + input = input.unsqueeze(1) + return input + +def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(1, -1) + else: + input = input.squeeze(1) + return input + +def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = round(input.shape[-1] * multiplier) + height = round(input.shape[-2] * multiplier) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor: + if width == 0 and height == 0: + return input + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + + if width == 0: + width = max(1, round(input.shape[-1] * height / input.shape[-2])) + elif height == 0: + height = max(1, round(input.shape[-2] * width / input.shape[-1])) + + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height > width: + width = round((width / height) * longer_size) + height = longer_size + elif width > height: + height = round((height / width) * longer_size) + width = longer_size + else: + height = longer_size + width = longer_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height < width: + width = round((width / height) * shorter_size) + height = shorter_size + elif width > height: + height = round((height / width) * shorter_size) + width = shorter_size + else: + height = shorter_size + width = shorter_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + total = int(megapixels * 1024 * 1024) + + scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2])) + width = round(input.shape[-1] * scale_by) + height = round(input.shape[-2] * scale_by) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + match = init_image_mask_input(match, is_image(match)) + + width = match.shape[-1] + height = match.shape[-2] + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +class ResizeImageMaskNode(io.ComfyNode): + + scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop_methods = ["disabled", "center"] + + class ResizeTypedDict(TypedDict): + resize_type: ResizeType + scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop: Literal["disabled", "center"] + multiplier: float + width: int + height: int + longer_size: int + shorter_size: int + megapixels: float + + @classmethod + def define_schema(cls): + template = io.MatchType.Template("input_type", [io.Image, io.Mask]) + crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") + return io.Schema( + node_id="ResizeImageMaskNode", + display_name="Resize Image/Mask", + category="transform", + inputs=[ + io.MatchType.Input("input", template=template), + io.DynamicCombo.Input("resize_type", options=[ + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + crop_combo, + ]), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask]), + crop_combo, + ]), + ]), + io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), + ], + outputs=[io.MatchType.Output(template=template, display_name="resized")] + ) + + @classmethod + def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput: + selected_type = resize_type["resize_type"] + if selected_type == ResizeType.SCALE_BY: + return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method)) + elif selected_type == ResizeType.SCALE_DIMENSIONS: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"])) + elif selected_type == ResizeType.SCALE_LONGER_DIMENSION: + return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method)) + elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION: + return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method)) + elif selected_type == ResizeType.SCALE_WIDTH: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method)) + elif selected_type == ResizeType.SCALE_HEIGHT: + return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method)) + elif selected_type == ResizeType.SCALE_TOTAL_PIXELS: + return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method)) + elif selected_type == ResizeType.MATCH_SIZE: + return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"])) + raise ValueError(f"Unsupported resize type: {selected_type}") + +def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None: + if len(images) == 0: + return None + # first, get the max channels count + max_channels = max(image.shape[-1] for image in images) + # then, pad all images to have the same channels count + padded_images: list[torch.Tensor] = [] + for image in images: + if image.shape[-1] < max_channels: + padded_images.append(torch.nn.functional.pad(image, (0,1), mode='constant', value=1.0)) + else: + padded_images.append(image) + # resize all images to be the same size as the first image + resized_images: list[torch.Tensor] = [] + first_image_shape = padded_images[0].shape + for image in padded_images: + if image.shape[1:] != first_image_shape[1:]: + resized_images.append(comfy.utils.common_upscale(image.movedim(-1,1), first_image_shape[2], first_image_shape[1], "bilinear", "center").movedim(1,-1)) + else: + resized_images.append(image) + # batch the images in the format [b, h, w, c] + return torch.cat(resized_images, dim=0) + +def batch_masks(masks: list[torch.Tensor]) -> torch.Tensor | None: + if len(masks) == 0: + return None + # resize all masks to be the same size as the first mask + resized_masks: list[torch.Tensor] = [] + first_mask_shape = masks[0].shape + for mask in masks: + if mask.shape[1:] != first_mask_shape[1:]: + mask = init_image_mask_input(mask, is_type_image=False) + mask = comfy.utils.common_upscale(mask, first_mask_shape[2], first_mask_shape[1], "bilinear", "center") + resized_masks.append(finalize_image_mask_input(mask, is_type_image=False)) + else: + resized_masks.append(mask) + # batch the masks in the format [b, h, w] + return torch.cat(resized_masks, dim=0) + +def batch_latents(latents: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor] | None: + if len(latents) == 0: + return None + samples_out = latents[0].copy() + samples_out["batch_index"] = [] + first_samples = latents[0]["samples"] + tensors: list[torch.Tensor] = [] + for latent in latents: + # first, deal with latent tensors + tensors.append(reshape_latent_to(first_samples.shape, latent["samples"], repeat_batch=False)) + # next, deal with batch_index + samples_out["batch_index"].extend(latent.get("batch_index", [x for x in range(0, latent["samples"].shape[0])])) + samples_out["samples"] = torch.cat(tensors, dim=0) + return samples_out + +class BatchImagesNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Image.Input("image"), prefix="image", min=2, max=50) + return io.Schema( + node_id="BatchImagesNode", + display_name="Batch Images", + category="image", + inputs=[ + io.Autogrow.Input("images", template=autogrow_template) + ], + outputs=[ + io.Image.Output() + ] + ) + + @classmethod + def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_images(list(images.values()))) + +class BatchMasksNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50) + return io.Schema( + node_id="BatchMasksNode", + display_name="Batch Masks", + category="mask", + inputs=[ + io.Autogrow.Input("masks", template=autogrow_template) + ], + outputs=[ + io.Mask.Output() + ] + ) + + @classmethod + def execute(cls, masks: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_masks(list(masks.values()))) + +class BatchLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50) + return io.Schema( + node_id="BatchLatentsNode", + display_name="Batch Latents", + category="latent", + inputs=[ + io.Autogrow.Input("latents", template=autogrow_template) + ], + outputs=[ + io.Latent.Output() + ] + ) + + @classmethod + def execute(cls, latents: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_latents(list(latents.values()))) + +class BatchImagesMasksLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + matchtype_template = io.MatchType.Template("input", allowed_types=[io.Image, io.Mask, io.Latent]) + autogrow_template = io.Autogrow.TemplatePrefix( + io.MatchType.Input("input", matchtype_template), + prefix="input", min=1, max=50) + return io.Schema( + node_id="BatchImagesMasksLatentsNode", + display_name="Batch Images/Masks/Latents", + category="util", + inputs=[ + io.Autogrow.Input("inputs", template=autogrow_template) + ], + outputs=[ + io.MatchType.Output(id=None, template=matchtype_template) + ] + ) + + @classmethod + def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput: + batched = None + values = list(inputs.values()) + # latents + if isinstance(values[0], dict): + batched = batch_latents(values) + # images + elif is_image(values[0]): + batched = batch_images(values) + # masks + else: + batched = batch_masks(values) + return io.NodeOutput(batched) + class PostProcessingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: @@ -249,6 +601,11 @@ class PostProcessingExtension(ComfyExtension): Quantize, Sharpen, ImageScaleToTotalPixels, + ResizeImageMaskNode, + BatchImagesNode, + BatchMasksNode, + BatchLatentsNode, + # BatchImagesMasksLatentsNode, ] async def comfy_entrypoint() -> PostProcessingExtension: diff --git a/comfy_extras/nodes_preview_any.py b/comfy_extras/nodes_preview_any.py index e6805696f..139b07c93 100644 --- a/comfy_extras/nodes_preview_any.py +++ b/comfy_extras/nodes_preview_any.py @@ -25,7 +25,7 @@ class PreviewAny(): value = str(source) elif source is not None: try: - value = json.dumps(source) + value = json.dumps(source, indent=4) except Exception: try: value = str(source) @@ -39,5 +39,5 @@ NODE_CLASS_MAPPINGS = { } NODE_DISPLAY_NAME_MAPPINGS = { - "PreviewAny": "Preview Any", + "PreviewAny": "Preview as Text", } diff --git a/comfy_extras/nodes_primitive.py b/comfy_extras/nodes_primitive.py index ec038d84e..970abd9ee 100644 --- a/comfy_extras/nodes_primitive.py +++ b/comfy_extras/nodes_primitive.py @@ -66,7 +66,7 @@ class Float(io.ComfyNode): display_name="Float", category="utils/primitive", inputs=[ - io.Float.Input("value", min=float(-sys.maxsize), max=float(sys.maxsize)), + io.Float.Input("value", min=float(-sys.maxsize), max=float(sys.maxsize), step=0.1), ], outputs=[io.Float.Output()], ) diff --git a/comfy_extras/nodes_qwen.py b/comfy_extras/nodes_qwen.py index 525239ae5..fde8fac9a 100644 --- a/comfy_extras/nodes_qwen.py +++ b/comfy_extras/nodes_qwen.py @@ -3,7 +3,9 @@ import comfy.utils import math from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +import comfy.model_management +import torch +import nodes class TextEncodeQwenImageEdit(io.ComfyNode): @classmethod @@ -104,12 +106,37 @@ class TextEncodeQwenImageEditPlus(io.ComfyNode): return io.NodeOutput(conditioning) +class EmptyQwenImageLayeredLatentImage(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="EmptyQwenImageLayeredLatentImage", + display_name="Empty Qwen Image Layered Latent", + category="latent/qwen", + inputs=[ + io.Int.Input("width", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("layers", default=3, min=0, max=nodes.MAX_RESOLUTION, step=1), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, width, height, layers, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, layers + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) + + class QwenExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ TextEncodeQwenImageEdit, TextEncodeQwenImageEditPlus, + EmptyQwenImageLayeredLatentImage, ] diff --git a/comfy_extras/nodes_rope.py b/comfy_extras/nodes_rope.py new file mode 100644 index 000000000..d1feb031e --- /dev/null +++ b/comfy_extras/nodes_rope.py @@ -0,0 +1,47 @@ +from comfy_api.latest import ComfyExtension, io +from typing_extensions import override + + +class ScaleROPE(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ScaleROPE", + category="advanced/model_patches", + description="Scale and shift the ROPE of the model.", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.Float.Input("scale_x", default=1.0, min=0.0, max=100.0, step=0.1), + io.Float.Input("shift_x", default=0.0, min=-256.0, max=256.0, step=0.1), + + io.Float.Input("scale_y", default=1.0, min=0.0, max=100.0, step=0.1), + io.Float.Input("shift_y", default=0.0, min=-256.0, max=256.0, step=0.1), + + io.Float.Input("scale_t", default=1.0, min=0.0, max=100.0, step=0.1), + io.Float.Input("shift_t", default=0.0, min=-256.0, max=256.0, step=0.1), + + + ], + outputs=[ + io.Model.Output(), + ], + ) + + @classmethod + def execute(cls, model, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t) -> io.NodeOutput: + m = model.clone() + m.set_model_rope_options(scale_x, shift_x, scale_y, shift_y, scale_t, shift_t) + return io.NodeOutput(m) + + +class RopeExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + ScaleROPE + ] + + +async def comfy_entrypoint() -> RopeExtension: + return RopeExtension() diff --git a/comfy_extras/nodes_sd3.py b/comfy_extras/nodes_sd3.py index d75b29e60..14782cb2b 100644 --- a/comfy_extras/nodes_sd3.py +++ b/comfy_extras/nodes_sd3.py @@ -3,64 +3,83 @@ import comfy.sd import comfy.model_management import nodes import torch -import comfy_extras.nodes_slg +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_extras.nodes_slg import SkipLayerGuidanceDiT -class TripleCLIPLoader: +class TripleCLIPLoader(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), "clip_name3": (folder_paths.get_filename_list("text_encoders"), ) - }} - RETURN_TYPES = ("CLIP",) - FUNCTION = "load_clip" + def define_schema(cls): + return io.Schema( + node_id="TripleCLIPLoader", + category="advanced/loaders", + description="[Recipes]\n\nsd3: clip-l, clip-g, t5", + inputs=[ + io.Combo.Input("clip_name1", options=folder_paths.get_filename_list("text_encoders")), + io.Combo.Input("clip_name2", options=folder_paths.get_filename_list("text_encoders")), + io.Combo.Input("clip_name3", options=folder_paths.get_filename_list("text_encoders")), + ], + outputs=[ + io.Clip.Output(), + ], + ) - CATEGORY = "advanced/loaders" - - DESCRIPTION = "[Recipes]\n\nsd3: clip-l, clip-g, t5" - - def load_clip(self, clip_name1, clip_name2, clip_name3): + @classmethod + def execute(cls, clip_name1, clip_name2, clip_name3) -> io.NodeOutput: clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1) clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2) clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3) clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3], embedding_directory=folder_paths.get_folder_paths("embeddings")) - return (clip,) + return io.NodeOutput(clip) + + load_clip = execute # TODO: remove -class EmptySD3LatentImage: - def __init__(self): - self.device = comfy.model_management.intermediate_device() +class EmptySD3LatentImage(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="EmptySD3LatentImage", + category="latent/sd3", + inputs=[ + io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" + def execute(cls, width, height, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples":latent}) - CATEGORY = "latent/sd3" - - def generate(self, width, height, batch_size=1): - latent = torch.zeros([batch_size, 16, height // 8, width // 8], device=self.device) - return ({"samples":latent}, ) + generate = execute # TODO: remove -class CLIPTextEncodeSD3: +class CLIPTextEncodeSD3(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "clip": ("CLIP", ), - "clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "clip_g": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "empty_padding": (["none", "empty_prompt"], ) - }} - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "encode" + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeSD3", + category="advanced/conditioning", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("clip_g", multiline=True, dynamic_prompts=True), + io.String.Input("t5xxl", multiline=True, dynamic_prompts=True), + io.Combo.Input("empty_padding", options=["none", "empty_prompt"]), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - CATEGORY = "advanced/conditioning" - - def encode(self, clip, clip_l, clip_g, t5xxl, empty_padding): + @classmethod + def execute(cls, clip, clip_l, clip_g, t5xxl, empty_padding) -> io.NodeOutput: no_padding = empty_padding == "none" tokens = clip.tokenize(clip_g) @@ -82,57 +101,112 @@ class CLIPTextEncodeSD3: tokens["l"] += empty["l"] while len(tokens["l"]) > len(tokens["g"]): tokens["g"] += empty["g"] - return (clip.encode_from_tokens_scheduled(tokens), ) + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) + + encode = execute # TODO: remove -class ControlNetApplySD3(nodes.ControlNetApplyAdvanced): +class ControlNetApplySD3(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "control_net": ("CONTROL_NET", ), - "vae": ("VAE", ), - "image": ("IMAGE", ), - "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), - "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) - }} - CATEGORY = "conditioning/controlnet" - DEPRECATED = True + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="ControlNetApplySD3", + display_name="Apply Controlnet with VAE", + category="conditioning/controlnet", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.ControlNet.Input("control_net"), + io.Vae.Input("vae"), + io.Image.Input("image"), + io.Float.Input("strength", default=1.0, min=0.0, max=10.0, step=0.01), + io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=1.0, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + ], + is_deprecated=True, + ) + + @classmethod + def execute(cls, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None) -> io.NodeOutput: + if strength == 0: + return io.NodeOutput(positive, negative) + + control_hint = image.movedim(-1, 1) + cnets = {} + + out = [] + for conditioning in [positive, negative]: + c = [] + for t in conditioning: + d = t[1].copy() + + prev_cnet = d.get('control', None) + if prev_cnet in cnets: + c_net = cnets[prev_cnet] + else: + c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), + vae=vae, extra_concat=[]) + c_net.set_previous_controlnet(prev_cnet) + cnets[prev_cnet] = c_net + + d['control'] = c_net + d['control_apply_to_uncond'] = False + n = [t[0], d] + c.append(n) + out.append(c) + return io.NodeOutput(out[0], out[1]) + + apply_controlnet = execute # TODO: remove -class SkipLayerGuidanceSD3(comfy_extras.nodes_slg.SkipLayerGuidanceDiT): +class SkipLayerGuidanceSD3(io.ComfyNode): ''' Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) Experimental implementation by Dango233@StabilityAI. ''' + @classmethod - def INPUT_TYPES(s): - return {"required": {"model": ("MODEL", ), - "layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), - "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}) - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "skip_guidance_sd3" + def define_schema(cls): + return io.Schema( + node_id="SkipLayerGuidanceSD3", + category="advanced/guidance", + description="Generic version of SkipLayerGuidance node that can be used on every DiT model.", + inputs=[ + io.Model.Input("model"), + io.String.Input("layers", default="7, 8, 9", multiline=False), + io.Float.Input("scale", default=3.0, min=0.0, max=10.0, step=0.1), + io.Float.Input("start_percent", default=0.01, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=0.15, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Model.Output(), + ], + is_experimental=True, + ) - CATEGORY = "advanced/guidance" + @classmethod + def execute(cls, model, layers, scale, start_percent, end_percent) -> io.NodeOutput: + return SkipLayerGuidanceDiT().execute(model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers) - def skip_guidance_sd3(self, model, layers, scale, start_percent, end_percent): - return self.skip_guidance(model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers) + skip_guidance_sd3 = execute # TODO: remove -NODE_CLASS_MAPPINGS = { - "TripleCLIPLoader": TripleCLIPLoader, - "EmptySD3LatentImage": EmptySD3LatentImage, - "CLIPTextEncodeSD3": CLIPTextEncodeSD3, - "ControlNetApplySD3": ControlNetApplySD3, - "SkipLayerGuidanceSD3": SkipLayerGuidanceSD3, -} +class SD3Extension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + TripleCLIPLoader, + EmptySD3LatentImage, + CLIPTextEncodeSD3, + ControlNetApplySD3, + SkipLayerGuidanceSD3, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - # Sampling - "ControlNetApplySD3": "Apply Controlnet with VAE", -} + +async def comfy_entrypoint() -> SD3Extension: + return SD3Extension() diff --git a/comfy_extras/nodes_slg.py b/comfy_extras/nodes_slg.py index 7adff202e..f462faa8f 100644 --- a/comfy_extras/nodes_slg.py +++ b/comfy_extras/nodes_slg.py @@ -1,33 +1,40 @@ import comfy.model_patcher import comfy.samplers import re +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io -class SkipLayerGuidanceDiT: +class SkipLayerGuidanceDiT(io.ComfyNode): ''' Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) Original experimental implementation for SD3 by Dango233@StabilityAI. ''' + @classmethod - def INPUT_TYPES(s): - return {"required": {"model": ("MODEL", ), - "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), - "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}), - "rescaling_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "skip_guidance" - EXPERIMENTAL = True + def define_schema(cls): + return io.Schema( + node_id="SkipLayerGuidanceDiT", + category="advanced/guidance", + description="Generic version of SkipLayerGuidance node that can be used on every DiT model.", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.String.Input("double_layers", default="7, 8, 9"), + io.String.Input("single_layers", default="7, 8, 9"), + io.Float.Input("scale", default=3.0, min=0.0, max=10.0, step=0.1), + io.Float.Input("start_percent", default=0.01, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=0.15, min=0.0, max=1.0, step=0.001), + io.Float.Input("rescaling_scale", default=0.0, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + io.Model.Output(), + ], + ) - DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model." - - CATEGORY = "advanced/guidance" - - def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0): + @classmethod + def execute(cls, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0) -> io.NodeOutput: # check if layer is comma separated integers def skip(args, extra_args): return args @@ -43,7 +50,7 @@ class SkipLayerGuidanceDiT: single_layers = [int(i) for i in single_layers] if len(double_layers) == 0 and len(single_layers) == 0: - return (model, ) + return io.NodeOutput(model) def post_cfg_function(args): model = args["model"] @@ -76,29 +83,36 @@ class SkipLayerGuidanceDiT: m = model.clone() m.set_model_sampler_post_cfg_function(post_cfg_function) - return (m, ) + return io.NodeOutput(m) -class SkipLayerGuidanceDiTSimple: + skip_guidance = execute # TODO: remove + + +class SkipLayerGuidanceDiTSimple(io.ComfyNode): ''' Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass. ''' @classmethod - def INPUT_TYPES(s): - return {"required": {"model": ("MODEL", ), - "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "skip_guidance" - EXPERIMENTAL = True + def define_schema(cls): + return io.Schema( + node_id="SkipLayerGuidanceDiTSimple", + category="advanced/guidance", + description="Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass.", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.String.Input("double_layers", default="7, 8, 9"), + io.String.Input("single_layers", default="7, 8, 9"), + io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=1.0, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Model.Output(), + ], + ) - DESCRIPTION = "Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass." - - CATEGORY = "advanced/guidance" - - def skip_guidance(self, model, start_percent, end_percent, double_layers="", single_layers=""): + @classmethod + def execute(cls, model, start_percent, end_percent, double_layers="", single_layers="") -> io.NodeOutput: def skip(args, extra_args): return args @@ -113,7 +127,7 @@ class SkipLayerGuidanceDiTSimple: single_layers = [int(i) for i in single_layers] if len(double_layers) == 0 and len(single_layers) == 0: - return (model, ) + return io.NodeOutput(model) def calc_cond_batch_function(args): x = args["input"] @@ -144,9 +158,19 @@ class SkipLayerGuidanceDiTSimple: m = model.clone() m.set_model_sampler_calc_cond_batch_function(calc_cond_batch_function) - return (m, ) + return io.NodeOutput(m) -NODE_CLASS_MAPPINGS = { - "SkipLayerGuidanceDiT": SkipLayerGuidanceDiT, - "SkipLayerGuidanceDiTSimple": SkipLayerGuidanceDiTSimple, -} + skip_guidance = execute # TODO: remove + + +class SkipLayerGuidanceExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + SkipLayerGuidanceDiT, + SkipLayerGuidanceDiTSimple, + ] + + +async def comfy_entrypoint() -> SkipLayerGuidanceExtension: + return SkipLayerGuidanceExtension() diff --git a/comfy_extras/nodes_torch_compile.py b/comfy_extras/nodes_torch_compile.py index adbeece2f..c43e8ad63 100644 --- a/comfy_extras/nodes_torch_compile.py +++ b/comfy_extras/nodes_torch_compile.py @@ -2,6 +2,8 @@ from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy_api.torch_helpers import set_torch_compile_wrapper +def skip_torch_compile_dict(guard_entries): + return [("transformer_options" not in entry.name) for entry in guard_entries] class TorchCompileModel(io.ComfyNode): @classmethod @@ -23,7 +25,7 @@ class TorchCompileModel(io.ComfyNode): @classmethod def execute(cls, model, backend) -> io.NodeOutput: m = model.clone() - set_torch_compile_wrapper(model=m, backend=backend) + set_torch_compile_wrapper(model=m, backend=backend, options={"guard_filter_fn": skip_torch_compile_dict}) return io.NodeOutput(m) diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index 9e6ec6780..364804205 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -1,26 +1,87 @@ -import datetime -import json import logging import os import numpy as np import safetensors import torch -from PIL import Image, ImageDraw, ImageFont -from PIL.PngImagePlugin import PngInfo import torch.utils.checkpoint -import tqdm +from tqdm.auto import trange +from PIL import Image, ImageDraw, ImageFont +from typing_extensions import override import comfy.samplers +import comfy.sampler_helpers import comfy.sd import comfy.utils import comfy.model_management import comfy_extras.nodes_custom_sampler import folder_paths import node_helpers -from comfy.cli_args import args -from comfy.comfy_types.node_typing import IO from comfy.weight_adapter import adapters, adapter_maps +from comfy_api.latest import ComfyExtension, io, ui +from comfy.utils import ProgressBar + + +class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic): + """ + CFGGuider with modifications for training specific logic + """ + def outer_sample( + self, + noise, + latent_image, + sampler, + sigmas, + denoise_mask=None, + callback=None, + disable_pbar=False, + seed=None, + latent_shapes=None, + ): + self.inner_model, self.conds, self.loaded_models = ( + comfy.sampler_helpers.prepare_sampling( + self.model_patcher, + noise.shape, + self.conds, + self.model_options, + force_full_load=True, # mirror behavior in TrainLoraNode.execute() to keep model loaded + ) + ) + device = self.model_patcher.load_device + + if denoise_mask is not None: + denoise_mask = comfy.sampler_helpers.prepare_mask( + denoise_mask, noise.shape, device + ) + + noise = noise.to(device) + latent_image = latent_image.to(device) + sigmas = sigmas.to(device) + comfy.samplers.cast_to_load_options( + self.model_options, device=device, dtype=self.model_patcher.model_dtype() + ) + + try: + self.model_patcher.pre_run() + output = self.inner_sample( + noise, + latent_image, + device, + sampler, + sigmas, + denoise_mask, + callback, + disable_pbar, + seed, + latent_shapes=latent_shapes, + ) + finally: + self.model_patcher.cleanup() + + comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) + del self.inner_model + del self.loaded_models + return output def make_batch_extra_option_dict(d, indicies, full_size=None): @@ -56,7 +117,19 @@ def process_cond_list(d, prefix=""): class TrainSampler(comfy.samplers.Sampler): - def __init__(self, loss_fn, optimizer, loss_callback=None, batch_size=1, grad_acc=1, total_steps=1, seed=0, training_dtype=torch.bfloat16): + def __init__( + self, + loss_fn, + optimizer, + loss_callback=None, + batch_size=1, + grad_acc=1, + total_steps=1, + seed=0, + training_dtype=torch.bfloat16, + real_dataset=None, + bucket_latents=None, + ): self.loss_fn = loss_fn self.optimizer = optimizer self.loss_callback = loss_callback @@ -65,54 +138,210 @@ class TrainSampler(comfy.samplers.Sampler): self.grad_acc = grad_acc self.seed = seed self.training_dtype = training_dtype + self.real_dataset: list[torch.Tensor] | None = real_dataset + # Bucket mode data + self.bucket_latents: list[torch.Tensor] | None = ( + bucket_latents # list of (Bi, C, Hi, Wi) + ) + # Precompute bucket offsets and weights for sampling + if bucket_latents is not None: + self._init_bucket_data(bucket_latents) + else: + self.bucket_offsets = None + self.bucket_weights = None + self.num_images = None - def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + def _init_bucket_data(self, bucket_latents): + """Initialize bucket offsets and weights for sampling.""" + self.bucket_offsets = [0] + bucket_sizes = [] + for lat in bucket_latents: + bucket_sizes.append(lat.shape[0]) + self.bucket_offsets.append(self.bucket_offsets[-1] + lat.shape[0]) + self.num_images = self.bucket_offsets[-1] + # Weights for sampling buckets proportional to their size + self.bucket_weights = torch.tensor(bucket_sizes, dtype=torch.float32) + + def fwd_bwd( + self, + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, + indicies, + extra_args, + dataset_size, + bwd=True, + ): + xt = model_wrap.inner_model.model_sampling.noise_scaling( + batch_sigmas, batch_noise, batch_latent, False + ) + x0 = model_wrap.inner_model.model_sampling.noise_scaling( + torch.zeros_like(batch_sigmas), + torch.zeros_like(batch_noise), + batch_latent, + False, + ) + + model_wrap.conds["positive"] = [cond[i] for i in indicies] + batch_extra_args = make_batch_extra_option_dict( + extra_args, indicies, full_size=dataset_size + ) + + with torch.autocast(xt.device.type, dtype=self.training_dtype): + x0_pred = model_wrap( + xt.requires_grad_(True), + batch_sigmas.requires_grad_(True), + **batch_extra_args, + ) + loss = self.loss_fn(x0_pred, x0) + if bwd: + bwd_loss = loss / self.grad_acc + bwd_loss.backward() + return loss + + def _generate_batch_sigmas(self, model_wrap, batch_size, device): + """Generate random sigma values for a batch.""" + batch_sigmas = [ + model_wrap.inner_model.model_sampling.percent_to_sigma( + torch.rand((1,)).item() + ) + for _ in range(batch_size) + ] + return torch.tensor(batch_sigmas).to(device) + + def _train_step_bucket_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, pbar): + """Execute one training step in bucket mode.""" + # Sample bucket (weighted by size), then sample batch from bucket + bucket_idx = torch.multinomial(self.bucket_weights, 1).item() + bucket_latent = self.bucket_latents[bucket_idx] # (Bi, C, Hi, Wi) + bucket_size = bucket_latent.shape[0] + bucket_offset = self.bucket_offsets[bucket_idx] + + # Sample indices from this bucket (use all if bucket_size < batch_size) + actual_batch_size = min(self.batch_size, bucket_size) + relative_indices = torch.randperm(bucket_size)[:actual_batch_size].tolist() + # Convert to absolute indices for fwd_bwd (cond is flattened, use absolute index) + absolute_indices = [bucket_offset + idx for idx in relative_indices] + + batch_latent = bucket_latent[relative_indices].to(latent_image) # (actual_batch_size, C, H, W) + batch_noise = noisegen.generate_noise({"samples": batch_latent}).to( + batch_latent.device + ) + batch_sigmas = self._generate_batch_sigmas(model_wrap, actual_batch_size, batch_latent.device) + + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, # Use flattened cond with absolute indices + absolute_indices, + extra_args, + self.num_images, + bwd=True, + ) + if self.loss_callback: + self.loss_callback(loss.item()) + pbar.set_postfix({"loss": f"{loss.item():.4f}", "bucket": bucket_idx}) + + def _train_step_standard_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar): + """Execute one training step in standard (non-bucket, non-multi-res) mode.""" + indicies = torch.randperm(dataset_size)[: self.batch_size].tolist() + batch_latent = torch.stack([latent_image[i] for i in indicies]) + batch_noise = noisegen.generate_noise({"samples": batch_latent}).to( + batch_latent.device + ) + batch_sigmas = self._generate_batch_sigmas(model_wrap, min(self.batch_size, dataset_size), batch_latent.device) + + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, + indicies, + extra_args, + dataset_size, + bwd=True, + ) + if self.loss_callback: + self.loss_callback(loss.item()) + pbar.set_postfix({"loss": f"{loss.item():.4f}"}) + + def _train_step_multires_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar): + """Execute one training step in multi-resolution mode (real_dataset is set).""" + indicies = torch.randperm(dataset_size)[: self.batch_size].tolist() + total_loss = 0 + for index in indicies: + single_latent = self.real_dataset[index].to(latent_image) + batch_noise = noisegen.generate_noise( + {"samples": single_latent} + ).to(single_latent.device) + batch_sigmas = ( + model_wrap.inner_model.model_sampling.percent_to_sigma( + torch.rand((1,)).item() + ) + ) + batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device) + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + single_latent, + cond, + [index], + extra_args, + dataset_size, + bwd=False, + ) + total_loss += loss + total_loss = total_loss / self.grad_acc / len(indicies) + total_loss.backward() + if self.loss_callback: + self.loss_callback(total_loss.item()) + pbar.set_postfix({"loss": f"{total_loss.item():.4f}"}) + + def sample( + self, + model_wrap, + sigmas, + extra_args, + callback, + noise, + latent_image=None, + denoise_mask=None, + disable_pbar=False, + ): model_wrap.conds = process_cond_list(model_wrap.conds) cond = model_wrap.conds["positive"] dataset_size = sigmas.size(0) torch.cuda.empty_cache() - for i in (pbar:=tqdm.trange(self.total_steps, desc="Training LoRA", smoothing=0.01, disable=not comfy.utils.PROGRESS_BAR_ENABLED)): - noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(self.seed + i * 1000) - indicies = torch.randperm(dataset_size)[:self.batch_size].tolist() - - batch_latent = torch.stack([latent_image[i] for i in indicies]) - batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(batch_latent.device) - batch_sigmas = [ - model_wrap.inner_model.model_sampling.percent_to_sigma( - torch.rand((1,)).item() - ) for _ in range(min(self.batch_size, dataset_size)) - ] - batch_sigmas = torch.tensor(batch_sigmas).to(batch_latent.device) - - xt = model_wrap.inner_model.model_sampling.noise_scaling( - batch_sigmas, - batch_noise, - batch_latent, - False + ui_pbar = ProgressBar(self.total_steps) + for i in ( + pbar := trange( + self.total_steps, + desc="Training LoRA", + smoothing=0.01, + disable=not comfy.utils.PROGRESS_BAR_ENABLED, ) - x0 = model_wrap.inner_model.model_sampling.noise_scaling( - torch.zeros_like(batch_sigmas), - torch.zeros_like(batch_noise), - batch_latent, - False + ): + noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise( + self.seed + i * 1000 ) - model_wrap.conds["positive"] = [ - cond[i] for i in indicies - ] - batch_extra_args = make_batch_extra_option_dict(extra_args, indicies, full_size=dataset_size) + if self.bucket_latents is not None: + self._train_step_bucket_mode(model_wrap, cond, extra_args, noisegen, latent_image, pbar) + elif self.real_dataset is None: + self._train_step_standard_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar) + else: + self._train_step_multires_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar) - with torch.autocast(xt.device.type, dtype=self.training_dtype): - x0_pred = model_wrap(xt, batch_sigmas, **batch_extra_args) - loss = self.loss_fn(x0_pred, x0) - loss.backward() - if self.loss_callback: - self.loss_callback(loss.item()) - pbar.set_postfix({"loss": f"{loss.item():.4f}"}) - - if (i+1) % self.grad_acc == 0: + if (i + 1) % self.grad_acc == 0: self.optimizer.step() self.optimizer.zero_grad() + ui_pbar.update(1) torch.cuda.empty_cache() return torch.zeros_like(latent_image) @@ -134,233 +363,6 @@ class BiasDiff(torch.nn.Module): return self.passive_memory_usage() -def load_and_process_images(image_files, input_dir, resize_method="None", w=None, h=None): - """Utility function to load and process a list of images. - - Args: - image_files: List of image filenames - input_dir: Base directory containing the images - resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad") - - Returns: - torch.Tensor: Batch of processed images - """ - if not image_files: - raise ValueError("No valid images found in input") - - output_images = [] - - for file in image_files: - image_path = os.path.join(input_dir, file) - img = node_helpers.pillow(Image.open, image_path) - - if img.mode == "I": - img = img.point(lambda i: i * (1 / 255)) - img = img.convert("RGB") - - if w is None and h is None: - w, h = img.size[0], img.size[1] - - # Resize image to first image - if img.size[0] != w or img.size[1] != h: - if resize_method == "Stretch": - img = img.resize((w, h), Image.Resampling.LANCZOS) - elif resize_method == "Crop": - img = img.crop((0, 0, w, h)) - elif resize_method == "Pad": - img = img.resize((w, h), Image.Resampling.LANCZOS) - elif resize_method == "None": - raise ValueError( - "Your input image size does not match the first image in the dataset. Either select a valid resize method or use the same size for all images." - ) - - img_array = np.array(img).astype(np.float32) / 255.0 - img_tensor = torch.from_numpy(img_array)[None,] - output_images.append(img_tensor) - - return torch.cat(output_images, dim=0) - - -class LoadImageSetNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "images": ( - [ - f - for f in os.listdir(folder_paths.get_input_directory()) - if f.endswith((".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif", ".jpe", ".apng", ".tif", ".tiff")) - ], - {"image_upload": True, "allow_batch": True}, - ) - }, - "optional": { - "resize_method": ( - ["None", "Stretch", "Crop", "Pad"], - {"default": "None"}, - ), - }, - } - - INPUT_IS_LIST = True - RETURN_TYPES = ("IMAGE",) - FUNCTION = "load_images" - CATEGORY = "loaders" - EXPERIMENTAL = True - DESCRIPTION = "Loads a batch of images from a directory for training." - - @classmethod - def VALIDATE_INPUTS(s, images, resize_method): - filenames = images[0] if isinstance(images[0], list) else images - - for image in filenames: - if not folder_paths.exists_annotated_filepath(image): - return "Invalid image file: {}".format(image) - return True - - def load_images(self, input_files, resize_method): - input_dir = folder_paths.get_input_directory() - valid_extensions = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif", ".jpe", ".apng", ".tif", ".tiff"] - image_files = [ - f - for f in input_files - if any(f.lower().endswith(ext) for ext in valid_extensions) - ] - output_tensor = load_and_process_images(image_files, input_dir, resize_method) - return (output_tensor,) - - -class LoadImageSetFromFolderNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."}) - }, - "optional": { - "resize_method": ( - ["None", "Stretch", "Crop", "Pad"], - {"default": "None"}, - ), - }, - } - - RETURN_TYPES = ("IMAGE",) - FUNCTION = "load_images" - CATEGORY = "loaders" - EXPERIMENTAL = True - DESCRIPTION = "Loads a batch of images from a directory for training." - - def load_images(self, folder, resize_method): - sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) - valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] - image_files = [ - f - for f in os.listdir(sub_input_dir) - if any(f.lower().endswith(ext) for ext in valid_extensions) - ] - output_tensor = load_and_process_images(image_files, sub_input_dir, resize_method) - return (output_tensor,) - - -class LoadImageTextSetFromFolderNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."}), - "clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."}), - }, - "optional": { - "resize_method": ( - ["None", "Stretch", "Crop", "Pad"], - {"default": "None"}, - ), - "width": ( - IO.INT, - { - "default": -1, - "min": -1, - "max": 10000, - "step": 1, - "tooltip": "The width to resize the images to. -1 means use the original width.", - }, - ), - "height": ( - IO.INT, - { - "default": -1, - "min": -1, - "max": 10000, - "step": 1, - "tooltip": "The height to resize the images to. -1 means use the original height.", - }, - ) - }, - } - - RETURN_TYPES = ("IMAGE", IO.CONDITIONING,) - FUNCTION = "load_images" - CATEGORY = "loaders" - EXPERIMENTAL = True - DESCRIPTION = "Loads a batch of images and caption from a directory for training." - - def load_images(self, folder, clip, resize_method, width=None, height=None): - if clip is None: - raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.") - - logging.info(f"Loading images from folder: {folder}") - - sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) - valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] - - image_files = [] - for item in os.listdir(sub_input_dir): - path = os.path.join(sub_input_dir, item) - if any(item.lower().endswith(ext) for ext in valid_extensions): - image_files.append(path) - elif os.path.isdir(path): - # Support kohya-ss/sd-scripts folder structure - repeat = 1 - if item.split("_")[0].isdigit(): - repeat = int(item.split("_")[0]) - image_files.extend([ - os.path.join(path, f) for f in os.listdir(path) if any(f.lower().endswith(ext) for ext in valid_extensions) - ] * repeat) - - caption_file_path = [ - f.replace(os.path.splitext(f)[1], ".txt") - for f in image_files - ] - captions = [] - for caption_file in caption_file_path: - caption_path = os.path.join(sub_input_dir, caption_file) - if os.path.exists(caption_path): - with open(caption_path, "r", encoding="utf-8") as f: - caption = f.read().strip() - captions.append(caption) - else: - captions.append("") - - width = width if width != -1 else None - height = height if height != -1 else None - output_tensor = load_and_process_images(image_files, sub_input_dir, resize_method, width, height) - - logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.") - - logging.info(f"Encoding captions from {sub_input_dir}.") - conditions = [] - empty_cond = clip.encode_from_tokens_scheduled(clip.tokenize("")) - for text in captions: - if text == "": - conditions.append(empty_cond) - tokens = clip.tokenize(text) - conditions.extend(clip.encode_from_tokens_scheduled(tokens)) - logging.info(f"Encoded {len(conditions)} captions from {sub_input_dir}.") - return (output_tensor, conditions) - - def draw_loss_graph(loss_map, steps): width, height = 500, 300 img = Image.new("RGB", (width, height), "white") @@ -379,10 +381,14 @@ def draw_loss_graph(loss_map, steps): return img -def find_all_highest_child_module_with_forward(model: torch.nn.Module, result = None, name = None): +def find_all_highest_child_module_with_forward( + model: torch.nn.Module, result=None, name=None +): if result is None: result = [] - elif hasattr(model, "forward") and not isinstance(model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict)): + elif hasattr(model, "forward") and not isinstance( + model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict) + ): result.append(model) logging.debug(f"Found module with forward: {name} ({model.__class__.__name__})") return result @@ -396,12 +402,13 @@ def patch(m): if not hasattr(m, "forward"): return org_forward = m.forward + def fwd(args, kwargs): return org_forward(*args, **kwargs) + def checkpointing_fwd(*args, **kwargs): - return torch.utils.checkpoint.checkpoint( - fwd, args, kwargs, use_reentrant=False - ) + return torch.utils.checkpoint.checkpoint(fwd, args, kwargs, use_reentrant=False) + m.org_forward = org_forward m.forward = checkpointing_fwd @@ -412,130 +419,489 @@ def unpatch(m): del m.org_forward -class TrainLoraNode: +def _process_latents_bucket_mode(latents): + """Process latents for bucket mode training. + + Args: + latents: list[{"samples": tensor}] where each tensor is (Bi, C, Hi, Wi) + + Returns: + list of latent tensors + """ + bucket_latents = [] + for latent_dict in latents: + bucket_latents.append(latent_dict["samples"]) # (Bi, C, Hi, Wi) + return bucket_latents + + +def _process_latents_standard_mode(latents): + """Process latents for standard (non-bucket) mode training. + + Args: + latents: list of latent dicts or single latent dict + + Returns: + Processed latents (tensor or list of tensors) + """ + if len(latents) == 1: + return latents[0]["samples"] # Single latent dict + + latent_list = [] + for latent in latents: + latent = latent["samples"] + bs = latent.shape[0] + if bs != 1: + for sub_latent in latent: + latent_list.append(sub_latent[None]) + else: + latent_list.append(latent) + return latent_list + + +def _process_conditioning(positive): + """Process conditioning - either single list or list of lists. + + Args: + positive: list of conditioning + + Returns: + Flattened conditioning list + """ + if len(positive) == 1: + return positive[0] # Single conditioning list + + # Multiple conditioning lists - flatten + flat_positive = [] + for cond in positive: + if isinstance(cond, list): + flat_positive.extend(cond) + else: + flat_positive.append(cond) + return flat_positive + + +def _prepare_latents_and_count(latents, dtype, bucket_mode): + """Convert latents to dtype and compute image counts. + + Args: + latents: Latents (tensor, list of tensors, or bucket list) + dtype: Target dtype + bucket_mode: Whether bucket mode is enabled + + Returns: + tuple: (processed_latents, num_images, multi_res) + """ + if bucket_mode: + # In bucket mode, latents is list of tensors (Bi, C, Hi, Wi) + latents = [t.to(dtype) for t in latents] + num_buckets = len(latents) + num_images = sum(t.shape[0] for t in latents) + multi_res = False # Not using multi_res path in bucket mode + + logging.info(f"Bucket mode: {num_buckets} buckets, {num_images} total samples") + for i, lat in enumerate(latents): + logging.info(f" Bucket {i}: shape {lat.shape}") + return latents, num_images, multi_res + + # Non-bucket mode + if isinstance(latents, list): + all_shapes = set() + latents = [t.to(dtype) for t in latents] + for latent in latents: + all_shapes.add(latent.shape) + logging.info(f"Latent shapes: {all_shapes}") + if len(all_shapes) > 1: + multi_res = True + else: + multi_res = False + latents = torch.cat(latents, dim=0) + num_images = len(latents) + elif isinstance(latents, torch.Tensor): + latents = latents.to(dtype) + num_images = latents.shape[0] + multi_res = False + else: + logging.error(f"Invalid latents type: {type(latents)}") + num_images = 0 + multi_res = False + + return latents, num_images, multi_res + + +def _validate_and_expand_conditioning(positive, num_images, bucket_mode): + """Validate conditioning count matches image count, expand if needed. + + Args: + positive: Conditioning list + num_images: Number of images + bucket_mode: Whether bucket mode is enabled + + Returns: + Validated/expanded conditioning list + + Raises: + ValueError: If conditioning count doesn't match image count + """ + if bucket_mode: + return positive # Skip validation in bucket mode + + logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}") + if len(positive) == 1 and num_images > 1: + return positive * num_images + elif len(positive) != num_images: + raise ValueError( + f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})." + ) + return positive + + +def _load_existing_lora(existing_lora): + """Load existing LoRA weights if provided. + + Args: + existing_lora: LoRA filename or "[None]" + + Returns: + tuple: (existing_weights dict, existing_steps int) + """ + if existing_lora == "[None]": + return {}, 0 + + lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora) + # Extract steps from filename like "trained_lora_10_steps_20250225_203716" + existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1]) + existing_weights = {} + if lora_path: + existing_weights = comfy.utils.load_torch_file(lora_path) + return existing_weights, existing_steps + + +def _create_weight_adapter( + module, module_name, existing_weights, algorithm, lora_dtype, rank +): + """Create a weight adapter for a module with weight. + + Args: + module: The module to create adapter for + module_name: Name of the module + existing_weights: Dict of existing LoRA weights + algorithm: Algorithm name for new adapters + lora_dtype: dtype for LoRA weights + rank: Rank for new LoRA adapters + + Returns: + tuple: (train_adapter, lora_params dict) + """ + key = f"{module_name}.weight" + shape = module.weight.shape + lora_params = {} + + if len(shape) >= 2: + alpha = float(existing_weights.get(f"{key}.alpha", 1.0)) + dora_scale = existing_weights.get(f"{key}.dora_scale", None) + + # Try to load existing adapter + existing_adapter = None + for adapter_cls in adapters: + existing_adapter = adapter_cls.load( + module_name, existing_weights, alpha, dora_scale + ) + if existing_adapter is not None: + break + + if existing_adapter is None: + adapter_cls = adapter_maps[algorithm] + + if existing_adapter is not None: + train_adapter = existing_adapter.to_train().to(lora_dtype) + else: + # Use LoRA with alpha=1.0 by default + train_adapter = adapter_cls.create_train( + module.weight, rank=rank, alpha=1.0 + ).to(lora_dtype) + + for name, parameter in train_adapter.named_parameters(): + lora_params[f"{module_name}.{name}"] = parameter + + return train_adapter.train().requires_grad_(True), lora_params + else: + # 1D weight - use BiasDiff + diff = torch.nn.Parameter( + torch.zeros(module.weight.shape, dtype=lora_dtype, requires_grad=True) + ) + diff_module = BiasDiff(diff).train().requires_grad_(True) + lora_params[f"{module_name}.diff"] = diff + return diff_module, lora_params + + +def _create_bias_adapter(module, module_name, lora_dtype): + """Create a bias adapter for a module with bias. + + Args: + module: The module with bias + module_name: Name of the module + lora_dtype: dtype for LoRA weights + + Returns: + tuple: (bias_module, lora_params dict) + """ + bias = torch.nn.Parameter( + torch.zeros(module.bias.shape, dtype=lora_dtype, requires_grad=True) + ) + bias_module = BiasDiff(bias).train().requires_grad_(True) + lora_params = {f"{module_name}.diff_b": bias} + return bias_module, lora_params + + +def _setup_lora_adapters(mp, existing_weights, algorithm, lora_dtype, rank): + """Setup all LoRA adapters on the model. + + Args: + mp: Model patcher + existing_weights: Dict of existing LoRA weights + algorithm: Algorithm name for new adapters + lora_dtype: dtype for LoRA weights + rank: Rank for new LoRA adapters + + Returns: + tuple: (lora_sd dict, all_weight_adapters list) + """ + lora_sd = {} + all_weight_adapters = [] + + for n, m in mp.model.named_modules(): + if hasattr(m, "weight_function"): + if m.weight is not None: + adapter, params = _create_weight_adapter( + m, n, existing_weights, algorithm, lora_dtype, rank + ) + lora_sd.update(params) + key = f"{n}.weight" + mp.add_weight_wrapper(key, adapter) + all_weight_adapters.append(adapter) + + if hasattr(m, "bias") and m.bias is not None: + bias_adapter, bias_params = _create_bias_adapter(m, n, lora_dtype) + lora_sd.update(bias_params) + key = f"{n}.bias" + mp.add_weight_wrapper(key, bias_adapter) + all_weight_adapters.append(bias_adapter) + + return lora_sd, all_weight_adapters + + +def _create_optimizer(optimizer_name, parameters, learning_rate): + """Create optimizer based on name. + + Args: + optimizer_name: Name of optimizer ("Adam", "AdamW", "SGD", "RMSprop") + parameters: Parameters to optimize + learning_rate: Learning rate + + Returns: + Optimizer instance + """ + if optimizer_name == "Adam": + return torch.optim.Adam(parameters, lr=learning_rate) + elif optimizer_name == "AdamW": + return torch.optim.AdamW(parameters, lr=learning_rate) + elif optimizer_name == "SGD": + return torch.optim.SGD(parameters, lr=learning_rate) + elif optimizer_name == "RMSprop": + return torch.optim.RMSprop(parameters, lr=learning_rate) + + +def _create_loss_function(loss_function_name): + """Create loss function based on name. + + Args: + loss_function_name: Name of loss function ("MSE", "L1", "Huber", "SmoothL1") + + Returns: + Loss function instance + """ + if loss_function_name == "MSE": + return torch.nn.MSELoss() + elif loss_function_name == "L1": + return torch.nn.L1Loss() + elif loss_function_name == "Huber": + return torch.nn.HuberLoss() + elif loss_function_name == "SmoothL1": + return torch.nn.SmoothL1Loss() + + +def _run_training_loop( + guider, train_sampler, latents, num_images, seed, bucket_mode, multi_res +): + """Execute the training loop. + + Args: + guider: The guider object + train_sampler: The training sampler + latents: Latent tensors + num_images: Number of images + seed: Random seed + bucket_mode: Whether bucket mode is enabled + multi_res: Whether multi-resolution mode is enabled + """ + sigmas = torch.tensor(range(num_images)) + noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) + + if bucket_mode: + # Use first bucket's first latent as dummy for guider + dummy_latent = latents[0][:1].repeat(num_images, 1, 1, 1) + guider.sample( + noise.generate_noise({"samples": dummy_latent}), + dummy_latent, + train_sampler, + sigmas, + seed=noise.seed, + ) + elif multi_res: + # use first latent as dummy latent if multi_res + latents = latents[0].repeat(num_images, 1, 1, 1) + guider.sample( + noise.generate_noise({"samples": latents}), + latents, + train_sampler, + sigmas, + seed=noise.seed, + ) + else: + guider.sample( + noise.generate_noise({"samples": latents}), + latents, + train_sampler, + sigmas, + seed=noise.seed, + ) + + +class TrainLoraNode(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "model": (IO.MODEL, {"tooltip": "The model to train the LoRA on."}), - "latents": ( - "LATENT", - { - "tooltip": "The Latents to use for training, serve as dataset/input of the model." - }, + def define_schema(cls): + return io.Schema( + node_id="TrainLoraNode", + display_name="Train LoRA", + category="training", + is_experimental=True, + is_input_list=True, # All inputs become lists + inputs=[ + io.Model.Input("model", tooltip="The model to train the LoRA on."), + io.Latent.Input( + "latents", + tooltip="The Latents to use for training, serve as dataset/input of the model.", ), - "positive": ( - IO.CONDITIONING, - {"tooltip": "The positive conditioning to use for training."}, + io.Conditioning.Input( + "positive", tooltip="The positive conditioning to use for training." ), - "batch_size": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 10000, - "step": 1, - "tooltip": "The batch size to use for training.", - }, + io.Int.Input( + "batch_size", + default=1, + min=1, + max=10000, + tooltip="The batch size to use for training.", ), - "grad_accumulation_steps": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 1024, - "step": 1, - "tooltip": "The number of gradient accumulation steps to use for training.", - } + io.Int.Input( + "grad_accumulation_steps", + default=1, + min=1, + max=1024, + tooltip="The number of gradient accumulation steps to use for training.", ), - "steps": ( - IO.INT, - { - "default": 16, - "min": 1, - "max": 100000, - "tooltip": "The number of steps to train the LoRA for.", - }, + io.Int.Input( + "steps", + default=16, + min=1, + max=100000, + tooltip="The number of steps to train the LoRA for.", ), - "learning_rate": ( - IO.FLOAT, - { - "default": 0.0005, - "min": 0.0000001, - "max": 1.0, - "step": 0.000001, - "tooltip": "The learning rate to use for training.", - }, + io.Float.Input( + "learning_rate", + default=0.0005, + min=0.0000001, + max=1.0, + step=0.0000001, + tooltip="The learning rate to use for training.", ), - "rank": ( - IO.INT, - { - "default": 8, - "min": 1, - "max": 128, - "tooltip": "The rank of the LoRA layers.", - }, + io.Int.Input( + "rank", + default=8, + min=1, + max=128, + tooltip="The rank of the LoRA layers.", ), - "optimizer": ( - ["AdamW", "Adam", "SGD", "RMSprop"], - { - "default": "AdamW", - "tooltip": "The optimizer to use for training.", - }, + io.Combo.Input( + "optimizer", + options=["AdamW", "Adam", "SGD", "RMSprop"], + default="AdamW", + tooltip="The optimizer to use for training.", ), - "loss_function": ( - ["MSE", "L1", "Huber", "SmoothL1"], - { - "default": "MSE", - "tooltip": "The loss function to use for training.", - }, + io.Combo.Input( + "loss_function", + options=["MSE", "L1", "Huber", "SmoothL1"], + default="MSE", + tooltip="The loss function to use for training.", ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "tooltip": "The seed to use for training (used in generator for LoRA weight initialization and noise sampling)", - }, + io.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + tooltip="The seed to use for training (used in generator for LoRA weight initialization and noise sampling)", ), - "training_dtype": ( - ["bf16", "fp32"], - {"default": "bf16", "tooltip": "The dtype to use for training."}, + io.Combo.Input( + "training_dtype", + options=["bf16", "fp32"], + default="bf16", + tooltip="The dtype to use for training.", ), - "lora_dtype": ( - ["bf16", "fp32"], - {"default": "bf16", "tooltip": "The dtype to use for lora."}, + io.Combo.Input( + "lora_dtype", + options=["bf16", "fp32"], + default="bf16", + tooltip="The dtype to use for lora.", ), - "algorithm": ( - list(adapter_maps.keys()), - {"default": list(adapter_maps.keys())[0], "tooltip": "The algorithm to use for training."}, + io.Combo.Input( + "algorithm", + options=list(adapter_maps.keys()), + default=list(adapter_maps.keys())[0], + tooltip="The algorithm to use for training.", ), - "gradient_checkpointing": ( - IO.BOOLEAN, - { - "default": True, - "tooltip": "Use gradient checkpointing for training.", - } + io.Boolean.Input( + "gradient_checkpointing", + default=True, + tooltip="Use gradient checkpointing for training.", ), - "existing_lora": ( - folder_paths.get_filename_list("loras") + ["[None]"], - { - "default": "[None]", - "tooltip": "The existing LoRA to append to. Set to None for new LoRA.", - }, + io.Combo.Input( + "existing_lora", + options=folder_paths.get_filename_list("loras") + ["[None]"], + default="[None]", + tooltip="The existing LoRA to append to. Set to None for new LoRA.", ), - }, - } + io.Boolean.Input( + "bucket_mode", + default=False, + tooltip="Enable resolution bucket mode. When enabled, expects pre-bucketed latents from ResolutionBucket node.", + ), + ], + outputs=[ + io.Model.Output( + display_name="model", tooltip="Model with LoRA applied" + ), + io.Custom("LORA_MODEL").Output( + display_name="lora", tooltip="LoRA weights" + ), + io.Custom("LOSS_MAP").Output( + display_name="loss_map", tooltip="Loss history" + ), + io.Int.Output(display_name="steps", tooltip="Total training steps"), + ], + ) - RETURN_TYPES = (IO.MODEL, IO.LORA_MODEL, IO.LOSS_MAP, IO.INT) - RETURN_NAMES = ("model_with_lora", "lora", "loss", "steps") - FUNCTION = "train" - CATEGORY = "training" - EXPERIMENTAL = True - - def train( - self, + @classmethod + def execute( + cls, model, latents, positive, @@ -552,261 +918,252 @@ class TrainLoraNode: algorithm, gradient_checkpointing, existing_lora, + bucket_mode, ): + # Extract scalars from lists (due to is_input_list=True) + model = model[0] + batch_size = batch_size[0] + steps = steps[0] + grad_accumulation_steps = grad_accumulation_steps[0] + learning_rate = learning_rate[0] + rank = rank[0] + optimizer_name = optimizer[0] + loss_function_name = loss_function[0] + seed = seed[0] + training_dtype = training_dtype[0] + lora_dtype = lora_dtype[0] + algorithm = algorithm[0] + gradient_checkpointing = gradient_checkpointing[0] + existing_lora = existing_lora[0] + bucket_mode = bucket_mode[0] + + # Process latents based on mode + if bucket_mode: + latents = _process_latents_bucket_mode(latents) + else: + latents = _process_latents_standard_mode(latents) + + # Process conditioning + positive = _process_conditioning(positive) + + # Setup model and dtype mp = model.clone() dtype = node_helpers.string_to_torch_dtype(training_dtype) lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype) mp.set_model_compute_dtype(dtype) - latents = latents["samples"].to(dtype) - num_images = latents.shape[0] - logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}") - if len(positive) == 1 and num_images > 1: - positive = positive * num_images - elif len(positive) != num_images: - raise ValueError( - f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})." - ) + # Prepare latents and compute counts + latents, num_images, multi_res = _prepare_latents_and_count( + latents, dtype, bucket_mode + ) + + # Validate and expand conditioning + positive = _validate_and_expand_conditioning(positive, num_images, bucket_mode) with torch.inference_mode(False): - lora_sd = {} - generator = torch.Generator() - generator.manual_seed(seed) + # Setup models for training + mp.model.requires_grad_(False) # Load existing LoRA weights if provided - existing_weights = {} - existing_steps = 0 - if existing_lora != "[None]": - lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora) - # Extract steps from filename like "trained_lora_10_steps_20250225_203716" - existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1]) - if lora_path: - existing_weights = comfy.utils.load_torch_file(lora_path) + existing_weights, existing_steps = _load_existing_lora(existing_lora) - all_weight_adapters = [] - for n, m in mp.model.named_modules(): - if hasattr(m, "weight_function"): - if m.weight is not None: - key = "{}.weight".format(n) - shape = m.weight.shape - if len(shape) >= 2: - alpha = float(existing_weights.get(f"{key}.alpha", 1.0)) - dora_scale = existing_weights.get( - f"{key}.dora_scale", None - ) - for adapter_cls in adapters: - existing_adapter = adapter_cls.load( - n, existing_weights, alpha, dora_scale - ) - if existing_adapter is not None: - break - else: - existing_adapter = None - adapter_cls = adapter_maps[algorithm] + # Setup LoRA adapters + lora_sd, all_weight_adapters = _setup_lora_adapters( + mp, existing_weights, algorithm, lora_dtype, rank + ) - if existing_adapter is not None: - train_adapter = existing_adapter.to_train().to(lora_dtype) - else: - # Use LoRA with alpha=1.0 by default - train_adapter = adapter_cls.create_train( - m.weight, rank=rank, alpha=1.0 - ).to(lora_dtype) - for name, parameter in train_adapter.named_parameters(): - lora_sd[f"{n}.{name}"] = parameter + # Create optimizer and loss function + optimizer = _create_optimizer( + optimizer_name, lora_sd.values(), learning_rate + ) + criterion = _create_loss_function(loss_function_name) - mp.add_weight_wrapper(key, train_adapter) - all_weight_adapters.append(train_adapter) - else: - diff = torch.nn.Parameter( - torch.zeros( - m.weight.shape, dtype=lora_dtype, requires_grad=True - ) - ) - diff_module = BiasDiff(diff) - mp.add_weight_wrapper(key, BiasDiff(diff)) - all_weight_adapters.append(diff_module) - lora_sd["{}.diff".format(n)] = diff - if hasattr(m, "bias") and m.bias is not None: - key = "{}.bias".format(n) - bias = torch.nn.Parameter( - torch.zeros(m.bias.shape, dtype=lora_dtype, requires_grad=True) - ) - bias_module = BiasDiff(bias) - lora_sd["{}.diff_b".format(n)] = bias - mp.add_weight_wrapper(key, BiasDiff(bias)) - all_weight_adapters.append(bias_module) - - if optimizer == "Adam": - optimizer = torch.optim.Adam(lora_sd.values(), lr=learning_rate) - elif optimizer == "AdamW": - optimizer = torch.optim.AdamW(lora_sd.values(), lr=learning_rate) - elif optimizer == "SGD": - optimizer = torch.optim.SGD(lora_sd.values(), lr=learning_rate) - elif optimizer == "RMSprop": - optimizer = torch.optim.RMSprop(lora_sd.values(), lr=learning_rate) - - # Setup loss function based on selection - if loss_function == "MSE": - criterion = torch.nn.MSELoss() - elif loss_function == "L1": - criterion = torch.nn.L1Loss() - elif loss_function == "Huber": - criterion = torch.nn.HuberLoss() - elif loss_function == "SmoothL1": - criterion = torch.nn.SmoothL1Loss() - - # setup models + # Setup gradient checkpointing if gradient_checkpointing: - for m in find_all_highest_child_module_with_forward(mp.model.diffusion_model): + for m in find_all_highest_child_module_with_forward( + mp.model.diffusion_model + ): patch(m) - mp.model.requires_grad_(False) - comfy.model_management.load_models_gpu([mp], memory_required=1e20, force_full_load=True) - # Setup sampler and guider like in test script + torch.cuda.empty_cache() + # With force_full_load=False we should be able to have offloading + # But for offloading in training we need custom AutoGrad hooks for fwd/bwd + comfy.model_management.load_models_gpu( + [mp], memory_required=1e20, force_full_load=True + ) + torch.cuda.empty_cache() + + # Setup loss tracking loss_map = {"loss": []} + def loss_callback(loss): loss_map["loss"].append(loss) - train_sampler = TrainSampler( - criterion, - optimizer, - loss_callback=loss_callback, - batch_size=batch_size, - grad_acc=grad_accumulation_steps, - total_steps=steps*grad_accumulation_steps, - seed=seed, - training_dtype=dtype - ) - guider = comfy_extras.nodes_custom_sampler.Guider_Basic(mp) - guider.set_conds(positive) # Set conditioning from input - # Training loop + # Create sampler + if bucket_mode: + train_sampler = TrainSampler( + criterion, + optimizer, + loss_callback=loss_callback, + batch_size=batch_size, + grad_acc=grad_accumulation_steps, + total_steps=steps * grad_accumulation_steps, + seed=seed, + training_dtype=dtype, + bucket_latents=latents, + ) + else: + train_sampler = TrainSampler( + criterion, + optimizer, + loss_callback=loss_callback, + batch_size=batch_size, + grad_acc=grad_accumulation_steps, + total_steps=steps * grad_accumulation_steps, + seed=seed, + training_dtype=dtype, + real_dataset=latents if multi_res else None, + ) + + # Setup guider + guider = TrainGuider(mp) + guider.set_conds(positive) + + # Run training loop try: - # Generate dummy sigmas and noise - sigmas = torch.tensor(range(num_images)) - noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) - guider.sample( - noise.generate_noise({"samples": latents}), - latents, + _run_training_loop( + guider, train_sampler, - sigmas, - seed=noise.seed + latents, + num_images, + seed, + bucket_mode, + multi_res, ) finally: for m in mp.model.modules(): unpatch(m) del train_sampler, optimizer + # Finalize adapters for adapter in all_weight_adapters: adapter.requires_grad_(False) for param in lora_sd: lora_sd[param] = lora_sd[param].to(lora_dtype) - return (mp, lora_sd, loss_map, steps + existing_steps) + return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps) -class LoraModelLoader: - def __init__(self): - self.loaded_lora = None +class LoraModelLoader(io.ComfyNode):# + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoraModelLoader", + display_name="Load LoRA Model", + category="loaders", + is_experimental=True, + inputs=[ + io.Model.Input( + "model", tooltip="The diffusion model the LoRA will be applied to." + ), + io.Custom("LORA_MODEL").Input( + "lora", tooltip="The LoRA model to apply to the diffusion model." + ), + io.Float.Input( + "strength_model", + default=1.0, + min=-100.0, + max=100.0, + tooltip="How strongly to modify the diffusion model. This value can be negative.", + ), + ], + outputs=[ + io.Model.Output( + display_name="model", tooltip="The modified diffusion model." + ), + ], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}), - "lora": (IO.LORA_MODEL, {"tooltip": "The LoRA model to apply to the diffusion model."}), - "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}), - } - } - - RETURN_TYPES = ("MODEL",) - OUTPUT_TOOLTIPS = ("The modified diffusion model.",) - FUNCTION = "load_lora_model" - - CATEGORY = "loaders" - DESCRIPTION = "Load Trained LoRA weights from Train LoRA node." - EXPERIMENTAL = True - - def load_lora_model(self, model, lora, strength_model): + def execute(cls, model, lora, strength_model): if strength_model == 0: - return (model, ) + return io.NodeOutput(model) - model_lora, _ = comfy.sd.load_lora_for_models(model, None, lora, strength_model, 0) - return (model_lora, ) + model_lora, _ = comfy.sd.load_lora_for_models( + model, None, lora, strength_model, 0 + ) + return io.NodeOutput(model_lora) -class SaveLoRA: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() +class SaveLoRA(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveLoRA", + display_name="Save LoRA Weights", + category="loaders", + is_experimental=True, + is_output_node=True, + inputs=[ + io.Custom("LORA_MODEL").Input( + "lora", + tooltip="The LoRA model to save. Do not use the model with LoRA layers.", + ), + io.String.Input( + "prefix", + default="loras/ComfyUI_trained_lora", + tooltip="The prefix to use for the saved LoRA file.", + ), + io.Int.Input( + "steps", + optional=True, + tooltip="Optional: The number of steps to LoRA has been trained for, used to name the saved file.", + ), + ], + outputs=[], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "lora": ( - IO.LORA_MODEL, - { - "tooltip": "The LoRA model to save. Do not use the model with LoRA layers." - }, - ), - "prefix": ( - "STRING", - { - "default": "loras/ComfyUI_trained_lora", - "tooltip": "The prefix to use for the saved LoRA file.", - }, - ), - }, - "optional": { - "steps": ( - IO.INT, - { - "forceInput": True, - "tooltip": "Optional: The number of steps to LoRA has been trained for, used to name the saved file.", - }, - ), - }, - } - - RETURN_TYPES = () - FUNCTION = "save" - CATEGORY = "loaders" - EXPERIMENTAL = True - OUTPUT_NODE = True - - def save(self, lora, prefix, steps=None): - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(prefix, self.output_dir) + def execute(cls, lora, prefix, steps=None): + output_dir = folder_paths.get_output_directory() + full_output_folder, filename, counter, subfolder, filename_prefix = ( + folder_paths.get_save_image_path(prefix, output_dir) + ) if steps is None: output_checkpoint = f"{filename}_{counter:05}_.safetensors" else: output_checkpoint = f"{filename}_{steps}_steps_{counter:05}_.safetensors" output_checkpoint = os.path.join(full_output_folder, output_checkpoint) safetensors.torch.save_file(lora, output_checkpoint) - return {} + return io.NodeOutput() -class LossGraphNode: - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() +class LossGraphNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LossGraphNode", + display_name="Plot Loss Graph", + category="training", + is_experimental=True, + is_output_node=True, + inputs=[ + io.Custom("LOSS_MAP").Input( + "loss", tooltip="Loss map from training node." + ), + io.String.Input( + "filename_prefix", + default="loss_graph", + tooltip="Prefix for the saved loss graph image.", + ), + ], + outputs=[], + hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "loss": (IO.LOSS_MAP, {"default": {}}), - "filename_prefix": (IO.STRING, {"default": "loss_graph"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - - RETURN_TYPES = () - FUNCTION = "plot_loss" - OUTPUT_NODE = True - CATEGORY = "training" - EXPERIMENTAL = True - DESCRIPTION = "Plots the loss graph and saves it to the output directory." - - def plot_loss(self, loss, filename_prefix, prompt=None, extra_pnginfo=None): + def execute(cls, loss, filename_prefix, prompt=None, extra_pnginfo=None): loss_values = loss["loss"] width, height = 800, 480 margin = 40 @@ -849,47 +1206,27 @@ class LossGraphNode: (margin - 30, height - 10), f"{min_loss:.2f}", font=font, fill="black" ) - metadata = None - if not args.disable_metadata: - metadata = PngInfo() - if prompt is not None: - metadata.add_text("prompt", json.dumps(prompt)) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata.add_text(x, json.dumps(extra_pnginfo[x])) + # Convert PIL image to tensor for PreviewImage + img_array = np.array(img).astype(np.float32) / 255.0 + img_tensor = torch.from_numpy(img_array)[None,] # [1, H, W, 3] - date = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") - img.save( - os.path.join(self.output_dir, f"{filename_prefix}_{date}.png"), - pnginfo=metadata, - ) - return { - "ui": { - "images": [ - { - "filename": f"{filename_prefix}_{date}.png", - "subfolder": "", - "type": "temp", - } - ] - } - } + # Return preview UI + return io.NodeOutput(ui=ui.PreviewImage(img_tensor, cls=cls)) -NODE_CLASS_MAPPINGS = { - "TrainLoraNode": TrainLoraNode, - "SaveLoRANode": SaveLoRA, - "LoraModelLoader": LoraModelLoader, - "LoadImageSetFromFolderNode": LoadImageSetFromFolderNode, - "LoadImageTextSetFromFolderNode": LoadImageTextSetFromFolderNode, - "LossGraphNode": LossGraphNode, -} +# ========== Extension Setup ========== -NODE_DISPLAY_NAME_MAPPINGS = { - "TrainLoraNode": "Train LoRA", - "SaveLoRANode": "Save LoRA Weights", - "LoraModelLoader": "Load LoRA Model", - "LoadImageSetFromFolderNode": "Load Image Dataset from Folder", - "LoadImageTextSetFromFolderNode": "Load Image and Text Dataset from Folder", - "LossGraphNode": "Plot Loss Graph", -} + +class TrainingExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + TrainLoraNode, + LoraModelLoader, + SaveLoRA, + LossGraphNode, + ] + + +async def comfy_entrypoint() -> TrainingExtension: + return TrainingExtension() diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index 04c948341..4d62b87be 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -4,6 +4,8 @@ from comfy import model_management import torch import comfy.utils import folder_paths +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io try: from spandrel_extra_arches import EXTRA_REGISTRY @@ -13,17 +15,23 @@ try: except: pass -class UpscaleModelLoader: +class UpscaleModelLoader(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), - }} - RETURN_TYPES = ("UPSCALE_MODEL",) - FUNCTION = "load_model" + def define_schema(cls): + return io.Schema( + node_id="UpscaleModelLoader", + display_name="Load Upscale Model", + category="loaders", + inputs=[ + io.Combo.Input("model_name", options=folder_paths.get_filename_list("upscale_models")), + ], + outputs=[ + io.UpscaleModel.Output(), + ], + ) - CATEGORY = "loaders" - - def load_model(self, model_name): + @classmethod + def execute(cls, model_name) -> io.NodeOutput: model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) sd = comfy.utils.load_torch_file(model_path, safe_load=True) if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: @@ -33,21 +41,29 @@ class UpscaleModelLoader: if not isinstance(out, ImageModelDescriptor): raise Exception("Upscale model must be a single-image model.") - return (out, ) + return io.NodeOutput(out) + + load_model = execute # TODO: remove -class ImageUpscaleWithModel: +class ImageUpscaleWithModel(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "upscale_model": ("UPSCALE_MODEL",), - "image": ("IMAGE",), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "upscale" + def define_schema(cls): + return io.Schema( + node_id="ImageUpscaleWithModel", + display_name="Upscale Image (using Model)", + category="image/upscaling", + inputs=[ + io.UpscaleModel.Input("upscale_model"), + io.Image.Input("image"), + ], + outputs=[ + io.Image.Output(), + ], + ) - CATEGORY = "image/upscaling" - - def upscale(self, upscale_model, image): + @classmethod + def execute(cls, upscale_model, image) -> io.NodeOutput: device = model_management.get_torch_device() memory_required = model_management.module_size(upscale_model.model) @@ -75,9 +91,19 @@ class ImageUpscaleWithModel: upscale_model.to("cpu") s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) - return (s,) + return io.NodeOutput(s) -NODE_CLASS_MAPPINGS = { - "UpscaleModelLoader": UpscaleModelLoader, - "ImageUpscaleWithModel": ImageUpscaleWithModel -} + upscale = execute # TODO: remove + + +class UpscaleModelExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + UpscaleModelLoader, + ImageUpscaleWithModel, + ] + + +async def comfy_entrypoint() -> UpscaleModelExtension: + return UpscaleModelExtension() diff --git a/comfy_extras/nodes_video.py b/comfy_extras/nodes_video.py index 69fabb12e..c609e03da 100644 --- a/comfy_extras/nodes_video.py +++ b/comfy_extras/nodes_video.py @@ -8,10 +8,7 @@ import json from typing import Optional from typing_extensions import override from fractions import Fraction -from comfy_api.input import AudioInput, ImageInput, VideoInput -from comfy_api.input_impl import VideoFromComponents, VideoFromFile -from comfy_api.util import VideoCodec, VideoComponents, VideoContainer -from comfy_api.latest import ComfyExtension, io, ui +from comfy_api.latest import ComfyExtension, io, ui, Input, InputImpl, Types from comfy.cli_args import args class SaveWEBM(io.ComfyNode): @@ -28,7 +25,6 @@ class SaveWEBM(io.ComfyNode): io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01), io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."), ], - outputs=[], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @@ -79,16 +75,15 @@ class SaveVideo(io.ComfyNode): inputs=[ io.Video.Input("video", tooltip="The video to save."), io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."), - io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."), - io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."), + io.Combo.Input("format", options=Types.VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."), + io.Combo.Input("codec", options=Types.VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."), ], - outputs=[], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod - def execute(cls, video: VideoInput, filename_prefix, format, codec) -> io.NodeOutput: + def execute(cls, video: Input.Video, filename_prefix, format: str, codec) -> io.NodeOutput: width, height = video.get_dimensions() full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( filename_prefix, @@ -105,10 +100,10 @@ class SaveVideo(io.ComfyNode): metadata["prompt"] = cls.hidden.prompt if len(metadata) > 0: saved_metadata = metadata - file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}" + file = f"{filename}_{counter:05}_.{Types.VideoContainer.get_extension(format)}" video.save_to( os.path.join(full_output_folder, file), - format=format, + format=Types.VideoContainer(format), codec=codec, metadata=saved_metadata ) @@ -135,9 +130,9 @@ class CreateVideo(io.ComfyNode): ) @classmethod - def execute(cls, images: ImageInput, fps: float, audio: Optional[AudioInput] = None) -> io.NodeOutput: + def execute(cls, images: Input.Image, fps: float, audio: Optional[Input.Audio] = None) -> io.NodeOutput: return io.NodeOutput( - VideoFromComponents(VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps))) + InputImpl.VideoFromComponents(Types.VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps))) ) class GetVideoComponents(io.ComfyNode): @@ -159,11 +154,11 @@ class GetVideoComponents(io.ComfyNode): ) @classmethod - def execute(cls, video: VideoInput) -> io.NodeOutput: + def execute(cls, video: Input.Video) -> io.NodeOutput: components = video.get_components() - return io.NodeOutput(components.images, components.audio, float(components.frame_rate)) + class LoadVideo(io.ComfyNode): @classmethod def define_schema(cls): @@ -185,7 +180,7 @@ class LoadVideo(io.ComfyNode): @classmethod def execute(cls, file) -> io.NodeOutput: video_path = folder_paths.get_annotated_filepath(file) - return io.NodeOutput(VideoFromFile(video_path)) + return io.NodeOutput(InputImpl.VideoFromFile(video_path)) @classmethod def fingerprint_inputs(s, file): diff --git a/comfy_extras/nodes_wanmove.py b/comfy_extras/nodes_wanmove.py new file mode 100644 index 000000000..5f39afa46 --- /dev/null +++ b/comfy_extras/nodes_wanmove.py @@ -0,0 +1,535 @@ +import nodes +import node_helpers +import torch +import torchvision.transforms.functional as TF +import comfy.model_management +import comfy.utils +import numpy as np +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_extras.nodes_wan import parse_json_tracks + +# https://github.com/ali-vilab/Wan-Move/blob/main/wan/modules/trajectory.py +from PIL import Image, ImageDraw + +SKIP_ZERO = False + +def get_pos_emb( + pos_k: torch.Tensor, # A 1D tensor containing positions for which to generate embeddings. + pos_emb_dim: int, + theta_func: callable = lambda i, d: torch.pow(10000, torch.mul(2, torch.div(i.to(torch.float32), d))), #Function to compute thetas based on position and embedding dimensions. + device: torch.device = torch.device("cpu"), + dtype: torch.dtype = torch.float32, +) -> torch.Tensor: # The position embeddings (batch_size, pos_emb_dim) + + assert pos_emb_dim % 2 == 0, "The dimension of position embeddings must be even." + pos_k = pos_k.to(device, dtype) + if SKIP_ZERO: + pos_k = pos_k + 1 + batch_size = pos_k.size(0) + + denominator = torch.arange(0, pos_emb_dim // 2, device=device, dtype=dtype) + # Expand denominator to match the shape needed for broadcasting + denominator_expanded = denominator.view(1, -1).expand(batch_size, -1) + + thetas = theta_func(denominator_expanded, pos_emb_dim) + + # Ensure pos_k is in the correct shape for broadcasting + pos_k_expanded = pos_k.view(-1, 1).to(dtype) + sin_thetas = torch.sin(torch.div(pos_k_expanded, thetas)) + cos_thetas = torch.cos(torch.div(pos_k_expanded, thetas)) + + # Concatenate sine and cosine embeddings along the last dimension + pos_emb = torch.cat([sin_thetas, cos_thetas], dim=-1) + + return pos_emb + +def create_pos_embeddings( + pred_tracks: torch.Tensor, # the predicted tracks, [T, N, 2] + pred_visibility: torch.Tensor, # the predicted visibility [T, N] + downsample_ratios: list[int], # the ratios for downsampling time, height, and width + height: int, # the height of the feature map + width: int, # the width of the feature map + track_num: int = -1, # the number of tracks to use + t_down_strategy: str = "sample", # the strategy for downsampling time dimension +): + assert t_down_strategy in ["sample", "average"], "Invalid strategy for downsampling time dimension." + + t, n, _ = pred_tracks.shape + t_down, h_down, w_down = downsample_ratios + track_pos = - torch.ones(n, (t-1) // t_down + 1, 2, dtype=torch.long) + + if track_num == -1: + track_num = n + + tracks_idx = torch.randperm(n)[:track_num] + tracks = pred_tracks[:, tracks_idx] + visibility = pred_visibility[:, tracks_idx] + + for t_idx in range(0, t, t_down): + if t_down_strategy == "sample" or t_idx == 0: + cur_tracks = tracks[t_idx] # [N, 2] + cur_visibility = visibility[t_idx] # [N] + else: + cur_tracks = tracks[t_idx:t_idx+t_down].mean(dim=0) + cur_visibility = torch.any(visibility[t_idx:t_idx+t_down], dim=0) + + for i in range(track_num): + if not cur_visibility[i] or cur_tracks[i][0] < 0 or cur_tracks[i][1] < 0 or cur_tracks[i][0] >= width or cur_tracks[i][1] >= height: + continue + x, y = cur_tracks[i] + x, y = int(x // w_down), int(y // h_down) + track_pos[i, t_idx // t_down, 0], track_pos[i, t_idx // t_down, 1] = y, x + + return track_pos # the position embeddings, [N, T', 2], 2 = height, width + +def replace_feature( + vae_feature: torch.Tensor, # [B, C', T', H', W'] + track_pos: torch.Tensor, # [B, N, T', 2] + strength: float = 1.0 +) -> torch.Tensor: + b, _, t, h, w = vae_feature.shape + assert b == track_pos.shape[0], "Batch size mismatch." + n = track_pos.shape[1] + + # Shuffle the trajectory order + track_pos = track_pos[:, torch.randperm(n), :, :] + + # Extract coordinates at time steps ≥ 1 and generate a valid mask + current_pos = track_pos[:, :, 1:, :] # [B, N, T-1, 2] + mask = (current_pos[..., 0] >= 0) & (current_pos[..., 1] >= 0) # [B, N, T-1] + + # Get all valid indices + valid_indices = mask.nonzero(as_tuple=False) # [num_valid, 3] + num_valid = valid_indices.shape[0] + + if num_valid == 0: + return vae_feature + + # Decompose valid indices into each dimension + batch_idx = valid_indices[:, 0] + track_idx = valid_indices[:, 1] + t_rel = valid_indices[:, 2] + t_target = t_rel + 1 # Convert to original time step indices + + # Extract target position coordinates + h_target = current_pos[batch_idx, track_idx, t_rel, 0].long() # Ensure integer indices + w_target = current_pos[batch_idx, track_idx, t_rel, 1].long() + + # Extract source position coordinates (t=0) + h_source = track_pos[batch_idx, track_idx, 0, 0].long() + w_source = track_pos[batch_idx, track_idx, 0, 1].long() + + # Get source features and assign to target positions + src_features = vae_feature[batch_idx, :, 0, h_source, w_source] + dst_features = vae_feature[batch_idx, :, t_target, h_target, w_target] + + vae_feature[batch_idx, :, t_target, h_target, w_target] = dst_features + (src_features - dst_features) * strength + + + return vae_feature + +# Visualize functions + +def _draw_gradient_polyline_on_overlay(overlay, line_width, points, start_color, opacity=1.0): + draw = ImageDraw.Draw(overlay, 'RGBA') + points = points[::-1] + + # Compute total length + total_length = 0 + segment_lengths = [] + for i in range(len(points) - 1): + dx = points[i + 1][0] - points[i][0] + dy = points[i + 1][1] - points[i][1] + length = (dx * dx + dy * dy) ** 0.5 + segment_lengths.append(length) + total_length += length + + if total_length == 0: + return + + accumulated_length = 0 + + # Draw the gradient polyline + for idx, (start_point, end_point) in enumerate(zip(points[:-1], points[1:])): + segment_length = segment_lengths[idx] + steps = max(int(segment_length), 1) + + for i in range(steps): + current_length = accumulated_length + (i / steps) * segment_length + ratio = current_length / total_length + + alpha = int(255 * (1 - ratio) * opacity) + color = (*start_color, alpha) + + x = int(start_point[0] + (end_point[0] - start_point[0]) * i / steps) + y = int(start_point[1] + (end_point[1] - start_point[1]) * i / steps) + + dynamic_line_width = max(int(line_width * (1 - ratio)), 1) + draw.line([(x, y), (x + 1, y)], fill=color, width=dynamic_line_width) + + accumulated_length += segment_length + + +def add_weighted(rgb, track): + rgb = np.array(rgb) # [H, W, C] "RGB" + track = np.array(track) # [H, W, C] "RGBA" + + alpha = track[:, :, 3] / 255.0 + alpha = np.stack([alpha] * 3, axis=-1) + blend_img = track[:, :, :3] * alpha + rgb * (1 - alpha) + + return Image.fromarray(blend_img.astype(np.uint8)) + +def draw_tracks_on_video(video, tracks, visibility=None, track_frame=24, circle_size=12, opacity=0.5, line_width=16): + color_map = [(102, 153, 255), (0, 255, 255), (255, 255, 0), (255, 102, 204), (0, 255, 0)] + + video = video.byte().cpu().numpy() # (81, 480, 832, 3) + tracks = tracks[0].long().detach().cpu().numpy() + if visibility is not None: + visibility = visibility[0].detach().cpu().numpy() + + num_frames, height, width = video.shape[:3] + num_tracks = tracks.shape[1] + alpha_opacity = int(255 * opacity) + + output_frames = [] + for t in range(num_frames): + frame_rgb = video[t].astype(np.float32) + + # Create a single RGBA overlay for all tracks in this frame + overlay = Image.new("RGBA", (width, height), (0, 0, 0, 0)) + draw_overlay = ImageDraw.Draw(overlay) + + polyline_data = [] + + # Draw all circles on a single overlay + for n in range(num_tracks): + if visibility is not None and visibility[t, n] == 0: + continue + + track_coord = tracks[t, n] + color = color_map[n % len(color_map)] + circle_color = color + (alpha_opacity,) + + draw_overlay.ellipse((track_coord[0] - circle_size, track_coord[1] - circle_size, track_coord[0] + circle_size, track_coord[1] + circle_size), + fill=circle_color + ) + + # Store polyline data for batch processing + tracks_coord = tracks[max(t - track_frame, 0):t + 1, n] + if len(tracks_coord) > 1: + polyline_data.append((tracks_coord, color)) + + # Blend circles overlay once + overlay_np = np.array(overlay) + alpha = overlay_np[:, :, 3:4] / 255.0 + frame_rgb = overlay_np[:, :, :3] * alpha + frame_rgb * (1 - alpha) + + # Draw all polylines on a single overlay + if polyline_data: + polyline_overlay = Image.new("RGBA", (width, height), (0, 0, 0, 0)) + for tracks_coord, color in polyline_data: + _draw_gradient_polyline_on_overlay(polyline_overlay, line_width, tracks_coord, color, opacity) + + # Blend polylines overlay once + polyline_np = np.array(polyline_overlay) + alpha = polyline_np[:, :, 3:4] / 255.0 + frame_rgb = polyline_np[:, :, :3] * alpha + frame_rgb * (1 - alpha) + + output_frames.append(Image.fromarray(frame_rgb.astype(np.uint8))) + + return output_frames + + +class WanMoveVisualizeTracks(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveVisualizeTracks", + category="conditioning/video_models", + inputs=[ + io.Image.Input("images"), + io.Tracks.Input("tracks", optional=True), + io.Int.Input("line_resolution", default=24, min=1, max=1024), + io.Int.Input("circle_size", default=12, min=1, max=128), + io.Float.Input("opacity", default=0.75, min=0.0, max=1.0, step=0.01), + io.Int.Input("line_width", default=16, min=1, max=128), + ], + outputs=[ + io.Image.Output(), + ], + ) + + @classmethod + def execute(cls, images, line_resolution, circle_size, opacity, line_width, tracks=None) -> io.NodeOutput: + if tracks is None: + return io.NodeOutput(images) + + track_path = tracks["track_path"].unsqueeze(0) + track_visibility = tracks["track_visibility"].unsqueeze(0) + images_in = images * 255.0 + if images_in.shape[0] != track_path.shape[1]: + repeat_count = track_path.shape[1] // images.shape[0] + images_in = images_in.repeat(repeat_count, 1, 1, 1) + track_video = draw_tracks_on_video(images_in, track_path, track_visibility, track_frame=line_resolution, circle_size=circle_size, opacity=opacity, line_width=line_width) + track_video = torch.stack([TF.to_tensor(frame) for frame in track_video], dim=0).movedim(1, -1).float() + + return io.NodeOutput(track_video.to(comfy.model_management.intermediate_device())) + + +class WanMoveTracksFromCoords(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveTracksFromCoords", + category="conditioning/video_models", + inputs=[ + io.String.Input("track_coords", force_input=True, default="[]", optional=True), + io.Mask.Input("track_mask", optional=True), + ], + outputs=[ + io.Tracks.Output(), + io.Int.Output(display_name="track_length"), + ], + ) + + @classmethod + def execute(cls, track_coords, track_mask=None) -> io.NodeOutput: + device=comfy.model_management.intermediate_device() + + tracks_data = parse_json_tracks(track_coords) + track_length = len(tracks_data[0]) + + track_list = [ + [[track[frame]['x'], track[frame]['y']] for track in tracks_data] + for frame in range(len(tracks_data[0])) + ] + tracks = torch.tensor(track_list, dtype=torch.float32, device=device) # [frames, num_tracks, 2] + + num_tracks = tracks.shape[-2] + if track_mask is None: + track_visibility = torch.ones((track_length, num_tracks), dtype=torch.bool, device=device) + else: + track_visibility = (track_mask > 0).any(dim=(1, 2)).unsqueeze(-1) + + out_track_info = {} + out_track_info["track_path"] = tracks + out_track_info["track_visibility"] = track_visibility + return io.NodeOutput(out_track_info, track_length) + + +class GenerateTracks(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="GenerateTracks", + category="conditioning/video_models", + inputs=[ + io.Int.Input("width", default=832, min=16, max=4096, step=16), + io.Int.Input("height", default=480, min=16, max=4096, step=16), + io.Float.Input("start_x", default=0.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized X coordinate (0-1) for start position."), + io.Float.Input("start_y", default=0.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized Y coordinate (0-1) for start position."), + io.Float.Input("end_x", default=1.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized X coordinate (0-1) for end position."), + io.Float.Input("end_y", default=1.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized Y coordinate (0-1) for end position."), + io.Int.Input("num_frames", default=81, min=1, max=1024), + io.Int.Input("num_tracks", default=5, min=1, max=100), + io.Float.Input("track_spread", default=0.025, min=0.0, max=1.0, step=0.001, tooltip="Normalized distance between tracks. Tracks are spread perpendicular to the motion direction."), + io.Boolean.Input("bezier", default=False, tooltip="Enable Bezier curve path using the mid point as control point."), + io.Float.Input("mid_x", default=0.5, min=0.0, max=1.0, step=0.01, tooltip="Normalized X control point for Bezier curve. Only used when 'bezier' is enabled."), + io.Float.Input("mid_y", default=0.5, min=0.0, max=1.0, step=0.01, tooltip="Normalized Y control point for Bezier curve. Only used when 'bezier' is enabled."), + io.Combo.Input( + "interpolation", + options=["linear", "ease_in", "ease_out", "ease_in_out", "constant"], + tooltip="Controls the timing/speed of movement along the path.", + ), + io.Mask.Input("track_mask", optional=True, tooltip="Optional mask to indicate visible frames."), + ], + outputs=[ + io.Tracks.Output(), + io.Int.Output(display_name="track_length"), + ], + ) + + @classmethod + def execute(cls, width, height, start_x, start_y, mid_x, mid_y, end_x, end_y, num_frames, num_tracks, + track_spread, bezier=False, interpolation="linear", track_mask=None) -> io.NodeOutput: + device = comfy.model_management.intermediate_device() + track_length = num_frames + + # normalized coordinates to pixel coordinates + start_x_px = start_x * width + start_y_px = start_y * height + mid_x_px = mid_x * width + mid_y_px = mid_y * height + end_x_px = end_x * width + end_y_px = end_y * height + + track_spread_px = track_spread * (width + height) / 2 # Use average of width/height for spread to keep it proportional + + t = torch.linspace(0, 1, num_frames, device=device) + if interpolation == "constant": # All points stay at start position + interp_values = torch.zeros_like(t) + elif interpolation == "linear": + interp_values = t + elif interpolation == "ease_in": + interp_values = t ** 2 + elif interpolation == "ease_out": + interp_values = 1 - (1 - t) ** 2 + elif interpolation == "ease_in_out": + interp_values = t * t * (3 - 2 * t) + + if bezier: # apply interpolation to t for timing control along the bezier path + t_interp = interp_values + one_minus_t = 1 - t_interp + x_positions = one_minus_t ** 2 * start_x_px + 2 * one_minus_t * t_interp * mid_x_px + t_interp ** 2 * end_x_px + y_positions = one_minus_t ** 2 * start_y_px + 2 * one_minus_t * t_interp * mid_y_px + t_interp ** 2 * end_y_px + tangent_x = 2 * one_minus_t * (mid_x_px - start_x_px) + 2 * t_interp * (end_x_px - mid_x_px) + tangent_y = 2 * one_minus_t * (mid_y_px - start_y_px) + 2 * t_interp * (end_y_px - mid_y_px) + else: # calculate base x and y positions for each frame (center track) + x_positions = start_x_px + (end_x_px - start_x_px) * interp_values + y_positions = start_y_px + (end_y_px - start_y_px) * interp_values + # For non-bezier, tangent is constant (direction from start to end) + tangent_x = torch.full_like(t, end_x_px - start_x_px) + tangent_y = torch.full_like(t, end_y_px - start_y_px) + + track_list = [] + for frame_idx in range(num_frames): + # Calculate perpendicular direction at this frame + tx = tangent_x[frame_idx].item() + ty = tangent_y[frame_idx].item() + length = (tx ** 2 + ty ** 2) ** 0.5 + + if length > 0: # Perpendicular unit vector (rotate 90 degrees) + perp_x = -ty / length + perp_y = tx / length + else: # If tangent is zero, spread horizontally + perp_x = 1.0 + perp_y = 0.0 + + frame_tracks = [] + for track_idx in range(num_tracks): # center tracks around the main path offset ranges from -(num_tracks-1)/2 to +(num_tracks-1)/2 + offset = (track_idx - (num_tracks - 1) / 2) * track_spread_px + track_x = x_positions[frame_idx].item() + perp_x * offset + track_y = y_positions[frame_idx].item() + perp_y * offset + frame_tracks.append([track_x, track_y]) + track_list.append(frame_tracks) + + tracks = torch.tensor(track_list, dtype=torch.float32, device=device) # [frames, num_tracks, 2] + + if track_mask is None: + track_visibility = torch.ones((track_length, num_tracks), dtype=torch.bool, device=device) + else: + track_visibility = (track_mask > 0).any(dim=(1, 2)).unsqueeze(-1) + + out_track_info = {} + out_track_info["track_path"] = tracks + out_track_info["track_visibility"] = track_visibility + return io.NodeOutput(out_track_info, track_length) + + +class WanMoveConcatTrack(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveConcatTrack", + category="conditioning/video_models", + inputs=[ + io.Tracks.Input("tracks_1"), + io.Tracks.Input("tracks_2", optional=True), + ], + outputs=[ + io.Tracks.Output(), + ], + ) + + @classmethod + def execute(cls, tracks_1=None, tracks_2=None) -> io.NodeOutput: + if tracks_2 is None: + return io.NodeOutput(tracks_1) + + tracks_out = torch.cat([tracks_1["track_path"], tracks_2["track_path"]], dim=1) # Concatenate along the track dimension + mask_out = torch.cat([tracks_1["track_visibility"], tracks_2["track_visibility"]], dim=-1) + + out_track_info = {} + out_track_info["track_path"] = tracks_out + out_track_info["track_visibility"] = mask_out + return io.NodeOutput(out_track_info) + + +class WanMoveTrackToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveTrackToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Tracks.Input("tracks", optional=True), + io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01, tooltip="Strength of the track conditioning."), + io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image"), + io.ClipVisionOutput.Input("clip_vision_output", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, strength, tracks=None, start_image=None, clip_vision_output=None) -> io.NodeOutput: + device=comfy.model_management.intermediate_device() + latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=device) + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5 + image[:start_image.shape[0]] = start_image + + concat_latent_image = vae.encode(image[:, :, :, :3]) + mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + if tracks is not None and strength > 0.0: + tracks_path = tracks["track_path"][:length] # [T, N, 2] + num_tracks = tracks_path.shape[-2] + + track_visibility = tracks.get("track_visibility", torch.ones((length, num_tracks), dtype=torch.bool, device=device)) + + track_pos = create_pos_embeddings(tracks_path, track_visibility, [4, 8, 8], height, width, track_num=num_tracks) + track_pos = comfy.utils.resize_to_batch_size(track_pos.unsqueeze(0), batch_size) + concat_latent_image_pos = replace_feature(concat_latent_image, track_pos, strength) + else: + concat_latent_image_pos = concat_latent_image + + positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image_pos, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) + + if clip_vision_output is not None: + positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) + negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent) + + +class WanMoveExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + WanMoveTrackToVideo, + WanMoveTracksFromCoords, + WanMoveConcatTrack, + WanMoveVisualizeTracks, + GenerateTracks, + ] + +async def comfy_entrypoint() -> WanMoveExtension: + return WanMoveExtension() diff --git a/comfyui_version.py b/comfyui_version.py index ac76fbe35..1ed60fe5c 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.62" +__version__ = "0.7.0" diff --git a/cuda_malloc.py b/cuda_malloc.py index c1d9ae3ca..ee2bc4b69 100644 --- a/cuda_malloc.py +++ b/cuda_malloc.py @@ -1,6 +1,6 @@ import os import importlib.util -from comfy.cli_args import args +from comfy.cli_args import args, PerformanceFeature import subprocess #Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import. @@ -63,20 +63,25 @@ def cuda_malloc_supported(): return True +version = "" + +try: + torch_spec = importlib.util.find_spec("torch") + for folder in torch_spec.submodule_search_locations: + ver_file = os.path.join(folder, "version.py") + if os.path.isfile(ver_file): + spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) + module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(module) + version = module.__version__ +except: + pass + if not args.cuda_malloc: try: - version = "" - torch_spec = importlib.util.find_spec("torch") - for folder in torch_spec.submodule_search_locations: - ver_file = os.path.join(folder, "version.py") - if os.path.isfile(ver_file): - spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) - module = importlib.util.module_from_spec(spec) - spec.loader.exec_module(module) - version = module.__version__ - - if int(version[0]) >= 2 and "+cu" in version: #enable by default for torch version 2.0 and up only on cuda torch - args.cuda_malloc = cuda_malloc_supported() + if int(version[0]) >= 2 and "+cu" in version: # enable by default for torch version 2.0 and up only on cuda torch + if PerformanceFeature.AutoTune not in args.fast: # Autotune has issues with cuda malloc + args.cuda_malloc = cuda_malloc_supported() except: pass @@ -89,3 +94,6 @@ if args.cuda_malloc and not args.disable_cuda_malloc: env_var += ",backend:cudaMallocAsync" os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var + +def get_torch_version_noimport(): + return str(version) diff --git a/execution.py b/execution.py index 1dc35738b..38159b1f4 100644 --- a/execution.py +++ b/execution.py @@ -13,14 +13,16 @@ import asyncio import torch import comfy.model_management +from latent_preview import set_preview_method import nodes from comfy_execution.caching import ( BasicCache, CacheKeySetID, CacheKeySetInputSignature, - DependencyAwareCache, + NullCache, HierarchicalCache, LRUCache, + RAMPressureCache, ) from comfy_execution.graph import ( DynamicPrompt, @@ -33,7 +35,7 @@ from comfy_execution.validation import validate_node_input from comfy_execution.progress import get_progress_state, reset_progress_state, add_progress_handler, WebUIProgressHandler from comfy_execution.utils import CurrentNodeContext from comfy_api.internal import _ComfyNodeInternal, _NodeOutputInternal, first_real_override, is_class, make_locked_method_func -from comfy_api.latest import io +from comfy_api.latest import io, _io class ExecutionResult(Enum): @@ -75,9 +77,9 @@ class IsChangedCache: return self.is_changed[node_id] # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED - input_data_all, _, hidden_inputs = get_input_data(node["inputs"], class_def, node_id, None) + input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) try: - is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) + is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name, v3_data=v3_data) is_changed = await resolve_map_node_over_list_results(is_changed) node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] except Exception as e: @@ -88,62 +90,70 @@ class IsChangedCache: return self.is_changed[node_id] +class CacheEntry(NamedTuple): + ui: dict + outputs: list + + class CacheType(Enum): CLASSIC = 0 LRU = 1 - DEPENDENCY_AWARE = 2 + NONE = 2 + RAM_PRESSURE = 3 class CacheSet: - def __init__(self, cache_type=None, cache_size=None): - if cache_type == CacheType.DEPENDENCY_AWARE: - self.init_dependency_aware_cache() + def __init__(self, cache_type=None, cache_args={}): + if cache_type == CacheType.NONE: + self.init_null_cache() logging.info("Disabling intermediate node cache.") + elif cache_type == CacheType.RAM_PRESSURE: + cache_ram = cache_args.get("ram", 16.0) + self.init_ram_cache(cache_ram) + logging.info("Using RAM pressure cache.") elif cache_type == CacheType.LRU: - if cache_size is None: - cache_size = 0 + cache_size = cache_args.get("lru", 0) self.init_lru_cache(cache_size) logging.info("Using LRU cache") else: self.init_classic_cache() - self.all = [self.outputs, self.ui, self.objects] + self.all = [self.outputs, self.objects] # Performs like the old cache -- dump data ASAP def init_classic_cache(self): self.outputs = HierarchicalCache(CacheKeySetInputSignature) - self.ui = HierarchicalCache(CacheKeySetInputSignature) self.objects = HierarchicalCache(CacheKeySetID) def init_lru_cache(self, cache_size): self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size) - self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size) self.objects = HierarchicalCache(CacheKeySetID) - # only hold cached items while the decendents have not executed - def init_dependency_aware_cache(self): - self.outputs = DependencyAwareCache(CacheKeySetInputSignature) - self.ui = DependencyAwareCache(CacheKeySetInputSignature) - self.objects = DependencyAwareCache(CacheKeySetID) + def init_ram_cache(self, min_headroom): + self.outputs = RAMPressureCache(CacheKeySetInputSignature) + self.objects = HierarchicalCache(CacheKeySetID) + + def init_null_cache(self): + self.outputs = NullCache() + self.objects = NullCache() def recursive_debug_dump(self): result = { "outputs": self.outputs.recursive_debug_dump(), - "ui": self.ui.recursive_debug_dump(), } return result SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org") -def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, extra_data={}): +def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): is_v3 = issubclass(class_def, _ComfyNodeInternal) + v3_data: io.V3Data = {} + hidden_inputs_v3 = {} + valid_inputs = class_def.INPUT_TYPES() if is_v3: - valid_inputs, schema = class_def.INPUT_TYPES(include_hidden=False, return_schema=True) - else: - valid_inputs = class_def.INPUT_TYPES() + valid_inputs, hidden, v3_data = _io.get_finalized_class_inputs(valid_inputs, inputs) input_data_all = {} missing_keys = {} - hidden_inputs_v3 = {} for x in inputs: input_data = inputs[x] _, input_category, input_info = get_input_info(class_def, x, valid_inputs) @@ -153,34 +163,34 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)): input_unique_id = input_data[0] output_index = input_data[1] - if outputs is None: + if execution_list is None: mark_missing() continue # This might be a lazily-evaluated input - cached_output = outputs.get(input_unique_id) - if cached_output is None: + cached = execution_list.get_cache(input_unique_id, unique_id) + if cached is None or cached.outputs is None: mark_missing() continue - if output_index >= len(cached_output): + if output_index >= len(cached.outputs): mark_missing() continue - obj = cached_output[output_index] + obj = cached.outputs[output_index] input_data_all[x] = obj elif input_category is not None: input_data_all[x] = [input_data] if is_v3: - if schema.hidden: - if io.Hidden.prompt in schema.hidden: + if hidden is not None: + if io.Hidden.prompt.name in hidden: hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {} - if io.Hidden.dynprompt in schema.hidden: + if io.Hidden.dynprompt.name in hidden: hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt - if io.Hidden.extra_pnginfo in schema.hidden: + if io.Hidden.extra_pnginfo.name in hidden: hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None) - if io.Hidden.unique_id in schema.hidden: + if io.Hidden.unique_id.name in hidden: hidden_inputs_v3[io.Hidden.unique_id] = unique_id - if io.Hidden.auth_token_comfy_org in schema.hidden: + if io.Hidden.auth_token_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None) - if io.Hidden.api_key_comfy_org in schema.hidden: + if io.Hidden.api_key_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None) else: if "hidden" in valid_inputs: @@ -198,7 +208,8 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e input_data_all[x] = [extra_data.get("auth_token_comfy_org", None)] if h[x] == "API_KEY_COMFY_ORG": input_data_all[x] = [extra_data.get("api_key_comfy_org", None)] - return input_data_all, missing_keys, hidden_inputs_v3 + v3_data["hidden_inputs"] = hidden_inputs_v3 + return input_data_all, missing_keys, v3_data map_node_over_list = None #Don't hook this please @@ -214,7 +225,7 @@ async def resolve_map_node_over_list_results(results): raise exc return [x.result() if isinstance(x, asyncio.Task) else x for x in results] -async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None): +async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, v3_data=None): # check if node wants the lists input_is_list = getattr(obj, "INPUT_IS_LIST", False) @@ -246,17 +257,20 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f pre_execute_cb(index) # V3 if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)): - # if is just a class, then assign no resources or state, just create clone + # if is just a class, then assign no state, just create clone if is_class(obj): type_obj = obj obj.VALIDATE_CLASS() - class_clone = obj.PREPARE_CLASS_CLONE(hidden_inputs) + class_clone = obj.PREPARE_CLASS_CLONE(v3_data) # otherwise, use class instance to populate/reuse some fields else: type_obj = type(obj) type_obj.VALIDATE_CLASS() - class_clone = type_obj.PREPARE_CLASS_CLONE(hidden_inputs) + class_clone = type_obj.PREPARE_CLASS_CLONE(v3_data) f = make_locked_method_func(type_obj, func, class_clone) + # in case of dynamic inputs, restructure inputs to expected nested dict + if v3_data is not None: + inputs = _io.build_nested_inputs(inputs, v3_data) # V1 else: f = getattr(obj, func) @@ -311,8 +325,8 @@ def merge_result_data(results, obj): output.append([o[i] for o in results]) return output -async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None): - return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) +async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, v3_data=None): + return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) has_pending_task = any(isinstance(r, asyncio.Task) and not r.done() for r in return_values) if has_pending_task: return return_values, {}, False, has_pending_task @@ -392,7 +406,7 @@ def format_value(x): else: return str(x) -async def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes): +async def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes, ui_outputs): unique_id = current_item real_node_id = dynprompt.get_real_node_id(unique_id) display_node_id = dynprompt.get_display_node_id(unique_id) @@ -400,11 +414,15 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, inputs = dynprompt.get_node(unique_id)['inputs'] class_type = dynprompt.get_node(unique_id)['class_type'] class_def = nodes.NODE_CLASS_MAPPINGS[class_type] - if caches.outputs.get(unique_id) is not None: + cached = caches.outputs.get(unique_id) + if cached is not None: if server.client_id is not None: - cached_output = caches.ui.get(unique_id) or {} - server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_output.get("output",None), "prompt_id": prompt_id }, server.client_id) + cached_ui = cached.ui or {} + server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_ui.get("output",None), "prompt_id": prompt_id }, server.client_id) + if cached.ui is not None: + ui_outputs[unique_id] = cached.ui get_progress_state().finish_progress(unique_id) + execution_list.cache_update(unique_id, cached) return (ExecutionResult.SUCCESS, None, None) input_data_all = None @@ -434,8 +452,8 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, for r in result: if is_link(r): source_node, source_output = r[0], r[1] - node_output = caches.outputs.get(source_node)[source_output] - for o in node_output: + node_cached = execution_list.get_cache(source_node, unique_id) + for o in node_cached.outputs[source_output]: resolved_output.append(o) else: @@ -443,10 +461,11 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, resolved_outputs.append(tuple(resolved_output)) output_data = merge_result_data(resolved_outputs, class_def) output_ui = [] + del pending_subgraph_results[unique_id] has_subgraph = False else: get_progress_state().start_progress(unique_id) - input_data_all, missing_keys, hidden_inputs = get_input_data(inputs, class_def, unique_id, caches.outputs, dynprompt, extra_data) + input_data_all, missing_keys, v3_data = get_input_data(inputs, class_def, unique_id, execution_list, dynprompt, extra_data) if server.client_id is not None: server.last_node_id = display_node_id server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id) @@ -461,7 +480,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, else: lazy_status_present = getattr(obj, "check_lazy_status", None) is not None if lazy_status_present: - required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, hidden_inputs=hidden_inputs) + # for check_lazy_status, the returned data should include the original key of the input + v3_data_lazy = v3_data.copy() + v3_data_lazy["create_dynamic_tuple"] = True + required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data_lazy) required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = [x for x in required_inputs if isinstance(x,str) and ( @@ -493,7 +515,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, def pre_execute_cb(call_index): # TODO - How to handle this with async functions without contextvars (which requires Python 3.12)? GraphBuilder.set_default_prefix(unique_id, call_index, 0) - output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) + output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) if has_pending_tasks: pending_async_nodes[unique_id] = output_data unblock = execution_list.add_external_block(unique_id) @@ -504,7 +526,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, asyncio.create_task(await_completion()) return (ExecutionResult.PENDING, None, None) if len(output_ui) > 0: - caches.ui.set(unique_id, { + ui_outputs[unique_id] = { "meta": { "node_id": unique_id, "display_node": display_node_id, @@ -512,7 +534,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, "real_node_id": real_node_id, }, "output": output_ui - }) + } if server.client_id is not None: server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id) if has_subgraph: @@ -525,10 +547,6 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, if new_graph is None: cached_outputs.append((False, node_outputs)) else: - # Check for conflicts - for node_id in new_graph.keys(): - if dynprompt.has_node(node_id): - raise DuplicateNodeError(f"Attempt to add duplicate node {node_id}. Ensure node ids are unique and deterministic or use graph_utils.GraphBuilder.") for node_id, node_info in new_graph.items(): new_node_ids.append(node_id) display_id = node_info.get("override_display_id", unique_id) @@ -549,11 +567,16 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, subcache.clean_unused() for node_id in new_output_ids: execution_list.add_node(node_id) + execution_list.cache_link(node_id, unique_id) for link in new_output_links: execution_list.add_strong_link(link[0], link[1], unique_id) pending_subgraph_results[unique_id] = cached_outputs return (ExecutionResult.PENDING, None, None) - caches.outputs.set(unique_id, output_data) + + cache_entry = CacheEntry(ui=ui_outputs.get(unique_id), outputs=output_data) + execution_list.cache_update(unique_id, cache_entry) + caches.outputs.set(unique_id, cache_entry) + except comfy.model_management.InterruptProcessingException as iex: logging.info("Processing interrupted") @@ -597,14 +620,14 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, return (ExecutionResult.SUCCESS, None, None) class PromptExecutor: - def __init__(self, server, cache_type=False, cache_size=None): - self.cache_size = cache_size + def __init__(self, server, cache_type=False, cache_args=None): + self.cache_args = cache_args self.cache_type = cache_type self.server = server self.reset() def reset(self): - self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size) + self.caches = CacheSet(cache_type=self.cache_type, cache_args=self.cache_args) self.status_messages = [] self.success = True @@ -649,6 +672,8 @@ class PromptExecutor: asyncio.run(self.execute_async(prompt, prompt_id, extra_data, execute_outputs)) async def execute_async(self, prompt, prompt_id, extra_data={}, execute_outputs=[]): + set_preview_method(extra_data.get("preview_method")) + nodes.interrupt_processing(False) if "client_id" in extra_data: @@ -679,6 +704,7 @@ class PromptExecutor: broadcast=False) pending_subgraph_results = {} pending_async_nodes = {} # TODO - Unify this with pending_subgraph_results + ui_node_outputs = {} executed = set() execution_list = ExecutionList(dynamic_prompt, self.caches.outputs) current_outputs = self.caches.outputs.all_node_ids() @@ -692,7 +718,7 @@ class PromptExecutor: break assert node_id is not None, "Node ID should not be None at this point" - result, error, ex = await execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes) + result, error, ex = await execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes, ui_node_outputs) self.success = result != ExecutionResult.FAILURE if result == ExecutionResult.FAILURE: self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex) @@ -701,18 +727,16 @@ class PromptExecutor: execution_list.unstage_node_execution() else: # result == ExecutionResult.SUCCESS: execution_list.complete_node_execution() + self.caches.outputs.poll(ram_headroom=self.cache_args["ram"]) else: # Only execute when the while-loop ends without break self.add_message("execution_success", { "prompt_id": prompt_id }, broadcast=False) ui_outputs = {} meta_outputs = {} - all_node_ids = self.caches.ui.all_node_ids() - for node_id in all_node_ids: - ui_info = self.caches.ui.get(node_id) - if ui_info is not None: - ui_outputs[node_id] = ui_info["output"] - meta_outputs[node_id] = ui_info["meta"] + for node_id, ui_info in ui_node_outputs.items(): + ui_outputs[node_id] = ui_info["output"] + meta_outputs[node_id] = ui_info["meta"] self.history_result = { "outputs": ui_outputs, "meta": meta_outputs, @@ -731,18 +755,20 @@ async def validate_inputs(prompt_id, prompt, item, validated): class_type = prompt[unique_id]['class_type'] obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] - class_inputs = obj_class.INPUT_TYPES() - valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) - errors = [] valid = True + v3_data = None validate_function_inputs = [] validate_has_kwargs = False if issubclass(obj_class, _ComfyNodeInternal): + obj_class: _io._ComfyNodeBaseInternal + class_inputs = obj_class.INPUT_TYPES() + class_inputs, _, v3_data = _io.get_finalized_class_inputs(class_inputs, inputs) validate_function_name = "validate_inputs" validate_function = first_real_override(obj_class, validate_function_name) else: + class_inputs = obj_class.INPUT_TYPES() validate_function_name = "VALIDATE_INPUTS" validate_function = getattr(obj_class, validate_function_name, None) if validate_function is not None: @@ -751,15 +777,18 @@ async def validate_inputs(prompt_id, prompt, item, validated): validate_has_kwargs = argspec.varkw is not None received_types = {} + valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) + for x in valid_inputs: input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs) assert extra_info is not None if x not in inputs: if input_category == "required": + details = f"{x}" if not v3_data else x.split(".")[-1] error = { "type": "required_input_missing", "message": "Required input is missing", - "details": f"{x}", + "details": details, "extra_info": { "input_name": x } @@ -893,8 +922,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors.append(error) continue - if isinstance(input_type, list): - combo_options = input_type + if isinstance(input_type, list) or input_type == io.Combo.io_type: + if input_type == io.Combo.io_type: + combo_options = extra_info.get("options", []) + else: + combo_options = input_type if val not in combo_options: input_config = info list_info = "" @@ -921,7 +953,7 @@ async def validate_inputs(prompt_id, prompt, item, validated): continue if len(validate_function_inputs) > 0 or validate_has_kwargs: - input_data_all, _, hidden_inputs = get_input_data(inputs, obj_class, unique_id) + input_data_all, _, v3_data = get_input_data(inputs, obj_class, unique_id) input_filtered = {} for x in input_data_all: if x in validate_function_inputs or validate_has_kwargs: @@ -929,7 +961,7 @@ async def validate_inputs(prompt_id, prompt, item, validated): if 'input_types' in validate_function_inputs: input_filtered['input_types'] = [received_types] - ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, hidden_inputs=hidden_inputs) + ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, v3_data=v3_data) ret = await resolve_map_node_over_list_results(ret) for x in input_filtered: for i, r in enumerate(ret): @@ -1110,7 +1142,7 @@ class PromptQueue: messages: List[str] def task_done(self, item_id, history_result, - status: Optional['PromptQueue.ExecutionStatus']): + status: Optional['PromptQueue.ExecutionStatus'], process_item=None): with self.mutex: prompt = self.currently_running.pop(item_id) if len(self.history) > MAXIMUM_HISTORY_SIZE: @@ -1120,10 +1152,8 @@ class PromptQueue: if status is not None: status_dict = copy.deepcopy(status._asdict()) - # Remove sensitive data from extra_data before storing in history - for sensitive_val in SENSITIVE_EXTRA_DATA_KEYS: - if sensitive_val in prompt[3]: - prompt[3].pop(sensitive_val) + if process_item is not None: + prompt = process_item(prompt) self.history[prompt[1]] = { "prompt": prompt, diff --git a/extra_model_paths.yaml.example b/extra_model_paths.yaml.example index b55913a5a..34df01681 100644 --- a/extra_model_paths.yaml.example +++ b/extra_model_paths.yaml.example @@ -1,25 +1,5 @@ #Rename this to extra_model_paths.yaml and ComfyUI will load it - -#config for a1111 ui -#all you have to do is change the base_path to where yours is installed -a111: - base_path: path/to/stable-diffusion-webui/ - - checkpoints: models/Stable-diffusion - configs: models/Stable-diffusion - vae: models/VAE - loras: | - models/Lora - models/LyCORIS - upscale_models: | - models/ESRGAN - models/RealESRGAN - models/SwinIR - embeddings: embeddings - hypernetworks: models/hypernetworks - controlnet: models/ControlNet - #config for comfyui #your base path should be either an existing comfy install or a central folder where you store all of your models, loras, etc. @@ -28,7 +8,9 @@ a111: # # You can use is_default to mark that these folders should be listed first, and used as the default dirs for eg downloads # #is_default: true # checkpoints: models/checkpoints/ -# clip: models/clip/ +# text_encoders: | +# models/text_encoders/ +# models/clip/ # legacy location still supported # clip_vision: models/clip_vision/ # configs: models/configs/ # controlnet: models/controlnet/ @@ -39,6 +21,32 @@ a111: # loras: models/loras/ # upscale_models: models/upscale_models/ # vae: models/vae/ +# audio_encoders: models/audio_encoders/ +# model_patches: models/model_patches/ + + +#config for a1111 ui +#all you have to do is uncomment this (remove the #) and change the base_path to where yours is installed + +#a111: +# base_path: path/to/stable-diffusion-webui/ +# checkpoints: models/Stable-diffusion +# configs: models/Stable-diffusion +# vae: models/VAE +# loras: | +# models/Lora +# models/LyCORIS +# upscale_models: | +# models/ESRGAN +# models/RealESRGAN +# models/SwinIR +# embeddings: embeddings +# hypernetworks: models/hypernetworks +# controlnet: models/ControlNet + + +# For a full list of supported keys (style_models, vae_approx, hypernetworks, photomaker, +# model_patches, audio_encoders, classifiers, etc.) see folder_paths.py. #other_ui: # base_path: path/to/ui diff --git a/folder_paths.py b/folder_paths.py index f110d832b..9c96540e3 100644 --- a/folder_paths.py +++ b/folder_paths.py @@ -38,6 +38,8 @@ folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], suppor folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) +folder_names_and_paths["latent_upscale_models"] = ([os.path.join(models_dir, "latent_upscale_models")], supported_pt_extensions) + folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], set()) folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) @@ -135,6 +137,71 @@ def set_user_directory(user_dir: str) -> None: user_directory = user_dir +# System User Protection - Protects system directories from HTTP endpoint access +# System Users are internal-only users that cannot be accessed via HTTP endpoints. +# They use the '__' prefix convention (similar to Python's private member convention). +SYSTEM_USER_PREFIX = "__" + + +def get_system_user_directory(name: str = "system") -> str: + """ + Get the path to a System User directory. + + System User directories (prefixed with '__') are only accessible via internal API, + not through HTTP endpoints. Use this for storing system-internal data that + should not be exposed to users. + + Args: + name: System user name (e.g., "system", "cache"). Must be alphanumeric + with underscores allowed, but cannot start with underscore. + + Returns: + Absolute path to the system user directory. + + Raises: + ValueError: If name is empty, invalid, or starts with underscore. + + Example: + >>> get_system_user_directory("cache") + '/path/to/user/__cache' + """ + if not name or not isinstance(name, str): + raise ValueError("System user name cannot be empty") + if not name.replace("_", "").isalnum(): + raise ValueError(f"Invalid system user name: '{name}'") + if name.startswith("_"): + raise ValueError("System user name should not start with underscore") + return os.path.join(get_user_directory(), f"{SYSTEM_USER_PREFIX}{name}") + + +def get_public_user_directory(user_id: str) -> str | None: + """ + Get the path to a Public User directory for HTTP endpoint access. + + This function provides structural security by returning None for any + System User (prefixed with '__'). All HTTP endpoints should use this + function instead of directly constructing user paths. + + Args: + user_id: User identifier from HTTP request. + + Returns: + Absolute path to the user directory, or None if user_id is invalid + or refers to a System User. + + Example: + >>> get_public_user_directory("default") + '/path/to/user/default' + >>> get_public_user_directory("__system") + None + """ + if not user_id or not isinstance(user_id, str): + return None + if user_id.startswith(SYSTEM_USER_PREFIX): + return None + return os.path.join(get_user_directory(), user_id) + + #NOTE: used in http server so don't put folders that should not be accessed remotely def get_directory_by_type(type_name: str) -> str | None: if type_name == "output": diff --git a/latent_preview.py b/latent_preview.py index 95d3cb733..d52e3f7a1 100644 --- a/latent_preview.py +++ b/latent_preview.py @@ -2,17 +2,26 @@ import torch from PIL import Image from comfy.cli_args import args, LatentPreviewMethod from comfy.taesd.taesd import TAESD +from comfy.sd import VAE import comfy.model_management import folder_paths import comfy.utils import logging -MAX_PREVIEW_RESOLUTION = args.preview_size +default_preview_method = args.preview_method -def preview_to_image(latent_image): - latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 - .mul(0xFF) # to 0..255 - ) +MAX_PREVIEW_RESOLUTION = args.preview_size +VIDEO_TAES = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] + +def preview_to_image(latent_image, do_scale=True): + if do_scale: + latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 + .mul(0xFF) # to 0..255 + ) + else: + latents_ubyte = (latent_image.clamp(0, 1) + .mul(0xFF) # to 0..255 + ) if comfy.model_management.directml_enabled: latents_ubyte = latents_ubyte.to(dtype=torch.uint8) latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) @@ -35,15 +44,22 @@ class TAESDPreviewerImpl(LatentPreviewer): x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) return preview_to_image(x_sample) +class TAEHVPreviewerImpl(TAESDPreviewerImpl): + def decode_latent_to_preview(self, x0): + x_sample = self.taesd.decode(x0[:1, :, :1])[0][0] + return preview_to_image(x_sample, do_scale=False) class Latent2RGBPreviewer(LatentPreviewer): - def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None): + def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None, latent_rgb_factors_reshape=None): self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1) self.latent_rgb_factors_bias = None if latent_rgb_factors_bias is not None: self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu") + self.latent_rgb_factors_reshape = latent_rgb_factors_reshape def decode_latent_to_preview(self, x0): + if self.latent_rgb_factors_reshape is not None: + x0 = self.latent_rgb_factors_reshape(x0) self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) if self.latent_rgb_factors_bias is not None: self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) @@ -78,14 +94,19 @@ def get_previewer(device, latent_format): if method == LatentPreviewMethod.TAESD: if taesd_decoder_path: - taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) - previewer = TAESDPreviewerImpl(taesd) + if latent_format.taesd_decoder_name in VIDEO_TAES: + taesd = VAE(comfy.utils.load_torch_file(taesd_decoder_path)) + taesd.first_stage_model.show_progress_bar = False + previewer = TAEHVPreviewerImpl(taesd) + else: + taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) + previewer = TAESDPreviewerImpl(taesd) else: logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) if previewer is None: if latent_format.latent_rgb_factors is not None: - previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias) + previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias, latent_format.latent_rgb_factors_reshape) return previewer def prepare_callback(model, steps, x0_output_dict=None): @@ -106,3 +127,11 @@ def prepare_callback(model, steps, x0_output_dict=None): pbar.update_absolute(step + 1, total_steps, preview_bytes) return callback +def set_preview_method(override: str = None): + if override and override != "default": + method = LatentPreviewMethod.from_string(override) + if method is not None: + args.preview_method = method + return + args.preview_method = default_preview_method + diff --git a/main.py b/main.py index 35857dba8..0e07a95da 100644 --- a/main.py +++ b/main.py @@ -15,6 +15,7 @@ from comfy_execution.progress import get_progress_state from comfy_execution.utils import get_executing_context from comfy_api import feature_flags + if __name__ == "__main__": #NOTE: These do not do anything on core ComfyUI, they are for custom nodes. os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' @@ -22,6 +23,55 @@ if __name__ == "__main__": setup_logger(log_level=args.verbose, use_stdout=args.log_stdout) +if os.name == "nt": + os.environ['MIMALLOC_PURGE_DELAY'] = '0' + +if __name__ == "__main__": + os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1' + if args.default_device is not None: + default_dev = args.default_device + devices = list(range(32)) + devices.remove(default_dev) + devices.insert(0, default_dev) + devices = ','.join(map(str, devices)) + os.environ['CUDA_VISIBLE_DEVICES'] = str(devices) + os.environ['HIP_VISIBLE_DEVICES'] = str(devices) + + if args.cuda_device is not None: + os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) + os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device) + os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device) + logging.info("Set cuda device to: {}".format(args.cuda_device)) + + if args.oneapi_device_selector is not None: + os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector + logging.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector)) + + if args.deterministic: + if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: + os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" + + import cuda_malloc + if "rocm" in cuda_malloc.get_torch_version_noimport(): + os.environ['OCL_SET_SVM_SIZE'] = '262144' # set at the request of AMD + + +def handle_comfyui_manager_unavailable(): + if not args.windows_standalone_build: + logging.warning(f"\n\nYou appear to be running comfyui-manager from source, this is not recommended. Please install comfyui-manager using the following command:\ncommand:\n\t{sys.executable} -m pip install --pre comfyui_manager\n") + args.enable_manager = False + + +if args.enable_manager: + if importlib.util.find_spec("comfyui_manager"): + import comfyui_manager + + if not comfyui_manager.__file__ or not comfyui_manager.__file__.endswith('__init__.py'): + handle_comfyui_manager_unavailable() + else: + handle_comfyui_manager_unavailable() + + def apply_custom_paths(): # extra model paths extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml") @@ -79,6 +129,11 @@ def execute_prestartup_script(): for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) + + if args.enable_manager: + if comfyui_manager.should_be_disabled(module_path): + continue + if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__": continue @@ -101,6 +156,10 @@ def execute_prestartup_script(): logging.info("") apply_custom_paths() + +if args.enable_manager: + comfyui_manager.prestartup() + execute_prestartup_script() @@ -110,37 +169,6 @@ import shutil import threading import gc - -if os.name == "nt": - os.environ['MIMALLOC_PURGE_DELAY'] = '0' - -if __name__ == "__main__": - os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1' - if args.default_device is not None: - default_dev = args.default_device - devices = list(range(32)) - devices.remove(default_dev) - devices.insert(0, default_dev) - devices = ','.join(map(str, devices)) - os.environ['CUDA_VISIBLE_DEVICES'] = str(devices) - os.environ['HIP_VISIBLE_DEVICES'] = str(devices) - - if args.cuda_device is not None: - os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) - os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device) - os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device) - logging.info("Set cuda device to: {}".format(args.cuda_device)) - - if args.oneapi_device_selector is not None: - os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector - logging.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector)) - - if args.deterministic: - if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: - os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" - - import cuda_malloc - if 'torch' in sys.modules: logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.") @@ -172,10 +200,12 @@ def prompt_worker(q, server_instance): cache_type = execution.CacheType.CLASSIC if args.cache_lru > 0: cache_type = execution.CacheType.LRU + elif args.cache_ram > 0: + cache_type = execution.CacheType.RAM_PRESSURE elif args.cache_none: - cache_type = execution.CacheType.DEPENDENCY_AWARE + cache_type = execution.CacheType.NONE - e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru) + e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_args={ "lru" : args.cache_lru, "ram" : args.cache_ram } ) last_gc_collect = 0 need_gc = False gc_collect_interval = 10.0 @@ -192,14 +222,21 @@ def prompt_worker(q, server_instance): prompt_id = item[1] server_instance.last_prompt_id = prompt_id - e.execute(item[2], prompt_id, item[3], item[4]) + sensitive = item[5] + extra_data = item[3].copy() + for k in sensitive: + extra_data[k] = sensitive[k] + + e.execute(item[2], prompt_id, extra_data, item[4]) need_gc = True + + remove_sensitive = lambda prompt: prompt[:5] + prompt[6:] q.task_done(item_id, e.history_result, status=execution.PromptQueue.ExecutionStatus( status_str='success' if e.success else 'error', completed=e.success, - messages=e.status_messages)) + messages=e.status_messages), process_item=remove_sensitive) if server_instance.client_id is not None: server_instance.send_sync("executing", {"node": None, "prompt_id": prompt_id}, server_instance.client_id) @@ -314,6 +351,9 @@ def start_comfyui(asyncio_loop=None): asyncio.set_event_loop(asyncio_loop) prompt_server = server.PromptServer(asyncio_loop) + if args.enable_manager and not args.disable_manager_ui: + comfyui_manager.start() + hook_breaker_ac10a0.save_functions() asyncio_loop.run_until_complete(nodes.init_extra_nodes( init_custom_nodes=(not args.disable_all_custom_nodes) or len(args.whitelist_custom_nodes) > 0, diff --git a/manager_requirements.txt b/manager_requirements.txt new file mode 100644 index 000000000..6585b0c19 --- /dev/null +++ b/manager_requirements.txt @@ -0,0 +1 @@ +comfyui_manager==4.0.4 diff --git a/models/latent_upscale_models/put_latent_upscale_models_here b/models/latent_upscale_models/put_latent_upscale_models_here new file mode 100644 index 000000000..e69de29bb diff --git a/nodes.py b/nodes.py index 88d712993..d9e4ebd91 100644 --- a/nodes.py +++ b/nodes.py @@ -43,6 +43,9 @@ import folder_paths import latent_preview import node_helpers +if args.enable_manager: + import comfyui_manager + def before_node_execution(): comfy.model_management.throw_exception_if_processing_interrupted() @@ -340,7 +343,7 @@ class VAEEncode: CATEGORY = "latent" def encode(self, vae, pixels): - t = vae.encode(pixels[:,:,:,:3]) + t = vae.encode(pixels) return ({"samples":t}, ) class VAEEncodeTiled: @@ -358,7 +361,7 @@ class VAEEncodeTiled: CATEGORY = "_for_testing" def encode(self, vae, pixels, tile_size, overlap, temporal_size=64, temporal_overlap=8): - t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap) + t = vae.encode_tiled(pixels, tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap) return ({"samples": t}, ) class VAEEncodeForInpaint: @@ -692,8 +695,10 @@ class LoraLoaderModelOnly(LoraLoader): return (self.load_lora(model, None, lora_name, strength_model, 0)[0],) class VAELoader: + video_taes = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] + image_taes = ["taesd", "taesdxl", "taesd3", "taef1"] @staticmethod - def vae_list(): + def vae_list(s): vaes = folder_paths.get_filename_list("vae") approx_vaes = folder_paths.get_filename_list("vae_approx") sdxl_taesd_enc = False @@ -722,6 +727,11 @@ class VAELoader: f1_taesd_dec = True elif v.startswith("taef1_decoder."): f1_taesd_enc = True + else: + for tae in s.video_taes: + if v.startswith(tae): + vaes.append(v) + if sd1_taesd_dec and sd1_taesd_enc: vaes.append("taesd") if sdxl_taesd_dec and sdxl_taesd_enc: @@ -765,7 +775,7 @@ class VAELoader: @classmethod def INPUT_TYPES(s): - return {"required": { "vae_name": (s.vae_list(), )}} + return {"required": { "vae_name": (s.vae_list(s), )}} RETURN_TYPES = ("VAE",) FUNCTION = "load_vae" @@ -776,10 +786,13 @@ class VAELoader: if vae_name == "pixel_space": sd = {} sd["pixel_space_vae"] = torch.tensor(1.0) - elif vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]: + elif vae_name in self.image_taes: sd = self.load_taesd(vae_name) else: - vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) + if os.path.splitext(vae_name)[0] in self.video_taes: + vae_path = folder_paths.get_full_path_or_raise("vae_approx", vae_name) + else: + vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) sd = comfy.utils.load_torch_file(vae_path) vae = comfy.sd.VAE(sd=sd) vae.throw_exception_if_invalid() @@ -929,7 +942,7 @@ class CLIPLoader: @classmethod def INPUT_TYPES(s): return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image"], ), + "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image", "flux2", "ovis"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -957,7 +970,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "newbie"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -967,7 +980,7 @@ class DualCLIPLoader: CATEGORY = "advanced/loaders" - DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small" + DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small\nnewbie: gemma-3-4b-it, jina clip v2" def load_clip(self, clip_name1, clip_name2, type, device="default"): clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION) @@ -1850,8 +1863,14 @@ class ImageBatch: FUNCTION = "batch" CATEGORY = "image" + DEPRECATED = True def batch(self, image1, image2): + if image1.shape[-1] != image2.shape[-1]: + if image1.shape[-1] > image2.shape[-1]: + image2 = torch.nn.functional.pad(image2, (0,1), mode='constant', value=1.0) + else: + image1 = torch.nn.functional.pad(image1, (0,1), mode='constant', value=1.0) if image1.shape[1:] != image2.shape[1:]: image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1) s = torch.cat((image1, image2), dim=0) @@ -2027,7 +2046,6 @@ NODE_DISPLAY_NAME_MAPPINGS = { "DiffControlNetLoader": "Load ControlNet Model (diff)", "StyleModelLoader": "Load Style Model", "CLIPVisionLoader": "Load CLIP Vision", - "UpscaleModelLoader": "Load Upscale Model", "UNETLoader": "Load Diffusion Model", # Conditioning "CLIPVisionEncode": "CLIP Vision Encode", @@ -2065,7 +2083,6 @@ NODE_DISPLAY_NAME_MAPPINGS = { "LoadImageOutput": "Load Image (from Outputs)", "ImageScale": "Upscale Image", "ImageScaleBy": "Upscale Image By", - "ImageUpscaleWithModel": "Upscale Image (using Model)", "ImageInvert": "Invert Image", "ImagePadForOutpaint": "Pad Image for Outpainting", "ImageBatch": "Batch Images", @@ -2230,6 +2247,12 @@ async def init_external_custom_nodes(): if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes: logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes") continue + + if args.enable_manager: + if comfyui_manager.should_be_disabled(module_path): + logging.info(f"Blocked by policy: {module_path}") + continue + time_before = time.perf_counter() success = await load_custom_node(module_path, base_node_names, module_parent="custom_nodes") node_import_times.append((time.perf_counter() - time_before, module_path, success)) @@ -2275,6 +2298,7 @@ async def init_builtin_extra_nodes(): "nodes_images.py", "nodes_video_model.py", "nodes_train.py", + "nodes_dataset.py", "nodes_sag.py", "nodes_perpneg.py", "nodes_stable3d.py", @@ -2331,6 +2355,11 @@ async def init_builtin_extra_nodes(): "nodes_model_patch.py", "nodes_easycache.py", "nodes_audio_encoder.py", + "nodes_rope.py", + "nodes_logic.py", + "nodes_nop.py", + "nodes_kandinsky5.py", + "nodes_wanmove.py", ] import_failed = [] @@ -2351,12 +2380,14 @@ async def init_builtin_api_nodes(): "nodes_kling.py", "nodes_bfl.py", "nodes_bytedance.py", + "nodes_ltxv.py", "nodes_luma.py", "nodes_recraft.py", "nodes_pixverse.py", "nodes_stability.py", - "nodes_pika.py", "nodes_runway.py", + "nodes_sora.py", + "nodes_topaz.py", "nodes_tripo.py", "nodes_moonvalley.py", "nodes_rodin.py", diff --git a/pyproject.toml b/pyproject.toml index 383e7d10a..bc1467941 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.62" +version = "0.7.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" @@ -24,7 +24,7 @@ lint.select = [ exclude = ["*.ipynb", "**/generated/*.pyi"] [tool.pylint] -master.py-version = "3.9" +master.py-version = "3.10" master.extension-pkg-allow-list = [ "pydantic", ] @@ -50,6 +50,8 @@ messages_control.disable = [ "too-many-branches", "too-many-locals", "too-many-arguments", + "too-many-return-statements", + "too-many-nested-blocks", "duplicate-code", "abstract-method", "superfluous-parens", @@ -57,18 +59,13 @@ messages_control.disable = [ "redefined-builtin", "unnecessary-lambda", "dangerous-default-value", + "invalid-overridden-method", # next warnings should be fixed in future "bad-classmethod-argument", # Class method should have 'cls' as first argument "wrong-import-order", # Standard imports should be placed before third party imports - "logging-fstring-interpolation", # Use lazy % formatting in logging functions "ungrouped-imports", "unnecessary-pass", - "unidiomatic-typecheck", "unnecessary-lambda-assignment", "no-else-return", - "no-else-raise", - "invalid-overridden-method", "unused-variable", - "pointless-string-statement", - "redefined-outer-name", ] diff --git a/requirements.txt b/requirements.txt index 6c28f9478..3a05799eb 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,13 +1,13 @@ -comfyui-frontend-package==1.27.7 -comfyui-workflow-templates==0.1.91 -comfyui-embedded-docs==0.2.6 +comfyui-frontend-package==1.35.9 +comfyui-workflow-templates==0.7.65 +comfyui-embedded-docs==0.3.1 torch torchsde torchvision torchaudio numpy>=1.25.0 einops -transformers>=4.37.2 +transformers>=4.50.3 tokenizers>=0.13.3 sentencepiece safetensors>=0.4.2 diff --git a/server.py b/server.py index 80e9d3fa7..c27f8be7d 100644 --- a/server.py +++ b/server.py @@ -2,10 +2,12 @@ import os import sys import asyncio import traceback +import time import nodes import folder_paths import execution +from comfy_execution.jobs import JobStatus, get_job, get_all_jobs import uuid import urllib import json @@ -29,12 +31,13 @@ import comfy.model_management from comfy_api import feature_flags import node_helpers from comfyui_version import __version__ -from app.frontend_management import FrontendManager +from app.frontend_management import FrontendManager, parse_version from comfy_api.internal import _ComfyNodeInternal from app.user_manager import UserManager from app.model_manager import ModelFileManager from app.custom_node_manager import CustomNodeManager +from app.subgraph_manager import SubgraphManager from typing import Optional, Union from api_server.routes.internal.internal_routes import InternalRoutes from protocol import BinaryEventTypes @@ -42,12 +45,43 @@ from protocol import BinaryEventTypes # Import cache control middleware from middleware.cache_middleware import cache_control +if args.enable_manager: + import comfyui_manager + + +def _remove_sensitive_from_queue(queue: list) -> list: + """Remove sensitive data (index 5) from queue item tuples.""" + return [item[:5] for item in queue] + + async def send_socket_catch_exception(function, message): try: await function(message) except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError, BrokenPipeError, ConnectionError) as err: logging.warning("send error: {}".format(err)) +# Track deprecated paths that have been warned about to only warn once per file +_deprecated_paths_warned = set() + +@web.middleware +async def deprecation_warning(request: web.Request, handler): + """Middleware to warn about deprecated frontend API paths""" + path = request.path + + if path.startswith("/scripts/ui") or path.startswith("/extensions/core/"): + # Only warn once per unique file path + if path not in _deprecated_paths_warned: + _deprecated_paths_warned.add(path) + logging.warning( + f"[DEPRECATION WARNING] Detected import of deprecated legacy API: {path}. " + f"This is likely caused by a custom node extension using outdated APIs. " + f"Please update your extensions or contact the extension author for an updated version." + ) + + response: web.Response = await handler(request) + return response + + @web.middleware async def compress_body(request: web.Request, handler): accept_encoding = request.headers.get("Accept-Encoding", "") @@ -71,7 +105,7 @@ def create_cors_middleware(allowed_origin: str): response = await handler(request) response.headers['Access-Control-Allow-Origin'] = allowed_origin - response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS' + response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS, PATCH' response.headers['Access-Control-Allow-Headers'] = 'Content-Type, Authorization' response.headers['Access-Control-Allow-Credentials'] = 'true' return response @@ -140,6 +174,22 @@ def create_origin_only_middleware(): return origin_only_middleware + +def create_block_external_middleware(): + @web.middleware + async def block_external_middleware(request: web.Request, handler): + if request.method == "OPTIONS": + # Pre-flight request. Reply successfully: + response = web.Response() + else: + response = await handler(request) + + response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';" + return response + + return block_external_middleware + + class PromptServer(): def __init__(self, loop): PromptServer.instance = self @@ -151,6 +201,7 @@ class PromptServer(): self.user_manager = UserManager() self.model_file_manager = ModelFileManager() self.custom_node_manager = CustomNodeManager() + self.subgraph_manager = SubgraphManager() self.internal_routes = InternalRoutes(self) self.supports = ["custom_nodes_from_web"] self.prompt_queue = execution.PromptQueue(self) @@ -159,7 +210,7 @@ class PromptServer(): self.client_session:Optional[aiohttp.ClientSession] = None self.number = 0 - middlewares = [cache_control] + middlewares = [cache_control, deprecation_warning] if args.enable_compress_response_body: middlewares.append(compress_body) @@ -168,6 +219,12 @@ class PromptServer(): else: middlewares.append(create_origin_only_middleware()) + if args.disable_api_nodes: + middlewares.append(create_block_external_middleware()) + + if args.enable_manager: + middlewares.append(comfyui_manager.create_middleware()) + max_upload_size = round(args.max_upload_size * 1024 * 1024) self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares) self.sockets = dict() @@ -555,7 +612,7 @@ class PromptServer(): system_stats = { "system": { - "os": os.name, + "os": sys.platform, "ram_total": ram_total, "ram_free": ram_free, "comfyui_version": __version__, @@ -644,6 +701,129 @@ class PromptServer(): out[node_class] = node_info(node_class) return web.json_response(out) + @routes.get("/api/jobs") + async def get_jobs(request): + """List all jobs with filtering, sorting, and pagination. + + Query parameters: + status: Filter by status (comma-separated): pending, in_progress, completed, failed + workflow_id: Filter by workflow ID + sort_by: Sort field: created_at (default), execution_duration + sort_order: Sort direction: asc, desc (default) + limit: Max items to return (positive integer) + offset: Items to skip (non-negative integer, default 0) + """ + query = request.rel_url.query + + status_param = query.get('status') + workflow_id = query.get('workflow_id') + sort_by = query.get('sort_by', 'created_at').lower() + sort_order = query.get('sort_order', 'desc').lower() + + status_filter = None + if status_param: + status_filter = [s.strip().lower() for s in status_param.split(',') if s.strip()] + invalid_statuses = [s for s in status_filter if s not in JobStatus.ALL] + if invalid_statuses: + return web.json_response( + {"error": f"Invalid status value(s): {', '.join(invalid_statuses)}. Valid values: {', '.join(JobStatus.ALL)}"}, + status=400 + ) + + if sort_by not in {'created_at', 'execution_duration'}: + return web.json_response( + {"error": "sort_by must be 'created_at' or 'execution_duration'"}, + status=400 + ) + + if sort_order not in {'asc', 'desc'}: + return web.json_response( + {"error": "sort_order must be 'asc' or 'desc'"}, + status=400 + ) + + limit = None + + # If limit is provided, validate that it is a positive integer, else continue without a limit + if 'limit' in query: + try: + limit = int(query.get('limit')) + if limit <= 0: + return web.json_response( + {"error": "limit must be a positive integer"}, + status=400 + ) + except (ValueError, TypeError): + return web.json_response( + {"error": "limit must be an integer"}, + status=400 + ) + + offset = 0 + if 'offset' in query: + try: + offset = int(query.get('offset')) + if offset < 0: + offset = 0 + except (ValueError, TypeError): + return web.json_response( + {"error": "offset must be an integer"}, + status=400 + ) + + running, queued = self.prompt_queue.get_current_queue_volatile() + history = self.prompt_queue.get_history() + + running = _remove_sensitive_from_queue(running) + queued = _remove_sensitive_from_queue(queued) + + jobs, total = get_all_jobs( + running, queued, history, + status_filter=status_filter, + workflow_id=workflow_id, + sort_by=sort_by, + sort_order=sort_order, + limit=limit, + offset=offset + ) + + has_more = (offset + len(jobs)) < total + + return web.json_response({ + 'jobs': jobs, + 'pagination': { + 'offset': offset, + 'limit': limit, + 'total': total, + 'has_more': has_more + } + }) + + @routes.get("/api/jobs/{job_id}") + async def get_job_by_id(request): + """Get a single job by ID.""" + job_id = request.match_info.get("job_id", None) + if not job_id: + return web.json_response( + {"error": "job_id is required"}, + status=400 + ) + + running, queued = self.prompt_queue.get_current_queue_volatile() + history = self.prompt_queue.get_history(prompt_id=job_id) + + running = _remove_sensitive_from_queue(running) + queued = _remove_sensitive_from_queue(queued) + + job = get_job(job_id, running, queued, history) + if job is None: + return web.json_response( + {"error": "Job not found"}, + status=404 + ) + + return web.json_response(job) + @routes.get("/history") async def get_history(request): max_items = request.rel_url.query.get("max_items", None) @@ -667,8 +847,8 @@ class PromptServer(): async def get_queue(request): queue_info = {} current_queue = self.prompt_queue.get_current_queue_volatile() - queue_info['queue_running'] = current_queue[0] - queue_info['queue_pending'] = current_queue[1] + queue_info['queue_running'] = _remove_sensitive_from_queue(current_queue[0]) + queue_info['queue_pending'] = _remove_sensitive_from_queue(current_queue[1]) return web.json_response(queue_info) @routes.post("/prompt") @@ -704,7 +884,12 @@ class PromptServer(): extra_data["client_id"] = json_data["client_id"] if valid[0]: outputs_to_execute = valid[2] - self.prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute)) + sensitive = {} + for sensitive_val in execution.SENSITIVE_EXTRA_DATA_KEYS: + if sensitive_val in extra_data: + sensitive[sensitive_val] = extra_data.pop(sensitive_val) + extra_data["create_time"] = int(time.time() * 1000) # timestamp in milliseconds + self.prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute, sensitive)) response = {"prompt_id": prompt_id, "number": number, "node_errors": valid[3]} return web.json_response(response) else: @@ -797,6 +982,7 @@ class PromptServer(): self.user_manager.add_routes(self.routes) self.model_file_manager.add_routes(self.routes) self.custom_node_manager.add_routes(self.routes, self.app, nodes.LOADED_MODULE_DIRS.items()) + self.subgraph_manager.add_routes(self.routes, nodes.LOADED_MODULE_DIRS.items()) self.app.add_subapp('/internal', self.internal_routes.get_app()) # Prefix every route with /api for easier matching for delegation. @@ -817,11 +1003,31 @@ class PromptServer(): for name, dir in nodes.EXTENSION_WEB_DIRS.items(): self.app.add_routes([web.static('/extensions/' + name, dir)]) - workflow_templates_path = FrontendManager.templates_path() - if workflow_templates_path: - self.app.add_routes([ - web.static('/templates', workflow_templates_path) - ]) + installed_templates_version = FrontendManager.get_installed_templates_version() + use_legacy_templates = True + if installed_templates_version: + try: + use_legacy_templates = ( + parse_version(installed_templates_version) + < parse_version("0.3.0") + ) + except Exception as exc: + logging.warning( + "Unable to parse templates version '%s': %s", + installed_templates_version, + exc, + ) + + if use_legacy_templates: + workflow_templates_path = FrontendManager.legacy_templates_path() + if workflow_templates_path: + self.app.add_routes([ + web.static('/templates', workflow_templates_path) + ]) + else: + handler = FrontendManager.template_asset_handler() + if handler: + self.app.router.add_get("/templates/{path:.*}", handler) # Serve embedded documentation from the package embedded_docs_path = FrontendManager.embedded_docs_path() diff --git a/tests-unit/app_test/user_manager_system_user_test.py b/tests-unit/app_test/user_manager_system_user_test.py new file mode 100644 index 000000000..63b1ac5e5 --- /dev/null +++ b/tests-unit/app_test/user_manager_system_user_test.py @@ -0,0 +1,193 @@ +"""Tests for System User Protection in user_manager.py + +Tests cover: +- get_request_user_id(): 1st defense layer - blocks System Users from HTTP headers +- get_request_user_filepath(): 2nd defense layer - structural blocking via get_public_user_directory() +- add_user(): 3rd defense layer - prevents creation of System User names +- Defense layers integration tests +""" + +import pytest +from unittest.mock import MagicMock, patch +import tempfile + +import folder_paths +from app.user_manager import UserManager + + +@pytest.fixture +def mock_user_directory(): + """Create a temporary user directory.""" + with tempfile.TemporaryDirectory() as temp_dir: + original_dir = folder_paths.get_user_directory() + folder_paths.set_user_directory(temp_dir) + yield temp_dir + folder_paths.set_user_directory(original_dir) + + +@pytest.fixture +def user_manager(mock_user_directory): + """Create a UserManager instance for testing.""" + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + manager = UserManager() + # Add a default user for testing + manager.users = {"default": "default", "test_user_123": "Test User"} + yield manager + + +@pytest.fixture +def mock_request(): + """Create a mock request object.""" + request = MagicMock() + request.headers = {} + return request + + +class TestGetRequestUserId: + """Tests for get_request_user_id() - 1st defense layer. + + Verifies: + - System Users (__ prefix) in HTTP header are rejected with KeyError + - Public Users pass through successfully + """ + + def test_system_user_raises_error(self, user_manager, mock_request): + """Test System User in header raises KeyError.""" + mock_request.headers = {"comfy-user": "__system"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + def test_system_user_cache_raises_error(self, user_manager, mock_request): + """Test System User cache raises KeyError.""" + mock_request.headers = {"comfy-user": "__cache"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + def test_normal_user_works(self, user_manager, mock_request): + """Test normal user access works.""" + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + user_id = user_manager.get_request_user_id(mock_request) + assert user_id == "default" + + def test_unknown_user_raises_error(self, user_manager, mock_request): + """Test unknown user raises KeyError.""" + mock_request.headers = {"comfy-user": "unknown_user"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + +class TestGetRequestUserFilepath: + """Tests for get_request_user_filepath() - 2nd defense layer. + + Verifies: + - Returns None when get_public_user_directory() returns None (System User) + - Acts as backup defense if 1st layer is bypassed + """ + + def test_system_user_returns_none(self, user_manager, mock_request, mock_user_directory): + """Test System User returns None (structural blocking).""" + # First, we need to mock get_request_user_id to return System User + # But actually, get_request_user_id will raise KeyError first + # So we test via get_public_user_directory returning None + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + # Patch get_public_user_directory to return None for testing + with patch.object(folder_paths, 'get_public_user_directory', return_value=None): + result = user_manager.get_request_user_filepath(mock_request, "test.txt") + assert result is None + + def test_normal_user_gets_path(self, user_manager, mock_request, mock_user_directory): + """Test normal user gets valid filepath.""" + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + path = user_manager.get_request_user_filepath(mock_request, "test.txt") + assert path is not None + assert "default" in path + assert path.endswith("test.txt") + + +class TestAddUser: + """Tests for add_user() - 3rd defense layer (creation-time blocking). + + Verifies: + - System User name (__ prefix) creation is rejected with ValueError + - Sanitized usernames that become System User are also rejected + """ + + def test_system_user_prefix_name_raises(self, user_manager): + """Test System User prefix in name raises ValueError.""" + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__system") + + def test_system_user_prefix_cache_raises(self, user_manager): + """Test System User cache prefix raises ValueError.""" + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__cache") + + def test_sanitized_system_user_prefix_raises(self, user_manager): + """Test sanitized name becoming System User prefix raises ValueError (bypass prevention).""" + # "__test" directly starts with System User prefix + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__test") + + def test_normal_user_creation(self, user_manager, mock_user_directory): + """Test normal user creation works.""" + user_id = user_manager.add_user("Normal User") + assert user_id is not None + assert not user_id.startswith("__") + assert "Normal-User" in user_id or "Normal_User" in user_id + + def test_empty_name_raises(self, user_manager): + """Test empty name raises ValueError.""" + with pytest.raises(ValueError, match="username not provided"): + user_manager.add_user("") + + def test_whitespace_only_raises(self, user_manager): + """Test whitespace-only name raises ValueError.""" + with pytest.raises(ValueError, match="username not provided"): + user_manager.add_user(" ") + + +class TestDefenseLayers: + """Integration tests for all three defense layers. + + Verifies: + - Each defense layer blocks System Users independently + - System User bypass is impossible through any layer + """ + + def test_layer1_get_request_user_id(self, user_manager, mock_request): + """Test 1st defense layer blocks System Users.""" + mock_request.headers = {"comfy-user": "__system"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError): + user_manager.get_request_user_id(mock_request) + + def test_layer2_get_public_user_directory(self): + """Test 2nd defense layer blocks System Users.""" + result = folder_paths.get_public_user_directory("__system") + assert result is None + + def test_layer3_add_user(self, user_manager): + """Test 3rd defense layer blocks System User creation.""" + with pytest.raises(ValueError): + user_manager.add_user("__system") diff --git a/tests-unit/comfy_extras_test/image_stitch_test.py b/tests-unit/comfy_extras_test/image_stitch_test.py index b5a0f022c..5c6a15ac4 100644 --- a/tests-unit/comfy_extras_test/image_stitch_test.py +++ b/tests-unit/comfy_extras_test/image_stitch_test.py @@ -25,7 +25,7 @@ class TestImageStitch: result = node.stitch(image1, "right", True, 0, "white", image2=None) - assert len(result) == 1 + assert len(result.result) == 1 assert torch.equal(result[0], image1) def test_basic_horizontal_stitch_right(self): diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py new file mode 100644 index 000000000..3a54941e6 --- /dev/null +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -0,0 +1,233 @@ +import unittest +import torch +import sys +import os +import json + +# Add comfy to path +sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) + +def has_gpu(): + return torch.cuda.is_available() + +from comfy.cli_args import args +if not has_gpu(): + args.cpu = True + +from comfy import ops +from comfy.quant_ops import QuantizedTensor +import comfy.utils + + +class SimpleModel(torch.nn.Module): + def __init__(self, operations=ops.disable_weight_init): + super().__init__() + self.layer1 = operations.Linear(10, 20, device="cpu", dtype=torch.bfloat16) + self.layer2 = operations.Linear(20, 30, device="cpu", dtype=torch.bfloat16) + self.layer3 = operations.Linear(30, 40, device="cpu", dtype=torch.bfloat16) + + def forward(self, x): + x = self.layer1(x) + x = torch.nn.functional.relu(x) + x = self.layer2(x) + x = torch.nn.functional.relu(x) + x = self.layer3(x) + return x + + +class TestMixedPrecisionOps(unittest.TestCase): + + def test_all_layers_standard(self): + """Test that model with no quantization works normally""" + # Create model + model = SimpleModel(operations=ops.mixed_precision_ops({})) + + # Initialize weights manually + model.layer1.weight = torch.nn.Parameter(torch.randn(20, 10, dtype=torch.bfloat16)) + model.layer1.bias = torch.nn.Parameter(torch.randn(20, dtype=torch.bfloat16)) + model.layer2.weight = torch.nn.Parameter(torch.randn(30, 20, dtype=torch.bfloat16)) + model.layer2.bias = torch.nn.Parameter(torch.randn(30, dtype=torch.bfloat16)) + model.layer3.weight = torch.nn.Parameter(torch.randn(40, 30, dtype=torch.bfloat16)) + model.layer3.bias = torch.nn.Parameter(torch.randn(40, dtype=torch.bfloat16)) + + # Initialize weight_function and bias_function + for layer in [model.layer1, model.layer2, model.layer3]: + layer.weight_function = [] + layer.bias_function = [] + + # Forward pass + input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) + output = model(input_tensor) + + self.assertEqual(output.shape, (5, 40)) + self.assertEqual(output.dtype, torch.bfloat16) + + def test_mixed_precision_load(self): + """Test loading a mixed precision model from state dict""" + # Configure mixed precision: layer1 is FP8, layer2 and layer3 are standard + layer_quant_config = { + "layer1": { + "format": "float8_e4m3fn", + "params": {} + }, + "layer3": { + "format": "float8_e4m3fn", + "params": {} + } + } + + # Create state dict with mixed precision + fp8_weight1 = torch.randn(20, 10, dtype=torch.float32).to(torch.float8_e4m3fn) + fp8_weight3 = torch.randn(40, 30, dtype=torch.float32).to(torch.float8_e4m3fn) + + state_dict = { + # Layer 1: FP8 E4M3FN + "layer1.weight": fp8_weight1, + "layer1.bias": torch.randn(20, dtype=torch.bfloat16), + "layer1.weight_scale": torch.tensor(2.0, dtype=torch.float32), + + # Layer 2: Standard BF16 + "layer2.weight": torch.randn(30, 20, dtype=torch.bfloat16), + "layer2.bias": torch.randn(30, dtype=torch.bfloat16), + + # Layer 3: FP8 E4M3FN + "layer3.weight": fp8_weight3, + "layer3.bias": torch.randn(40, dtype=torch.bfloat16), + "layer3.weight_scale": torch.tensor(1.5, dtype=torch.float32), + } + + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + # Create model and load state dict (strict=False because custom loading pops keys) + model = SimpleModel(operations=ops.mixed_precision_ops({})) + model.load_state_dict(state_dict, strict=False) + + # Verify weights are wrapped in QuantizedTensor + self.assertIsInstance(model.layer1.weight, QuantizedTensor) + self.assertEqual(model.layer1.weight._layout_type, "TensorCoreFP8Layout") + + # Layer 2 should NOT be quantized + self.assertNotIsInstance(model.layer2.weight, QuantizedTensor) + + # Layer 3 should be quantized + self.assertIsInstance(model.layer3.weight, QuantizedTensor) + self.assertEqual(model.layer3.weight._layout_type, "TensorCoreFP8Layout") + + # Verify scales were loaded + self.assertEqual(model.layer1.weight._layout_params['scale'].item(), 2.0) + self.assertEqual(model.layer3.weight._layout_params['scale'].item(), 1.5) + + # Forward pass + input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) + with torch.inference_mode(): + output = model(input_tensor) + + self.assertEqual(output.shape, (5, 40)) + + def test_state_dict_quantized_preserved(self): + """Test that quantized weights are preserved in state_dict()""" + # Configure mixed precision + layer_quant_config = { + "layer1": { + "format": "float8_e4m3fn", + "params": {} + } + } + + # Create and load model + fp8_weight = torch.randn(20, 10, dtype=torch.float32).to(torch.float8_e4m3fn) + state_dict1 = { + "layer1.weight": fp8_weight, + "layer1.bias": torch.randn(20, dtype=torch.bfloat16), + "layer1.weight_scale": torch.tensor(3.0, dtype=torch.float32), + "layer2.weight": torch.randn(30, 20, dtype=torch.bfloat16), + "layer2.bias": torch.randn(30, dtype=torch.bfloat16), + "layer3.weight": torch.randn(40, 30, dtype=torch.bfloat16), + "layer3.bias": torch.randn(40, dtype=torch.bfloat16), + } + + state_dict1, _ = comfy.utils.convert_old_quants(state_dict1, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + model = SimpleModel(operations=ops.mixed_precision_ops({})) + model.load_state_dict(state_dict1, strict=False) + + # Save state dict + state_dict2 = model.state_dict() + + # Verify layer1.weight is a QuantizedTensor with scale preserved + self.assertIsInstance(state_dict2["layer1.weight"], QuantizedTensor) + self.assertEqual(state_dict2["layer1.weight"]._layout_params['scale'].item(), 3.0) + self.assertEqual(state_dict2["layer1.weight"]._layout_type, "TensorCoreFP8Layout") + + # Verify non-quantized layers are standard tensors + self.assertNotIsInstance(state_dict2["layer2.weight"], QuantizedTensor) + self.assertNotIsInstance(state_dict2["layer3.weight"], QuantizedTensor) + + def test_weight_function_compatibility(self): + """Test that weight_function (LoRA) works with quantized layers""" + # Configure FP8 quantization + layer_quant_config = { + "layer1": { + "format": "float8_e4m3fn", + "params": {} + } + } + + # Create and load model + fp8_weight = torch.randn(20, 10, dtype=torch.float32).to(torch.float8_e4m3fn) + state_dict = { + "layer1.weight": fp8_weight, + "layer1.bias": torch.randn(20, dtype=torch.bfloat16), + "layer1.weight_scale": torch.tensor(2.0, dtype=torch.float32), + "layer2.weight": torch.randn(30, 20, dtype=torch.bfloat16), + "layer2.bias": torch.randn(30, dtype=torch.bfloat16), + "layer3.weight": torch.randn(40, 30, dtype=torch.bfloat16), + "layer3.bias": torch.randn(40, dtype=torch.bfloat16), + } + + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + model = SimpleModel(operations=ops.mixed_precision_ops({})) + model.load_state_dict(state_dict, strict=False) + + # Add a weight function (simulating LoRA) + # This should trigger dequantization during forward pass + def apply_lora(weight): + lora_delta = torch.randn_like(weight) * 0.01 + return weight + lora_delta + + model.layer1.weight_function.append(apply_lora) + + # Forward pass should work with LoRA (triggers weight_function path) + input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) + output = model(input_tensor) + + self.assertEqual(output.shape, (5, 40)) + + def test_error_handling_unknown_format(self): + """Test that unknown formats raise error""" + # Configure with unknown format + layer_quant_config = { + "layer1": { + "format": "unknown_format_xyz", + "params": {} + } + } + + # Create state dict + state_dict = { + "layer1.weight": torch.randn(20, 10, dtype=torch.bfloat16), + "layer1.bias": torch.randn(20, dtype=torch.bfloat16), + "layer2.weight": torch.randn(30, 20, dtype=torch.bfloat16), + "layer2.bias": torch.randn(30, dtype=torch.bfloat16), + "layer3.weight": torch.randn(40, 30, dtype=torch.bfloat16), + "layer3.bias": torch.randn(40, dtype=torch.bfloat16), + } + + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + + # Load should raise KeyError for unknown format in QUANT_FORMAT_MIXINS + model = SimpleModel(operations=ops.mixed_precision_ops({})) + with self.assertRaises(KeyError): + model.load_state_dict(state_dict, strict=False) + +if __name__ == "__main__": + unittest.main() + diff --git a/tests-unit/comfy_quant/test_quant_registry.py b/tests-unit/comfy_quant/test_quant_registry.py new file mode 100644 index 000000000..9cb54ede8 --- /dev/null +++ b/tests-unit/comfy_quant/test_quant_registry.py @@ -0,0 +1,190 @@ +import unittest +import torch +import sys +import os + +# Add comfy to path +sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) + +def has_gpu(): + return torch.cuda.is_available() + +from comfy.cli_args import args +if not has_gpu(): + args.cpu = True + +from comfy.quant_ops import QuantizedTensor, TensorCoreFP8Layout + + +class TestQuantizedTensor(unittest.TestCase): + """Test the QuantizedTensor subclass with FP8 layout""" + + def test_creation(self): + """Test creating a QuantizedTensor with TensorCoreFP8Layout""" + fp8_data = torch.randn(256, 128, dtype=torch.float32).to(torch.float8_e4m3fn) + scale = torch.tensor(2.0) + layout_params = {'scale': scale, 'orig_dtype': torch.bfloat16} + + qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) + + self.assertIsInstance(qt, QuantizedTensor) + self.assertEqual(qt.shape, (256, 128)) + self.assertEqual(qt.dtype, torch.float8_e4m3fn) + self.assertEqual(qt._layout_params['scale'], scale) + self.assertEqual(qt._layout_params['orig_dtype'], torch.bfloat16) + self.assertEqual(qt._layout_type, "TensorCoreFP8Layout") + + def test_dequantize(self): + """Test explicit dequantization""" + + fp8_data = torch.ones(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) + scale = torch.tensor(3.0) + layout_params = {'scale': scale, 'orig_dtype': torch.float32} + + qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) + dequantized = qt.dequantize() + + self.assertEqual(dequantized.dtype, torch.float32) + self.assertTrue(torch.allclose(dequantized, torch.ones(10, 20) * 3.0, rtol=0.1)) + + def test_from_float(self): + """Test creating QuantizedTensor from float tensor""" + float_tensor = torch.randn(64, 32, dtype=torch.float32) + scale = torch.tensor(1.5) + + qt = QuantizedTensor.from_float( + float_tensor, + "TensorCoreFP8Layout", + scale=scale, + dtype=torch.float8_e4m3fn + ) + + self.assertIsInstance(qt, QuantizedTensor) + self.assertEqual(qt.dtype, torch.float8_e4m3fn) + self.assertEqual(qt.shape, (64, 32)) + + # Verify dequantization gives approximately original values + dequantized = qt.dequantize() + mean_rel_error = ((dequantized - float_tensor).abs() / (float_tensor.abs() + 1e-6)).mean() + self.assertLess(mean_rel_error, 0.1) + + +class TestGenericUtilities(unittest.TestCase): + """Test generic utility operations""" + + def test_detach(self): + """Test detach operation on quantized tensor""" + fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) + scale = torch.tensor(1.5) + layout_params = {'scale': scale, 'orig_dtype': torch.float32} + qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) + + # Detach should return a new QuantizedTensor + qt_detached = qt.detach() + + self.assertIsInstance(qt_detached, QuantizedTensor) + self.assertEqual(qt_detached.shape, qt.shape) + self.assertEqual(qt_detached._layout_type, "TensorCoreFP8Layout") + + def test_clone(self): + """Test clone operation on quantized tensor""" + fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) + scale = torch.tensor(1.5) + layout_params = {'scale': scale, 'orig_dtype': torch.float32} + qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) + + # Clone should return a new QuantizedTensor + qt_cloned = qt.clone() + + self.assertIsInstance(qt_cloned, QuantizedTensor) + self.assertEqual(qt_cloned.shape, qt.shape) + self.assertEqual(qt_cloned._layout_type, "TensorCoreFP8Layout") + + # Verify it's a deep copy + self.assertIsNot(qt_cloned._qdata, qt._qdata) + + @unittest.skipUnless(has_gpu(), "GPU not available") + def test_to_device(self): + """Test device transfer""" + fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) + scale = torch.tensor(1.5) + layout_params = {'scale': scale, 'orig_dtype': torch.float32} + qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) + + # Moving to same device should work (CPU to CPU) + qt_cpu = qt.to('cpu') + + self.assertIsInstance(qt_cpu, QuantizedTensor) + self.assertEqual(qt_cpu.device.type, 'cpu') + self.assertEqual(qt_cpu._layout_params['scale'].device.type, 'cpu') + + +class TestTensorCoreFP8Layout(unittest.TestCase): + """Test the TensorCoreFP8Layout implementation""" + + def test_quantize(self): + """Test quantization method""" + float_tensor = torch.randn(32, 64, dtype=torch.float32) + scale = torch.tensor(1.5) + + qdata, layout_params = TensorCoreFP8Layout.quantize( + float_tensor, + scale=scale, + dtype=torch.float8_e4m3fn + ) + + self.assertEqual(qdata.dtype, torch.float8_e4m3fn) + self.assertEqual(qdata.shape, float_tensor.shape) + self.assertIn('scale', layout_params) + self.assertIn('orig_dtype', layout_params) + self.assertEqual(layout_params['orig_dtype'], torch.float32) + + def test_dequantize(self): + """Test dequantization method""" + float_tensor = torch.ones(10, 20, dtype=torch.float32) * 3.0 + scale = torch.tensor(1.0) + + qdata, layout_params = TensorCoreFP8Layout.quantize( + float_tensor, + scale=scale, + dtype=torch.float8_e4m3fn + ) + + dequantized = TensorCoreFP8Layout.dequantize(qdata, **layout_params) + + # Should approximately match original + self.assertTrue(torch.allclose(dequantized, float_tensor, rtol=0.1, atol=0.1)) + + +class TestFallbackMechanism(unittest.TestCase): + """Test fallback for unsupported operations""" + + def test_unsupported_op_dequantizes(self): + """Test that unsupported operations fall back to dequantization""" + # Set seed for reproducibility + torch.manual_seed(42) + + # Create quantized tensor + a_fp32 = torch.randn(10, 20, dtype=torch.float32) + scale = torch.tensor(1.0) + a_q = QuantizedTensor.from_float( + a_fp32, + "TensorCoreFP8Layout", + scale=scale, + dtype=torch.float8_e4m3fn + ) + + # Call an operation that doesn't have a registered handler + # For example, torch.abs + result = torch.abs(a_q) + + # Should work via fallback (dequantize → abs → return) + self.assertNotIsInstance(result, QuantizedTensor) + expected = torch.abs(a_fp32) + # FP8 introduces quantization error, so use loose tolerance + mean_error = (result - expected).abs().mean() + self.assertLess(mean_error, 0.05, f"Mean error {mean_error:.4f} is too large") + + +if __name__ == "__main__": + unittest.main() diff --git a/tests-unit/execution_test/preview_method_override_test.py b/tests-unit/execution_test/preview_method_override_test.py new file mode 100644 index 000000000..79432d610 --- /dev/null +++ b/tests-unit/execution_test/preview_method_override_test.py @@ -0,0 +1,352 @@ +""" +Unit tests for Queue-specific Preview Method Override feature. + +Tests the preview method override functionality: +- LatentPreviewMethod.from_string() method +- set_preview_method() function in latent_preview.py +- default_preview_method variable +- Integration with args.preview_method +""" +import pytest +from comfy.cli_args import args, LatentPreviewMethod +from latent_preview import set_preview_method, default_preview_method + + +class TestLatentPreviewMethodFromString: + """Test LatentPreviewMethod.from_string() classmethod.""" + + @pytest.mark.parametrize("value,expected", [ + ("auto", LatentPreviewMethod.Auto), + ("latent2rgb", LatentPreviewMethod.Latent2RGB), + ("taesd", LatentPreviewMethod.TAESD), + ("none", LatentPreviewMethod.NoPreviews), + ]) + def test_valid_values_return_enum(self, value, expected): + """Valid string values should return corresponding enum.""" + assert LatentPreviewMethod.from_string(value) == expected + + @pytest.mark.parametrize("invalid", [ + "invalid", + "TAESD", # Case sensitive + "AUTO", # Case sensitive + "Latent2RGB", # Case sensitive + "latent", + "", + "default", # default is special, not a method + ]) + def test_invalid_values_return_none(self, invalid): + """Invalid string values should return None.""" + assert LatentPreviewMethod.from_string(invalid) is None + + +class TestLatentPreviewMethodEnumValues: + """Test LatentPreviewMethod enum has expected values.""" + + def test_enum_values(self): + """Verify enum values match expected strings.""" + assert LatentPreviewMethod.NoPreviews.value == "none" + assert LatentPreviewMethod.Auto.value == "auto" + assert LatentPreviewMethod.Latent2RGB.value == "latent2rgb" + assert LatentPreviewMethod.TAESD.value == "taesd" + + def test_enum_count(self): + """Verify exactly 4 preview methods exist.""" + assert len(LatentPreviewMethod) == 4 + + +class TestSetPreviewMethod: + """Test set_preview_method() function from latent_preview.py.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_override_with_taesd(self): + """'taesd' should set args.preview_method to TAESD.""" + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + def test_override_with_latent2rgb(self): + """'latent2rgb' should set args.preview_method to Latent2RGB.""" + set_preview_method("latent2rgb") + assert args.preview_method == LatentPreviewMethod.Latent2RGB + + def test_override_with_auto(self): + """'auto' should set args.preview_method to Auto.""" + set_preview_method("auto") + assert args.preview_method == LatentPreviewMethod.Auto + + def test_override_with_none_value(self): + """'none' should set args.preview_method to NoPreviews.""" + set_preview_method("none") + assert args.preview_method == LatentPreviewMethod.NoPreviews + + def test_default_restores_original(self): + """'default' should restore to default_preview_method.""" + # First override to something else + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Then use 'default' to restore + set_preview_method("default") + assert args.preview_method == default_preview_method + + def test_none_param_restores_original(self): + """None parameter should restore to default_preview_method.""" + # First override to something else + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Then use None to restore + set_preview_method(None) + assert args.preview_method == default_preview_method + + def test_empty_string_restores_original(self): + """Empty string should restore to default_preview_method.""" + set_preview_method("taesd") + set_preview_method("") + assert args.preview_method == default_preview_method + + def test_invalid_value_restores_original(self): + """Invalid value should restore to default_preview_method.""" + set_preview_method("taesd") + set_preview_method("invalid_method") + assert args.preview_method == default_preview_method + + def test_case_sensitive_invalid_restores(self): + """Case-mismatched values should restore to default.""" + set_preview_method("taesd") + set_preview_method("TAESD") # Wrong case + assert args.preview_method == default_preview_method + + +class TestDefaultPreviewMethod: + """Test default_preview_method module variable.""" + + def test_default_is_not_none(self): + """default_preview_method should not be None.""" + assert default_preview_method is not None + + def test_default_is_enum_member(self): + """default_preview_method should be a LatentPreviewMethod enum.""" + assert isinstance(default_preview_method, LatentPreviewMethod) + + def test_default_matches_args_initial(self): + """default_preview_method should match CLI default or user setting.""" + # This tests that default_preview_method was captured at module load + # After set_preview_method(None), args should equal default + original = args.preview_method + set_preview_method("taesd") + set_preview_method(None) + assert args.preview_method == default_preview_method + args.preview_method = original + + +class TestArgsPreviewMethodModification: + """Test args.preview_method can be modified correctly.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_args_accepts_all_enum_values(self): + """args.preview_method should accept all LatentPreviewMethod values.""" + for method in LatentPreviewMethod: + args.preview_method = method + assert args.preview_method == method + + def test_args_modification_and_restoration(self): + """args.preview_method should be modifiable and restorable.""" + original = args.preview_method + + args.preview_method = LatentPreviewMethod.TAESD + assert args.preview_method == LatentPreviewMethod.TAESD + + args.preview_method = original + assert args.preview_method == original + + +class TestExecutionFlow: + """Test the execution flow pattern used in execution.py.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_sequential_executions_with_different_methods(self): + """Simulate multiple queue executions with different preview methods.""" + # Execution 1: taesd + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Execution 2: none + set_preview_method("none") + assert args.preview_method == LatentPreviewMethod.NoPreviews + + # Execution 3: default (restore) + set_preview_method("default") + assert args.preview_method == default_preview_method + + # Execution 4: auto + set_preview_method("auto") + assert args.preview_method == LatentPreviewMethod.Auto + + # Execution 5: no override (None) + set_preview_method(None) + assert args.preview_method == default_preview_method + + def test_override_then_default_pattern(self): + """Test the pattern: override -> execute -> next call restores.""" + # First execution with override + set_preview_method("latent2rgb") + assert args.preview_method == LatentPreviewMethod.Latent2RGB + + # Second execution without override restores default + set_preview_method(None) + assert args.preview_method == default_preview_method + + def test_extra_data_simulation(self): + """Simulate extra_data.get('preview_method') patterns.""" + # Simulate: extra_data = {"preview_method": "taesd"} + extra_data = {"preview_method": "taesd"} + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.TAESD + + # Simulate: extra_data = {} + extra_data = {} + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + # Simulate: extra_data = {"preview_method": "default"} + extra_data = {"preview_method": "default"} + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + +class TestRealWorldScenarios: + """Tests using real-world prompt data patterns.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_captured_prompt_without_preview_method(self): + """ + Test with captured prompt that has no preview_method. + Based on: tests-unit/execution_test/fixtures/default_prompt.json + """ + # Real captured extra_data structure (preview_method absent) + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "271314f0dabd48e5aaa488ed7a4ceb0d", + "create_time": 1765416558179 + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + def test_captured_prompt_with_preview_method_taesd(self): + """Test captured prompt with preview_method: taesd.""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "271314f0dabd48e5aaa488ed7a4ceb0d", + "preview_method": "taesd" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.TAESD + + def test_captured_prompt_with_preview_method_none(self): + """Test captured prompt with preview_method: none (disable preview).""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "none" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.NoPreviews + + def test_captured_prompt_with_preview_method_latent2rgb(self): + """Test captured prompt with preview_method: latent2rgb.""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "latent2rgb" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.Latent2RGB + + def test_captured_prompt_with_preview_method_auto(self): + """Test captured prompt with preview_method: auto.""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "auto" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.Auto + + def test_captured_prompt_with_preview_method_default(self): + """Test captured prompt with preview_method: default (use CLI setting).""" + # First set to something else + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Then simulate a prompt with "default" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "default" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + def test_sequential_queue_with_different_preview_methods(self): + """ + Simulate real queue scenario: multiple prompts with different settings. + This tests the actual usage pattern in ComfyUI. + """ + # Queue 1: User wants TAESD preview + extra_data_1 = {"client_id": "client-1", "preview_method": "taesd"} + set_preview_method(extra_data_1.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.TAESD + + # Queue 2: User wants no preview (faster execution) + extra_data_2 = {"client_id": "client-2", "preview_method": "none"} + set_preview_method(extra_data_2.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.NoPreviews + + # Queue 3: User doesn't specify (use server default) + extra_data_3 = {"client_id": "client-3"} + set_preview_method(extra_data_3.get("preview_method")) + assert args.preview_method == default_preview_method + + # Queue 4: User explicitly wants default + extra_data_4 = {"client_id": "client-4", "preview_method": "default"} + set_preview_method(extra_data_4.get("preview_method")) + assert args.preview_method == default_preview_method + + # Queue 5: User wants latent2rgb + extra_data_5 = {"client_id": "client-5", "preview_method": "latent2rgb"} + set_preview_method(extra_data_5.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.Latent2RGB diff --git a/tests-unit/folder_paths_test/system_user_test.py b/tests-unit/folder_paths_test/system_user_test.py new file mode 100644 index 000000000..cd46459f1 --- /dev/null +++ b/tests-unit/folder_paths_test/system_user_test.py @@ -0,0 +1,206 @@ +"""Tests for System User Protection in folder_paths.py + +Tests cover: +- get_system_user_directory(): Internal API for custom nodes to access System User directories +- get_public_user_directory(): HTTP endpoint access with System User blocking +- Backward compatibility: Existing APIs unchanged +- Security: Path traversal and injection prevention +""" + +import pytest +import os +import tempfile + +from folder_paths import ( + get_system_user_directory, + get_public_user_directory, + get_user_directory, + set_user_directory, +) + + +@pytest.fixture(scope="module") +def mock_user_directory(): + """Create a temporary user directory for testing.""" + with tempfile.TemporaryDirectory() as temp_dir: + original_dir = get_user_directory() + set_user_directory(temp_dir) + yield temp_dir + set_user_directory(original_dir) + + +class TestGetSystemUserDirectory: + """Tests for get_system_user_directory() - internal API for System User directories. + + Verifies: + - Custom nodes can access System User directories via internal API + - Input validation prevents path traversal attacks + """ + + def test_default_name(self, mock_user_directory): + """Test default 'system' name.""" + path = get_system_user_directory() + assert path.endswith("__system") + assert mock_user_directory in path + + def test_custom_name(self, mock_user_directory): + """Test custom system user name.""" + path = get_system_user_directory("cache") + assert path.endswith("__cache") + assert "__cache" in path + + def test_name_with_underscore(self, mock_user_directory): + """Test name with underscore in middle.""" + path = get_system_user_directory("my_cache") + assert "__my_cache" in path + + def test_empty_name_raises(self): + """Test empty name raises ValueError.""" + with pytest.raises(ValueError, match="cannot be empty"): + get_system_user_directory("") + + def test_none_name_raises(self): + """Test None name raises ValueError.""" + with pytest.raises(ValueError, match="cannot be empty"): + get_system_user_directory(None) + + def test_name_starting_with_underscore_raises(self): + """Test name starting with underscore raises ValueError.""" + with pytest.raises(ValueError, match="should not start with underscore"): + get_system_user_directory("_system") + + def test_path_traversal_raises(self): + """Test path traversal attempt raises ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("../escape") + + def test_path_traversal_middle_raises(self): + """Test path traversal in middle raises ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("system/../other") + + def test_special_chars_raise(self): + """Test special characters raise ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("system!") + + def test_returns_absolute_path(self, mock_user_directory): + """Test returned path is absolute.""" + path = get_system_user_directory("test") + assert os.path.isabs(path) + + +class TestGetPublicUserDirectory: + """Tests for get_public_user_directory() - HTTP endpoint access with System User blocking. + + Verifies: + - System Users (__ prefix) return None, blocking HTTP access + - Public Users get valid paths + - New endpoints using this function are automatically protected + """ + + def test_normal_user(self, mock_user_directory): + """Test normal user returns valid path.""" + path = get_public_user_directory("default") + assert path is not None + assert "default" in path + assert mock_user_directory in path + + def test_system_user_returns_none(self): + """Test System User (__ prefix) returns None - blocks HTTP access.""" + assert get_public_user_directory("__system") is None + + def test_system_user_cache_returns_none(self): + """Test System User cache returns None.""" + assert get_public_user_directory("__cache") is None + + def test_empty_user_returns_none(self): + """Test empty user returns None.""" + assert get_public_user_directory("") is None + + def test_none_user_returns_none(self): + """Test None user returns None.""" + assert get_public_user_directory(None) is None + + def test_header_injection_returns_none(self): + """Test header injection attempt returns None (security).""" + assert get_public_user_directory("__system\r\nX-Injected: true") is None + + def test_null_byte_injection_returns_none(self): + """Test null byte injection handling (security).""" + # Note: startswith check happens before any path operations + result = get_public_user_directory("user\x00__system") + # This should return a path since it doesn't start with __ + # The actual security comes from the path not being __* + assert result is not None or result is None # Depends on validation + + def test_path_traversal_attempt(self, mock_user_directory): + """Test path traversal attempt handling.""" + # This function doesn't validate paths, only reserved prefix + # Path traversal should be handled by the caller + path = get_public_user_directory("../../../etc/passwd") + # Returns path but doesn't start with __, so not None + # Actual path validation happens in user_manager + assert path is not None or "__" not in "../../../etc/passwd" + + def test_returns_absolute_path(self, mock_user_directory): + """Test returned path is absolute.""" + path = get_public_user_directory("testuser") + assert path is not None + assert os.path.isabs(path) + + +class TestBackwardCompatibility: + """Tests for backward compatibility with existing APIs. + + Verifies: + - get_user_directory() API unchanged + - Existing user data remains accessible + """ + + def test_get_user_directory_unchanged(self, mock_user_directory): + """Test get_user_directory() still works as before.""" + user_dir = get_user_directory() + assert user_dir is not None + assert os.path.isabs(user_dir) + assert user_dir == mock_user_directory + + def test_existing_user_accessible(self, mock_user_directory): + """Test existing users can access their directories.""" + path = get_public_user_directory("default") + assert path is not None + assert "default" in path + + +class TestEdgeCases: + """Tests for edge cases in System User detection. + + Verifies: + - Only __ prefix is blocked (not _, not middle __) + - Bypass attempts are prevented + """ + + def test_prefix_only(self): + """Test prefix-only string is blocked.""" + assert get_public_user_directory("__") is None + + def test_single_underscore_allowed(self): + """Test single underscore prefix is allowed (not System User).""" + path = get_public_user_directory("_system") + assert path is not None + assert "_system" in path + + def test_triple_underscore_blocked(self): + """Test triple underscore is blocked (starts with __).""" + assert get_public_user_directory("___system") is None + + def test_underscore_in_middle_allowed(self): + """Test underscore in middle is allowed.""" + path = get_public_user_directory("my__system") + assert path is not None + assert "my__system" in path + + def test_leading_space_allowed(self): + """Test leading space + prefix is allowed (doesn't start with __).""" + path = get_public_user_directory(" __system") + assert path is not None diff --git a/tests-unit/prompt_server_test/system_user_endpoint_test.py b/tests-unit/prompt_server_test/system_user_endpoint_test.py new file mode 100644 index 000000000..22ac00af9 --- /dev/null +++ b/tests-unit/prompt_server_test/system_user_endpoint_test.py @@ -0,0 +1,375 @@ +"""E2E Tests for System User Protection HTTP Endpoints + +Tests cover: +- HTTP endpoint blocking: System Users cannot access /userdata (GET, POST, DELETE, move) +- User creation blocking: System User names cannot be created via POST /users +- Backward compatibility: Public Users work as before +- Custom node scenario: Internal API works while HTTP is blocked +- Structural security: get_public_user_directory() provides automatic protection +""" + +import pytest +import os +from aiohttp import web +from app.user_manager import UserManager +from unittest.mock import patch +import folder_paths + + +@pytest.fixture +def mock_user_directory(tmp_path): + """Create a temporary user directory.""" + original_dir = folder_paths.get_user_directory() + folder_paths.set_user_directory(str(tmp_path)) + yield tmp_path + folder_paths.set_user_directory(original_dir) + + +@pytest.fixture +def user_manager_multi_user(mock_user_directory): + """Create UserManager in multi-user mode.""" + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + um = UserManager() + # Add test users + um.users = {"default": "default", "test_user_123": "Test User"} + yield um + + +@pytest.fixture +def app_multi_user(user_manager_multi_user): + """Create app with multi-user mode enabled.""" + app = web.Application() + routes = web.RouteTableDef() + user_manager_multi_user.add_routes(routes) + app.add_routes(routes) + return app + + +class TestSystemUserEndpointBlocking: + """E2E tests for System User blocking on all HTTP endpoints. + + Verifies: + - GET /userdata blocked for System Users + - POST /userdata blocked for System Users + - DELETE /userdata blocked for System Users + - POST /userdata/.../move/... blocked for System Users + """ + + @pytest.mark.asyncio + async def test_userdata_get_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + GET /userdata with System User header should be blocked. + """ + # Create test directory for System User (simulating internal creation) + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + (system_user_dir / "secret.txt").write_text("sensitive data") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + # Attempt to access System User's data via HTTP + resp = await client.get( + "/userdata?dir=.", + headers={"comfy-user": "__system"} + ) + + # Should be blocked (403 Forbidden or similar error) + assert resp.status in [400, 403, 500], \ + f"System User access should be blocked, got {resp.status}" + + @pytest.mark.asyncio + async def test_userdata_post_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + POST /userdata with System User header should be blocked. + """ + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/test.txt", + headers={"comfy-user": "__system"}, + data=b"malicious content" + ) + + assert resp.status in [400, 403, 500], \ + f"System User write should be blocked, got {resp.status}" + + # Verify no file was created + assert not (mock_user_directory / "__system" / "test.txt").exists() + + @pytest.mark.asyncio + async def test_userdata_delete_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + DELETE /userdata with System User header should be blocked. + """ + # Create a file in System User directory + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + secret_file = system_user_dir / "secret.txt" + secret_file.write_text("do not delete") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.delete( + "/userdata/secret.txt", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User delete should be blocked, got {resp.status}" + + # Verify file still exists + assert secret_file.exists() + + @pytest.mark.asyncio + async def test_v2_userdata_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + GET /v2/userdata with System User header should be blocked. + """ + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/v2/userdata", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User v2 access should be blocked, got {resp.status}" + + @pytest.mark.asyncio + async def test_move_userdata_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + POST /userdata/{file}/move/{dest} with System User header should be blocked. + """ + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + (system_user_dir / "source.txt").write_text("sensitive data") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/source.txt/move/dest.txt", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User move should be blocked, got {resp.status}" + + # Verify source file still exists (move was blocked) + assert (system_user_dir / "source.txt").exists() + + +class TestSystemUserCreationBlocking: + """E2E tests for blocking System User name creation via POST /users. + + Verifies: + - POST /users returns 400 for System User name (not 500) + """ + + @pytest.mark.asyncio + async def test_post_users_blocks_system_user_name( + self, aiohttp_client, app_multi_user + ): + """POST /users with System User name should return 400 Bad Request.""" + client = await aiohttp_client(app_multi_user) + + resp = await client.post( + "/users", + json={"username": "__system"} + ) + + assert resp.status == 400, \ + f"System User creation should return 400, got {resp.status}" + + @pytest.mark.asyncio + async def test_post_users_blocks_system_user_prefix_variations( + self, aiohttp_client, app_multi_user + ): + """POST /users with any System User prefix variation should return 400 Bad Request.""" + client = await aiohttp_client(app_multi_user) + + system_user_names = ["__system", "__cache", "__config", "__anything"] + + for name in system_user_names: + resp = await client.post("/users", json={"username": name}) + assert resp.status == 400, \ + f"System User name '{name}' should return 400, got {resp.status}" + + +class TestPublicUserStillWorks: + """E2E tests for backward compatibility - Public Users should work as before. + + Verifies: + - Public Users can access their data via HTTP + - Public Users can create files via HTTP + """ + + @pytest.mark.asyncio + async def test_public_user_can_access_userdata( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + Public Users should still be able to access their data. + """ + # Create test directory for Public User + user_dir = mock_user_directory / "default" + user_dir.mkdir() + test_dir = user_dir / "workflows" + test_dir.mkdir() + (test_dir / "test.json").write_text('{"test": true}') + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/userdata?dir=workflows", + headers={"comfy-user": "default"} + ) + + assert resp.status == 200 + data = await resp.json() + assert "test.json" in data + + @pytest.mark.asyncio + async def test_public_user_can_create_files( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + Public Users should still be able to create files. + """ + # Create user directory + user_dir = mock_user_directory / "default" + user_dir.mkdir() + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/newfile.txt", + headers={"comfy-user": "default"}, + data=b"user content" + ) + + assert resp.status == 200 + assert (user_dir / "newfile.txt").exists() + + +class TestCustomNodeScenario: + """Tests for custom node use case: internal API access vs HTTP blocking. + + Verifies: + - Internal API (get_system_user_directory) works for custom nodes + - HTTP endpoint cannot access data created via internal API + """ + + def test_internal_api_can_access_system_user(self, mock_user_directory): + """ + Internal API (get_system_user_directory) should work for custom nodes. + """ + # Custom node uses internal API + system_path = folder_paths.get_system_user_directory("mynode_config") + + assert system_path is not None + assert "__mynode_config" in system_path + + # Can create and write to System User directory + os.makedirs(system_path, exist_ok=True) + config_file = os.path.join(system_path, "settings.json") + with open(config_file, "w") as f: + f.write('{"api_key": "secret"}') + + assert os.path.exists(config_file) + + @pytest.mark.asyncio + async def test_http_cannot_access_internal_data( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + HTTP endpoint cannot access data created via internal API. + """ + # Custom node creates data via internal API + system_path = folder_paths.get_system_user_directory("mynode_config") + os.makedirs(system_path, exist_ok=True) + with open(os.path.join(system_path, "secret.json"), "w") as f: + f.write('{"api_key": "secret"}') + + client = await aiohttp_client(app_multi_user) + + # Attacker tries to access via HTTP + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/userdata/secret.json", + headers={"comfy-user": "__mynode_config"} + ) + + # Should be blocked + assert resp.status in [400, 403, 500] + + +class TestStructuralSecurity: + """Tests for structural security pattern. + + Verifies: + - get_public_user_directory() automatically blocks System Users + - New endpoints using this function are automatically protected + """ + + def test_get_public_user_directory_blocks_system_user(self): + """ + Any code using get_public_user_directory() is automatically protected. + """ + # This is the structural security - any new endpoint using this function + # will automatically block System Users + assert folder_paths.get_public_user_directory("__system") is None + assert folder_paths.get_public_user_directory("__cache") is None + assert folder_paths.get_public_user_directory("__anything") is None + + # Public Users work + assert folder_paths.get_public_user_directory("default") is not None + assert folder_paths.get_public_user_directory("user123") is not None + + def test_structural_security_pattern(self, mock_user_directory): + """ + Demonstrate the structural security pattern for new endpoints. + + Any new endpoint should follow this pattern: + 1. Get user from request + 2. Use get_public_user_directory() - automatically blocks System Users + 3. If None, return error + """ + def new_endpoint_handler(user_id: str) -> str | None: + """Example of how new endpoints should be implemented.""" + user_path = folder_paths.get_public_user_directory(user_id) + if user_path is None: + return None # Blocked + return user_path + + # System Users are automatically blocked + assert new_endpoint_handler("__system") is None + assert new_endpoint_handler("__secret") is None + + # Public Users work + assert new_endpoint_handler("default") is not None diff --git a/tests/execution/test_execution.py b/tests/execution/test_execution.py index ef73ad9fd..f73ca7e3c 100644 --- a/tests/execution/test_execution.py +++ b/tests/execution/test_execution.py @@ -99,6 +99,37 @@ class ComfyClient: with urllib.request.urlopen(url) as response: return json.loads(response.read()) + def get_jobs(self, status=None, limit=None, offset=None, sort_by=None, sort_order=None): + url = "http://{}/api/jobs".format(self.server_address) + params = {} + if status is not None: + params["status"] = status + if limit is not None: + params["limit"] = limit + if offset is not None: + params["offset"] = offset + if sort_by is not None: + params["sort_by"] = sort_by + if sort_order is not None: + params["sort_order"] = sort_order + + if params: + url_values = urllib.parse.urlencode(params) + url = "{}?{}".format(url, url_values) + + with urllib.request.urlopen(url) as response: + return json.loads(response.read()) + + def get_job(self, job_id): + url = "http://{}/api/jobs/{}".format(self.server_address, job_id) + try: + with urllib.request.urlopen(url) as response: + return json.loads(response.read()) + except urllib.error.HTTPError as e: + if e.code == 404: + return None + raise + def set_test_name(self, name): self.test_name = name @@ -152,12 +183,12 @@ class TestExecution: # Initialize server and client # @fixture(scope="class", autouse=True, params=[ - # (use_lru, lru_size) - (False, 0), - (True, 0), - (True, 100), + { "extra_args" : [], "should_cache_results" : True }, + { "extra_args" : ["--cache-lru", 0], "should_cache_results" : True }, + { "extra_args" : ["--cache-lru", 100], "should_cache_results" : True }, + { "extra_args" : ["--cache-none"], "should_cache_results" : False }, ]) - def _server(self, args_pytest, request): + def server(self, args_pytest, request): # Start server pargs = [ 'python','main.py', @@ -167,12 +198,10 @@ class TestExecution: '--extra-model-paths-config', 'tests/execution/extra_model_paths.yaml', '--cpu', ] - use_lru, lru_size = request.param - if use_lru: - pargs += ['--cache-lru', str(lru_size)] + pargs += [ str(param) for param in request.param["extra_args"] ] print("Running server with args:", pargs) # noqa: T201 p = subprocess.Popen(pargs) - yield + yield request.param p.kill() torch.cuda.empty_cache() @@ -193,7 +222,7 @@ class TestExecution: return comfy_client @fixture(scope="class", autouse=True) - def shared_client(self, args_pytest, _server): + def shared_client(self, args_pytest, server): client = self.start_client(args_pytest["listen"], args_pytest["port"]) yield client del client @@ -225,7 +254,7 @@ class TestExecution: assert result.did_run(mask) assert result.did_run(lazy_mix) - def test_full_cache(self, client: ComfyClient, builder: GraphBuilder): + def test_full_cache(self, client: ComfyClient, builder: GraphBuilder, server): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1) @@ -237,9 +266,12 @@ class TestExecution: client.run(g) result2 = client.run(g) for node_id, node in g.nodes.items(): - assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached" + if server["should_cache_results"]: + assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached" + else: + assert result2.did_run(node), f"Node {node_id} was cached, but should have been run" - def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder): + def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder, server): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1) @@ -251,8 +283,12 @@ class TestExecution: client.run(g) mask.inputs['value'] = 0.4 result2 = client.run(g) - assert not result2.did_run(input1), "Input1 should have been cached" - assert not result2.did_run(input2), "Input2 should have been cached" + if server["should_cache_results"]: + assert not result2.did_run(input1), "Input1 should have been cached" + assert not result2.did_run(input2), "Input2 should have been cached" + else: + assert result2.did_run(input1), "Input1 should have been rerun" + assert result2.did_run(input2), "Input2 should have been rerun" def test_error(self, client: ComfyClient, builder: GraphBuilder): g = builder @@ -411,7 +447,7 @@ class TestExecution: input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1) client.run(g) - def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder): + def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder, server): g = builder # Creating the nodes in this specific order previously caused a bug save = g.node("SaveImage") @@ -427,7 +463,10 @@ class TestExecution: result3 = client.run(g) result4 = client.run(g) assert result1.did_run(is_changed), "is_changed should have been run" - assert not result2.did_run(is_changed), "is_changed should have been cached" + if server["should_cache_results"]: + assert not result2.did_run(is_changed), "is_changed should have been cached" + else: + assert result2.did_run(is_changed), "is_changed should have been re-run" assert result3.did_run(is_changed), "is_changed should have been re-run" assert result4.did_run(is_changed), "is_changed should not have been cached" @@ -514,7 +553,7 @@ class TestExecution: assert len(images2) == 1, "Should have 1 image" # This tests that only constant outputs are used in the call to `IS_CHANGED` - def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder): + def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder, server): g = builder input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1) test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5) @@ -530,7 +569,11 @@ class TestExecution: images = result.get_images(output) assert len(images) == 1, "Should have 1 image" assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25" - assert not result.did_run(test_node), "The execution should have been cached" + if server["should_cache_results"]: + assert not result.did_run(test_node), "The execution should have been cached" + else: + assert result.did_run(test_node), "The execution should have been re-run" + def test_parallel_sleep_nodes(self, client: ComfyClient, builder: GraphBuilder, skip_timing_checks): # Warmup execution to ensure server is fully initialized @@ -865,3 +908,106 @@ class TestExecution: result = client.get_all_history(max_items=5, offset=len(all_history) - 1) assert len(result) <= 1, "Should return at most 1 item when offset is near end" + + # Jobs API tests + def test_jobs_api_job_structure( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test that job objects have required fields""" + self._create_history_item(client, builder) + + jobs_response = client.get_jobs(status="completed", limit=1) + assert len(jobs_response["jobs"]) > 0, "Should have at least one job" + + job = jobs_response["jobs"][0] + assert "id" in job, "Job should have id" + assert "status" in job, "Job should have status" + assert "create_time" in job, "Job should have create_time" + assert "outputs_count" in job, "Job should have outputs_count" + assert "preview_output" in job, "Job should have preview_output" + + def test_jobs_api_preview_output_structure( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test that preview_output has correct structure""" + self._create_history_item(client, builder) + + jobs_response = client.get_jobs(status="completed", limit=1) + job = jobs_response["jobs"][0] + + if job["preview_output"] is not None: + preview = job["preview_output"] + assert "filename" in preview, "Preview should have filename" + assert "nodeId" in preview, "Preview should have nodeId" + assert "mediaType" in preview, "Preview should have mediaType" + + def test_jobs_api_pagination( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test jobs API pagination""" + for _ in range(5): + self._create_history_item(client, builder) + + first_page = client.get_jobs(limit=2, offset=0) + second_page = client.get_jobs(limit=2, offset=2) + + assert len(first_page["jobs"]) <= 2, "First page should have at most 2 jobs" + assert len(second_page["jobs"]) <= 2, "Second page should have at most 2 jobs" + + first_ids = {j["id"] for j in first_page["jobs"]} + second_ids = {j["id"] for j in second_page["jobs"]} + assert first_ids.isdisjoint(second_ids), "Pages should have different jobs" + + def test_jobs_api_sorting( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test jobs API sorting""" + for _ in range(3): + self._create_history_item(client, builder) + + desc_jobs = client.get_jobs(sort_order="desc") + asc_jobs = client.get_jobs(sort_order="asc") + + if len(desc_jobs["jobs"]) >= 2: + desc_times = [j["create_time"] for j in desc_jobs["jobs"] if j["create_time"]] + asc_times = [j["create_time"] for j in asc_jobs["jobs"] if j["create_time"]] + if len(desc_times) >= 2: + assert desc_times == sorted(desc_times, reverse=True), "Desc should be newest first" + if len(asc_times) >= 2: + assert asc_times == sorted(asc_times), "Asc should be oldest first" + + def test_jobs_api_status_filter( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test jobs API status filtering""" + self._create_history_item(client, builder) + + completed_jobs = client.get_jobs(status="completed") + assert len(completed_jobs["jobs"]) > 0, "Should have completed jobs from history" + + for job in completed_jobs["jobs"]: + assert job["status"] == "completed", "Should only return completed jobs" + + # Pending jobs are transient - just verify filter doesn't error + pending_jobs = client.get_jobs(status="pending") + for job in pending_jobs["jobs"]: + assert job["status"] == "pending", "Should only return pending jobs" + + def test_get_job_by_id( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test getting a single job by ID""" + result = self._create_history_item(client, builder) + prompt_id = result.get_prompt_id() + + job = client.get_job(prompt_id) + assert job is not None, "Should find the job" + assert job["id"] == prompt_id, "Job ID should match" + assert "outputs" in job, "Single job should include outputs" + + def test_get_job_not_found( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test getting a non-existent job returns 404""" + job = client.get_job("nonexistent-job-id") + assert job is None, "Non-existent job should return None" diff --git a/tests/execution/test_jobs.py b/tests/execution/test_jobs.py new file mode 100644 index 000000000..918c8080a --- /dev/null +++ b/tests/execution/test_jobs.py @@ -0,0 +1,361 @@ +"""Unit tests for comfy_execution/jobs.py""" + +from comfy_execution.jobs import ( + JobStatus, + is_previewable, + normalize_queue_item, + normalize_history_item, + get_outputs_summary, + apply_sorting, +) + + +class TestJobStatus: + """Test JobStatus constants.""" + + def test_status_values(self): + """Status constants should have expected string values.""" + assert JobStatus.PENDING == 'pending' + assert JobStatus.IN_PROGRESS == 'in_progress' + assert JobStatus.COMPLETED == 'completed' + assert JobStatus.FAILED == 'failed' + + def test_all_contains_all_statuses(self): + """ALL should contain all status values.""" + assert JobStatus.PENDING in JobStatus.ALL + assert JobStatus.IN_PROGRESS in JobStatus.ALL + assert JobStatus.COMPLETED in JobStatus.ALL + assert JobStatus.FAILED in JobStatus.ALL + assert len(JobStatus.ALL) == 4 + + +class TestIsPreviewable: + """Unit tests for is_previewable()""" + + def test_previewable_media_types(self): + """Images, video, audio media types should be previewable.""" + for media_type in ['images', 'video', 'audio']: + assert is_previewable(media_type, {}) is True + + def test_non_previewable_media_types(self): + """Other media types should not be previewable.""" + for media_type in ['latents', 'text', 'metadata', 'files']: + assert is_previewable(media_type, {}) is False + + def test_3d_extensions_previewable(self): + """3D file extensions should be previewable regardless of media_type.""" + for ext in ['.obj', '.fbx', '.gltf', '.glb']: + item = {'filename': f'model{ext}'} + assert is_previewable('files', item) is True + + def test_3d_extensions_case_insensitive(self): + """3D extension check should be case insensitive.""" + item = {'filename': 'MODEL.GLB'} + assert is_previewable('files', item) is True + + def test_video_format_previewable(self): + """Items with video/ format should be previewable.""" + item = {'format': 'video/mp4'} + assert is_previewable('files', item) is True + + def test_audio_format_previewable(self): + """Items with audio/ format should be previewable.""" + item = {'format': 'audio/wav'} + assert is_previewable('files', item) is True + + def test_other_format_not_previewable(self): + """Items with other format should not be previewable.""" + item = {'format': 'application/json'} + assert is_previewable('files', item) is False + + +class TestGetOutputsSummary: + """Unit tests for get_outputs_summary()""" + + def test_empty_outputs(self): + """Empty outputs should return 0 count and None preview.""" + count, preview = get_outputs_summary({}) + assert count == 0 + assert preview is None + + def test_counts_across_multiple_nodes(self): + """Outputs from multiple nodes should all be counted.""" + outputs = { + 'node1': {'images': [{'filename': 'a.png', 'type': 'output'}]}, + 'node2': {'images': [{'filename': 'b.png', 'type': 'output'}]}, + 'node3': {'images': [ + {'filename': 'c.png', 'type': 'output'}, + {'filename': 'd.png', 'type': 'output'} + ]} + } + count, preview = get_outputs_summary(outputs) + assert count == 4 + + def test_skips_animated_key_and_non_list_values(self): + """The 'animated' key and non-list values should be skipped.""" + outputs = { + 'node1': { + 'images': [{'filename': 'test.png', 'type': 'output'}], + 'animated': [True], # Should skip due to key name + 'metadata': 'string', # Should skip due to non-list + 'count': 42 # Should skip due to non-list + } + } + count, preview = get_outputs_summary(outputs) + assert count == 1 + + def test_preview_prefers_type_output(self): + """Items with type='output' should be preferred for preview.""" + outputs = { + 'node1': { + 'images': [ + {'filename': 'temp.png', 'type': 'temp'}, + {'filename': 'output.png', 'type': 'output'} + ] + } + } + count, preview = get_outputs_summary(outputs) + assert count == 2 + assert preview['filename'] == 'output.png' + + def test_preview_fallback_when_no_output_type(self): + """If no type='output', should use first previewable.""" + outputs = { + 'node1': { + 'images': [ + {'filename': 'temp1.png', 'type': 'temp'}, + {'filename': 'temp2.png', 'type': 'temp'} + ] + } + } + count, preview = get_outputs_summary(outputs) + assert preview['filename'] == 'temp1.png' + + def test_non_previewable_media_types_counted_but_no_preview(self): + """Non-previewable media types should be counted but not used as preview.""" + outputs = { + 'node1': { + 'latents': [ + {'filename': 'latent1.safetensors'}, + {'filename': 'latent2.safetensors'} + ] + } + } + count, preview = get_outputs_summary(outputs) + assert count == 2 + assert preview is None + + def test_previewable_media_types(self): + """Images, video, and audio media types should be previewable.""" + for media_type in ['images', 'video', 'audio']: + outputs = { + 'node1': { + media_type: [{'filename': 'test.file', 'type': 'output'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None, f"{media_type} should be previewable" + + def test_3d_files_previewable(self): + """3D file extensions should be previewable.""" + for ext in ['.obj', '.fbx', '.gltf', '.glb']: + outputs = { + 'node1': { + 'files': [{'filename': f'model{ext}', 'type': 'output'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None, f"3D file {ext} should be previewable" + + def test_format_mime_type_previewable(self): + """Files with video/ or audio/ format should be previewable.""" + for fmt in ['video/x-custom', 'audio/x-custom']: + outputs = { + 'node1': { + 'files': [{'filename': 'file.custom', 'format': fmt, 'type': 'output'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None, f"Format {fmt} should be previewable" + + def test_preview_enriched_with_node_metadata(self): + """Preview should include nodeId, mediaType, and original fields.""" + outputs = { + 'node123': { + 'images': [{'filename': 'test.png', 'type': 'output', 'subfolder': 'outputs'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview['nodeId'] == 'node123' + assert preview['mediaType'] == 'images' + assert preview['subfolder'] == 'outputs' + + +class TestApplySorting: + """Unit tests for apply_sorting()""" + + def test_sort_by_create_time_desc(self): + """Default sort by create_time descending.""" + jobs = [ + {'id': 'a', 'create_time': 100}, + {'id': 'b', 'create_time': 300}, + {'id': 'c', 'create_time': 200}, + ] + result = apply_sorting(jobs, 'created_at', 'desc') + assert [j['id'] for j in result] == ['b', 'c', 'a'] + + def test_sort_by_create_time_asc(self): + """Sort by create_time ascending.""" + jobs = [ + {'id': 'a', 'create_time': 100}, + {'id': 'b', 'create_time': 300}, + {'id': 'c', 'create_time': 200}, + ] + result = apply_sorting(jobs, 'created_at', 'asc') + assert [j['id'] for j in result] == ['a', 'c', 'b'] + + def test_sort_by_execution_duration(self): + """Sort by execution_duration should order by duration.""" + jobs = [ + {'id': 'a', 'create_time': 100, 'execution_start_time': 100, 'execution_end_time': 5100}, # 5s + {'id': 'b', 'create_time': 300, 'execution_start_time': 300, 'execution_end_time': 1300}, # 1s + {'id': 'c', 'create_time': 200, 'execution_start_time': 200, 'execution_end_time': 3200}, # 3s + ] + result = apply_sorting(jobs, 'execution_duration', 'desc') + assert [j['id'] for j in result] == ['a', 'c', 'b'] + + def test_sort_with_none_values(self): + """Jobs with None values should sort as 0.""" + jobs = [ + {'id': 'a', 'create_time': 100, 'execution_start_time': 100, 'execution_end_time': 5100}, + {'id': 'b', 'create_time': 300, 'execution_start_time': None, 'execution_end_time': None}, + {'id': 'c', 'create_time': 200, 'execution_start_time': 200, 'execution_end_time': 3200}, + ] + result = apply_sorting(jobs, 'execution_duration', 'asc') + assert result[0]['id'] == 'b' # None treated as 0, comes first + + +class TestNormalizeQueueItem: + """Unit tests for normalize_queue_item()""" + + def test_basic_normalization(self): + """Queue item should be normalized to job dict.""" + item = ( + 10, # priority/number + 'prompt-123', # prompt_id + {'nodes': {}}, # prompt + { + 'create_time': 1234567890, + 'extra_pnginfo': {'workflow': {'id': 'workflow-abc'}} + }, # extra_data + ['node1'], # outputs_to_execute + ) + job = normalize_queue_item(item, JobStatus.PENDING) + + assert job['id'] == 'prompt-123' + assert job['status'] == 'pending' + assert job['priority'] == 10 + assert job['create_time'] == 1234567890 + assert 'execution_start_time' not in job + assert 'execution_end_time' not in job + assert 'execution_error' not in job + assert 'preview_output' not in job + assert job['outputs_count'] == 0 + assert job['workflow_id'] == 'workflow-abc' + + +class TestNormalizeHistoryItem: + """Unit tests for normalize_history_item()""" + + def test_completed_job(self): + """Completed history item should have correct status and times from messages.""" + history_item = { + 'prompt': ( + 5, # priority + 'prompt-456', + {'nodes': {}}, + { + 'create_time': 1234567890000, + 'extra_pnginfo': {'workflow': {'id': 'workflow-xyz'}} + }, + ['node1'], + ), + 'status': { + 'status_str': 'success', + 'completed': True, + 'messages': [ + ('execution_start', {'prompt_id': 'prompt-456', 'timestamp': 1234567890500}), + ('execution_success', {'prompt_id': 'prompt-456', 'timestamp': 1234567893000}), + ] + }, + 'outputs': {}, + } + job = normalize_history_item('prompt-456', history_item) + + assert job['id'] == 'prompt-456' + assert job['status'] == 'completed' + assert job['priority'] == 5 + assert job['execution_start_time'] == 1234567890500 + assert job['execution_end_time'] == 1234567893000 + assert job['workflow_id'] == 'workflow-xyz' + + def test_failed_job(self): + """Failed history item should have failed status and error from messages.""" + history_item = { + 'prompt': ( + 5, + 'prompt-789', + {'nodes': {}}, + {'create_time': 1234567890000}, + ['node1'], + ), + 'status': { + 'status_str': 'error', + 'completed': False, + 'messages': [ + ('execution_start', {'prompt_id': 'prompt-789', 'timestamp': 1234567890500}), + ('execution_error', { + 'prompt_id': 'prompt-789', + 'node_id': '5', + 'node_type': 'KSampler', + 'exception_message': 'CUDA out of memory', + 'exception_type': 'RuntimeError', + 'traceback': ['Traceback...', 'RuntimeError: CUDA out of memory'], + 'timestamp': 1234567891000, + }) + ] + }, + 'outputs': {}, + } + + job = normalize_history_item('prompt-789', history_item) + assert job['status'] == 'failed' + assert job['execution_start_time'] == 1234567890500 + assert job['execution_end_time'] == 1234567891000 + assert job['execution_error']['node_id'] == '5' + assert job['execution_error']['node_type'] == 'KSampler' + assert job['execution_error']['exception_message'] == 'CUDA out of memory' + + def test_include_outputs(self): + """When include_outputs=True, should include full output data.""" + history_item = { + 'prompt': ( + 5, + 'prompt-123', + {'nodes': {'1': {}}}, + {'create_time': 1234567890, 'client_id': 'abc'}, + ['node1'], + ), + 'status': {'status_str': 'success', 'completed': True, 'messages': []}, + 'outputs': {'node1': {'images': [{'filename': 'test.png'}]}}, + } + job = normalize_history_item('prompt-123', history_item, include_outputs=True) + + assert 'outputs' in job + assert 'workflow' in job + assert 'execution_status' in job + assert job['outputs'] == {'node1': {'images': [{'filename': 'test.png'}]}} + assert job['workflow'] == { + 'prompt': {'nodes': {'1': {}}}, + 'extra_data': {'create_time': 1234567890, 'client_id': 'abc'}, + } diff --git a/tests/execution/test_preview_method.py b/tests/execution/test_preview_method.py new file mode 100644 index 000000000..c3037553b --- /dev/null +++ b/tests/execution/test_preview_method.py @@ -0,0 +1,358 @@ +""" +E2E tests for Queue-specific Preview Method Override feature. + +Tests actual execution with different preview_method values. +Requires a running ComfyUI server with models. + +Usage: + COMFYUI_SERVER=http://localhost:8988 pytest test_preview_method_e2e.py -v -m preview_method + +Note: + These tests execute actual image generation and wait for completion. + Tests verify preview image transmission based on preview_method setting. +""" +import os +import json +import pytest +import uuid +import time +import random +import websocket +import urllib.request +from pathlib import Path + + +# Server configuration +SERVER_URL = os.environ.get("COMFYUI_SERVER", "http://localhost:8988") +SERVER_HOST = SERVER_URL.replace("http://", "").replace("https://", "") + +# Use existing inference graph fixture +GRAPH_FILE = Path(__file__).parent.parent / "inference" / "graphs" / "default_graph_sdxl1_0.json" + + +def is_server_running() -> bool: + """Check if ComfyUI server is running.""" + try: + request = urllib.request.Request(f"{SERVER_URL}/system_stats") + with urllib.request.urlopen(request, timeout=2.0): + return True + except Exception: + return False + + +def prepare_graph_for_test(graph: dict, steps: int = 5) -> dict: + """Prepare graph for testing: randomize seeds and reduce steps.""" + adapted = json.loads(json.dumps(graph)) # Deep copy + for node_id, node in adapted.items(): + inputs = node.get("inputs", {}) + # Handle both "seed" and "noise_seed" (used by KSamplerAdvanced) + if "seed" in inputs: + inputs["seed"] = random.randint(0, 2**32 - 1) + if "noise_seed" in inputs: + inputs["noise_seed"] = random.randint(0, 2**32 - 1) + # Reduce steps for faster testing (default 20 -> 5) + if "steps" in inputs: + inputs["steps"] = steps + return adapted + + +# Alias for backward compatibility +randomize_seed = prepare_graph_for_test + + +class PreviewMethodClient: + """Client for testing preview_method with WebSocket execution tracking.""" + + def __init__(self, server_address: str): + self.server_address = server_address + self.client_id = str(uuid.uuid4()) + self.ws = None + + def connect(self): + """Connect to WebSocket.""" + self.ws = websocket.WebSocket() + self.ws.settimeout(120) # 2 minute timeout for sampling + self.ws.connect(f"ws://{self.server_address}/ws?clientId={self.client_id}") + + def close(self): + """Close WebSocket connection.""" + if self.ws: + self.ws.close() + + def queue_prompt(self, prompt: dict, extra_data: dict = None) -> dict: + """Queue a prompt and return response with prompt_id.""" + data = { + "prompt": prompt, + "client_id": self.client_id, + "extra_data": extra_data or {} + } + req = urllib.request.Request( + f"http://{self.server_address}/prompt", + data=json.dumps(data).encode("utf-8"), + headers={"Content-Type": "application/json"} + ) + return json.loads(urllib.request.urlopen(req).read()) + + def wait_for_execution(self, prompt_id: str, timeout: float = 120.0) -> dict: + """ + Wait for execution to complete via WebSocket. + + Returns: + dict with keys: completed, error, preview_count, execution_time + """ + result = { + "completed": False, + "error": None, + "preview_count": 0, + "execution_time": 0.0 + } + + start_time = time.time() + self.ws.settimeout(timeout) + + try: + while True: + out = self.ws.recv() + elapsed = time.time() - start_time + + if isinstance(out, str): + message = json.loads(out) + msg_type = message.get("type") + data = message.get("data", {}) + + if data.get("prompt_id") != prompt_id: + continue + + if msg_type == "executing": + if data.get("node") is None: + # Execution complete + result["completed"] = True + result["execution_time"] = elapsed + break + + elif msg_type == "execution_error": + result["error"] = data + result["execution_time"] = elapsed + break + + elif msg_type == "progress": + # Progress update during sampling + pass + + elif isinstance(out, bytes): + # Binary data = preview image + result["preview_count"] += 1 + + except websocket.WebSocketTimeoutException: + result["error"] = "Timeout waiting for execution" + result["execution_time"] = time.time() - start_time + + return result + + +def load_graph() -> dict: + """Load the SDXL graph fixture with randomized seed.""" + with open(GRAPH_FILE) as f: + graph = json.load(f) + return randomize_seed(graph) # Avoid caching + + +# Skip all tests if server is not running +pytestmark = [ + pytest.mark.skipif( + not is_server_running(), + reason=f"ComfyUI server not running at {SERVER_URL}" + ), + pytest.mark.preview_method, + pytest.mark.execution, +] + + +@pytest.fixture +def client(): + """Create and connect a test client.""" + c = PreviewMethodClient(SERVER_HOST) + c.connect() + yield c + c.close() + + +@pytest.fixture +def graph(): + """Load the test graph.""" + return load_graph() + + +class TestPreviewMethodExecution: + """Test actual execution with different preview methods.""" + + def test_execution_with_latent2rgb(self, client, graph): + """ + Execute with preview_method=latent2rgb. + Should complete and potentially receive preview images. + """ + extra_data = {"preview_method": "latent2rgb"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + # Should complete (may error if model missing, but that's separate) + assert result["completed"] or result["error"] is not None + # Execution should take some time (sampling) + if result["completed"]: + assert result["execution_time"] > 0.5, "Execution too fast - likely didn't run" + # latent2rgb should produce previews + print(f"latent2rgb: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_with_taesd(self, client, graph): + """ + Execute with preview_method=taesd. + TAESD provides higher quality previews. + """ + extra_data = {"preview_method": "taesd"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + assert result["execution_time"] > 0.5 + # taesd should also produce previews + print(f"taesd: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_with_none_preview(self, client, graph): + """ + Execute with preview_method=none. + No preview images should be generated. + """ + extra_data = {"preview_method": "none"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + # With "none", should receive no preview images + assert result["preview_count"] == 0, \ + f"Expected no previews with 'none', got {result['preview_count']}" + print(f"none: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_with_default(self, client, graph): + """ + Execute with preview_method=default. + Should use server's CLI default setting. + """ + extra_data = {"preview_method": "default"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + print(f"default: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_without_preview_method(self, client, graph): + """ + Execute without preview_method in extra_data. + Should use server's default preview method. + """ + extra_data = {} # No preview_method + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + print(f"(no override): {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + +class TestPreviewMethodComparison: + """Compare preview behavior between different methods.""" + + def test_none_vs_latent2rgb_preview_count(self, client, graph): + """ + Compare preview counts: 'none' should have 0, others should have >0. + This is the key verification that preview_method actually works. + """ + results = {} + + # Run with none (randomize seed to avoid caching) + graph_none = randomize_seed(graph) + extra_data_none = {"preview_method": "none"} + response = client.queue_prompt(graph_none, extra_data_none) + results["none"] = client.wait_for_execution(response["prompt_id"]) + + # Run with latent2rgb (randomize seed again) + graph_rgb = randomize_seed(graph) + extra_data_rgb = {"preview_method": "latent2rgb"} + response = client.queue_prompt(graph_rgb, extra_data_rgb) + results["latent2rgb"] = client.wait_for_execution(response["prompt_id"]) + + # Verify both completed + assert results["none"]["completed"], f"'none' execution failed: {results['none']['error']}" + assert results["latent2rgb"]["completed"], f"'latent2rgb' execution failed: {results['latent2rgb']['error']}" + + # Key assertion: 'none' should have 0 previews + assert results["none"]["preview_count"] == 0, \ + f"'none' should have 0 previews, got {results['none']['preview_count']}" + + # 'latent2rgb' should have at least 1 preview (depends on steps) + assert results["latent2rgb"]["preview_count"] > 0, \ + f"'latent2rgb' should have >0 previews, got {results['latent2rgb']['preview_count']}" + + print("\nPreview count comparison:") # noqa: T201 + print(f" none: {results['none']['preview_count']} previews") # noqa: T201 + print(f" latent2rgb: {results['latent2rgb']['preview_count']} previews") # noqa: T201 + + +class TestPreviewMethodSequential: + """Test sequential execution with different preview methods.""" + + def test_sequential_different_methods(self, client, graph): + """ + Execute multiple prompts sequentially with different preview methods. + Each should complete independently with correct preview behavior. + """ + methods = ["latent2rgb", "none", "default"] + results = [] + + for method in methods: + # Randomize seed for each execution to avoid caching + graph_run = randomize_seed(graph) + extra_data = {"preview_method": method} + response = client.queue_prompt(graph_run, extra_data) + + result = client.wait_for_execution(response["prompt_id"]) + results.append({ + "method": method, + "completed": result["completed"], + "preview_count": result["preview_count"], + "execution_time": result["execution_time"], + "error": result["error"] + }) + + # All should complete or have clear errors + for r in results: + assert r["completed"] or r["error"] is not None, \ + f"Method {r['method']} neither completed nor errored" + + # "none" should have zero previews if completed + none_result = next(r for r in results if r["method"] == "none") + if none_result["completed"]: + assert none_result["preview_count"] == 0, \ + f"'none' should have 0 previews, got {none_result['preview_count']}" + + print("\nSequential execution results:") # noqa: T201 + for r in results: + status = "✓" if r["completed"] else f"✗ ({r['error']})" + print(f" {r['method']}: {status}, {r['preview_count']} previews, {r['execution_time']:.2f}s") # noqa: T201 diff --git a/tests/execution/test_public_api.py b/tests/execution/test_public_api.py new file mode 100644 index 000000000..52bc2fcd8 --- /dev/null +++ b/tests/execution/test_public_api.py @@ -0,0 +1,153 @@ +""" +Tests for public ComfyAPI and ComfyAPISync functions. + +These tests verify that the public API methods work correctly in both sync and async contexts, +ensuring that the sync wrapper generation (via get_type_hints() in async_to_sync.py) correctly +handles string annotations from 'from __future__ import annotations'. +""" + +import pytest +import time +import subprocess +import torch +from pytest import fixture +from comfy_execution.graph_utils import GraphBuilder +from tests.execution.test_execution import ComfyClient + + +@pytest.mark.execution +class TestPublicAPI: + """Test suite for public ComfyAPI and ComfyAPISync methods.""" + + @fixture(scope="class", autouse=True) + def _server(self, args_pytest): + """Start ComfyUI server for testing.""" + pargs = [ + 'python', 'main.py', + '--output-directory', args_pytest["output_dir"], + '--listen', args_pytest["listen"], + '--port', str(args_pytest["port"]), + '--extra-model-paths-config', 'tests/execution/extra_model_paths.yaml', + '--cpu', + ] + p = subprocess.Popen(pargs) + yield + p.kill() + torch.cuda.empty_cache() + + @fixture(scope="class", autouse=True) + def shared_client(self, args_pytest, _server): + """Create shared client with connection retry.""" + client = ComfyClient() + n_tries = 5 + for i in range(n_tries): + time.sleep(4) + try: + client.connect(listen=args_pytest["listen"], port=args_pytest["port"]) + break + except ConnectionRefusedError: + if i == n_tries - 1: + raise + yield client + del client + torch.cuda.empty_cache() + + @fixture + def client(self, shared_client, request): + """Set test name for each test.""" + shared_client.set_test_name(f"public_api[{request.node.name}]") + yield shared_client + + @fixture + def builder(self, request): + """Create GraphBuilder for each test.""" + yield GraphBuilder(prefix=request.node.name) + + def test_sync_progress_update_executes(self, client: ComfyClient, builder: GraphBuilder): + """Test that TestSyncProgressUpdate executes without errors. + + This test validates that api_sync.execution.set_progress() works correctly, + which is the primary code path fixed by adding get_type_hints() to async_to_sync.py. + """ + g = builder + image = g.node("StubImage", content="BLACK", height=256, width=256, batch_size=1) + + # Use TestSyncProgressUpdate with short sleep + progress_node = g.node("TestSyncProgressUpdate", + value=image.out(0), + sleep_seconds=0.5) + output = g.node("SaveImage", images=progress_node.out(0)) + + # Execute workflow + result = client.run(g) + + # Verify execution + assert result.did_run(progress_node), "Progress node should have executed" + assert result.did_run(output), "Output node should have executed" + + # Verify output + images = result.get_images(output) + assert len(images) == 1, "Should have produced 1 image" + + def test_async_progress_update_executes(self, client: ComfyClient, builder: GraphBuilder): + """Test that TestAsyncProgressUpdate executes without errors. + + This test validates that await api.execution.set_progress() works correctly + in async contexts. + """ + g = builder + image = g.node("StubImage", content="WHITE", height=256, width=256, batch_size=1) + + # Use TestAsyncProgressUpdate with short sleep + progress_node = g.node("TestAsyncProgressUpdate", + value=image.out(0), + sleep_seconds=0.5) + output = g.node("SaveImage", images=progress_node.out(0)) + + # Execute workflow + result = client.run(g) + + # Verify execution + assert result.did_run(progress_node), "Async progress node should have executed" + assert result.did_run(output), "Output node should have executed" + + # Verify output + images = result.get_images(output) + assert len(images) == 1, "Should have produced 1 image" + + def test_sync_and_async_progress_together(self, client: ComfyClient, builder: GraphBuilder): + """Test both sync and async progress updates in same workflow. + + This test ensures that both ComfyAPISync and ComfyAPI can coexist and work + correctly in the same workflow execution. + """ + g = builder + image1 = g.node("StubImage", content="BLACK", height=256, width=256, batch_size=1) + image2 = g.node("StubImage", content="WHITE", height=256, width=256, batch_size=1) + + # Use both types of progress nodes + sync_progress = g.node("TestSyncProgressUpdate", + value=image1.out(0), + sleep_seconds=0.3) + async_progress = g.node("TestAsyncProgressUpdate", + value=image2.out(0), + sleep_seconds=0.3) + + # Create outputs + output1 = g.node("SaveImage", images=sync_progress.out(0)) + output2 = g.node("SaveImage", images=async_progress.out(0)) + + # Execute workflow + result = client.run(g) + + # Both should execute successfully + assert result.did_run(sync_progress), "Sync progress node should have executed" + assert result.did_run(async_progress), "Async progress node should have executed" + assert result.did_run(output1), "First output node should have executed" + assert result.did_run(output2), "Second output node should have executed" + + # Verify outputs + images1 = result.get_images(output1) + images2 = result.get_images(output2) + assert len(images1) == 1, "Should have produced 1 image from sync node" + assert len(images2) == 1, "Should have produced 1 image from async node"