mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-15 16:02:32 +08:00
AITemplate ControlNet
This commit is contained in:
parent
fbc74fbb25
commit
4b8a650932
291
comfy/ckpt_convert.py
Normal file
291
comfy/ckpt_convert.py
Normal file
@ -0,0 +1,291 @@
|
||||
|
||||
def assign_to_checkpoint(
|
||||
paths, checkpoint, old_checkpoint, additional_replacements=None
|
||||
):
|
||||
"""
|
||||
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
||||
attention layers, and takes into account additional replacements that may arise.
|
||||
|
||||
Assigns the weights to the new checkpoint.
|
||||
"""
|
||||
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
||||
|
||||
for path in paths:
|
||||
new_path = path["new"]
|
||||
|
||||
# Global renaming happens here
|
||||
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
||||
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
||||
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
||||
|
||||
if additional_replacements is not None:
|
||||
for replacement in additional_replacements:
|
||||
new_path = new_path.replace(replacement["old"], replacement["new"])
|
||||
|
||||
# proj_attn.weight has to be converted from conv 1D to linear
|
||||
if "proj_attn.weight" in new_path:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
||||
else:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]]
|
||||
|
||||
|
||||
def conv_attn_to_linear(checkpoint):
|
||||
keys = list(checkpoint.keys())
|
||||
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
||||
for key in keys:
|
||||
if ".".join(key.split(".")[-2:]) in attn_keys:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||||
elif "proj_attn.weight" in key:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0]
|
||||
|
||||
|
||||
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
||||
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
||||
|
||||
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
||||
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
||||
|
||||
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||||
"""
|
||||
if n_shave_prefix_segments >= 0:
|
||||
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
||||
else:
|
||||
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
||||
|
||||
|
||||
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item.replace("in_layers.0", "norm1")
|
||||
new_item = new_item.replace("in_layers.2", "conv1")
|
||||
|
||||
new_item = new_item.replace("out_layers.0", "norm2")
|
||||
new_item = new_item.replace("out_layers.3", "conv2")
|
||||
|
||||
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
||||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||||
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
def convert_ldm_unet_checkpoint(unet_state_dict, layers_per_block=2, controlnet=False):
|
||||
"""
|
||||
Takes a state dict and a config, and returns a converted checkpoint.
|
||||
"""
|
||||
temp = {}
|
||||
if controlnet:
|
||||
unet_key = "control_model."
|
||||
else:
|
||||
unet_key = "model.diffusion_model."
|
||||
|
||||
for key, value in unet_state_dict.items():
|
||||
if key.startswith(unet_key):
|
||||
key = key.replace(unet_key, "")
|
||||
temp[key] = value
|
||||
unet_state_dict = temp
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
||||
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
||||
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
||||
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
||||
|
||||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||||
if not controlnet:
|
||||
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
||||
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
||||
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
||||
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
||||
|
||||
# Retrieves the keys for the input blocks only
|
||||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||||
input_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_input_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the middle blocks only
|
||||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||||
middle_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
||||
for layer_id in range(num_middle_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the output blocks only
|
||||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||||
output_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_output_blocks)
|
||||
}
|
||||
|
||||
for i in range(1, num_input_blocks):
|
||||
block_id = (i - 1) // (layers_per_block + 1)
|
||||
layer_in_block_id = (i - 1) % (layers_per_block + 1)
|
||||
|
||||
resnets = [
|
||||
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
||||
]
|
||||
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
||||
|
||||
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.weight"
|
||||
)
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.bias"
|
||||
)
|
||||
|
||||
paths = renew_resnet_paths(resnets)
|
||||
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
if len(attentions):
|
||||
paths = renew_attention_paths(attentions)
|
||||
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
resnet_0 = middle_blocks[0]
|
||||
attentions = middle_blocks[1]
|
||||
resnet_1 = middle_blocks[2]
|
||||
|
||||
resnet_0_paths = renew_resnet_paths(resnet_0)
|
||||
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict)
|
||||
|
||||
resnet_1_paths = renew_resnet_paths(resnet_1)
|
||||
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict)
|
||||
|
||||
attentions_paths = renew_attention_paths(attentions)
|
||||
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(
|
||||
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
for i in range(num_output_blocks):
|
||||
block_id = i // (layers_per_block + 1)
|
||||
layer_in_block_id = i % (layers_per_block + 1)
|
||||
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
||||
output_block_list = {}
|
||||
|
||||
for layer in output_block_layers:
|
||||
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
||||
if layer_id in output_block_list:
|
||||
output_block_list[layer_id].append(layer_name)
|
||||
else:
|
||||
output_block_list[layer_id] = [layer_name]
|
||||
|
||||
if len(output_block_list) > 1:
|
||||
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
||||
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
||||
|
||||
resnet_0_paths = renew_resnet_paths(resnets)
|
||||
paths = renew_resnet_paths(resnets)
|
||||
|
||||
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
||||
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
||||
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.weight"
|
||||
]
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.bias"
|
||||
]
|
||||
|
||||
# Clear attentions as they have been attributed above.
|
||||
if len(attentions) == 2:
|
||||
attentions = []
|
||||
|
||||
if len(attentions):
|
||||
paths = renew_attention_paths(attentions)
|
||||
meta_path = {
|
||||
"old": f"output_blocks.{i}.1",
|
||||
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
else:
|
||||
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
||||
for path in resnet_0_paths:
|
||||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||||
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
||||
|
||||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||||
|
||||
if controlnet:
|
||||
# conditioning embedding
|
||||
|
||||
orig_index = 0
|
||||
|
||||
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop(
|
||||
f"input_hint_block.{orig_index}.weight"
|
||||
)
|
||||
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
|
||||
f"input_hint_block.{orig_index}.bias"
|
||||
)
|
||||
|
||||
orig_index += 2
|
||||
|
||||
diffusers_index = 0
|
||||
|
||||
while diffusers_index < 6:
|
||||
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop(
|
||||
f"input_hint_block.{orig_index}.weight"
|
||||
)
|
||||
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop(
|
||||
f"input_hint_block.{orig_index}.bias"
|
||||
)
|
||||
diffusers_index += 1
|
||||
orig_index += 2
|
||||
|
||||
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop(
|
||||
f"input_hint_block.{orig_index}.weight"
|
||||
)
|
||||
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
|
||||
f"input_hint_block.{orig_index}.bias"
|
||||
)
|
||||
|
||||
# down blocks
|
||||
for i in range(num_input_blocks):
|
||||
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight")
|
||||
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias")
|
||||
|
||||
# mid block
|
||||
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight")
|
||||
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias")
|
||||
|
||||
|
||||
return new_checkpoint
|
||||
@ -505,11 +505,16 @@ class AITemplateModelWrapper(torch.nn.Module):
|
||||
timesteps_pt = t
|
||||
latent_model_input = x
|
||||
encoder_hidden_states = None
|
||||
down_block_residuals = None
|
||||
mid_block_residual = None
|
||||
#TODO: verify this is correct/match DiffusionWrapper (ddpm.py)
|
||||
if 'c_crossattn' in cond:
|
||||
encoder_hidden_states = cond['c_crossattn']
|
||||
if 'c_concat' in cond:
|
||||
encoder_hidden_states = cond['c_concat']
|
||||
if "control" in cond:
|
||||
down_block_residuals = cond["control"]["output"]
|
||||
mid_block_residual = cond["control"]["middle"][0]
|
||||
if encoder_hidden_states is None:
|
||||
raise f"conditioning missing, it should be one of these {cond.keys()}"
|
||||
if type(encoder_hidden_states) is list:
|
||||
@ -525,6 +530,10 @@ class AITemplateModelWrapper(torch.nn.Module):
|
||||
"input1": timesteps_pt.cuda().half(),
|
||||
"input2": encoder_hidden_states.cuda().half(),
|
||||
}
|
||||
if down_block_residuals is not None and mid_block_residual is not None:
|
||||
for i, y in enumerate(down_block_residuals):
|
||||
inputs[f"down_block_residual_{i}"] = y.permute((0, 2, 3, 1)).contiguous().cuda().half()
|
||||
inputs["mid_block_residual"] = mid_block_residual.permute((0, 2, 3, 1)).contiguous().cuda().half()
|
||||
ys = []
|
||||
num_outputs = len(self.unet_ait_exe.get_output_name_to_index_map())
|
||||
for i in range(num_outputs):
|
||||
|
||||
44
comfy/sd.py
44
comfy/sd.py
@ -601,6 +601,7 @@ def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
|
||||
class ControlNet:
|
||||
def __init__(self, control_model, device=None):
|
||||
self.aitemplate = None
|
||||
self.control_model = control_model
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
@ -610,6 +611,31 @@ class ControlNet:
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
|
||||
def aitemplate_controlnet(
|
||||
self, latent_model_input, timesteps, encoder_hidden_states, controlnet_cond
|
||||
):
|
||||
if self.aitemplate is None:
|
||||
raise RuntimeError("No aitemplate loaded")
|
||||
batch = latent_model_input.shape[0]
|
||||
timesteps_pt = timesteps.expand(batch * 2)
|
||||
inputs = {
|
||||
"input0": latent_model_input.permute((0, 2, 3, 1))
|
||||
.contiguous()
|
||||
.cuda()
|
||||
.half(),
|
||||
"input1": timesteps_pt.cuda().half(),
|
||||
"input2": encoder_hidden_states.cuda().half(),
|
||||
"input3": controlnet_cond.permute((0, 2, 3, 1)).contiguous().cuda().half(),
|
||||
}
|
||||
ys = []
|
||||
num_outputs = len(self.aitemplate.get_output_name_to_index_map())
|
||||
for i in range(num_outputs):
|
||||
shape = self.aitemplate.get_output_maximum_shape(i)
|
||||
ys.append(torch.empty(shape).cuda().half())
|
||||
self.aitemplate.run_with_tensors(inputs, ys, graph_mode=False)
|
||||
return ys
|
||||
|
||||
|
||||
def get_control(self, x_noisy, t, cond_txt, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
@ -623,16 +649,18 @@ class ControlNet:
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
if self.aitemplate is None:
|
||||
if self.control_model.dtype == torch.float16:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
|
||||
if self.control_model.dtype == torch.float16:
|
||||
precision_scope = torch.autocast
|
||||
with precision_scope(model_management.get_autocast_device(self.device)):
|
||||
self.control_model = model_management.load_if_low_vram(self.control_model)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
|
||||
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
|
||||
with precision_scope(model_management.get_autocast_device(self.device)):
|
||||
self.control_model = model_management.load_if_low_vram(self.control_model)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
|
||||
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
||||
control = self.aitemplate_controlnet(x_noisy, t, cond_txt, self.cond_hint)
|
||||
out = {'middle':[], 'output': []}
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
|
||||
|
||||
299
nodes.py
299
nodes.py
@ -16,6 +16,7 @@ import safetensors.torch
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
||||
|
||||
from comfy.aitemplate.model import Model
|
||||
from comfy.ckpt_convert import convert_ldm_unet_checkpoint
|
||||
import comfy.diffusers_convert
|
||||
import comfy.samplers
|
||||
import comfy.sample
|
||||
@ -411,6 +412,53 @@ class CLIPSetLastLayer:
|
||||
return (clip,)
|
||||
|
||||
|
||||
class AITemplateControlNetLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "control_net": ("CONTROL_NET",),
|
||||
"aitemplate_module": (folder_paths.get_filename_list("aitemplate"), ),
|
||||
}}
|
||||
RETURN_TYPES = ("CONTROL_NET",)
|
||||
FUNCTION = "load_aitemplate_controlnet"
|
||||
|
||||
CATEGORY = "loaders"
|
||||
|
||||
def load_aitemplate_controlnet(self, control_net, aitemplate_module):
|
||||
aitemplate_path = folder_paths.get_full_path("aitemplate", aitemplate_module)
|
||||
aitemplate = Model(aitemplate_path)
|
||||
control_net_ait_params = self.map_controlnet_params(convert_ldm_unet_checkpoint(control_net.control_model.state_dict(), controlnet=True))
|
||||
print("Setting constants")
|
||||
aitemplate.set_many_constants_with_tensors(control_net_ait_params)
|
||||
print("Folding constants")
|
||||
aitemplate.fold_constants()
|
||||
control_net.aitemplate = aitemplate
|
||||
return (control_net,)
|
||||
|
||||
def map_controlnet_params(self, state_dict):
|
||||
params_ait = {}
|
||||
for key, arr in state_dict.items():
|
||||
arr = arr.to("cuda", dtype=torch.float16)
|
||||
if len(arr.shape) == 4:
|
||||
arr = arr.permute((0, 2, 3, 1)).contiguous()
|
||||
elif key.endswith("ff.net.0.proj.weight"):
|
||||
w1, w2 = arr.chunk(2, dim=0)
|
||||
params_ait[key.replace(".", "_")] = w1
|
||||
params_ait[key.replace(".", "_").replace("proj", "gate")] = w2
|
||||
continue
|
||||
elif key.endswith("ff.net.0.proj.bias"):
|
||||
w1, w2 = arr.chunk(2, dim=0)
|
||||
params_ait[key.replace(".", "_")] = w1
|
||||
params_ait[key.replace(".", "_").replace("proj", "gate")] = w2
|
||||
continue
|
||||
params_ait[key.replace(".", "_")] = arr
|
||||
params_ait["controlnet_cond_embedding_conv_in_weight"] = torch.nn.functional.pad(
|
||||
params_ait["controlnet_cond_embedding_conv_in_weight"], (0, 1, 0, 0, 0, 0, 0, 0)
|
||||
)
|
||||
params_ait["arange"] = (
|
||||
torch.arange(start=0, end=320 // 2, dtype=torch.float32).cuda().half()
|
||||
)
|
||||
return params_ait
|
||||
|
||||
class AITemplateLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -425,259 +473,12 @@ class AITemplateLoader:
|
||||
def load_aitemplate(self, model, aitemplate_module):
|
||||
aitemplate_path = folder_paths.get_full_path("aitemplate", aitemplate_module)
|
||||
aitemplate = Model(aitemplate_path)
|
||||
unet_params_ait = self.map_unet_state_dict(self.convert_ldm_unet_checkpoint(model.model.state_dict()))
|
||||
unet_params_ait = self.map_unet_state_dict(convert_ldm_unet_checkpoint(model.model.state_dict()))
|
||||
print("Setting constants")
|
||||
aitemplate.set_many_constants_with_tensors(unet_params_ait)
|
||||
print("Folding constants")
|
||||
aitemplate.fold_constants()
|
||||
return ((aitemplate,model),)
|
||||
#=================#
|
||||
# UNet Conversion #
|
||||
#=================#
|
||||
|
||||
def assign_to_checkpoint(
|
||||
self, paths, checkpoint, old_checkpoint, additional_replacements=None
|
||||
):
|
||||
"""
|
||||
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
||||
attention layers, and takes into account additional replacements that may arise.
|
||||
|
||||
Assigns the weights to the new checkpoint.
|
||||
"""
|
||||
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
||||
|
||||
for path in paths:
|
||||
new_path = path["new"]
|
||||
|
||||
# Global renaming happens here
|
||||
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
||||
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
||||
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
||||
|
||||
if additional_replacements is not None:
|
||||
for replacement in additional_replacements:
|
||||
new_path = new_path.replace(replacement["old"], replacement["new"])
|
||||
|
||||
# proj_attn.weight has to be converted from conv 1D to linear
|
||||
if "proj_attn.weight" in new_path:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
||||
else:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]]
|
||||
|
||||
|
||||
def conv_attn_to_linear(self, checkpoint):
|
||||
keys = list(checkpoint.keys())
|
||||
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
||||
for key in keys:
|
||||
if ".".join(key.split(".")[-2:]) in attn_keys:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||||
elif "proj_attn.weight" in key:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0]
|
||||
|
||||
|
||||
def renew_attention_paths(self, old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
||||
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
||||
|
||||
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
||||
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
||||
|
||||
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
def shave_segments(self, path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||||
"""
|
||||
if n_shave_prefix_segments >= 0:
|
||||
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
||||
else:
|
||||
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
||||
|
||||
|
||||
def renew_resnet_paths(self, old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item.replace("in_layers.0", "norm1")
|
||||
new_item = new_item.replace("in_layers.2", "conv1")
|
||||
|
||||
new_item = new_item.replace("out_layers.0", "norm2")
|
||||
new_item = new_item.replace("out_layers.3", "conv2")
|
||||
|
||||
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
||||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||||
|
||||
new_item = self.shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
def convert_ldm_unet_checkpoint(self, unet_state_dict, layers_per_block=2):
|
||||
"""
|
||||
Takes a state dict and a config, and returns a converted checkpoint.
|
||||
"""
|
||||
temp = {}
|
||||
for key, value in unet_state_dict.items():
|
||||
if key.startswith("model.diffusion_model."):
|
||||
key = key.replace("model.diffusion_model.", "")
|
||||
temp[key] = value
|
||||
unet_state_dict = temp
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
||||
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
||||
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
||||
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
||||
|
||||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||||
|
||||
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
||||
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
||||
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
||||
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
||||
|
||||
# Retrieves the keys for the input blocks only
|
||||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||||
input_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_input_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the middle blocks only
|
||||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||||
middle_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
||||
for layer_id in range(num_middle_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the output blocks only
|
||||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||||
output_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_output_blocks)
|
||||
}
|
||||
|
||||
for i in range(1, num_input_blocks):
|
||||
block_id = (i - 1) // (layers_per_block + 1)
|
||||
layer_in_block_id = (i - 1) % (layers_per_block + 1)
|
||||
|
||||
resnets = [
|
||||
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
||||
]
|
||||
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
||||
|
||||
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.weight"
|
||||
)
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.bias"
|
||||
)
|
||||
|
||||
paths = self.renew_resnet_paths(resnets)
|
||||
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||||
self.assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
if len(attentions):
|
||||
paths = self.renew_attention_paths(attentions)
|
||||
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
||||
self.assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
resnet_0 = middle_blocks[0]
|
||||
attentions = middle_blocks[1]
|
||||
resnet_1 = middle_blocks[2]
|
||||
|
||||
resnet_0_paths = self.renew_resnet_paths(resnet_0)
|
||||
self.assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict)
|
||||
|
||||
resnet_1_paths = self.renew_resnet_paths(resnet_1)
|
||||
self.assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict)
|
||||
|
||||
attentions_paths = self.renew_attention_paths(attentions)
|
||||
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
||||
self.assign_to_checkpoint(
|
||||
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
for i in range(num_output_blocks):
|
||||
block_id = i // (layers_per_block + 1)
|
||||
layer_in_block_id = i % (layers_per_block + 1)
|
||||
output_block_layers = [self.shave_segments(name, 2) for name in output_blocks[i]]
|
||||
output_block_list = {}
|
||||
|
||||
for layer in output_block_layers:
|
||||
layer_id, layer_name = layer.split(".")[0], self.shave_segments(layer, 1)
|
||||
if layer_id in output_block_list:
|
||||
output_block_list[layer_id].append(layer_name)
|
||||
else:
|
||||
output_block_list[layer_id] = [layer_name]
|
||||
|
||||
if len(output_block_list) > 1:
|
||||
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
||||
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
||||
|
||||
resnet_0_paths = self.renew_resnet_paths(resnets)
|
||||
paths = self.renew_resnet_paths(resnets)
|
||||
|
||||
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||||
self.assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
|
||||
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
||||
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
||||
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.weight"
|
||||
]
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.bias"
|
||||
]
|
||||
|
||||
# Clear attentions as they have been attributed above.
|
||||
if len(attentions) == 2:
|
||||
attentions = []
|
||||
|
||||
if len(attentions):
|
||||
paths = self.renew_attention_paths(attentions)
|
||||
meta_path = {
|
||||
"old": f"output_blocks.{i}.1",
|
||||
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
||||
}
|
||||
self.assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path]
|
||||
)
|
||||
else:
|
||||
resnet_0_paths = self.renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
||||
for path in resnet_0_paths:
|
||||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||||
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
||||
|
||||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||||
|
||||
return new_checkpoint
|
||||
|
||||
|
||||
#=========================#
|
||||
# AITemplate mapping #
|
||||
@ -1593,6 +1394,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"LatentCrop": LatentCrop,
|
||||
"LoraLoader": LoraLoader,
|
||||
"AITemplateLoader": AITemplateLoader,
|
||||
"AITemplateControlNetLoader": AITemplateControlNetLoader,
|
||||
"CLIPLoader": CLIPLoader,
|
||||
"CLIPVisionEncode": CLIPVisionEncode,
|
||||
"StyleModelApply": StyleModelApply,
|
||||
@ -1627,6 +1429,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"VAELoader": "Load VAE",
|
||||
"LoraLoader": "Load LoRA",
|
||||
"AITemplateLoader": "Load AITemplate",
|
||||
"AITemplateControlNetLoader": "Load AITemplate (ControlNet)",
|
||||
"CLIPLoader": "Load CLIP",
|
||||
"ControlNetLoader": "Load ControlNet Model",
|
||||
"DiffControlNetLoader": "Load ControlNet Model (diff)",
|
||||
|
||||
Loading…
Reference in New Issue
Block a user