Merge branch 'master' into asset-management

This commit is contained in:
Jedrzej Kosinski 2025-09-18 14:08:20 -07:00
commit 4dd843d36f
145 changed files with 15020 additions and 3191 deletions

30
.github/workflows/test-execution.yml vendored Normal file
View File

@ -0,0 +1,30 @@
name: Execution Tests
on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install -r tests-unit/requirements.txt
- name: Run Execution Tests
run: |
python -m pytest tests/execution -v --skip-timing-checks

View File

@ -65,18 +65,18 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
- [HiDream E1.1](https://comfyanonymous.github.io/ComfyUI_examples/hidream/#hidream-e11)
- [Qwen Image Edit](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/#edit-model)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) and [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
- Audio Models
@ -191,7 +191,7 @@ comfy install
## Manual Install (Windows, Linux)
python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
Git clone this repo.

View File

@ -363,10 +363,17 @@ class UserManager():
if not overwrite and os.path.exists(path):
return web.Response(status=409, text="File already exists")
body = await request.read()
try:
body = await request.read()
with open(path, "wb") as f:
f.write(body)
with open(path, "wb") as f:
f.write(body)
except OSError as e:
logging.warning(f"Error saving file '{path}': {e}")
return web.Response(
status=400,
reason="Invalid filename. Please avoid special characters like :\\/*?\"<>|"
)
user_path = self.get_request_user_filepath(request, None)
if full_info:

View File

@ -0,0 +1,91 @@
from .wav2vec2 import Wav2Vec2Model
from .whisper import WhisperLargeV3
import comfy.model_management
import comfy.ops
import comfy.utils
import logging
import torchaudio
class AudioEncoderModel():
def __init__(self, config):
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
model_type = config.pop("model_type")
model_config = dict(config)
model_config.update({
"dtype": self.dtype,
"device": offload_device,
"operations": comfy.ops.manual_cast
})
if model_type == "wav2vec2":
self.model = Wav2Vec2Model(**model_config)
elif model_type == "whisper3":
self.model = WhisperLargeV3(**model_config)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
def get_sd(self):
return self.model.state_dict()
def encode_audio(self, audio, sample_rate):
comfy.model_management.load_model_gpu(self.patcher)
audio = torchaudio.functional.resample(audio, sample_rate, self.model_sample_rate)
out, all_layers = self.model(audio.to(self.load_device))
outputs = {}
outputs["encoded_audio"] = out
outputs["encoded_audio_all_layers"] = all_layers
outputs["audio_samples"] = audio.shape[2]
return outputs
def load_audio_encoder_from_sd(sd, prefix=""):
sd = comfy.utils.state_dict_prefix_replace(sd, {"wav2vec2.": ""})
if "encoder.layer_norm.bias" in sd: #wav2vec2
embed_dim = sd["encoder.layer_norm.bias"].shape[0]
if embed_dim == 1024:# large
config = {
"model_type": "wav2vec2",
"embed_dim": 1024,
"num_heads": 16,
"num_layers": 24,
"conv_norm": True,
"conv_bias": True,
"do_normalize": True,
"do_stable_layer_norm": True
}
elif embed_dim == 768: # base
config = {
"model_type": "wav2vec2",
"embed_dim": 768,
"num_heads": 12,
"num_layers": 12,
"conv_norm": False,
"conv_bias": False,
"do_normalize": False, # chinese-wav2vec2-base has this False
"do_stable_layer_norm": False
}
else:
raise RuntimeError("ERROR: audio encoder file is invalid or unsupported embed_dim: {}".format(embed_dim))
elif "model.encoder.embed_positions.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"model.": ""})
config = {
"model_type": "whisper3",
}
else:
raise RuntimeError("ERROR: audio encoder not supported.")
audio_encoder = AudioEncoderModel(config)
m, u = audio_encoder.load_sd(sd)
if len(m) > 0:
logging.warning("missing audio encoder: {}".format(m))
if len(u) > 0:
logging.warning("unexpected audio encoder: {}".format(u))
return audio_encoder

View File

@ -0,0 +1,252 @@
import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention_masked
class LayerNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1))
class LayerGroupNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.GroupNorm(num_groups=out_channels, num_channels=out_channels, affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x))
class ConvNoNorm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(x)
class ConvFeatureEncoder(nn.Module):
def __init__(self, conv_dim, conv_bias=False, conv_norm=True, dtype=None, device=None, operations=None):
super().__init__()
if conv_norm:
self.conv_layers = nn.ModuleList([
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
])
else:
self.conv_layers = nn.ModuleList([
LayerGroupNormConv(1, conv_dim, kernel_size=10, stride=5, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
])
def forward(self, x):
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x.transpose(1, 2)
class FeatureProjection(nn.Module):
def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None):
super().__init__()
self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype)
self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.layer_norm(x)
x = self.projection(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self, embed_dim=768, kernel_size=128, groups=16):
super().__init__()
self.conv = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
)
self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
self.activation = nn.GELU()
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv(x)[:, :, :-1]
x = self.activation(x)
x = x.transpose(1, 2)
return x
class TransformerEncoder(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
num_layers=12,
mlp_ratio=4.0,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim)
self.layers = nn.ModuleList([
TransformerEncoderLayer(
embed_dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
do_stable_layer_norm=do_stable_layer_norm,
device=device, dtype=dtype, operations=operations
)
for _ in range(num_layers)
])
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype)
self.do_stable_layer_norm = do_stable_layer_norm
def forward(self, x, mask=None):
x = x + self.pos_conv_embed(x)
all_x = ()
if not self.do_stable_layer_norm:
x = self.layer_norm(x)
for layer in self.layers:
all_x += (x,)
x = layer(x, mask)
if self.do_stable_layer_norm:
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class Attention(nn.Module):
def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
def forward(self, x, mask=None):
assert (mask is None) # TODO?
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = optimized_attention_masked(q, k, v, self.num_heads)
return self.out_proj(out)
class FeedForward(nn.Module):
def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype)
self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.intermediate_dense(x)
x = torch.nn.functional.gelu(x)
x = self.output_dense(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
mlp_ratio=4.0,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.do_stable_layer_norm = do_stable_layer_norm
def forward(self, x, mask=None):
residual = x
if self.do_stable_layer_norm:
x = self.layer_norm(x)
x = self.attention(x, mask=mask)
x = residual + x
if not self.do_stable_layer_norm:
x = self.layer_norm(x)
return self.final_layer_norm(x + self.feed_forward(x))
else:
return x + self.feed_forward(self.final_layer_norm(x))
class Wav2Vec2Model(nn.Module):
"""Complete Wav2Vec 2.0 model."""
def __init__(
self,
embed_dim=1024,
final_dim=256,
num_heads=16,
num_layers=24,
conv_norm=True,
conv_bias=True,
do_normalize=True,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
conv_dim = 512
self.feature_extractor = ConvFeatureEncoder(conv_dim, conv_norm=conv_norm, conv_bias=conv_bias, device=device, dtype=dtype, operations=operations)
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations)
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype))
self.do_normalize = do_normalize
self.encoder = TransformerEncoder(
embed_dim=embed_dim,
num_heads=num_heads,
num_layers=num_layers,
do_stable_layer_norm=do_stable_layer_norm,
device=device, dtype=dtype, operations=operations
)
def forward(self, x, mask_time_indices=None, return_dict=False):
x = torch.mean(x, dim=1)
if self.do_normalize:
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
features = self.feature_extractor(x)
features = self.feature_projection(features)
batch_size, seq_len, _ = features.shape
x, all_x = self.encoder(features)
return x, all_x

186
comfy/audio_encoders/whisper.py Executable file
View File

@ -0,0 +1,186 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from typing import Optional
from comfy.ldm.modules.attention import optimized_attention_masked
import comfy.ops
class WhisperFeatureExtractor(nn.Module):
def __init__(self, n_mels=128, device=None):
super().__init__()
self.sample_rate = 16000
self.n_fft = 400
self.hop_length = 160
self.n_mels = n_mels
self.chunk_length = 30
self.n_samples = 480000
self.mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=self.sample_rate,
n_fft=self.n_fft,
hop_length=self.hop_length,
n_mels=self.n_mels,
f_min=0,
f_max=8000,
norm="slaney",
mel_scale="slaney",
).to(device)
def __call__(self, audio):
audio = torch.mean(audio, dim=1)
batch_size = audio.shape[0]
processed_audio = []
for i in range(batch_size):
aud = audio[i]
if aud.shape[0] > self.n_samples:
aud = aud[:self.n_samples]
elif aud.shape[0] < self.n_samples:
aud = F.pad(aud, (0, self.n_samples - aud.shape[0]))
processed_audio.append(aud)
audio = torch.stack(processed_audio)
mel_spec = self.mel_spectrogram(audio.to(self.mel_spectrogram.spectrogram.window.device))[:, :, :-1].to(audio.device)
log_mel_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_mel_spec = torch.maximum(log_mel_spec, log_mel_spec.max() - 8.0)
log_mel_spec = (log_mel_spec + 4.0) / 4.0
return log_mel_spec
class MultiHeadAttention(nn.Module):
def __init__(self, d_model: int, n_heads: int, dtype=None, device=None, operations=None):
super().__init__()
assert d_model % n_heads == 0
self.d_model = d_model
self.n_heads = n_heads
self.d_k = d_model // n_heads
self.q_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.k_proj = operations.Linear(d_model, d_model, bias=False, dtype=dtype, device=device)
self.v_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.out_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, seq_len, _ = query.shape
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
attn_output = optimized_attention_masked(q, k, v, self.n_heads, mask)
attn_output = self.out_proj(attn_output)
return attn_output
class EncoderLayer(nn.Module):
def __init__(self, d_model: int, n_heads: int, d_ff: int, dtype=None, device=None, operations=None):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads, dtype=dtype, device=device, operations=operations)
self.self_attn_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
self.fc1 = operations.Linear(d_model, d_ff, dtype=dtype, device=device)
self.fc2 = operations.Linear(d_ff, d_model, dtype=dtype, device=device)
self.final_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
residual = x
x = self.self_attn_layer_norm(x)
x = self.self_attn(x, x, x, attention_mask)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
x = residual + x
return x
class AudioEncoder(nn.Module):
def __init__(
self,
n_mels: int = 128,
n_ctx: int = 1500,
n_state: int = 1280,
n_head: int = 20,
n_layer: int = 32,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.conv1 = operations.Conv1d(n_mels, n_state, kernel_size=3, padding=1, dtype=dtype, device=device)
self.conv2 = operations.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1, dtype=dtype, device=device)
self.embed_positions = operations.Embedding(n_ctx, n_state, dtype=dtype, device=device)
self.layers = nn.ModuleList([
EncoderLayer(n_state, n_head, n_state * 4, dtype=dtype, device=device, operations=operations)
for _ in range(n_layer)
])
self.layer_norm = operations.LayerNorm(n_state, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.transpose(1, 2)
x = x + comfy.ops.cast_to_input(self.embed_positions.weight[:, :x.shape[1]], x)
all_x = ()
for layer in self.layers:
all_x += (x,)
x = layer(x)
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class WhisperLargeV3(nn.Module):
def __init__(
self,
n_mels: int = 128,
n_audio_ctx: int = 1500,
n_audio_state: int = 1280,
n_audio_head: int = 20,
n_audio_layer: int = 32,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.feature_extractor = WhisperFeatureExtractor(n_mels=n_mels, device=device)
self.encoder = AudioEncoder(
n_mels, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer,
dtype=dtype, device=device, operations=operations
)
def forward(self, audio):
mel = self.feature_extractor(audio)
x, all_x = self.encoder(mel)
return x, all_x

View File

@ -143,8 +143,9 @@ class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")

View File

@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
@ -97,7 +107,7 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32, embeds_info=[]):
if embeds is not None:
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:

View File

@ -50,7 +50,13 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
@ -68,12 +74,18 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
if self.return_all_hidden_states:
all_hs = out[1].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
outputs["all_hidden_states"] = all_hs
else:
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs
@ -124,8 +136,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
# Dinov2
elif 'encoder.layer.39.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
elif 'encoder.layer.23.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_large.json")
else:
return None

View File

@ -36,6 +36,7 @@ import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.ldm.qwen_image.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING
if TYPE_CHECKING:
@ -236,11 +237,11 @@ class ControlNet(ControlBase):
self.cond_hint = None
compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.downscale_ratio
compression_ratio *= self.vae.spacial_compression_encode()
else:
if self.latent_format is not None:
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[-1] * compression_ratio, x_noisy.shape[-2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = self.preprocess_image(self.cond_hint)
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
@ -252,7 +253,10 @@ class ControlNet(ControlBase):
to_concat = []
for c in self.extra_concat_orig:
c = c.to(self.cond_hint.device)
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
c = comfy.utils.common_upscale(c, self.cond_hint.shape[-1], self.cond_hint.shape[-2], self.upscale_algorithm, "center")
if c.ndim < self.cond_hint.ndim:
c = c.unsqueeze(2)
c = comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[2], dim=2)
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
@ -582,6 +586,22 @@ def load_controlnet_flux_instantx(sd, model_options={}):
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def load_controlnet_qwen_instantx(sd, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_latent_channels = sd.get("controlnet_x_embedder.weight").shape[1]
extra_condition_channels = 0
concat_mask = False
if control_latent_channels == 68: #inpaint controlnet
extra_condition_channels = control_latent_channels - 64
concat_mask = True
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(extra_condition_channels=extra_condition_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.Wan21()
extra_conds = []
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
@ -655,8 +675,11 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
else:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
elif "transformer_blocks.0.img_mlp.net.0.proj.weight" in controlnet_data:
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)

View File

@ -31,6 +31,20 @@ class LayerScale(torch.nn.Module):
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class Dinov2MLP(torch.nn.Module):
def __init__(self, hidden_size: int, dtype, device, operations):
super().__init__()
mlp_ratio = 4
hidden_features = int(hidden_size * mlp_ratio)
self.fc1 = operations.Linear(hidden_size, hidden_features, bias = True, device=device, dtype=dtype)
self.fc2 = operations.Linear(hidden_features, hidden_size, bias = True, device=device, dtype=dtype)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = torch.nn.functional.gelu(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
@ -50,12 +64,15 @@ class SwiGLUFFN(torch.nn.Module):
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
if use_swiglu_ffn:
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
else:
self.mlp = Dinov2MLP(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
@ -66,9 +83,10 @@ class Dino2Block(torch.nn.Module):
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
@ -78,8 +96,8 @@ class Dino2Encoder(torch.nn.Module):
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
for i, layer in enumerate(self.layer):
x = layer(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
@ -128,9 +146,10 @@ class Dinov2Model(torch.nn.Module):
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
use_swiglu_ffn = config_dict["use_swiglu_ffn"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):

View File

@ -0,0 +1,22 @@
{
"hidden_size": 1024,
"use_mask_token": true,
"patch_size": 14,
"image_size": 518,
"num_channels": 3,
"num_attention_heads": 16,
"initializer_range": 0.02,
"attention_probs_dropout_prob": 0.0,
"hidden_dropout_prob": 0.0,
"hidden_act": "gelu",
"mlp_ratio": 4,
"model_type": "dinov2",
"num_hidden_layers": 24,
"layer_norm_eps": 1e-6,
"qkv_bias": true,
"use_swiglu_ffn": false,
"layerscale_value": 1.0,
"drop_path_rate": 0.0,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@ -86,24 +86,24 @@ class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
self.cpu_tree = kwargs.pop("cpu", True)
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
w0 = kwargs.pop('w0', None)
if w0 is None:
w0 = torch.zeros_like(x)
self.batched = False
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
seed = (torch.randint(0, 2 ** 63 - 1, ()).item(),)
elif isinstance(seed, (tuple, list)):
if len(seed) != x.shape[0]:
raise ValueError("Passing a list or tuple of seeds to BatchedBrownianTree requires a length matching the batch size.")
self.batched = True
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
if self.cpu_tree:
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
else:
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
seed = (seed,)
if self.cpu_tree:
t0, w0, t1 = t0.detach().cpu(), w0.detach().cpu(), t1.detach().cpu()
self.trees = tuple(torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed)
@staticmethod
def sort(a, b):
@ -111,11 +111,10 @@ class BatchedBrownianTree:
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
device, dtype = t0.device, t0.dtype
if self.cpu_tree:
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
else:
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
t0, t1 = t0.detach().cpu().float(), t1.detach().cpu().float()
w = torch.stack([tree(t0, t1) for tree in self.trees]).to(device=device, dtype=dtype) * (self.sign * sign)
return w if self.batched else w[0]
@ -171,6 +170,16 @@ def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
return sigmas
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
return torch.expm1(h)
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
return (torch.expm1(h) - h) / h
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@ -853,6 +862,11 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
return x
@torch.no_grad()
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
@ -925,6 +939,16 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
@ -1535,13 +1559,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@ -1549,55 +1572,53 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
fac = 1 / (2 * r)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
continue
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
sigma_s_1 = sigma_fn(lambda_s_1)
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@ -1609,45 +1630,49 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
continue
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 2
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
if inject_noise:
segment_factor = (r_1 - r_2) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
# Step 3
b3 = ei_h_phi_2(-h_eta) / r_2
b1 = ei_h_phi_1(-h_eta) - b3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
if inject_noise:
segment_factor = (r_2 - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x

View File

@ -533,11 +533,94 @@ class Wan22(Wan21):
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]).view(1, self.latent_channels, 1, 1, 1)
class HunyuanImage21(LatentFormat):
latent_channels = 64
latent_dimensions = 2
scale_factor = 0.75289
latent_rgb_factors = [
[-0.0154, -0.0397, -0.0521],
[ 0.0005, 0.0093, 0.0006],
[-0.0805, -0.0773, -0.0586],
[-0.0494, -0.0487, -0.0498],
[-0.0212, -0.0076, -0.0261],
[-0.0179, -0.0417, -0.0505],
[ 0.0158, 0.0310, 0.0239],
[ 0.0409, 0.0516, 0.0201],
[ 0.0350, 0.0553, 0.0036],
[-0.0447, -0.0327, -0.0479],
[-0.0038, -0.0221, -0.0365],
[-0.0423, -0.0718, -0.0654],
[ 0.0039, 0.0368, 0.0104],
[ 0.0655, 0.0217, 0.0122],
[ 0.0490, 0.1638, 0.2053],
[ 0.0932, 0.0829, 0.0650],
[-0.0186, -0.0209, -0.0135],
[-0.0080, -0.0076, -0.0148],
[-0.0284, -0.0201, 0.0011],
[-0.0642, -0.0294, -0.0777],
[-0.0035, 0.0076, -0.0140],
[ 0.0519, 0.0731, 0.0887],
[-0.0102, 0.0095, 0.0704],
[ 0.0068, 0.0218, -0.0023],
[-0.0726, -0.0486, -0.0519],
[ 0.0260, 0.0295, 0.0263],
[ 0.0250, 0.0333, 0.0341],
[ 0.0168, -0.0120, -0.0174],
[ 0.0226, 0.1037, 0.0114],
[ 0.2577, 0.1906, 0.1604],
[-0.0646, -0.0137, -0.0018],
[-0.0112, 0.0309, 0.0358],
[-0.0347, 0.0146, -0.0481],
[ 0.0234, 0.0179, 0.0201],
[ 0.0157, 0.0313, 0.0225],
[ 0.0423, 0.0675, 0.0524],
[-0.0031, 0.0027, -0.0255],
[ 0.0447, 0.0555, 0.0330],
[-0.0152, 0.0103, 0.0299],
[-0.0755, -0.0489, -0.0635],
[ 0.0853, 0.0788, 0.1017],
[-0.0272, -0.0294, -0.0471],
[ 0.0440, 0.0400, -0.0137],
[ 0.0335, 0.0317, -0.0036],
[-0.0344, -0.0621, -0.0984],
[-0.0127, -0.0630, -0.0620],
[-0.0648, 0.0360, 0.0924],
[-0.0781, -0.0801, -0.0409],
[ 0.0363, 0.0613, 0.0499],
[ 0.0238, 0.0034, 0.0041],
[-0.0135, 0.0258, 0.0310],
[ 0.0614, 0.1086, 0.0589],
[ 0.0428, 0.0350, 0.0205],
[ 0.0153, 0.0173, -0.0018],
[-0.0288, -0.0455, -0.0091],
[ 0.0344, 0.0109, -0.0157],
[-0.0205, -0.0247, -0.0187],
[ 0.0487, 0.0126, 0.0064],
[-0.0220, -0.0013, 0.0074],
[-0.0203, -0.0094, -0.0048],
[-0.0719, 0.0429, -0.0442],
[ 0.1042, 0.0497, 0.0356],
[-0.0659, -0.0578, -0.0280],
[-0.0060, -0.0322, -0.0234]]
latent_rgb_factors_bias = [0.0007, -0.0256, -0.0206]
class HunyuanImage21Refiner(LatentFormat):
latent_channels = 64
latent_dimensions = 3
scale_factor = 1.03682
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2_1(LatentFormat):
scale_factor = 1.0039506158752403
latent_channels = 64
latent_dimensions = 1
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
@ -546,3 +629,20 @@ class Hunyuan3Dv2mini(LatentFormat):
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
class ChromaRadiance(LatentFormat):
latent_channels = 3
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 1.0, 0.0, 0.0 ],
[ 0.0, 1.0, 0.0 ],
[ 0.0, 0.0, 1.0 ]
]
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent

View File

@ -133,6 +133,7 @@ class Attention(nn.Module):
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
transformer_options={},
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
@ -140,6 +141,7 @@ class Attention(nn.Module):
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
transformer_options=transformer_options,
**cross_attention_kwargs,
)
@ -366,6 +368,7 @@ class CustomerAttnProcessor2_0:
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
transformer_options={},
*args,
**kwargs,
) -> torch.Tensor:
@ -433,7 +436,7 @@ class CustomerAttnProcessor2_0:
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, transformer_options=transformer_options,
).to(query.dtype)
# linear proj
@ -697,6 +700,7 @@ class LinearTransformerBlock(nn.Module):
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
transformer_options={},
):
N = hidden_states.shape[0]
@ -720,6 +724,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
transformer_options=transformer_options,
)
else:
attn_output, _ = self.attn(
@ -729,6 +734,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
transformer_options=transformer_options,
)
if self.use_adaln_single:
@ -743,6 +749,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
transformer_options=transformer_options,
)
hidden_states = attn_output + hidden_states

View File

@ -19,6 +19,7 @@ import torch
from torch import nn
import comfy.model_management
import comfy.patcher_extension
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
@ -313,6 +314,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
transformer_options={},
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
@ -338,12 +340,34 @@ class ACEStepTransformer2DModel(nn.Module):
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
transformer_options=transformer_options,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(
def forward(self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timestep, attention_mask, context, text_attention_mask, speaker_embeds, lyric_token_idx, lyric_mask, block_controlnet_hidden_states,
controlnet_scale, lyrics_strength, **kwargs)
def _forward(
self,
x,
timestep,
@ -371,6 +395,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length = hidden_states.shape[-1]
transformer_options = kwargs.get("transformer_options", {})
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
@ -380,6 +405,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
transformer_options=transformer_options,
)
return output

View File

@ -298,7 +298,8 @@ class Attention(nn.Module):
mask = None,
context_mask = None,
rotary_pos_emb = None,
causal = None
causal = None,
transformer_options={},
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
@ -363,7 +364,7 @@ class Attention(nn.Module):
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
out = optimized_attention(q, k, v, h, skip_reshape=True)
out = optimized_attention(q, k, v, h, skip_reshape=True, transformer_options=transformer_options)
out = self.to_out(out)
if mask is not None:
@ -488,7 +489,8 @@ class TransformerBlock(nn.Module):
global_cond=None,
mask = None,
context_mask = None,
rotary_pos_emb = None
rotary_pos_emb = None,
transformer_options={}
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
@ -498,12 +500,12 @@ class TransformerBlock(nn.Module):
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
if self.conformer is not None:
x = x + self.conformer(x)
@ -517,10 +519,10 @@ class TransformerBlock(nn.Module):
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
if self.conformer is not None:
x = x + self.conformer(x)
@ -606,7 +608,8 @@ class ContinuousTransformer(nn.Module):
return_info = False,
**kwargs
):
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
transformer_options = kwargs.get("transformer_options", {})
patches_replace = transformer_options.get("patches_replace", {})
batch, seq, device = *x.shape[:2], x.device
context = kwargs["context"]
@ -632,7 +635,7 @@ class ContinuousTransformer(nn.Module):
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=torch.float, device=x.device)
else:
rotary_pos_emb = None
@ -645,13 +648,13 @@ class ContinuousTransformer(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context, transformer_options=transformer_options)
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:

View File

@ -9,6 +9,7 @@ import torch.nn.functional as F
from comfy.ldm.modules.attention import optimized_attention
import comfy.ops
import comfy.patcher_extension
import comfy.ldm.common_dit
def modulate(x, shift, scale):
@ -84,7 +85,7 @@ class SingleAttention(nn.Module):
)
#@torch.compile()
def forward(self, c):
def forward(self, c, transformer_options={}):
bsz, seqlen1, _ = c.shape
@ -94,7 +95,7 @@ class SingleAttention(nn.Module):
v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
q, k = self.q_norm1(q), self.k_norm1(k)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
c = self.w1o(output)
return c
@ -143,7 +144,7 @@ class DoubleAttention(nn.Module):
#@torch.compile()
def forward(self, c, x):
def forward(self, c, x, transformer_options={}):
bsz, seqlen1, _ = c.shape
bsz, seqlen2, _ = x.shape
@ -167,7 +168,7 @@ class DoubleAttention(nn.Module):
torch.cat([cv, xv], dim=1),
)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
c, x = output.split([seqlen1, seqlen2], dim=1)
c = self.w1o(c)
@ -206,7 +207,7 @@ class MMDiTBlock(nn.Module):
self.is_last = is_last
#@torch.compile()
def forward(self, c, x, global_cond, **kwargs):
def forward(self, c, x, global_cond, transformer_options={}, **kwargs):
cres, xres = c, x
@ -224,7 +225,7 @@ class MMDiTBlock(nn.Module):
x = modulate(self.normX1(x), xshift_msa, xscale_msa)
# attention
c, x = self.attn(c, x)
c, x = self.attn(c, x, transformer_options=transformer_options)
c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
@ -254,13 +255,13 @@ class DiTBlock(nn.Module):
self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
#@torch.compile()
def forward(self, cx, global_cond, **kwargs):
def forward(self, cx, global_cond, transformer_options={}, **kwargs):
cxres = cx
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
global_cond
).chunk(6, dim=1)
cx = modulate(self.norm1(cx), shift_msa, scale_msa)
cx = self.attn(cx)
cx = self.attn(cx, transformer_options=transformer_options)
cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
cx = gate_mlp.unsqueeze(1) * mlpout
@ -436,6 +437,13 @@ class MMDiT(nn.Module):
return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
def forward(self, x, timestep, context, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, transformer_options, **kwargs)
def _forward(self, x, timestep, context, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
# patchify x, add PE
b, c, h, w = x.shape
@ -465,13 +473,14 @@ class MMDiT(nn.Module):
out = {}
out["txt"], out["img"] = layer(args["txt"],
args["img"],
args["vec"])
args["vec"],
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
c = out["txt"]
x = out["img"]
else:
c, x = layer(c, x, global_cond, **kwargs)
c, x = layer(c, x, global_cond, transformer_options=transformer_options, **kwargs)
if len(self.single_layers) > 0:
c_len = c.size(1)
@ -480,13 +489,13 @@ class MMDiT(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], args["vec"])
out["img"] = layer(args["img"], args["vec"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
cx = out["img"]
else:
cx = layer(cx, global_cond, **kwargs)
cx = layer(cx, global_cond, transformer_options=transformer_options, **kwargs)
x = cx[:, c_len:]

View File

@ -32,12 +32,12 @@ class OptimizedAttention(nn.Module):
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, q, k, v):
def forward(self, q, k, v, transformer_options={}):
q = self.to_q(q)
k = self.to_k(k)
v = self.to_v(v)
out = optimized_attention(q, k, v, self.heads)
out = optimized_attention(q, k, v, self.heads, transformer_options=transformer_options)
return self.out_proj(out)
@ -47,13 +47,13 @@ class Attention2D(nn.Module):
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
def forward(self, x, kv, self_attn=False):
def forward(self, x, kv, self_attn=False, transformer_options={}):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
kv = torch.cat([x, kv], dim=1)
# x = self.attn(x, kv, kv, need_weights=False)[0]
x = self.attn(x, kv, kv)
x = self.attn(x, kv, kv, transformer_options=transformer_options)
x = x.permute(0, 2, 1).view(*orig_shape)
return x
@ -114,9 +114,9 @@ class AttnBlock(nn.Module):
operations.Linear(c_cond, c, dtype=dtype, device=device)
)
def forward(self, x, kv):
def forward(self, x, kv, transformer_options={}):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn, transformer_options=transformer_options)
return x

View File

@ -173,7 +173,7 @@ class StageB(nn.Module):
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip):
def _down_encode(self, x, r_embed, clip, transformer_options={}):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
@ -187,7 +187,7 @@ class StageB(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -199,7 +199,7 @@ class StageB(nn.Module):
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip):
def _up_decode(self, level_outputs, r_embed, clip, transformer_options={}):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
@ -216,7 +216,7 @@ class StageB(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -228,7 +228,7 @@ class StageB(nn.Module):
x = upscaler(x)
return x
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
def forward(self, x, r, effnet, clip, pixels=None, transformer_options={}, **kwargs):
if pixels is None:
pixels = x.new_zeros(x.size(0), 3, 8, 8)
@ -245,8 +245,8 @@ class StageB(nn.Module):
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
align_corners=True)
level_outputs = self._down_encode(x, r_embed, clip)
x = self._up_decode(level_outputs, r_embed, clip)
level_outputs = self._down_encode(x, r_embed, clip, transformer_options=transformer_options)
x = self._up_decode(level_outputs, r_embed, clip, transformer_options=transformer_options)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):

View File

@ -182,7 +182,7 @@ class StageC(nn.Module):
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip, cnet=None):
def _down_encode(self, x, r_embed, clip, cnet=None, transformer_options={}):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
@ -201,7 +201,7 @@ class StageC(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -213,7 +213,7 @@ class StageC(nn.Module):
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
def _up_decode(self, level_outputs, r_embed, clip, cnet=None, transformer_options={}):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
@ -235,7 +235,7 @@ class StageC(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -247,7 +247,7 @@ class StageC(nn.Module):
x = upscaler(x)
return x
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, transformer_options={}, **kwargs):
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
for c in self.t_conds:
@ -262,8 +262,8 @@ class StageC(nn.Module):
# Model Blocks
x = self.embedding(x)
level_outputs = self._down_encode(x, r_embed, clip, cnet)
x = self._up_decode(level_outputs, r_embed, clip, cnet)
level_outputs = self._down_encode(x, r_embed, clip, cnet, transformer_options=transformer_options)
x = self._up_decode(level_outputs, r_embed, clip, cnet, transformer_options=transformer_options)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):

View File

@ -76,7 +76,7 @@ class DoubleStreamBlock(nn.Module):
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
@ -95,7 +95,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
@ -148,7 +148,7 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
@ -157,7 +157,7 @@ class SingleStreamBlock(nn.Module):
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)

View File

@ -5,6 +5,7 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.patcher_extension
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
@ -150,8 +151,6 @@ class Chroma(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
@ -192,14 +191,16 @@ class Chroma(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@ -208,7 +209,8 @@ class Chroma(nn.Module):
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@ -228,17 +230,19 @@ class Chroma(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@ -248,16 +252,27 @@ class Chroma(nn.Module):
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
if hasattr(self, "final_layer"):
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, guidance, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
if img.ndim != 3 or context.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)

View File

@ -0,0 +1,206 @@
# Adapted from https://github.com/lodestone-rock/flow
from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
An embedder module that combines input features with a 2D positional
encoding that mimics the Discrete Cosine Transform (DCT).
This module takes an input tensor of shape (B, P^2, C), where P is the
patch size, and enriches it with positional information before projecting
it to a new hidden size.
"""
def __init__(
self,
in_channels: int,
hidden_size_input: int,
max_freqs: int,
dtype=None,
device=None,
operations=None,
):
"""
Initializes the NerfEmbedder.
Args:
in_channels (int): The number of channels in the input tensor.
hidden_size_input (int): The desired dimension of the output embedding.
max_freqs (int): The number of frequency components to use for both
the x and y dimensions of the positional encoding.
The total number of positional features will be max_freqs^2.
"""
super().__init__()
self.dtype = dtype
self.max_freqs = max_freqs
self.hidden_size_input = hidden_size_input
# A linear layer to project the concatenated input features and
# positional encodings to the final output dimension.
self.embedder = nn.Sequential(
operations.Linear(in_channels + max_freqs**2, hidden_size_input, dtype=dtype, device=device)
)
@lru_cache(maxsize=4)
def fetch_pos(self, patch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""
Generates and caches 2D DCT-like positional embeddings for a given patch size.
The LRU cache is a performance optimization that avoids recomputing the
same positional grid on every forward pass.
Args:
patch_size (int): The side length of the square input patch.
device: The torch device to create the tensors on.
dtype: The torch dtype for the tensors.
Returns:
A tensor of shape (1, patch_size^2, max_freqs^2) containing the
positional embeddings.
"""
# Create normalized 1D coordinate grids from 0 to 1.
pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
# Create a 2D meshgrid of coordinates.
pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij")
# Reshape positions to be broadcastable with frequencies.
# Shape becomes (patch_size^2, 1, 1).
pos_x = pos_x.reshape(-1, 1, 1)
pos_y = pos_y.reshape(-1, 1, 1)
# Create a 1D tensor of frequency values from 0 to max_freqs-1.
freqs = torch.linspace(0, self.max_freqs - 1, self.max_freqs, dtype=dtype, device=device)
# Reshape frequencies to be broadcastable for creating 2D basis functions.
# freqs_x shape: (1, max_freqs, 1)
# freqs_y shape: (1, 1, max_freqs)
freqs_x = freqs[None, :, None]
freqs_y = freqs[None, None, :]
# A custom weighting coefficient, not part of standard DCT.
# This seems to down-weight the contribution of higher-frequency interactions.
coeffs = (1 + freqs_x * freqs_y) ** -1
# Calculate the 1D cosine basis functions for x and y coordinates.
# This is the core of the DCT formulation.
dct_x = torch.cos(pos_x * freqs_x * torch.pi)
dct_y = torch.cos(pos_y * freqs_y * torch.pi)
# Combine the 1D basis functions to create 2D basis functions by element-wise
# multiplication, and apply the custom coefficients. Broadcasting handles the
# combination of all (pos_x, freqs_x) with all (pos_y, freqs_y).
# The result is flattened into a feature vector for each position.
dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs ** 2)
return dct
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the embedder.
Args:
inputs (Tensor): The input tensor of shape (B, P^2, C).
Returns:
Tensor: The output tensor of shape (B, P^2, hidden_size_input).
"""
# Get the batch size, number of pixels, and number of channels.
B, P2, C = inputs.shape
# Infer the patch side length from the number of pixels (P^2).
patch_size = int(P2 ** 0.5)
input_dtype = inputs.dtype
inputs = inputs.to(dtype=self.dtype)
# Fetch the pre-computed or cached positional embeddings.
dct = self.fetch_pos(patch_size, inputs.device, self.dtype)
# Repeat the positional embeddings for each item in the batch.
dct = dct.repeat(B, 1, 1)
# Concatenate the original input features with the positional embeddings
# along the feature dimension.
inputs = torch.cat((inputs, dct), dim=-1)
# Project the combined tensor to the target hidden size.
return self.embedder(inputs).to(dtype=input_dtype)
class NerfGLUBlock(nn.Module):
"""
A NerfBlock using a Gated Linear Unit (GLU) like MLP.
"""
def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
# The total number of parameters for the MLP is increased to accommodate
# the gate, value, and output projection matrices.
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.mlp_ratio = mlp_ratio
def forward(self, x: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
batch_size, num_x, hidden_size_x = x.shape
mlp_params = self.param_generator(s)
# Split the generated parameters into three parts for the gate, value, and output projection.
fc1_gate_params, fc1_value_params, fc2_params = mlp_params.chunk(3, dim=-1)
# Reshape the parameters into matrices for batch matrix multiplication.
fc1_gate = fc1_gate_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc1_value = fc1_value_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc2 = fc2_params.view(batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x)
# Normalize the generated weight matrices as in the original implementation.
fc1_gate = torch.nn.functional.normalize(fc1_gate, dim=-2)
fc1_value = torch.nn.functional.normalize(fc1_value, dim=-2)
fc2 = torch.nn.functional.normalize(fc2, dim=-2)
res_x = x
x = self.norm(x)
# Apply the final output projection.
x = torch.bmm(torch.nn.functional.silu(torch.bmm(x, fc1_gate)) * torch.bmm(x, fc1_value), fc2)
return x + res_x
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.linear(self.norm(x.movedim(1, -1))).movedim(-1, 1)
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,
kernel_size=3,
padding=1,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.conv(self.norm(x.movedim(1, -1)).movedim(-1, 1))

View File

@ -0,0 +1,329 @@
# Credits:
# Original Flux code can be found on: https://github.com/black-forest-labs/flux
# Chroma Radiance adaption referenced from https://github.com/lodestone-rock/flow
from dataclasses import dataclass
from typing import Optional
import torch
from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
DoubleStreamBlock,
SingleStreamBlock,
Approximator,
)
from .layers import (
NerfEmbedder,
NerfGLUBlock,
NerfFinalLayer,
NerfFinalLayerConv,
)
@dataclass
class ChromaRadianceParams(ChromaParams):
patch_size: int
nerf_hidden_size: int
nerf_mlp_ratio: int
nerf_depth: int
nerf_max_freqs: int
# Setting nerf_tile_size to 0 disables tiling.
nerf_tile_size: int
# Currently one of linear (legacy) or conv.
nerf_final_head_type: str
# None means use the same dtype as the model.
nerf_embedder_dtype: Optional[torch.dtype]
class ChromaRadiance(Chroma):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
if operations is None:
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
nn.Module.__init__(self)
self.dtype = dtype
params = ChromaRadianceParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.in_dim = params.in_dim
self.out_dim = params.out_dim
self.hidden_dim = params.hidden_dim
self.n_layers = params.n_layers
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in_patch = operations.Conv2d(
params.in_channels,
params.hidden_size,
kernel_size=params.patch_size,
stride=params.patch_size,
bias=True,
dtype=dtype,
device=device,
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
# set as nn identity for now, will overwrite it later.
self.distilled_guidance_layer = Approximator(
in_dim=self.in_dim,
hidden_dim=self.hidden_dim,
out_dim=self.out_dim,
n_layers=self.n_layers,
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)
]
)
# pixel channel concat with DCT
self.nerf_image_embedder = NerfEmbedder(
in_channels=params.in_channels,
hidden_size_input=params.nerf_hidden_size,
max_freqs=params.nerf_max_freqs,
dtype=params.nerf_embedder_dtype or dtype,
device=device,
operations=operations,
)
self.nerf_blocks = nn.ModuleList([
NerfGLUBlock(
hidden_size_s=params.hidden_size,
hidden_size_x=params.nerf_hidden_size,
mlp_ratio=params.nerf_mlp_ratio,
dtype=dtype,
device=device,
operations=operations,
) for _ in range(params.nerf_depth)
])
if params.nerf_final_head_type == "linear":
self.nerf_final_layer = NerfFinalLayer(
params.nerf_hidden_size,
out_channels=params.in_channels,
dtype=dtype,
device=device,
operations=operations,
)
elif params.nerf_final_head_type == "conv":
self.nerf_final_layer_conv = NerfFinalLayerConv(
params.nerf_hidden_size,
out_channels=params.in_channels,
dtype=dtype,
device=device,
operations=operations,
)
else:
errstr = f"Unsupported nerf_final_head_type {params.nerf_final_head_type}"
raise ValueError(errstr)
self.skip_mmdit = []
self.skip_dit = []
self.lite = False
@property
def _nerf_final_layer(self) -> nn.Module:
if self.params.nerf_final_head_type == "linear":
return self.nerf_final_layer
if self.params.nerf_final_head_type == "conv":
return self.nerf_final_layer_conv
# Impossible to get here as we raise an error on unexpected types on initialization.
raise NotImplementedError
def img_in(self, img: Tensor) -> Tensor:
img = self.img_in_patch(img) # -> [B, Hidden, H/P, W/P]
# flatten into a sequence for the transformer.
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
def forward_nerf(
self,
img_orig: Tensor,
img_out: Tensor,
params: ChromaRadianceParams,
) -> Tensor:
B, C, H, W = img_orig.shape
num_patches = img_out.shape[1]
patch_size = params.patch_size
# Store the raw pixel values of each patch for the NeRF head later.
# unfold creates patches: [B, C * P * P, NumPatches]
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
# the tile size.
img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params)
else:
# Reshape for per-patch processing
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
# Get DCT-encoded pixel embeddings [pixel-dct]
img_dct = self.nerf_image_embedder(nerf_pixels)
# Pass through the dynamic MLP blocks (the NeRF)
for block in self.nerf_blocks:
img_dct = block(img_dct, nerf_hidden)
# Reassemble the patches into the final image.
img_dct = img_dct.transpose(1, 2) # -> [B*NumPatches, C, P*P]
# Reshape to combine with batch dimension for fold
img_dct = img_dct.reshape(B, num_patches, -1) # -> [B, NumPatches, C*P*P]
img_dct = img_dct.transpose(1, 2) # -> [B, C*P*P, NumPatches]
img_dct = nn.functional.fold(
img_dct,
output_size=(H, W),
kernel_size=patch_size,
stride=patch_size,
)
return self._nerf_final_layer(img_dct)
def forward_tiled_nerf(
self,
nerf_hidden: Tensor,
nerf_pixels: Tensor,
batch: int,
channels: int,
num_patches: int,
patch_size: int,
params: ChromaRadianceParams,
) -> Tensor:
"""
Processes the NeRF head in tiles to save memory.
nerf_hidden has shape [B, L, D]
nerf_pixels has shape [B, L, C * P * P]
"""
tile_size = params.nerf_tile_size
output_tiles = []
# Iterate over the patches in tiles. The dimension L (num_patches) is at index 1.
for i in range(0, num_patches, tile_size):
end = min(i + tile_size, num_patches)
# Slice the current tile from the input tensors
nerf_hidden_tile = nerf_hidden[:, i:end, :]
nerf_pixels_tile = nerf_pixels[:, i:end, :]
# Get the actual number of patches in this tile (can be smaller for the last tile)
num_patches_tile = nerf_hidden_tile.shape[1]
# Reshape the tile for per-patch processing
# [B, NumPatches_tile, D] -> [B * NumPatches_tile, D]
nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size)
# [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C]
nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2)
# get DCT-encoded pixel embeddings [pixel-dct]
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
# pass through the dynamic MLP blocks (the NeRF)
for block in self.nerf_blocks:
img_dct_tile = block(img_dct_tile, nerf_hidden_tile)
output_tiles.append(img_dct_tile)
# Concatenate the processed tiles along the patch dimension
return torch.cat(output_tiles, dim=0)
def radiance_get_override_params(self, overrides: dict) -> ChromaRadianceParams:
params = self.params
if not overrides:
return params
params_dict = {k: getattr(params, k) for k in params.__dataclass_fields__}
nullable_keys = frozenset(("nerf_embedder_dtype",))
bad_keys = tuple(k for k in overrides if k not in params_dict)
if bad_keys:
e = f"Unknown key(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
raise ValueError(e)
bad_keys = tuple(
k
for k, v in overrides.items()
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
)
if bad_keys:
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
raise ValueError(e)
# At this point it's all valid keys and values so we can merge with the existing params.
params_dict |= overrides
return params.__class__(**params_dict)
def _forward(
self,
x: Tensor,
timestep: Tensor,
context: Tensor,
guidance: Optional[Tensor],
control: Optional[dict]=None,
transformer_options: dict={},
**kwargs: dict,
) -> Tensor:
bs, c, h, w = x.shape
img = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
if img.ndim != 4:
raise ValueError("Input img tensor must be in [B, C, H, W] format.")
if context.ndim != 3:
raise ValueError("Input txt tensors must have 3 dimensions.")
params = self.radiance_get_override_params(transformer_options.get("chroma_radiance_options", {}))
h_len = (img.shape[-2] // self.patch_size)
w_len = (img.shape[-1] // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
img_out = self.forward_orig(
img,
img_ids,
context,
txt_ids,
timestep,
guidance,
control,
transformer_options,
attn_mask=kwargs.get("attention_mask", None),
)
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]

View File

@ -176,6 +176,7 @@ class Attention(nn.Module):
context=None,
mask=None,
rope_emb=None,
transformer_options={},
**kwargs,
):
"""
@ -184,7 +185,7 @@ class Attention(nn.Module):
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True, transformer_options=transformer_options)
del q, k, v
out = rearrange(out, " b n s c -> s b (n c)")
return self.to_out(out)
@ -546,6 +547,7 @@ class VideoAttn(nn.Module):
context: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Forward pass for video attention.
@ -571,6 +573,7 @@ class VideoAttn(nn.Module):
context_M_B_D,
crossattn_mask,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
return x_T_H_W_B_D
@ -665,6 +668,7 @@ class DITBuildingBlock(nn.Module):
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Forward pass for dynamically configured blocks with adaptive normalization.
@ -702,6 +706,7 @@ class DITBuildingBlock(nn.Module):
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
context=None,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
elif self.block_type in ["cross_attn", "ca"]:
x = x + gate_1_1_1_B_D * self.block(
@ -709,6 +714,7 @@ class DITBuildingBlock(nn.Module):
context=crossattn_emb,
crossattn_mask=crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
else:
raise ValueError(f"Unknown block type: {self.block_type}")
@ -784,6 +790,7 @@ class GeneralDITTransformerBlock(nn.Module):
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
for block in self.blocks:
x = block(
@ -793,5 +800,6 @@ class GeneralDITTransformerBlock(nn.Module):
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
transformer_options=transformer_options,
)
return x

View File

@ -27,6 +27,8 @@ from torchvision import transforms
from enum import Enum
import logging
import comfy.patcher_extension
from .blocks import (
FinalLayer,
GeneralDITTransformerBlock,
@ -435,6 +437,42 @@ class GeneralDIT(nn.Module):
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x,
timesteps,
context,
attention_mask,
fps,
image_size,
padding_mask,
scalar_feature,
data_type,
latent_condition,
latent_condition_sigma,
condition_video_augment_sigma,
**kwargs)
def _forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
# crossattn_emb: torch.Tensor,
# crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Args:
@ -482,6 +520,7 @@ class GeneralDIT(nn.Module):
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
transformer_options = kwargs.get("transformer_options", {})
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
@ -496,6 +535,7 @@ class GeneralDIT(nn.Module):
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")

View File

@ -11,6 +11,7 @@ import math
from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis
from torchvision import transforms
import comfy.patcher_extension
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
@ -43,7 +44,7 @@ class GPT2FeedForward(nn.Module):
return x
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
"""Computes multi-head attention using PyTorch's native implementation.
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
@ -70,7 +71,7 @@ def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True, transformer_options=transformer_options)
class Attention(nn.Module):
@ -179,8 +180,8 @@ class Attention(nn.Module):
return q, k, v
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
result = self.attn_op(q, k, v) # [B, S, H, D]
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
result = self.attn_op(q, k, v, transformer_options=transformer_options) # [B, S, H, D]
return self.output_dropout(self.output_proj(result))
def forward(
@ -188,6 +189,7 @@ class Attention(nn.Module):
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Args:
@ -195,7 +197,7 @@ class Attention(nn.Module):
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
return self.compute_attention(q, k, v)
return self.compute_attention(q, k, v, transformer_options=transformer_options)
class Timesteps(nn.Module):
@ -458,6 +460,7 @@ class Block(nn.Module):
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
@ -511,6 +514,7 @@ class Block(nn.Module):
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
),
"b (t h w) d -> b t h w d",
t=T,
@ -524,6 +528,7 @@ class Block(nn.Module):
layer_norm_cross_attn: Callable,
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
_normalized_x_B_T_H_W_D = _fn(
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
@ -533,6 +538,7 @@ class Block(nn.Module):
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
),
"b (t h w) d -> b t h w d",
t=T,
@ -546,6 +552,7 @@ class Block(nn.Module):
self.layer_norm_cross_attn,
scale_cross_attn_B_T_1_1_D,
shift_cross_attn_B_T_1_1_D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
@ -805,7 +812,21 @@ class MiniTrainDIT(nn.Module):
)
return x_B_C_Tt_Hp_Wp
def forward(
def forward(self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timesteps, context, fps, padding_mask, **kwargs)
def _forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
@ -850,6 +871,7 @@ class MiniTrainDIT(nn.Module):
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
"transformer_options": kwargs.get("transformer_options", {}),
}
for block in self.blocks:
x_B_T_H_W_D = block(

View File

@ -159,7 +159,7 @@ class DoubleStreamBlock(nn.Module):
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
@ -182,7 +182,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
pe=pe, mask=attn_mask)
pe=pe, mask=attn_mask, transformer_options=transformer_options)
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
@ -190,7 +190,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
@ -244,7 +244,7 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
@ -252,7 +252,7 @@ class SingleStreamBlock(nn.Module):
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)

View File

@ -6,7 +6,7 @@ from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q_shape = q.shape
k_shape = k.shape
@ -17,7 +17,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x
@ -35,11 +35,10 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=torch.float32, device=pos.device)
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0] + freqs_cis[..., 1] * x_[..., 1]
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)

View File

@ -6,6 +6,7 @@ import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.ldm.common_dit
import comfy.patcher_extension
from .layers import (
DoubleStreamBlock,
@ -105,6 +106,7 @@ class Flux(nn.Module):
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@ -116,9 +118,17 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
img = out["img"]
txt = out["txt"]
img_ids = out["img_ids"]
txt_ids = out["txt_ids"]
if img_ids is not None:
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
@ -134,14 +144,16 @@ class Flux(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@ -150,14 +162,15 @@ class Flux(nn.Module):
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img[:, :add.shape[1]] += add
if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
@ -171,24 +184,26 @@ class Flux(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img[:, txt.shape[1] : txt.shape[1] + add.shape[1], ...] += add
img = img[:, txt.shape[1] :, ...]
@ -214,6 +229,13 @@ class Flux(nn.Module):
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, guidance, ref_latents, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
bs, c, h_orig, w_orig = x.shape
patch_size = self.patch_size
@ -225,12 +247,18 @@ class Flux(nn.Module):
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
ref_latents_method = kwargs.get("ref_latents_method", "offset")
for ref in ref_latents:
if index_ref_method:
if ref_latents_method == "index":
index += 1
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
index = 0
h_offset = h_len * patch_size + h
w_offset = w_len * patch_size + w
h += ref.shape[-2]
w += ref.shape[-1]
else:
index = 1
h_offset = 0

View File

@ -109,6 +109,7 @@ class AsymmetricAttention(nn.Module):
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
crop_y,
transformer_options={},
**rope_rotation,
) -> Tuple[torch.Tensor, torch.Tensor]:
rope_cos = rope_rotation.get("rope_cos")
@ -143,7 +144,7 @@ class AsymmetricAttention(nn.Module):
xy = optimized_attention(q,
k,
v, self.num_heads, skip_reshape=True)
v, self.num_heads, skip_reshape=True, transformer_options=transformer_options)
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
x = self.proj_x(x)
@ -224,6 +225,7 @@ class AsymmetricJointBlock(nn.Module):
x: torch.Tensor,
c: torch.Tensor,
y: torch.Tensor,
transformer_options={},
**attn_kwargs,
):
"""Forward pass of a block.
@ -256,6 +258,7 @@ class AsymmetricJointBlock(nn.Module):
y,
scale_x=scale_msa_x,
scale_y=scale_msa_y,
transformer_options=transformer_options,
**attn_kwargs,
)
@ -524,10 +527,11 @@ class AsymmDiTJoint(nn.Module):
args["txt"],
rope_cos=args["rope_cos"],
rope_sin=args["rope_sin"],
crop_y=args["num_tokens"]
crop_y=args["num_tokens"],
transformer_options=args["transformer_options"]
)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens, "transformer_options": transformer_options}, {"original_block": block_wrap})
y_feat = out["txt"]
x = out["img"]
else:
@ -538,6 +542,7 @@ class AsymmDiTJoint(nn.Module):
rope_cos=rope_cos,
rope_sin=rope_sin,
crop_y=num_tokens,
transformer_options=transformer_options,
) # (B, M, D), (B, L, D)
del y_feat # Final layers don't use dense text features.

View File

@ -13,6 +13,7 @@ from comfy.ldm.flux.layers import LastLayer
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import comfy.patcher_extension
import comfy.ldm.common_dit
@ -71,8 +72,8 @@ class TimestepEmbed(nn.Module):
return t_emb
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, transformer_options={}):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2], transformer_options=transformer_options)
class HiDreamAttnProcessor_flashattn:
@ -85,6 +86,7 @@ class HiDreamAttnProcessor_flashattn:
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
*args,
**kwargs,
) -> torch.FloatTensor:
@ -132,7 +134,7 @@ class HiDreamAttnProcessor_flashattn:
query = torch.cat([query_1, query_2], dim=-1)
key = torch.cat([key_1, key_2], dim=-1)
hidden_states = attention(query, key, value)
hidden_states = attention(query, key, value, transformer_options=transformer_options)
if not attn.single:
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
@ -198,6 +200,7 @@ class HiDreamAttention(nn.Module):
image_tokens_masks: torch.FloatTensor = None,
norm_text_tokens: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.Tensor:
return self.processor(
self,
@ -205,6 +208,7 @@ class HiDreamAttention(nn.Module):
image_tokens_masks = image_tokens_masks,
text_tokens = norm_text_tokens,
rope = rope,
transformer_options=transformer_options,
)
@ -405,7 +409,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
@ -418,6 +422,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
norm_image_tokens,
image_tokens_masks,
rope = rope,
transformer_options=transformer_options,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
@ -482,6 +487,7 @@ class HiDreamImageTransformerBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
@ -499,6 +505,7 @@ class HiDreamImageTransformerBlock(nn.Module):
image_tokens_masks,
norm_text_tokens,
rope = rope,
transformer_options=transformer_options,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
@ -549,6 +556,7 @@ class HiDreamImageBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
return self.block(
image_tokens,
@ -556,6 +564,7 @@ class HiDreamImageBlock(nn.Module):
text_tokens,
adaln_input,
rope,
transformer_options=transformer_options,
)
@ -692,7 +701,23 @@ class HiDreamImageTransformer2DModel(nn.Module):
raise NotImplementedError
return x, x_masks, img_sizes
def forward(
def forward(self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
encoder_hidden_states_llama3=None,
image_cond=None,
control = None,
transformer_options = {},
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, t, y, context, encoder_hidden_states_llama3, image_cond, control, transformer_options)
def _forward(
self,
x: torch.Tensor,
t: torch.Tensor,
@ -769,6 +794,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
text_tokens = cur_encoder_hidden_states,
adaln_input = adaln_input,
rope = rope,
transformer_options=transformer_options,
)
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
block_id += 1
@ -792,6 +818,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
text_tokens=None,
adaln_input=adaln_input,
rope=rope,
transformer_options=transformer_options,
)
hidden_states = hidden_states[:, :hidden_states_seq_len]
block_id += 1

View File

@ -7,6 +7,7 @@ from comfy.ldm.flux.layers import (
SingleStreamBlock,
timestep_embedding,
)
import comfy.patcher_extension
class Hunyuan3Dv2(nn.Module):
@ -67,6 +68,13 @@ class Hunyuan3Dv2(nn.Module):
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations)
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, guidance, transformer_options, **kwargs)
def _forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
x = x.movedim(-1, -2)
timestep = 1.0 - timestep
txt = context
@ -91,14 +99,16 @@ class Hunyuan3Dv2(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@ -107,7 +117,8 @@ class Hunyuan3Dv2(nn.Module):
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
img = torch.cat((txt, img), 1)
@ -118,17 +129,19 @@ class Hunyuan3Dv2(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
img = img[:, txt.shape[1]:, ...]
img = self.final_layer(img, vec)

View File

@ -4,81 +4,458 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, Tuple, List, Callable, Optional
import numpy as np
from einops import repeat, rearrange
import math
from tqdm import tqdm
from typing import Optional
import logging
import comfy.ops
ops = comfy.ops.disable_weight_init
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
def fps(src: torch.Tensor, batch: torch.Tensor, sampling_ratio: float, start_random: bool = True):
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
# manually create the pointer vector
assert src.size(0) == batch.numel()
return xyz, grid_size, length
batch_size = int(batch.max()) + 1
deg = src.new_zeros(batch_size, dtype = torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))
ptr_vec = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_vec[1:])
#return fps_sampling(src, ptr_vec, ratio)
sampled_indicies = []
for b in range(batch_size):
# start and the end of each batch
start, end = ptr_vec[b].item(), ptr_vec[b + 1].item()
# points from the point cloud
points = src[start:end]
num_points = points.size(0)
num_samples = max(1, math.ceil(num_points * sampling_ratio))
selected = torch.zeros(num_samples, device = src.device, dtype = torch.long)
distances = torch.full((num_points,), float("inf"), device = src.device)
# select a random start point
if start_random:
farthest = torch.randint(0, num_points, (1,), device = src.device)
else:
farthest = torch.tensor([0], device = src.device, dtype = torch.long)
for i in range(num_samples):
selected[i] = farthest
centroid = points[farthest].squeeze(0)
dist = torch.norm(points - centroid, dim = 1) # compute euclidean distance
distances = torch.minimum(distances, dist)
farthest = torch.argmax(distances)
sampled_indicies.append(torch.arange(start, end)[selected])
return torch.cat(sampled_indicies, dim = 0)
class PointCrossAttention(nn.Module):
def __init__(self,
num_latents: int,
downsample_ratio: float,
pc_size: int,
pc_sharpedge_size: int,
point_feats: int,
width: int,
heads: int,
layers: int,
fourier_embedder,
normal_pe: bool = False,
qkv_bias: bool = False,
use_ln_post: bool = True,
qk_norm: bool = True):
super().__init__()
self.fourier_embedder = fourier_embedder
self.pc_size = pc_size
self.normal_pe = normal_pe
self.downsample_ratio = downsample_ratio
self.pc_sharpedge_size = pc_sharpedge_size
self.num_latents = num_latents
self.point_feats = point_feats
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm
)
self.self_attn = None
if layers > 0:
self.self_attn = Transformer(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm,
layers = layers
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def sample_points_and_latents(self, point_cloud: torch.Tensor, features: torch.Tensor):
"""
Subsample points randomly from the point cloud (input_pc)
Further sample the subsampled points to get query_pc
take the fourier embeddings for both input and query pc
Mental Note: FPS-sampled points (query_pc) act as latent tokens that attend to and learn from the broader context in input_pc.
Goal: get a smaller represenation (query_pc) to represent the entire scence structure by learning from a broader subset (input_pc).
More computationally efficient.
Features are additional information for each point in the cloud
"""
B, _, D = point_cloud.shape
num_latents = int(self.num_latents)
num_random_query = self.pc_size / (self.pc_size + self.pc_sharpedge_size) * num_latents
num_sharpedge_query = num_latents - num_random_query
# Split random and sharpedge surface points
random_pc, sharpedge_pc = torch.split(point_cloud, [self.pc_size, self.pc_sharpedge_size], dim=1)
# assert statements
assert random_pc.shape[1] <= self.pc_size, "Random surface points size must be less than or equal to pc_size"
assert sharpedge_pc.shape[1] <= self.pc_sharpedge_size, "Sharpedge surface points size must be less than or equal to pc_sharpedge_size"
input_random_pc_size = int(num_random_query * self.downsample_ratio)
random_query_pc, random_input_pc, random_idx_pc, random_idx_query = \
self.subsample(pc = random_pc, num_query = num_random_query, input_pc_size = input_random_pc_size)
input_sharpedge_pc_size = int(num_sharpedge_query * self.downsample_ratio)
if input_sharpedge_pc_size == 0:
sharpedge_input_pc = torch.zeros(B, 0, D, dtype = random_input_pc.dtype).to(point_cloud.device)
sharpedge_query_pc = torch.zeros(B, 0, D, dtype= random_query_pc.dtype).to(point_cloud.device)
else:
sharpedge_query_pc, sharpedge_input_pc, sharpedge_idx_pc, sharpedge_idx_query = \
self.subsample(pc = sharpedge_pc, num_query = num_sharpedge_query, input_pc_size = input_sharpedge_pc_size)
# concat the random and sharpedges
query_pc = torch.cat([random_query_pc, sharpedge_query_pc], dim = 1)
input_pc = torch.cat([random_input_pc, sharpedge_input_pc], dim = 1)
query = self.fourier_embedder(query_pc)
data = self.fourier_embedder(input_pc)
if self.point_feats > 0:
random_surface_features, sharpedge_surface_features = torch.split(features, [self.pc_size, self.pc_sharpedge_size], dim = 1)
input_random_surface_features, query_random_features = \
self.handle_features(features = random_surface_features, idx_pc = random_idx_pc, batch_size = B,
input_pc_size = input_random_pc_size, idx_query = random_idx_query)
if input_sharpedge_pc_size == 0:
input_sharpedge_surface_features = torch.zeros(B, 0, self.point_feats,
dtype = input_random_surface_features.dtype, device = point_cloud.device)
query_sharpedge_features = torch.zeros(B, 0, self.point_feats,
dtype = query_random_features.dtype, device = point_cloud.device)
else:
input_sharpedge_surface_features, query_sharpedge_features = \
self.handle_features(idx_pc = sharpedge_idx_pc, features = sharpedge_surface_features,
batch_size = B, idx_query = sharpedge_idx_query, input_pc_size = input_sharpedge_pc_size)
query_features = torch.cat([query_random_features, query_sharpedge_features], dim = 1)
input_features = torch.cat([input_random_surface_features, input_sharpedge_surface_features], dim = 1)
if self.normal_pe:
# apply the fourier embeddings on the first 3 dims (xyz)
input_features_pe = self.fourier_embedder(input_features[..., :3])
query_features_pe = self.fourier_embedder(query_features[..., :3])
# replace the first 3 dims with the new PE ones
input_features = torch.cat([input_features_pe, input_features[..., :3]], dim = -1)
query_features = torch.cat([query_features_pe, query_features[..., :3]], dim = -1)
# concat at the channels dim
query = torch.cat([query, query_features], dim = -1)
data = torch.cat([data, input_features], dim = -1)
# don't return pc_info to avoid unnecessary memory usuage
return query.view(B, -1, query.shape[-1]), data.view(B, -1, data.shape[-1])
def forward(self, point_cloud: torch.Tensor, features: torch.Tensor):
query, data = self.sample_points_and_latents(point_cloud = point_cloud, features = features)
# apply projections
query = self.input_proj(query)
data = self.input_proj(data)
# apply cross attention between query and data
latents = self.cross_attn(query, data)
if self.self_attn is not None:
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
class VanillaVolumeDecoder:
def subsample(self, pc, num_query, input_pc_size: int):
"""
num_query: number of points to keep after FPS
input_pc_size: number of points to select before FPS
"""
B, _, D = pc.shape
query_ratio = num_query / input_pc_size
# random subsampling of points inside the point cloud
idx_pc = torch.randperm(pc.shape[1], device = pc.device)[:input_pc_size]
input_pc = pc[:, idx_pc, :]
# flatten to allow applying fps across the whole batch
flattent_input_pc = input_pc.view(B * input_pc_size, D)
# construct a batch_down tensor to tell fps
# which points belong to which batch
N_down = int(flattent_input_pc.shape[0] / B)
batch_down = torch.arange(B).to(pc.device)
batch_down = torch.repeat_interleave(batch_down, N_down)
idx_query = fps(flattent_input_pc, batch_down, sampling_ratio = query_ratio)
query_pc = flattent_input_pc[idx_query].view(B, -1, D)
return query_pc, input_pc, idx_pc, idx_query
def handle_features(self, features, idx_pc, input_pc_size, batch_size: int, idx_query):
B = batch_size
input_surface_features = features[:, idx_pc, :]
flattent_input_features = input_surface_features.view(B * input_pc_size, -1)
query_features = flattent_input_features[idx_query].view(B, -1,
flattent_input_features.shape[-1])
return input_surface_features, query_features
def normalize_mesh(mesh, scale = 0.9999):
"""Normalize mesh to fit in [-scale, scale]. Translate mesh so its center is [0,0,0]"""
bbox = mesh.bounds
center = (bbox[1] + bbox[0]) / 2
max_extent = (bbox[1] - bbox[0]).max()
mesh.apply_translation(-center)
mesh.apply_scale((2 * scale) / max_extent)
return mesh
def sample_pointcloud(mesh, num = 200000):
""" Uniformly sample points from the surface of the mesh """
points, face_idx = mesh.sample(num, return_index = True)
normals = mesh.face_normals[face_idx]
return torch.from_numpy(points.astype(np.float32)), torch.from_numpy(normals.astype(np.float32))
def detect_sharp_edges(mesh, threshold=0.985):
"""Return edge indices (a, b) that lie on sharp boundaries of the mesh."""
V, F = mesh.vertices, mesh.faces
VN, FN = mesh.vertex_normals, mesh.face_normals
sharp_mask = np.ones(V.shape[0])
for i in range(3):
indices = F[:, i]
alignment = np.einsum('ij,ij->i', VN[indices], FN)
dot_stack = np.stack((sharp_mask[indices], alignment), axis=-1)
sharp_mask[indices] = np.min(dot_stack, axis=-1)
edge_a = np.concatenate([F[:, 0], F[:, 1], F[:, 2]])
edge_b = np.concatenate([F[:, 1], F[:, 2], F[:, 0]])
sharp_edges = (sharp_mask[edge_a] < threshold) & (sharp_mask[edge_b] < threshold)
return edge_a[sharp_edges], edge_b[sharp_edges]
def sharp_sample_pointcloud(mesh, num = 16384):
""" Sample points preferentially from sharp edges in the mesh. """
edge_a, edge_b = detect_sharp_edges(mesh)
V, VN = mesh.vertices, mesh.vertex_normals
va, vb = V[edge_a], V[edge_b]
na, nb = VN[edge_a], VN[edge_b]
edge_lengths = np.linalg.norm(vb - va, axis=-1)
weights = edge_lengths / edge_lengths.sum()
indices = np.searchsorted(np.cumsum(weights), np.random.rand(num))
t = np.random.rand(num, 1)
samples = t * va[indices] + (1 - t) * vb[indices]
normals = t * na[indices] + (1 - t) * nb[indices]
return samples.astype(np.float32), normals.astype(np.float32)
def load_surface_sharpedge(mesh, num_points=4096, num_sharp_points=4096, sharpedge_flag = True, device = "cuda"):
"""Load a surface with optional sharp-edge annotations from a trimesh mesh."""
import trimesh
try:
mesh_full = trimesh.util.concatenate(mesh.dump())
except Exception:
mesh_full = trimesh.util.concatenate(mesh)
mesh_full = normalize_mesh(mesh_full)
faces = mesh_full.faces
vertices = mesh_full.vertices
origin_face_count = faces.shape[0]
mesh_surface = trimesh.Trimesh(vertices=vertices, faces=faces[:origin_face_count])
mesh_fill = trimesh.Trimesh(vertices=vertices, faces=faces[origin_face_count:])
area_surface = mesh_surface.area
area_fill = mesh_fill.area
total_area = area_surface + area_fill
sample_num = 499712 // 2
fill_ratio = area_fill / total_area if total_area > 0 else 0
num_fill = int(sample_num * fill_ratio)
num_surface = sample_num - num_fill
surf_pts, surf_normals = sample_pointcloud(mesh_surface, num_surface)
fill_pts, fill_normals = (torch.zeros(0, 3), torch.zeros(0, 3)) if num_fill == 0 else sample_pointcloud(mesh_fill, num_fill)
sharp_pts, sharp_normals = sharp_sample_pointcloud(mesh_surface, sample_num)
def assemble_tensor(points, normals, label=None):
data = torch.cat([points, normals], dim=1).half().to(device)
if label is not None:
label_tensor = torch.full((data.shape[0], 1), float(label), dtype=torch.float16).to(device)
data = torch.cat([data, label_tensor], dim=1)
return data
surface = assemble_tensor(torch.cat([surf_pts.to(device), fill_pts.to(device)], dim=0),
torch.cat([surf_normals.to(device), fill_normals.to(device)], dim=0),
label = 0 if sharpedge_flag else None)
sharp_surface = assemble_tensor(torch.from_numpy(sharp_pts), torch.from_numpy(sharp_normals),
label = 1 if sharpedge_flag else None)
rng = np.random.default_rng()
surface = surface[rng.choice(surface.shape[0], num_points, replace = False)]
sharp_surface = sharp_surface[rng.choice(sharp_surface.shape[0], num_sharp_points, replace = False)]
full = torch.cat([surface, sharp_surface], dim = 0).unsqueeze(0)
return full
class SharpEdgeSurfaceLoader:
""" Load mesh surface and sharp edge samples. """
def __init__(self, num_uniform_points = 8192, num_sharp_points = 8192):
self.num_uniform_points = num_uniform_points
self.num_sharp_points = num_sharp_points
self.total_points = num_uniform_points + num_sharp_points
def __call__(self, mesh_input, device = "cuda"):
mesh = self._load_mesh(mesh_input)
return load_surface_sharpedge(mesh, self.num_uniform_points, self.num_sharp_points, device = device)
@staticmethod
def _load_mesh(mesh_input):
import trimesh
if isinstance(mesh_input, str):
mesh = trimesh.load(mesh_input, force="mesh", merge_primitives = True)
else:
mesh = mesh_input
if isinstance(mesh, trimesh.Scene):
combined = None
for obj in mesh.geometry.values():
combined = obj if combined is None else combined + obj
return combined
return mesh
class DiagonalGaussianDistribution:
def __init__(self, params: torch.Tensor, feature_dim: int = -1):
# divide quant channels (8) into mean and log variance
self.mean, self.logvar = torch.chunk(params, 2, dim = feature_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.std = torch.exp(0.5 * self.logvar)
def sample(self):
eps = torch.randn_like(self.std)
z = self.mean + eps * self.std
return z
################################################
# Volume Decoder
################################################
class VanillaVolumeDecoder():
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
def __call__(self, latents: torch.Tensor, geo_decoder: callable, octree_resolution: int, bounds = 1.01,
num_chunks: int = 10_000, enable_pbar: bool = True, **kwargs):
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
bbox_min, bbox_max = torch.tensor(bounds[:3]), torch.tensor(bounds[3:])
x = torch.linspace(bbox_min[0], bbox_max[0], int(octree_resolution) + 1, dtype = torch.float32)
y = torch.linspace(bbox_min[1], bbox_max[1], int(octree_resolution) + 1, dtype = torch.float32)
z = torch.linspace(bbox_min[2], bbox_max[2], int(octree_resolution) + 1, dtype = torch.float32)
[xs, ys, zs] = torch.meshgrid(x, y, z, indexing = "ij")
xyz = torch.stack((xs, ys, zs), axis=-1).to(latents.device, dtype = latents.dtype).contiguous().reshape(-1, 3)
grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
for start in tqdm(range(0, xyz.shape[0], num_chunks), desc="Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
chunk_queries = xyz[start: start + num_chunks, :]
chunk_queries = chunk_queries.unsqueeze(0).repeat(latents.shape[0], 1, 1)
logits = geo_decoder(queries = chunk_queries, latents = latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
grid_logits = torch.cat(batch_logits, dim = 1)
grid_logits = grid_logits.view((latents.shape[0], *grid_size)).float()
return grid_logits
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
@ -175,13 +552,11 @@ class FourierEmbedder(nn.Module):
else:
return x
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = comfy.ops.scaled_dot_product_attention(q, k, v)
return out
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
@ -232,38 +607,41 @@ class MLP(nn.Module):
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
n_data = None,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.n_data = n_data
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
@ -306,7 +684,6 @@ class MultiheadCrossAttention(nn.Module):
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
@ -366,7 +743,7 @@ class QKVMultiheadAttention(nn.Module):
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
@ -383,8 +760,7 @@ class MultiheadAttention(nn.Module):
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadAttention(
@ -491,7 +867,7 @@ class CrossAttentionDecoder(nn.Module):
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = ops.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
if not self.enable_ln_post:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
width=width,
@ -522,28 +898,44 @@ class CrossAttentionDecoder(nn.Module):
class ShapeVAE(nn.Module):
def __init__(
self,
*,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
self,
*,
num_latents: int = 4096,
embed_dim: int = 64,
width: int = 1024,
heads: int = 16,
num_decoder_layers: int = 16,
num_encoder_layers: int = 8,
pc_size: int = 81920,
pc_sharpedge_size: int = 0,
point_feats: int = 4,
downsample_ratio: int = 20,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
qkv_bias: bool = False,
qk_norm: bool = True,
drop_path_rate: float = 0.0,
include_pi: bool = False,
scale_factor: float = 1.0039506158752403,
label_type: str = "binary",
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.encoder = PointCrossAttention(layers = num_encoder_layers,
num_latents = num_latents,
downsample_ratio = downsample_ratio,
heads = heads,
pc_size = pc_size,
width = width,
point_feats = point_feats,
fourier_embedder = self.fourier_embedder,
pc_sharpedge_size = pc_sharpedge_size)
self.post_kl = ops.Linear(embed_dim, width)
self.transformer = Transformer(
@ -583,5 +975,14 @@ class ShapeVAE(nn.Module):
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
return grid_logits.movedim(-2, -1)
def encode(self, x):
return None
def encode(self, surface):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents = self.encoder(pc, feats)
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feature_dim = -1)
latents = posterior.sample()
return latents

View File

@ -0,0 +1,659 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, operations, device, dtype):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, device = device, dtype = dtype)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type == "mps":
return F.gelu(gate.to(dtype = torch.float32)).to(dtype = gate.dtype)
return F.gelu(gate)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class FeedForward(nn.Module):
def __init__(self, dim: int, dim_out = None, mult: int = 4,
dropout: float = 0.0, inner_dim = None, operations = None, device = None, dtype = None):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
act_fn = GELU(dim, inner_dim, operations = operations, device = device, dtype = dtype)
self.net = nn.ModuleList([])
self.net.append(act_fn)
self.net.append(nn.Dropout(dropout))
self.net.append(operations.Linear(inner_dim, dim_out, device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class AddAuxLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x, loss):
# do nothing in forward (no computation)
ctx.requires_aux_loss = loss.requires_grad
ctx.dtype = loss.dtype
return x
@staticmethod
def backward(ctx, grad_output):
# add the aux loss gradients
grad_loss = None
# put the aux grad the same as the main grad loss
# aux grad contributes equally
if ctx.requires_aux_loss:
grad_loss = torch.ones(1, dtype = ctx.dtype, device = grad_output.device)
return grad_output, grad_loss
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01, device = None, dtype = None):
super().__init__()
self.top_k = num_experts_per_tok
self.n_routed_experts = num_experts
self.alpha = aux_loss_alpha
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# flatten hidden states
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# get logits and pass it to softmax
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), bias = None)
scores = logits.softmax(dim = -1)
topk_weight, topk_idx = torch.topk(scores, k = self.top_k, dim = -1, sorted = False)
if self.training and self.alpha > 0.0:
scores_for_aux = scores
# used bincount instead of one hot encoding
counts = torch.bincount(topk_idx.view(-1), minlength = self.n_routed_experts).float()
ce = counts / topk_idx.numel() # normalized expert usage
# mean expert score
Pi = scores_for_aux.mean(0)
# expert balance loss
aux_loss = (Pi * ce * self.n_routed_experts).sum() * self.alpha
else:
aux_loss = None
return topk_idx, topk_weight, aux_loss
class MoEBlock(nn.Module):
def __init__(self, dim, num_experts: int = 6, moe_top_k: int = 2, dropout: float = 0.0,
ff_inner_dim: int = None, operations = None, device = None, dtype = None):
super().__init__()
self.moe_top_k = moe_top_k
self.num_experts = num_experts
self.experts = nn.ModuleList([
FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
for _ in range(num_experts)
])
self.gate = MoEGate(dim, num_experts = num_experts, num_experts_per_tok = moe_top_k, device = device, dtype = dtype)
self.shared_experts = FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
def forward(self, hidden_states) -> torch.Tensor:
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim = 0)
y = torch.empty_like(hidden_states, dtype = hidden_states.dtype)
for i, expert in enumerate(self.experts):
tmp = expert(hidden_states[flat_topk_idx == i])
y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim = 1)
y = y.view(*orig_shape)
y = AddAuxLoss.apply(y, aux_loss)
else:
y = self.moe_infer(hidden_states, flat_expert_indices = flat_topk_idx,flat_expert_weights = topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
# no need for .numpy().cpu() here
tokens_per_expert = flat_expert_indices.bincount().cumsum(0)
token_idxs = idxs // self.moe_top_k
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# use index_add_ with a 1-D index tensor directly avoids building a large [N, D] index map and extra memcopy required by scatter_reduce_
# + avoid dtype conversion
expert_cache.index_add_(0, exp_token_idx, expert_out)
return expert_cache
class Timesteps(nn.Module):
def __init__(self, num_channels: int, downscale_freq_shift: float = 0.0,
scale: float = 1.0, max_period: int = 10000):
super().__init__()
self.num_channels = num_channels
half_dim = num_channels // 2
# precompute the “inv_freq” vector once
exponent = -math.log(max_period) * torch.arange(
half_dim, dtype=torch.float32
) / (half_dim - downscale_freq_shift)
inv_freq = torch.exp(exponent)
# pad
if num_channels % 2 == 1:
# well pad a zero at the end of the cos-half
inv_freq = torch.cat([inv_freq, inv_freq.new_zeros(1)])
# register to buffer so it moves with the device
self.register_buffer("inv_freq", inv_freq, persistent = False)
self.scale = scale
def forward(self, timesteps: torch.Tensor):
x = timesteps.float().unsqueeze(1) * self.inv_freq.to(timesteps.device).unsqueeze(0)
# fused CUDA kernels for sin and cos
sin_emb = x.sin()
cos_emb = x.cos()
emb = torch.cat([sin_emb, cos_emb], dim = 1)
# scale factor
if self.scale != 1.0:
emb = emb * self.scale
# If we padded inv_freq for odd, emb is already wide enough; otherwise:
if emb.shape[1] > self.num_channels:
emb = emb[:, :self.num_channels]
return emb
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size = 256, cond_proj_dim = None, operations = None, device = None, dtype = None):
super().__init__()
self.mlp = nn.Sequential(
operations.Linear(hidden_size, frequency_embedding_size, bias=True, device = device, dtype = dtype),
nn.GELU(),
operations.Linear(frequency_embedding_size, hidden_size, bias=True, device = device, dtype = dtype),
)
self.frequency_embedding_size = frequency_embedding_size
if cond_proj_dim is not None:
self.cond_proj = operations.Linear(cond_proj_dim, frequency_embedding_size, bias=False, device = device, dtype = dtype)
self.time_embed = Timesteps(hidden_size)
def forward(self, timesteps, condition):
timestep_embed = self.time_embed(timesteps).type(self.mlp[0].weight.dtype)
if condition is not None:
cond_embed = self.cond_proj(condition)
timestep_embed = timestep_embed + cond_embed
time_conditioned = self.mlp(timestep_embed)
# for broadcasting with image tokens
return time_conditioned.unsqueeze(1)
class MLP(nn.Module):
def __init__(self, *, width: int, operations = None, device = None, dtype = None):
super().__init__()
self.width = width
self.fc1 = operations.Linear(width, width * 4, device = device, dtype = dtype)
self.fc2 = operations.Linear(width * 4, width, device = device, dtype = dtype)
self.gelu = nn.GELU()
def forward(self, x):
return self.fc2(self.gelu(self.fc1(x)))
class CrossAttention(nn.Module):
def __init__(
self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=False,
norm_layer=nn.LayerNorm,
use_fp16: bool = False,
operations = None,
dtype = None,
device = None,
**kwargs,
):
super().__init__()
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
self.head_dim = self.qdim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(qdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(qdim, qdim, bias=True, device = device, dtype = dtype)
def forward(self, x, y):
b, s1, _ = x.shape
_, s2, _ = y.shape
y = y.to(next(self.to_k.parameters()).dtype)
q = self.to_q(x)
k = self.to_k(y)
v = self.to_v(y)
kv = torch.cat((k, v), dim=-1)
split_size = kv.shape[-1] // self.num_heads // 2
kv = kv.view(1, -1, self.num_heads, split_size * 2)
k, v = torch.split(kv, split_size, dim=-1)
q = q.view(b, s1, self.num_heads, self.head_dim)
k = k.view(b, s2, self.num_heads, self.head_dim)
v = v.reshape(b, s2, self.num_heads * self.head_dim)
q = self.q_norm(q)
k = self.k_norm(k)
x = optimized_attention(
q.reshape(b, s1, self.num_heads * self.head_dim),
k.reshape(b, s2, self.num_heads * self.head_dim),
v,
heads=self.num_heads,
)
out = self.out_proj(x)
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias = True,
qk_norm = False,
norm_layer = nn.LayerNorm,
use_fp16: bool = False,
operations = None,
device = None,
dtype = None
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = self.dim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(dim, dim, device = device, dtype = dtype)
def forward(self, x):
B, N, _ = x.shape
query = self.to_q(x)
key = self.to_k(x)
value = self.to_v(x)
qkv_combined = torch.cat((query, key, value), dim=-1)
split_size = qkv_combined.shape[-1] // self.num_heads // 3
qkv = qkv_combined.view(1, -1, self.num_heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
query = query.reshape(B, N, self.num_heads, self.head_dim)
key = key.reshape(B, N, self.num_heads, self.head_dim)
value = value.reshape(B, N, self.num_heads * self.head_dim)
query = self.q_norm(query)
key = self.k_norm(key)
x = optimized_attention(
query.reshape(B, N, self.num_heads * self.head_dim),
key.reshape(B, N, self.num_heads * self.head_dim),
value,
heads=self.num_heads,
)
x = self.out_proj(x)
return x
class HunYuanDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
c_emb_size,
num_heads,
text_states_dim=1024,
qk_norm=False,
norm_layer=nn.LayerNorm,
qk_norm_layer=True,
qkv_bias=True,
skip_connection=True,
timested_modulate=False,
use_moe: bool = False,
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
operations = None,
device = None, dtype = None
):
super().__init__()
# eps can't be 1e-6 in fp16 mode because of numerical stability issues
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm1 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm,
norm_layer=qk_norm_layer, use_fp16 = use_fp16, device = device, dtype = dtype, operations = operations)
self.norm2 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.timested_modulate = timested_modulate
if self.timested_modulate:
self.default_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, hidden_size, bias=True, device = device, dtype = dtype)
)
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=qkv_bias,
qk_norm=qk_norm, norm_layer=qk_norm_layer, use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
self.norm3 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
if skip_connection:
self.skip_norm = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, device = device, dtype = dtype)
else:
self.skip_linear = None
self.use_moe = use_moe
if self.use_moe:
self.moe = MoEBlock(
hidden_size,
num_experts = num_experts,
moe_top_k = moe_top_k,
dropout = 0.0,
ff_inner_dim = int(hidden_size * 4.0),
device = device, dtype = dtype,
operations = operations
)
else:
self.mlp = MLP(width=hidden_size, operations=operations, device = device, dtype = dtype)
def forward(self, hidden_states, conditioning=None, text_states=None, skip_tensor=None):
if self.skip_linear is not None:
combined = torch.cat([skip_tensor, hidden_states], dim=-1)
hidden_states = self.skip_linear(combined)
hidden_states = self.skip_norm(hidden_states)
# self attention
if self.timested_modulate:
modulation_shift = self.default_modulation(conditioning).unsqueeze(dim=1)
hidden_states = hidden_states + modulation_shift
self_attn_out = self.attn1(self.norm1(hidden_states))
hidden_states = hidden_states + self_attn_out
# cross attention
hidden_states = hidden_states + self.attn2(self.norm2(hidden_states), text_states)
# MLP Layer
mlp_input = self.norm3(hidden_states)
if self.use_moe:
hidden_states = hidden_states + self.moe(mlp_input)
else:
hidden_states = hidden_states + self.mlp(mlp_input)
return hidden_states
class FinalLayer(nn.Module):
def __init__(self, final_hidden_size, out_channels, operations, use_fp16: bool = False, device = None, dtype = None):
super().__init__()
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.linear = operations.Linear(final_hidden_size, out_channels, bias = True, device = device, dtype = dtype)
def forward(self, x):
x = self.norm_final(x)
x = x[:, 1:]
x = self.linear(x)
return x
class HunYuanDiTPlain(nn.Module):
# init with the defaults values from https://huggingface.co/tencent/Hunyuan3D-2.1/blob/main/hunyuan3d-dit-v2-1/config.yaml
def __init__(
self,
in_channels: int = 64,
hidden_size: int = 2048,
context_dim: int = 1024,
depth: int = 21,
num_heads: int = 16,
qk_norm: bool = True,
qkv_bias: bool = False,
num_moe_layers: int = 6,
guidance_cond_proj_dim = 2048,
norm_type = 'layer',
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
dtype = None,
device = None,
operations = None,
**kwargs
):
self.dtype = dtype
super().__init__()
self.depth = depth
self.in_channels = in_channels
self.out_channels = in_channels
self.num_heads = num_heads
self.hidden_size = hidden_size
norm = operations.LayerNorm if norm_type == 'layer' else operations.RMSNorm
qk_norm = operations.RMSNorm
self.context_dim = context_dim
self.guidance_cond_proj_dim = guidance_cond_proj_dim
self.x_embedder = operations.Linear(in_channels, hidden_size, bias = True, device = device, dtype = dtype)
self.t_embedder = TimestepEmbedder(hidden_size, hidden_size * 4, cond_proj_dim = guidance_cond_proj_dim, device = device, dtype = dtype, operations = operations)
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
text_states_dim=context_dim,
qk_norm=qk_norm,
norm_layer = norm,
qk_norm_layer = qk_norm,
skip_connection=layer > depth // 2,
qkv_bias=qkv_bias,
use_moe=True if depth - layer <= num_moe_layers else False,
num_experts=num_experts,
moe_top_k=moe_top_k,
use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
for layer in range(depth)
])
self.depth = depth
self.final_layer = FinalLayer(hidden_size, self.out_channels, use_fp16 = use_fp16, operations = operations, device = device, dtype = dtype)
def forward(self, x, t, context, transformer_options = {}, **kwargs):
x = x.movedim(-1, -2)
uncond_emb, cond_emb = context.chunk(2, dim = 0)
context = torch.cat([cond_emb, uncond_emb], dim = 0)
main_condition = context
t = 1.0 - t
time_embedded = self.t_embedder(t, condition = kwargs.get('guidance_cond'))
x = x.to(dtype = next(self.x_embedder.parameters()).dtype)
x_embedded = self.x_embedder(x)
combined = torch.cat([time_embedded, x_embedded], dim=1)
def block_wrap(args):
return block(
args["x"],
args["t"],
args["cond"],
skip_tensor=args.get("skip"),)
skip_stack = []
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for idx, block in enumerate(self.blocks):
if idx <= self.depth // 2:
skip_input = None
else:
skip_input = skip_stack.pop()
if ("block", idx) in blocks_replace:
combined = blocks_replace[("block", idx)](
{
"x": combined,
"t": time_embedded,
"cond": main_condition,
"skip": skip_input,
},
{"original_block": block_wrap},
)
else:
combined = block(combined, time_embedded, main_condition, skip_tensor=skip_input)
if idx < self.depth // 2:
skip_stack.append(combined)
output = self.final_layer(combined)
output = output.movedim(-2, -1) * (-1.0)
cond_emb, uncond_emb = output.chunk(2, dim = 0)
return torch.cat([uncond_emb, cond_emb])

View File

@ -1,6 +1,7 @@
#Based on Flux code because of weird hunyuan video code license.
import torch
import comfy.patcher_extension
import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
@ -39,6 +40,8 @@ class HunyuanVideoParams:
patch_size: list
qkv_bias: bool
guidance_embed: bool
byt5: bool
meanflow: bool
class SelfAttentionRef(nn.Module):
@ -77,13 +80,13 @@ class TokenRefinerBlock(nn.Module):
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x, c, mask):
def forward(self, x, c, mask, transformer_options={}):
mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn.qkv(norm_x)
q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True, transformer_options=transformer_options)
x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
@ -114,14 +117,14 @@ class IndividualTokenRefiner(nn.Module):
]
)
def forward(self, x, c, mask):
def forward(self, x, c, mask, transformer_options={}):
m = None
if mask is not None:
m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
m = m + m.transpose(2, 3)
for block in self.blocks:
x = block(x, c, m)
x = block(x, c, m, transformer_options=transformer_options)
return x
@ -149,6 +152,7 @@ class TokenRefiner(nn.Module):
x,
timesteps,
mask,
transformer_options={},
):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
@ -157,9 +161,33 @@ class TokenRefiner(nn.Module):
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
x = self.individual_token_refiner(x, c, mask)
x = self.individual_token_refiner(x, c, mask, transformer_options=transformer_options)
return x
class ByT5Mapper(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, out_dim1, use_res=False, dtype=None, device=None, operations=None):
super().__init__()
self.layernorm = operations.LayerNorm(in_dim, dtype=dtype, device=device)
self.fc1 = operations.Linear(in_dim, hidden_dim, dtype=dtype, device=device)
self.fc2 = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
self.fc3 = operations.Linear(out_dim, out_dim1, dtype=dtype, device=device)
self.use_res = use_res
self.act_fn = nn.GELU()
def forward(self, x):
if self.use_res:
res = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x2 = self.act_fn(x)
x2 = self.fc3(x2)
if self.use_res:
x2 = x2 + res
return x2
class HunyuanVideo(nn.Module):
"""
Transformer model for flow matching on sequences.
@ -184,9 +212,13 @@ class HunyuanVideo(nn.Module):
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=len(self.patch_size) == 3, dtype=dtype, device=device, operations=operations)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
@ -214,6 +246,23 @@ class HunyuanVideo(nn.Module):
]
)
if params.byt5:
self.byt5_in = ByT5Mapper(
in_dim=1472,
out_dim=2048,
hidden_dim=2048,
out_dim1=self.hidden_size,
use_res=False,
dtype=dtype, device=device, operations=operations
)
else:
self.byt5_in = None
if params.meanflow:
self.time_r_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.time_r_in = None
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
@ -225,10 +274,12 @@ class HunyuanVideo(nn.Module):
txt_ids: Tensor,
txt_mask: Tensor,
timesteps: Tensor,
y: Tensor,
y: Tensor = None,
txt_byt5=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
disable_time_r=False,
control=None,
transformer_options={},
) -> Tensor:
@ -239,6 +290,14 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if (self.time_r_in is not None) and (not disable_time_r):
w = torch.where(transformer_options['sigmas'][0] == transformer_options['sample_sigmas'])[0] # This most likely could be improved
if len(w) > 0:
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)
@ -249,13 +308,17 @@ class HunyuanVideo(nn.Module):
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
if self.vector_in is not None:
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
else:
vec = torch.cat([(token_replace_vec).unsqueeze(1), (vec).unsqueeze(1)], dim=1)
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
modulation_dims_txt = [(0, None, 1)]
else:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.vector_in is not None:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
modulation_dims = None
modulation_dims_txt = None
@ -266,7 +329,13 @@ class HunyuanVideo(nn.Module):
if txt_mask is not None and not torch.is_floating_point(txt_mask):
txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max
txt = self.txt_in(txt, timesteps, txt_mask)
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt = torch.cat((txt, txt_byt5), dim=1)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@ -284,14 +353,14 @@ class HunyuanVideo(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"])
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt, 'transformer_options': transformer_options}, {"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt)
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt, transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@ -306,13 +375,13 @@ class HunyuanVideo(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"])
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims, 'transformer_options': transformer_options}, {"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@ -327,12 +396,16 @@ class HunyuanVideo(nn.Module):
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
shape = initial_shape[-3:]
shape = initial_shape[-len(self.patch_size):]
for i in range(len(shape)):
shape[i] = shape[i] // self.patch_size[i]
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
if img.ndim == 8:
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
else:
img = img.permute(0, 3, 1, 4, 2, 5)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3])
return img
def img_ids(self, x):
@ -347,9 +420,30 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
def img_ids_2d(self, x):
bs, c, h, w = x.shape
patch_size = self.patch_size
h_len = ((h + (patch_size[0] // 2)) // patch_size[0])
w_len = ((w + (patch_size[1] // 2)) // patch_size[1])
img_ids = torch.zeros((h_len, w_len, 2), device=x.device, dtype=x.dtype)
img_ids[:, :, 0] = img_ids[:, :, 0] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@ -0,0 +1,136 @@
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock
import comfy.ops
ops = comfy.ops.disable_weight_init
class PixelShuffle2D(nn.Module):
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
super().__init__()
self.conv = op(in_dim, out_dim >> 2, 3, 1, 1)
self.ratio = (in_dim << 2) // out_dim
def forward(self, x):
b, c, h, w = x.shape
h2, w2 = h >> 1, w >> 1
y = self.conv(x).view(b, -1, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, -1, h2, w2)
r = x.view(b, c, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, c << 2, h2, w2)
return y + r.view(b, y.shape[1], self.ratio, h2, w2).mean(2)
class PixelUnshuffle2D(nn.Module):
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
super().__init__()
self.conv = op(in_dim, out_dim << 2, 3, 1, 1)
self.scale = (out_dim << 2) // in_dim
def forward(self, x):
b, c, h, w = x.shape
h2, w2 = h << 1, w << 1
y = self.conv(x).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
r = x.repeat_interleave(self.scale, 1).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
return y + r
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, downsample_match_channel=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.conv_in = ops.Conv2d(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=ops.Conv2d)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = PixelShuffle2D(ch, nxt, ops.Conv2d)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
self.conv_out = ops.Conv2d(ch, z_channels << 1, 3, 1, 1)
def forward(self, x):
x = self.conv_in(x)
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
b, c, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, h, w).mean(2)
return self.conv_out(F.silu(self.norm_out(x))) + skip
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, upsample_match_channel=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
ch = block_out_channels[0]
self.conv_in = ops.Conv2d(z_channels, ch, 3, 1, 1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=ops.Conv2d)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = PixelUnshuffle2D(ch, nxt, ops.Conv2d)
ch = nxt
self.up.append(stage)
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
self.conv_out = ops.Conv2d(ch, out_channels, 3, 1, 1)
def forward(self, z):
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
return self.conv_out(F.silu(self.norm_out(x)))

View File

@ -0,0 +1,267 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d
import comfy.ops
import comfy.ldm.models.autoencoder
ops = comfy.ops.disable_weight_init
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
shape = (dim, 1, 1, 1)
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * self.gamma
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds=True):
super().__init__()
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
assert oc % fct == 0
self.conv = VideoConv3d(ic, oc // fct, kernel_size=3)
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x):
r1 = 2 if self.tds else 1
h = self.conv(x)
if self.tds:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
hf = hf.permute(0, 4, 6, 1, 2, 3, 5)
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nf = frms // r1
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
h = torch.cat([hf, hn], dim=2)
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
xf = xf.reshape(b, ci, f, ht // 2, 2, wd // 2, 2)
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xn = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = xn.shape
nf = frms // r1
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = xn.shape
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
b, ci, frms, ht, wd = x.shape
nf = frms // r1
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = sc.shape
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
return h + sc
class UpSmpl(nn.Module):
def __init__(self, ic, oc, tus=True):
super().__init__()
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
self.conv = VideoConv3d(ic, oc * fct, kernel_size=3)
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x):
r1 = 2 if self.tus else 1
h = self.conv(x)
if self.tus:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
hf = hf.reshape(b, 2, 2, nc, f, ht, wd)
hf = hf.permute(0, 3, 4, 5, 1, 6, 2)
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nc = c // (r1 * 2 * 2)
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
h = torch.cat([hf, hn], dim=2)
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
xf = xf.repeat_interleave(repeats=self.rp // 2, dim=1)
b, c, f, ht, wd = xf.shape
nc = c // (2 * 2)
xf = xf.reshape(b, 2, 2, nc, f, ht, wd)
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
xn = x[:, :, 1:, :, :]
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = xn.shape
nc = c // (r1 * 2 * 2)
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = sc.shape
nc = c // (r1 * 2 * 2)
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
return h + sc
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.conv_in = VideoConv3d(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = ((ffactor_spatial // ffactor_temporal) >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, z_channels << 1, 3, 1, 1)
self.regul = comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer()
def forward(self, x):
x = self.conv_in(x)
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = self.conv_out(F.silu(self.norm_out(x))) + skip
out = self.regul(out)[0]
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, 3)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = (ffactor_temporal >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal)
ch = nxt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, 3)
def forward(self, z):
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
return self.conv_out(F.silu(self.norm_out(x)))

View File

@ -1,5 +1,6 @@
import torch
from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
from einops import rearrange
@ -270,7 +271,7 @@ class CrossAttention(nn.Module):
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, mask=None, pe=None):
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
@ -284,9 +285,9 @@ class CrossAttention(nn.Module):
k = apply_rotary_emb(k, pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
else:
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
return self.to_out(out)
@ -302,12 +303,12 @@ class BasicTransformerBlock(nn.Module):
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
x += self.attn2(x, context=context, mask=attention_mask)
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
@ -420,6 +421,13 @@ class LTXVModel(torch.nn.Module):
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs)
def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
orig_shape = list(x.shape)
@ -471,10 +479,10 @@ class LTXVModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(
@ -482,7 +490,8 @@ class LTXVModel(torch.nn.Module):
context=context,
attention_mask=attention_mask,
timestep=timestep,
pe=pe
pe=pe,
transformer_options=transformer_options,
)
# 3. Output

View File

@ -11,6 +11,7 @@ import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.patcher_extension
def modulate(x, scale):
@ -103,6 +104,7 @@ class JointAttention(nn.Module):
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
transformer_options={},
) -> torch.Tensor:
"""
@ -139,7 +141,7 @@ class JointAttention(nn.Module):
if n_rep >= 1:
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True, transformer_options=transformer_options)
return self.out(output)
@ -267,6 +269,7 @@ class JointTransformerBlock(nn.Module):
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor]=None,
transformer_options={},
):
"""
Perform a forward pass through the TransformerBlock.
@ -289,6 +292,7 @@ class JointTransformerBlock(nn.Module):
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
@ -303,6 +307,7 @@ class JointTransformerBlock(nn.Module):
self.attention_norm1(x),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
)
x = x + self.ffn_norm2(
@ -493,7 +498,7 @@ class NextDiT(nn.Module):
return imgs
def patchify_and_embed(
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, transformer_options={}
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
bsz = len(x)
pH = pW = self.patch_size
@ -553,7 +558,7 @@ class NextDiT(nn.Module):
# refine context
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
# refine image
flat_x = []
@ -572,7 +577,7 @@ class NextDiT(nn.Module):
padded_img_embed = self.x_embedder(padded_img_embed)
padded_img_mask = padded_img_mask.unsqueeze(1)
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
@ -590,8 +595,15 @@ class NextDiT(nn.Module):
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
# def forward(self, x, t, cap_feats, cap_mask):
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs)
# def forward(self, x, t, cap_feats, cap_mask):
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
t = 1.0 - timesteps
cap_feats = context
cap_mask = attention_mask
@ -608,12 +620,13 @@ class NextDiT(nn.Module):
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
transformer_options = kwargs.get("transformer_options", {})
x_is_tensor = isinstance(x, torch.Tensor)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(x.device)
for layer in self.layers:
x = layer(x, mask, freqs_cis, adaln_input)
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]

View File

@ -26,6 +26,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
z = posterior.mode()
return z, None
class EmptyRegularizer(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
return z, None
class AbstractAutoencoder(torch.nn.Module):
"""

View File

@ -5,8 +5,9 @@ import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional
from typing import Optional, Any, Callable, Union
import logging
import functools
from .diffusionmodules.util import AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
@ -17,23 +18,45 @@ if model_management.xformers_enabled():
import xformers
import xformers.ops
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError as e:
SAGE_ATTENTION_IS_AVAILABLE = False
try:
from sageattention import sageattn
SAGE_ATTENTION_IS_AVAILABLE = True
except ImportError as e:
if model_management.sage_attention_enabled():
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():
try:
from flash_attn import flash_attn_func
except ModuleNotFoundError:
FLASH_ATTENTION_IS_AVAILABLE = False
try:
from flash_attn import flash_attn_func
FLASH_ATTENTION_IS_AVAILABLE = True
except ImportError:
if model_management.flash_attention_enabled():
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
exit(-1)
REGISTERED_ATTENTION_FUNCTIONS = {}
def register_attention_function(name: str, func: Callable):
# avoid replacing existing functions
if name not in REGISTERED_ATTENTION_FUNCTIONS:
REGISTERED_ATTENTION_FUNCTIONS[name] = func
else:
logging.warning(f"Attention function {name} already registered, skipping registration.")
def get_attention_function(name: str, default: Any=...) -> Union[Callable, None]:
if name == "optimized":
return optimized_attention
elif name not in REGISTERED_ATTENTION_FUNCTIONS:
if default is ...:
raise KeyError(f"Attention function {name} not found.")
else:
return default
return REGISTERED_ATTENTION_FUNCTIONS[name]
from comfy.cli_args import args
import comfy.ops
ops = comfy.ops.disable_weight_init
@ -91,7 +114,27 @@ class FeedForward(nn.Module):
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
def wrap_attn(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
remove_attn_wrapper_key = False
try:
if "_inside_attn_wrapper" not in kwargs:
transformer_options = kwargs.get("transformer_options", None)
remove_attn_wrapper_key = True
kwargs["_inside_attn_wrapper"] = True
if transformer_options is not None:
if "optimized_attention_override" in transformer_options:
return transformer_options["optimized_attention_override"](func, *args, **kwargs)
return func(*args, **kwargs)
finally:
if remove_attn_wrapper_key:
del kwargs["_inside_attn_wrapper"]
return wrapper
@wrap_attn
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
@ -159,8 +202,8 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
)
return out
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, query.dtype)
if skip_reshape:
@ -230,7 +273,8 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
@ -359,7 +403,8 @@ try:
except:
pass
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
b = q.shape[0]
dim_head = q.shape[-1]
# check to make sure xformers isn't broken
@ -374,7 +419,7 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape, **kwargs)
if skip_reshape:
# b h k d -> b k h d
@ -427,8 +472,8 @@ else:
#TODO: other GPUs ?
SDP_BATCH_LIMIT = 2**31
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
@ -470,8 +515,8 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
return out
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout = "HND"
@ -501,7 +546,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape, **kwargs)
if tensor_layout == "HND":
if not skip_output_reshape:
@ -534,8 +579,8 @@ except AttributeError as error:
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
@ -555,7 +600,8 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
mask = mask.unsqueeze(1)
try:
assert mask is None
if mask is not None:
raise RuntimeError("Mask must not be set for Flash attention")
out = flash_attn_wrapper(
q.transpose(1, 2),
k.transpose(1, 2),
@ -597,6 +643,19 @@ else:
optimized_attention_masked = optimized_attention
# register core-supported attention functions
if SAGE_ATTENTION_IS_AVAILABLE:
register_attention_function("sage", attention_sage)
if FLASH_ATTENTION_IS_AVAILABLE:
register_attention_function("flash", attention_flash)
if model_management.xformers_enabled():
register_attention_function("xformers", attention_xformers)
register_attention_function("pytorch", attention_pytorch)
register_attention_function("sub_quad", attention_sub_quad)
register_attention_function("split", attention_split)
def optimized_attention_for_device(device, mask=False, small_input=False):
if small_input:
if model_management.pytorch_attention_enabled():
@ -629,7 +688,7 @@ class CrossAttention(nn.Module):
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, value=None, mask=None):
def forward(self, x, context=None, value=None, mask=None, transformer_options={}):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
@ -640,9 +699,9 @@ class CrossAttention(nn.Module):
v = self.to_v(context)
if mask is None:
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
else:
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
return self.to_out(out)
@ -746,7 +805,7 @@ class BasicTransformerBlock(nn.Module):
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
n = self.attn1.to_out(n)
else:
n = self.attn1(n, context=context_attn1, value=value_attn1)
n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=transformer_options)
if "attn1_output_patch" in transformer_patches:
patch = transformer_patches["attn1_output_patch"]
@ -786,7 +845,7 @@ class BasicTransformerBlock(nn.Module):
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
n = self.attn2.to_out(n)
else:
n = self.attn2(n, context=context_attn2, value=value_attn2)
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=transformer_options)
if "attn2_output_patch" in transformer_patches:
patch = transformer_patches["attn2_output_patch"]
@ -1017,7 +1076,7 @@ class SpatialVideoTransformer(SpatialTransformer):
B, S, C = x_mix.shape
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
x_mix = mix_block(x_mix, context=time_context, transformer_options=transformer_options)
x_mix = rearrange(
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
)

View File

@ -109,7 +109,7 @@ class PatchEmbed(nn.Module):
def modulate(x, shift, scale):
if shift is None:
shift = torch.zeros_like(scale)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
return torch.addcmul(shift.unsqueeze(1), x, 1+ scale.unsqueeze(1))
#################################################################################
@ -564,10 +564,7 @@ class DismantledBlock(nn.Module):
assert not self.pre_only
attn1 = self.attn.post_attention(attn)
attn2 = self.attn2.post_attention(attn2)
out1 = gate_msa.unsqueeze(1) * attn1
out2 = gate_msa2.unsqueeze(1) * attn2
x = x + out1
x = x + out2
x = gate_cat(x, gate_msa, gate_msa2, attn1, attn2)
x = x + gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp)
)
@ -594,6 +591,11 @@ class DismantledBlock(nn.Module):
)
return self.post_attention(attn, *intermediates)
def gate_cat(x, gate_msa, gate_msa2, attn1, attn2):
out1 = gate_msa.unsqueeze(1) * attn1
out2 = gate_msa2.unsqueeze(1) * attn2
x = torch.stack([x, out1, out2], dim=0).sum(dim=0)
return x
def block_mixing(*args, use_checkpoint=True, **kwargs):
if use_checkpoint:
@ -604,7 +606,7 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
return _block_mixing(*args, **kwargs)
def _block_mixing(context, x, context_block, x_block, c):
def _block_mixing(context, x, context_block, x_block, c, transformer_options={}):
context_qkv, context_intermediates = context_block.pre_attention(context, c)
if x_block.x_block_self_attn:
@ -620,6 +622,7 @@ def _block_mixing(context, x, context_block, x_block, c):
attn = optimized_attention(
qkv[0], qkv[1], qkv[2],
heads=x_block.attn.num_heads,
transformer_options=transformer_options,
)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
@ -635,6 +638,7 @@ def _block_mixing(context, x, context_block, x_block, c):
attn2 = optimized_attention(
x_qkv2[0], x_qkv2[1], x_qkv2[2],
heads=x_block.attn2.num_heads,
transformer_options=transformer_options,
)
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
else:
@ -956,10 +960,10 @@ class MMDiT(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"])
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod, "transformer_options": transformer_options}, {"original_block": block_wrap})
context = out["txt"]
x = out["img"]
else:
@ -968,6 +972,7 @@ class MMDiT(nn.Module):
x,
c=c_mod,
use_checkpoint=self.use_checkpoint,
transformer_options=transformer_options,
)
if control is not None:
control_o = control.get("output")

View File

@ -145,7 +145,7 @@ class Downsample(nn.Module):
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512, conv_op=ops.Conv2d):
dropout=0.0, temb_channels=512, conv_op=ops.Conv2d, norm_op=Normalize):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
@ -153,7 +153,7 @@ class ResnetBlock(nn.Module):
self.use_conv_shortcut = conv_shortcut
self.swish = torch.nn.SiLU(inplace=True)
self.norm1 = Normalize(in_channels)
self.norm1 = norm_op(in_channels)
self.conv1 = conv_op(in_channels,
out_channels,
kernel_size=3,
@ -162,7 +162,7 @@ class ResnetBlock(nn.Module):
if temb_channels > 0:
self.temb_proj = ops.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.norm2 = norm_op(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = conv_op(out_channels,
out_channels,
@ -183,7 +183,7 @@ class ResnetBlock(nn.Module):
stride=1,
padding=0)
def forward(self, x, temb):
def forward(self, x, temb=None):
h = x
h = self.norm1(h)
h = self.swish(h)
@ -305,11 +305,11 @@ def vae_attention():
return normal_attention
class AttnBlock(nn.Module):
def __init__(self, in_channels, conv_op=ops.Conv2d):
def __init__(self, in_channels, conv_op=ops.Conv2d, norm_op=Normalize):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.norm = norm_op(in_channels)
self.q = conv_op(in_channels,
in_channels,
kernel_size=1,

View File

@ -120,7 +120,7 @@ class Attention(nn.Module):
nn.Dropout(0.0)
)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
@ -146,7 +146,7 @@ class Attention(nn.Module):
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True, transformer_options=transformer_options)
hidden_states = self.to_out[0](hidden_states)
return hidden_states
@ -182,16 +182,16 @@ class OmniGen2TransformerBlock(nn.Module):
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
@ -390,7 +390,7 @@ class OmniGen2Transformer2DModel(nn.Module):
ref_img_sizes, img_sizes,
)
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb, transformer_options={}):
batch_size = len(hidden_states)
hidden_states = self.x_embedder(hidden_states)
@ -405,17 +405,17 @@ class OmniGen2Transformer2DModel(nn.Module):
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb, transformer_options=transformer_options)
if ref_image_hidden_states is not None:
for layer in self.ref_image_refiner:
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb, transformer_options=transformer_options)
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
return hidden_states
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, transformer_options={}, **kwargs):
B, C, H, W = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
_, _, H_padded, W_padded = hidden_states.shape
@ -444,7 +444,7 @@ class OmniGen2Transformer2DModel(nn.Module):
)
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb, transformer_options=transformer_options)
img_len = hidden_states.shape[1]
combined_img_hidden_states = self.img_patch_embed_and_refine(
@ -453,13 +453,14 @@ class OmniGen2Transformer2DModel(nn.Module):
noise_rotary_emb, ref_img_rotary_emb,
l_effective_ref_img_len, l_effective_img_len,
temb,
transformer_options=transformer_options,
)
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
attention_mask = None
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb, transformer_options=transformer_options)
hidden_states = self.norm_out(hidden_states, temb)

View File

@ -0,0 +1,77 @@
import torch
import math
from .model import QwenImageTransformer2DModel
class QwenImageControlNetModel(QwenImageTransformer2DModel):
def __init__(
self,
extra_condition_channels=0,
dtype=None,
device=None,
operations=None,
**kwargs
):
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
self.main_model_double = 60
# controlnet_blocks
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(operations.Linear(self.inner_dim, self.inner_dim, device=device, dtype=dtype))
self.controlnet_x_embedder = operations.Linear(self.in_channels + extra_condition_channels, self.inner_dim, device=device, dtype=dtype)
def forward(
self,
x,
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
hint=None,
transformer_options={},
**kwargs
):
timestep = timesteps
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
hidden_states, img_ids, orig_shape = self.process_img(x)
hint, _, _ = self.process_img(hint)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
repeat = math.ceil(self.main_model_double / len(self.controlnet_blocks))
controlnet_block_samples = ()
for i, block in enumerate(self.transformer_blocks):
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
controlnet_block_samples = controlnet_block_samples + (self.controlnet_blocks[i](hidden_states),) * repeat
return {"input": controlnet_block_samples[:self.main_model_double]}

View File

@ -9,6 +9,7 @@ from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
@ -131,6 +132,7 @@ class Attention(nn.Module):
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
@ -158,7 +160,7 @@ class Attention(nn.Module):
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
@ -214,9 +216,9 @@ class QwenImageTransformerBlock(nn.Module):
operations=operations,
)
def _modulate(self, x, mod_params):
shift, scale, gate = mod_params.chunk(3, dim=-1)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
def forward(
self,
@ -225,6 +227,7 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
txt_mod_params = self.txt_mod(temb)
@ -241,6 +244,7 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states=txt_modulated,
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
hidden_states = hidden_states + img_gate1 * img_attn_output
@ -248,11 +252,11 @@ class QwenImageTransformerBlock(nn.Module):
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
hidden_states = hidden_states + img_gate2 * self.img_mlp(img_modulated2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
encoder_hidden_states = encoder_hidden_states + txt_gate2 * self.txt_mlp(txt_modulated2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
@ -275,7 +279,7 @@ class LastLayer(nn.Module):
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
x = torch.addcmul(shift[:, None, :], self.norm(x), (1 + scale)[:, None, :])
return x
@ -293,6 +297,7 @@ class QwenImageTransformer2DModel(nn.Module):
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
image_model=None,
final_layer=True,
dtype=None,
device=None,
operations=None,
@ -300,6 +305,7 @@ class QwenImageTransformer2DModel(nn.Module):
super().__init__()
self.dtype = dtype
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
@ -329,9 +335,9 @@ class QwenImageTransformer2DModel(nn.Module):
for _ in range(num_layers)
])
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
self.gradient_checkpointing = False
if final_layer:
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, t, h, w = x.shape
@ -347,13 +353,20 @@ class QwenImageTransformer2DModel(nn.Module):
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
def forward(
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
def _forward(
self,
x,
timesteps,
@ -362,6 +375,7 @@ class QwenImageTransformer2DModel(nn.Module):
guidance: torch.Tensor = None,
ref_latents=None,
transformer_options={},
control=None,
**kwargs
):
timestep = timesteps
@ -396,10 +410,11 @@ class QwenImageTransformer2DModel(nn.Module):
hidden_states = torch.cat([hidden_states, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size), ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size)))
txt_ids = torch.linspace(txt_start, txt_start + context.shape[1], steps=context.shape[1], device=x.device, dtype=x.dtype).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
@ -415,15 +430,16 @@ class QwenImageTransformer2DModel(nn.Module):
)
patches_replace = transformer_options.get("patches_replace", {})
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
@ -433,8 +449,22 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states[:, :add.shape[1]] += add
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)

File diff suppressed because it is too large Load Diff

View File

@ -260,6 +260,10 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
if isinstance(model, comfy.model_base.GenmoMochi):
for k in sdk:
@ -293,6 +297,12 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.Omnigen2):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.QwenImage):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format

View File

@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_uso_lora(sd):
sd_out = {}
for k in sd:
tensor = sd[k]
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
.replace(".up.weight", ".lora_up.weight")
.replace(".qkv_lora2.", ".txt_attn.qkv.")
.replace(".qkv_lora1.", ".img_attn.qkv.")
.replace(".proj_lora1.", ".img_attn.proj.")
.replace(".proj_lora2.", ".txt_attn.proj.")
.replace(".qkv_lora.", ".linear1_qkv.")
.replace(".proj_lora.", ".linear2.")
.replace(".processor.", ".")
)
sd_out[k_to] = tensor
return sd_out
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
return convert_uso_lora(sd)
return sd

View File

@ -16,6 +16,8 @@
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import comfy.ldm.hunyuan3dv2_1
import comfy.ldm.hunyuan3dv2_1.hunyuandit
import torch
import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
@ -40,6 +42,7 @@ import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.chroma_radiance.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
@ -150,6 +153,7 @@ class BaseModel(torch.nn.Module):
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
self.memory_usage_shape_process = {}
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@ -350,8 +354,15 @@ class BaseModel(torch.nn.Module):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
if shape is not None:
if c in self.memory_usage_shape_process:
out = []
for s in shape:
out.append(self.memory_usage_shape_process[c](s))
shape = out
if len(shape) > 0:
input_shapes += shape
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
@ -1102,9 +1113,10 @@ class WAN21(BaseModel):
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
if extra_channels != image.shape[1] + 4:
@ -1201,18 +1213,90 @@ class WAN21_Camera(WAN21):
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class WAN22(BaseModel):
class WAN21_HuMo(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.HumoWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
noise = kwargs.get("noise", None)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
if "c_concat" not in out: # 1.7B model
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
else:
noise_shape = list(noise.shape)
noise_shape[1] += 4
concat_latent = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
zero_vae_values_first = torch.tensor([0.8660, -0.4326, -0.0017, -0.4884, -0.5283, 0.9207, -0.9896, 0.4433, -0.5543, -0.0113, 0.5753, -0.6000, -0.8346, -0.3497, -0.1926, -0.6938]).view(1, 16, 1, 1, 1)
zero_vae_values_second = torch.tensor([1.0869, -1.2370, 0.0206, -0.4357, -0.6411, 2.0307, -1.5972, 1.2659, -0.8595, -0.4654, 0.9638, -1.6330, -1.4310, -0.1098, -0.3856, -1.4583]).view(1, 16, 1, 1, 1)
zero_vae_values = torch.tensor([0.8642, -1.8583, 0.1577, 0.1350, -0.3641, 2.5863, -1.9670, 1.6065, -1.0475, -0.8678, 1.1734, -1.8138, -1.5933, -0.7721, -0.3289, -1.3745]).view(1, 16, 1, 1, 1)
concat_latent[:, 4:] = zero_vae_values
concat_latent[:, 4:, :1] = zero_vae_values_first
concat_latent[:, 4:, 1:2] = zero_vae_values_second
out['c_concat'] = comfy.conds.CONDNoiseShape(concat_latent)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
ref_latent = self.process_latent_in(reference_latents[-1])
ref_latent_shape = list(ref_latent.shape)
ref_latent_shape[1] += 4 + ref_latent_shape[1]
ref_latent_full = torch.zeros(ref_latent_shape, device=ref_latent.device, dtype=ref_latent.dtype)
ref_latent_full[:, 20:] = ref_latent
ref_latent_full[:, 16:20] = 1.0
out['reference_latent'] = comfy.conds.CONDRegular(ref_latent_full)
return out
class WAN22_S2V(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
self.memory_usage_factor_conds = ("reference_latent", "reference_motion")
self.memory_usage_shape_process = {"reference_motion": lambda shape: [shape[0], shape[1], 1.5, shape[-2], shape[-1]]}
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
control_video = kwargs.get("control_video", None)
if control_video is not None:
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['reference_latent'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = reference_motion.shape
return out
class WAN22(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
denoise_mask = kwargs.get("denoise_mask", None)
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
return out
@ -1241,6 +1325,21 @@ class Hunyuan3Dv2(BaseModel):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class Hunyuan3Dv2_1(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3dv2_1.hunyuandit.HunYuanDiTPlain)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guidance = kwargs.get("guidance", 5.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
@ -1262,8 +1361,8 @@ class HiDream(BaseModel):
return out
class Chroma(Flux):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.chroma.model.Chroma):
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@ -1273,6 +1372,10 @@ class Chroma(Flux):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class ChromaRadiance(Chroma):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma_radiance.model.ChromaRadiance)
class ACEStep(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
@ -1325,6 +1428,7 @@ class Omnigen2(BaseModel):
class QwenImage(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.qwen_image.model.QwenImageTransformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@ -1342,3 +1446,62 @@ class QwenImage(BaseModel):
if ref_latents_method is not None:
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class HunyuanImage21(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HunyuanImage21Refiner(HunyuanImage21):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image.shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image
else:
image = 0.75 * image
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(True)
return out

View File

@ -136,25 +136,45 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}txt_in.individual_token_refiner.blocks.0.norm1.weight'.format(key_prefix) in state_dict_keys: #Hunyuan Video
dit_config = {}
in_w = state_dict['{}img_in.proj.weight'.format(key_prefix)]
out_w = state_dict['{}final_layer.linear.weight'.format(key_prefix)]
dit_config["image_model"] = "hunyuan_video"
dit_config["in_channels"] = state_dict['{}img_in.proj.weight'.format(key_prefix)].shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = [1, 2, 2]
dit_config["out_channels"] = 16
dit_config["vec_in_dim"] = 768
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["in_channels"] = in_w.shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = list(in_w.shape[2:])
dit_config["out_channels"] = out_w.shape[0] // math.prod(dit_config["patch_size"])
if any(s.startswith('{}vector_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["vec_in_dim"] = 768
else:
dit_config["vec_in_dim"] = None
if len(dit_config["patch_size"]) == 2:
dit_config["axes_dim"] = [64, 64]
else:
dit_config["axes_dim"] = [16, 56, 56]
if any(s.startswith('{}time_r_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["meanflow"] = True
else:
dit_config["meanflow"] = False
dit_config["context_in_dim"] = state_dict['{}txt_in.input_embedder.weight'.format(key_prefix)].shape[1]
dit_config["hidden_size"] = in_w.shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
dit_config["num_heads"] = in_w.shape[0] // 128
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 256
dit_config["qkv_bias"] = True
if '{}byt5_in.fc1.weight'.format(key_prefix) in state_dict:
dit_config["byt5"] = True
else:
dit_config["byt5"] = False
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
dit_config["guidance_embed"] = len(guidance_keys) > 0
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
dit_config["image_model"] = "flux"
dit_config["in_channels"] = 16
@ -184,6 +204,18 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
dit_config["image_model"] = "chroma_radiance"
dit_config["in_channels"] = 3
dit_config["out_channels"] = 3
dit_config["patch_size"] = 16
dit_config["nerf_hidden_size"] = 64
dit_config["nerf_mlp_ratio"] = 4
dit_config["nerf_depth"] = 4
dit_config["nerf_max_freqs"] = 8
dit_config["nerf_tile_size"] = 32
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
@ -368,6 +400,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["model_type"] = "camera"
else:
dit_config["model_type"] = "camera_2.2"
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "s2v"
elif '{}audio_proj.audio_proj_glob_1.layer.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "humo"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
@ -398,6 +434,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if f"{key_prefix}t_embedder.mlp.2.weight" in state_dict_keys: # Hunyuan 3D 2.1
dit_config = {}
dit_config["image_model"] = "hunyuan3d2_1"
dit_config["in_channels"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[1]
dit_config["context_dim"] = 1024
dit_config["hidden_size"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 16
dit_config["depth"] = count_blocks(state_dict_keys, f"{key_prefix}blocks.{{}}")
dit_config["qkv_bias"] = False
dit_config["guidance_cond_proj_dim"] = None#f"{key_prefix}t_embedder.cond_proj.weight" in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"
@ -492,6 +542,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}txt_norm.weight'.format(key_prefix) in state_dict_keys: # Qwen Image
dit_config = {}
dit_config["image_model"] = "qwen_image"
dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:

View File

@ -22,6 +22,7 @@ from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import importlib
import platform
import weakref
import gc
@ -289,6 +290,24 @@ def is_amd():
return True
return False
def amd_min_version(device=None, min_rdna_version=0):
if not is_amd():
return False
if is_device_cpu(device):
return False
arch = torch.cuda.get_device_properties(device).gcnArchName
if arch.startswith('gfx') and len(arch) == 7:
try:
cmp_rdna_version = int(arch[4]) + 2
except:
cmp_rdna_version = 0
if cmp_rdna_version >= min_rdna_version:
return True
return False
MIN_WEIGHT_MEMORY_RATIO = 0.4
if is_nvidia():
MIN_WEIGHT_MEMORY_RATIO = 0.0
@ -321,12 +340,13 @@ try:
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
SUPPORT_FP8_OPS = True
@ -593,7 +613,13 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
else:
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
models = set(models)
models_temp = set()
for m in models:
models_temp.add(m)
for mm in m.model_patches_models():
models_temp.add(mm)
models = models_temp
models_to_load = []
@ -899,7 +925,9 @@ def vae_dtype(device=None, allowed_dtypes=[]):
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
# also a problem on RDNA4 except fp32 is also slow there.
# This is due to large bf16 convolutions being extremely slow.
if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device):
return d
return torch.float32

View File

@ -430,6 +430,12 @@ class ModelPatcher:
def set_model_forward_timestep_embed_patch(self, patch):
self.set_model_patch(patch, "forward_timestep_embed_patch")
def set_model_double_block_patch(self, patch):
self.set_model_patch(patch, "double_block")
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
@ -486,6 +492,30 @@ class ModelPatcher:
if hasattr(wrap_func, "to"):
self.model_options["model_function_wrapper"] = wrap_func.to(device)
def model_patches_models(self):
to = self.model_options["transformer_options"]
models = []
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "models"):
models += patch_list[i].models()
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "models"):
models += patch_list[k].models()
if "model_function_wrapper" in self.model_options:
wrap_func = self.model_options["model_function_wrapper"]
if hasattr(wrap_func, "models"):
models += wrap_func.models()
return models
def model_dtype(self):
if hasattr(self.model, "get_dtype"):
return self.model.get_dtype()

View File

@ -52,6 +52,9 @@ except (ModuleNotFoundError, TypeError):
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
torch.backends.cudnn.benchmark = True
def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)

View File

@ -50,6 +50,7 @@ class WrappersMP:
OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample"
PREDICT_NOISE = "predict_noise"
CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model"
DIFFUSION_MODEL = "diffusion_model"

View File

@ -0,0 +1,16 @@
import torch
# "Fake" VAE that converts from IMAGE B, H, W, C and values on the scale of 0..1
# to LATENT B, C, H, W and values on the scale of -1..1.
class PixelspaceConversionVAE(torch.nn.Module):
def __init__(self):
super().__init__()
self.pixel_space_vae = torch.nn.Parameter(torch.tensor(1.0))
def encode(self, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
return pixels
def decode(self, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
return samples

21
comfy/samplers.py Normal file → Executable file
View File

@ -17,6 +17,7 @@ import comfy.model_patcher
import comfy.patcher_extension
import comfy.hooks
import comfy.context_windows
import comfy.utils
import scipy.stats
import numpy
@ -61,7 +62,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
if "mask_strength" in conds:
mask_strength = conds["mask_strength"]
mask = conds['mask']
assert (mask.shape[1:] == x_in.shape[2:])
# assert (mask.shape[1:] == x_in.shape[2:])
mask = mask[:input_x.shape[0]]
if area is not None:
@ -69,7 +70,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
mask = mask.narrow(i + 1, area[len(dims) + i], area[i])
mask = mask * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
mask = mask.unsqueeze(1).repeat((input_x.shape[0] // mask.shape[0], input_x.shape[1]) + (1, ) * (mask.ndim - 1))
else:
mask = torch.ones_like(input_x)
mult = mask * strength
@ -553,7 +554,10 @@ def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
if len(mask.shape) == len(dims):
mask = mask.unsqueeze(0)
if mask.shape[1:] != dims:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
if mask.ndim < 4:
mask = comfy.utils.common_upscale(mask.unsqueeze(1), dims[-1], dims[-2], 'bilinear', 'none').squeeze(1)
else:
mask = comfy.utils.common_upscale(mask, dims[-1], dims[-2], 'bilinear', 'none')
if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
@ -725,7 +729,7 @@ class Sampler:
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
@ -953,7 +957,14 @@ class CFGGuider:
self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])
def __call__(self, *args, **kwargs):
return self.predict_noise(*args, **kwargs)
return self.outer_predict_noise(*args, **kwargs)
def outer_predict_noise(self, x, timestep, model_options={}, seed=None):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self.predict_noise,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, self.model_options, is_model_options=True)
).execute(x, timestep, model_options, seed)
def predict_noise(self, x, timestep, model_options={}, seed=None):
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)

View File

@ -17,6 +17,8 @@ import comfy.ldm.wan.vae
import comfy.ldm.wan.vae2_2
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import comfy.ldm.hunyuan_video.vae
import comfy.pixel_space_convert
import yaml
import math
import os
@ -48,6 +50,7 @@ import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.model_patcher
import comfy.lora
@ -283,6 +286,7 @@ class VAE:
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.not_video = False
self.downscale_index_formula = None
self.upscale_index_formula = None
@ -328,6 +332,19 @@ class VAE:
self.first_stage_model = StageC_coder()
self.downscale_ratio = 32
self.latent_channels = 16
elif "decoder.conv_in.weight" in sd and sd['decoder.conv_in.weight'].shape[1] == 64:
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.downscale_ratio = 32
self.upscale_ratio = 32
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif "decoder.conv_in.weight" in sd:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@ -394,6 +411,23 @@ class VAE:
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
self.downscale_index_formula = (8, 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 64
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = True
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
@ -446,17 +480,29 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
ln_post = "geo_decoder.ln_post.weight" in sd
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
def estimate_memory(shape, dtype, num_layers = 16, kv_cache_multiplier = 2):
batch, num_tokens, hidden_dim = shape
dtype_size = model_management.dtype_size(dtype)
total_mem = batch * num_tokens * hidden_dim * dtype_size * (1 + kv_cache_multiplier * num_layers)
return total_mem
# better memory estimations
self.memory_used_encode = lambda shape, dtype, num_layers = 8, kv_cache_multiplier = 0:\
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.memory_used_decode = lambda shape, dtype, num_layers = 16, kv_cache_multiplier = 2: \
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE()
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
@ -471,6 +517,15 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
elif "pixel_space_vae" in sd:
self.first_stage_model = comfy.pixel_space_convert.PixelspaceConversionVAE()
self.memory_used_encode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.downscale_ratio = 1
self.upscale_ratio = 1
self.latent_channels = 3
self.latent_dim = 2
self.output_channels = 3
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@ -643,7 +698,10 @@ class VAE:
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1)
if self.latent_dim == 3 and pixel_samples.ndim < 5:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@ -677,7 +735,10 @@ class VAE:
dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1)
if dims == 3:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@ -734,6 +795,7 @@ class VAE:
except:
return None
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
@ -773,6 +835,7 @@ class CLIPType(Enum):
ACE = 16
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -794,6 +857,7 @@ class TEModel(Enum):
GEMMA_2_2B = 9
QWEN25_3B = 10
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@ -811,6 +875,9 @@ def detect_te_model(sd):
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
weight = sd['encoder.block.0.layer.0.SelfAttention.k.weight']
if weight.shape[0] == 384:
return TEModel.BYT5_SMALL_GLYPH
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
return TEModel.GEMMA_2_2B
@ -925,8 +992,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
elif te_model == TEModel.QWEN25_7B:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
if clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(byt5=False, **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
@ -970,6 +1041,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer

View File

@ -204,17 +204,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
index = 0
pad_extra = 0
embeds_info = []
for o in other_embeds:
emb = o[1]
if torch.is_tensor(emb):
emb = {"type": "embedding", "data": emb}
extra = None
emb_type = emb.get("type", None)
if emb_type == "embedding":
emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
emb, extra = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
@ -229,6 +231,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
embeds_info.append({"type": emb_type, "index": ind, "size": emb_shape, "extra": extra})
else:
index += -1
pad_extra += emb_shape
@ -243,11 +246,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
@ -258,7 +261,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32, embeds_info=embeds_info)
if self.layer == "last":
z = outputs[0].float()
@ -531,7 +534,10 @@ class SDTokenizer:
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
if kwargs.get("disable_weights", False):
parsed_weights = [(text, 1.0)]
else:
parsed_weights = token_weights(text, 1.0)
# tokenize words
tokens = []

View File

@ -20,6 +20,7 @@ import comfy.text_encoders.wan
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
from . import supported_models_base
from . import latent_formats
@ -700,7 +701,7 @@ class Flux(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.Flux
memory_usage_factor = 2.8
memory_usage_factor = 3.1 # TODO: debug why flux mem usage is so weird on windows.
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
@ -1072,6 +1073,29 @@ class WAN21_Vace(WAN21_T2V):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class WAN21_HuMo(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "humo",
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_HuMo(self, image_to_video=False, device=device)
return out
class WAN22_S2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "s2v",
}
def __init__(self, unet_config):
super().__init__(unet_config)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN22_S2V(self, device=device)
return out
class WAN22_T2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
@ -1115,6 +1139,17 @@ class Hunyuan3Dv2(supported_models_base.BASE):
def clip_target(self, state_dict={}):
return None
class Hunyuan3Dv2_1(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2_1",
}
latent_format = latent_formats.Hunyuan3Dv2_1
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Hunyuan3Dv2_1(self, device = device)
return out
class Hunyuan3Dv2mini(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2",
@ -1180,6 +1215,19 @@ class Chroma(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
class ChromaRadiance(Chroma):
unet_config = {
"image_model": "chroma_radiance",
}
latent_format = comfy.latent_formats.ChromaRadiance
# Pixel-space model, no spatial compression for model input.
memory_usage_factor = 0.038
def get_model(self, state_dict, prefix="", device=None):
return model_base.ChromaRadiance(self, device=device)
class ACEStep(supported_models_base.BASE):
unet_config = {
"audio_model": "ace",
@ -1271,7 +1319,48 @@ class QwenImage(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
class HunyuanImage21(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vec_in_dim": None,
}
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
sampling_settings = {
"shift": 5.0,
}
latent_format = latent_formats.HunyuanImage21
memory_usage_factor = 7.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanImage21(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class HunyuanImage21Refiner(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"patch_size": [1, 1, 1],
"vec_in_dim": None,
}
sampling_settings = {
"shift": 4.0,
}
latent_format = latent_formats.HunyuanImage21Refiner
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanImage21Refiner(self, device=device)
return out
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
models += [SVD_img2vid]

View File

@ -116,7 +116,7 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
mask = None
if attention_mask is not None:

View File

@ -0,0 +1,22 @@
{
"d_ff": 3584,
"d_kv": 64,
"d_model": 1472,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "gelu_pytorch_tanh",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 4,
"num_heads": 6,
"num_layers": 12,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 1510
}

View File

@ -0,0 +1,127 @@
{
"<extra_id_0>": 259,
"<extra_id_100>": 359,
"<extra_id_101>": 360,
"<extra_id_102>": 361,
"<extra_id_103>": 362,
"<extra_id_104>": 363,
"<extra_id_105>": 364,
"<extra_id_106>": 365,
"<extra_id_107>": 366,
"<extra_id_108>": 367,
"<extra_id_109>": 368,
"<extra_id_10>": 269,
"<extra_id_110>": 369,
"<extra_id_111>": 370,
"<extra_id_112>": 371,
"<extra_id_113>": 372,
"<extra_id_114>": 373,
"<extra_id_115>": 374,
"<extra_id_116>": 375,
"<extra_id_117>": 376,
"<extra_id_118>": 377,
"<extra_id_119>": 378,
"<extra_id_11>": 270,
"<extra_id_120>": 379,
"<extra_id_121>": 380,
"<extra_id_122>": 381,
"<extra_id_123>": 382,
"<extra_id_124>": 383,
"<extra_id_12>": 271,
"<extra_id_13>": 272,
"<extra_id_14>": 273,
"<extra_id_15>": 274,
"<extra_id_16>": 275,
"<extra_id_17>": 276,
"<extra_id_18>": 277,
"<extra_id_19>": 278,
"<extra_id_1>": 260,
"<extra_id_20>": 279,
"<extra_id_21>": 280,
"<extra_id_22>": 281,
"<extra_id_23>": 282,
"<extra_id_24>": 283,
"<extra_id_25>": 284,
"<extra_id_26>": 285,
"<extra_id_27>": 286,
"<extra_id_28>": 287,
"<extra_id_29>": 288,
"<extra_id_2>": 261,
"<extra_id_30>": 289,
"<extra_id_31>": 290,
"<extra_id_32>": 291,
"<extra_id_33>": 292,
"<extra_id_34>": 293,
"<extra_id_35>": 294,
"<extra_id_36>": 295,
"<extra_id_37>": 296,
"<extra_id_38>": 297,
"<extra_id_39>": 298,
"<extra_id_3>": 262,
"<extra_id_40>": 299,
"<extra_id_41>": 300,
"<extra_id_42>": 301,
"<extra_id_43>": 302,
"<extra_id_44>": 303,
"<extra_id_45>": 304,
"<extra_id_46>": 305,
"<extra_id_47>": 306,
"<extra_id_48>": 307,
"<extra_id_49>": 308,
"<extra_id_4>": 263,
"<extra_id_50>": 309,
"<extra_id_51>": 310,
"<extra_id_52>": 311,
"<extra_id_53>": 312,
"<extra_id_54>": 313,
"<extra_id_55>": 314,
"<extra_id_56>": 315,
"<extra_id_57>": 316,
"<extra_id_58>": 317,
"<extra_id_59>": 318,
"<extra_id_5>": 264,
"<extra_id_60>": 319,
"<extra_id_61>": 320,
"<extra_id_62>": 321,
"<extra_id_63>": 322,
"<extra_id_64>": 323,
"<extra_id_65>": 324,
"<extra_id_66>": 325,
"<extra_id_67>": 326,
"<extra_id_68>": 327,
"<extra_id_69>": 328,
"<extra_id_6>": 265,
"<extra_id_70>": 329,
"<extra_id_71>": 330,
"<extra_id_72>": 331,
"<extra_id_73>": 332,
"<extra_id_74>": 333,
"<extra_id_75>": 334,
"<extra_id_76>": 335,
"<extra_id_77>": 336,
"<extra_id_78>": 337,
"<extra_id_79>": 338,
"<extra_id_7>": 266,
"<extra_id_80>": 339,
"<extra_id_81>": 340,
"<extra_id_82>": 341,
"<extra_id_83>": 342,
"<extra_id_84>": 343,
"<extra_id_85>": 344,
"<extra_id_86>": 345,
"<extra_id_87>": 346,
"<extra_id_88>": 347,
"<extra_id_89>": 348,
"<extra_id_8>": 267,
"<extra_id_90>": 349,
"<extra_id_91>": 350,
"<extra_id_92>": 351,
"<extra_id_93>": 352,
"<extra_id_94>": 353,
"<extra_id_95>": 354,
"<extra_id_96>": 355,
"<extra_id_97>": 356,
"<extra_id_98>": 357,
"<extra_id_99>": 358,
"<extra_id_9>": 268
}

View File

@ -0,0 +1,150 @@
{
"additional_special_tokens": [
"<extra_id_0>",
"<extra_id_1>",
"<extra_id_2>",
"<extra_id_3>",
"<extra_id_4>",
"<extra_id_5>",
"<extra_id_6>",
"<extra_id_7>",
"<extra_id_8>",
"<extra_id_9>",
"<extra_id_10>",
"<extra_id_11>",
"<extra_id_12>",
"<extra_id_13>",
"<extra_id_14>",
"<extra_id_15>",
"<extra_id_16>",
"<extra_id_17>",
"<extra_id_18>",
"<extra_id_19>",
"<extra_id_20>",
"<extra_id_21>",
"<extra_id_22>",
"<extra_id_23>",
"<extra_id_24>",
"<extra_id_25>",
"<extra_id_26>",
"<extra_id_27>",
"<extra_id_28>",
"<extra_id_29>",
"<extra_id_30>",
"<extra_id_31>",
"<extra_id_32>",
"<extra_id_33>",
"<extra_id_34>",
"<extra_id_35>",
"<extra_id_36>",
"<extra_id_37>",
"<extra_id_38>",
"<extra_id_39>",
"<extra_id_40>",
"<extra_id_41>",
"<extra_id_42>",
"<extra_id_43>",
"<extra_id_44>",
"<extra_id_45>",
"<extra_id_46>",
"<extra_id_47>",
"<extra_id_48>",
"<extra_id_49>",
"<extra_id_50>",
"<extra_id_51>",
"<extra_id_52>",
"<extra_id_53>",
"<extra_id_54>",
"<extra_id_55>",
"<extra_id_56>",
"<extra_id_57>",
"<extra_id_58>",
"<extra_id_59>",
"<extra_id_60>",
"<extra_id_61>",
"<extra_id_62>",
"<extra_id_63>",
"<extra_id_64>",
"<extra_id_65>",
"<extra_id_66>",
"<extra_id_67>",
"<extra_id_68>",
"<extra_id_69>",
"<extra_id_70>",
"<extra_id_71>",
"<extra_id_72>",
"<extra_id_73>",
"<extra_id_74>",
"<extra_id_75>",
"<extra_id_76>",
"<extra_id_77>",
"<extra_id_78>",
"<extra_id_79>",
"<extra_id_80>",
"<extra_id_81>",
"<extra_id_82>",
"<extra_id_83>",
"<extra_id_84>",
"<extra_id_85>",
"<extra_id_86>",
"<extra_id_87>",
"<extra_id_88>",
"<extra_id_89>",
"<extra_id_90>",
"<extra_id_91>",
"<extra_id_92>",
"<extra_id_93>",
"<extra_id_94>",
"<extra_id_95>",
"<extra_id_96>",
"<extra_id_97>",
"<extra_id_98>",
"<extra_id_99>",
"<extra_id_100>",
"<extra_id_101>",
"<extra_id_102>",
"<extra_id_103>",
"<extra_id_104>",
"<extra_id_105>",
"<extra_id_106>",
"<extra_id_107>",
"<extra_id_108>",
"<extra_id_109>",
"<extra_id_110>",
"<extra_id_111>",
"<extra_id_112>",
"<extra_id_113>",
"<extra_id_114>",
"<extra_id_115>",
"<extra_id_116>",
"<extra_id_117>",
"<extra_id_118>",
"<extra_id_119>",
"<extra_id_120>",
"<extra_id_121>",
"<extra_id_122>",
"<extra_id_123>",
"<extra_id_124>"
],
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<pad>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,97 @@
from comfy import sd1_clip
import comfy.text_encoders.llama
from .qwen_image import QwenImageTokenizer, QwenImageTEModel
from transformers import ByT5Tokenizer
import os
import re
class ByT5SmallTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "byt5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1472, embedding_key='byt5_small', tokenizer_class=ByT5Tokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data)
class HunyuanImageTokenizer(QwenImageTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
# self.llama_template_images = "{}"
self.byt5 = ByT5SmallTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = super().tokenize_with_weights(text, return_word_ids, **kwargs)
# ByT5 processing for HunyuanImage
text_prompt_texts = []
pattern_quote_double = r'\"(.*?)\"'
pattern_quote_chinese_single = r'(.*?)'
pattern_quote_chinese_double = r'“(.*?)”'
matches_quote_double = re.findall(pattern_quote_double, text)
matches_quote_chinese_single = re.findall(pattern_quote_chinese_single, text)
matches_quote_chinese_double = re.findall(pattern_quote_chinese_double, text)
text_prompt_texts.extend(matches_quote_double)
text_prompt_texts.extend(matches_quote_chinese_single)
text_prompt_texts.extend(matches_quote_chinese_double)
if len(text_prompt_texts) > 0:
out['byt5'] = self.byt5.tokenize_with_weights(''.join(map(lambda a: 'Text "{}". '.format(a), text_prompt_texts)), return_word_ids, **kwargs)
return out
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class ByT5SmallModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "byt5_config_small_glyph.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, model_options=model_options, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True)
class HunyuanImageTEModel(QwenImageTEModel):
def __init__(self, byt5=True, device="cpu", dtype=None, model_options={}):
super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
if byt5:
self.byt5_small = ByT5SmallModel(device=device, dtype=dtype, model_options=model_options)
else:
self.byt5_small = None
def encode_token_weights(self, token_weight_pairs):
cond, p, extra = super().encode_token_weights(token_weight_pairs)
if self.byt5_small is not None and "byt5" in token_weight_pairs:
out = self.byt5_small.encode_token_weights(token_weight_pairs["byt5"])
extra["conditioning_byt5small"] = out[0]
return cond, p, extra
def set_clip_options(self, options):
super().set_clip_options(options)
if self.byt5_small is not None:
self.byt5_small.set_clip_options(options)
def reset_clip_options(self):
super().reset_clip_options()
if self.byt5_small is not None:
self.byt5_small.reset_clip_options()
def load_sd(self, sd):
if "encoder.block.0.layer.0.SelfAttention.o.weight" in sd:
return self.byt5_small.load_sd(sd)
else:
return super().load_sd(sd)
def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None):
class QwenImageTEModel_(HunyuanImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["qwen_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options)
return QwenImageTEModel_

View File

@ -2,12 +2,14 @@ import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ldm.common_dit
import comfy.model_management
from . import qwen_vl
@dataclass
class Llama2Config:
@ -25,6 +27,7 @@ class Llama2Config:
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
@dataclass
class Qwen25_3BConfig:
@ -42,6 +45,7 @@ class Qwen25_3BConfig:
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
rope_dims = None
@dataclass
class Qwen25_7BVLI_Config:
@ -59,6 +63,7 @@ class Qwen25_7BVLI_Config:
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
rope_dims = [16, 24, 24]
@dataclass
class Gemma2_2B_Config:
@ -76,6 +81,7 @@ class Gemma2_2B_Config:
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
qkv_bias = False
rope_dims = None
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
@ -100,27 +106,34 @@ def rotate_half(x):
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, seq_len, theta, device=None):
def precompute_freqs_cis(head_dim, position_ids, theta, rope_dims=None, device=None):
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0)
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
if rope_dims is not None and position_ids.shape[0] > 1:
mrope_section = rope_dims * 2
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
else:
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
return (cos, sin)
def apply_rope(xq, xk, freqs_cis):
cos = freqs_cis[0].unsqueeze(1)
sin = freqs_cis[1].unsqueeze(1)
org_dtype = xq.dtype
cos = freqs_cis[0]
sin = freqs_cis[1]
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed, k_embed
return q_embed.to(org_dtype), k_embed.to(org_dtype)
class Attention(nn.Module):
@ -277,7 +290,7 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
if embeds is not None:
x = embeds
else:
@ -286,9 +299,13 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
if position_ids is None:
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
x.shape[1],
position_ids,
self.config.rope_theta,
self.config.rope_dims,
device=x.device)
mask = None
@ -372,8 +389,38 @@ class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.visual = qwen_vl.Qwen2VLVisionTransformer(hidden_size=1280, output_hidden_size=config.hidden_size, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image, grid = qwen_vl.process_qwen2vl_images(embed["data"])
return self.visual(image.to(device, dtype=torch.float32), grid), grid
return None, None
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
grid = None
for e in embeds_info:
if e.get("type") == "image":
grid = e.get("extra", None)
position_ids = torch.zeros((3, embeds.shape[1]), device=embeds.device)
start = e.get("index")
position_ids[:, :start] = torch.arange(0, start, device=embeds.device)
end = e.get("size") + start
len_max = int(grid.max()) // 2
start_next = len_max + start
position_ids[:, end:] = torch.arange(start_next, start_next + (embeds.shape[1] - end), device=embeds.device)
position_ids[0, start:end] = start
max_d = int(grid[0][1]) // 2
position_ids[1, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(1).repeat(1, math.ceil((end - start) / max_d)).flatten(0)[:end - start]
max_d = int(grid[0][2]) // 2
position_ids[2, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(0).repeat(math.ceil((end - start) / max_d), 1).flatten(0)[:end - start]
if grid is None:
position_ids = None
return super().forward(x, attention_mask=attention_mask, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=final_layer_norm_intermediate, dtype=dtype, position_ids=position_ids)
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()

View File

@ -15,13 +15,27 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer)
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
if len(images) > 0:
llama_text = self.llama_template_images.format(text)
else:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
key_name = next(iter(tokens))
embed_count = 0
qwen_tokens = tokens[key_name]
for r in qwen_tokens:
for i in range(len(r)):
if r[i][0] == 151655:
if len(images) > embed_count:
r[i] = ({"type": "image", "data": images[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return tokens
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):

View File

@ -0,0 +1,428 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
def process_qwen2vl_images(
images: torch.Tensor,
min_pixels: int = 3136,
max_pixels: int = 12845056,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
image_mean: list = None,
image_std: list = None,
):
if image_mean is None:
image_mean = [0.48145466, 0.4578275, 0.40821073]
if image_std is None:
image_std = [0.26862954, 0.26130258, 0.27577711]
batch_size, height, width, channels = images.shape
device = images.device
# dtype = images.dtype
images = images.permute(0, 3, 1, 2)
grid_thw_list = []
img = images[0]
factor = patch_size * merge_size
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = max(factor, math.floor(height / beta / factor) * factor)
w_bar = max(factor, math.floor(width / beta / factor) * factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
img_resized = F.interpolate(
img.unsqueeze(0),
size=(h_bar, w_bar),
mode='bilinear',
align_corners=False
).squeeze(0)
normalized = img_resized.clone()
for c in range(3):
normalized[c] = (img_resized[c] - image_mean[c]) / image_std[c]
grid_h = h_bar // patch_size
grid_w = w_bar // patch_size
grid_thw = torch.tensor([1, grid_h, grid_w], device=device, dtype=torch.long)
pixel_values = normalized
grid_thw_list.append(grid_thw)
image_grid_thw = torch.stack(grid_thw_list)
grid_t = 1
channel = pixel_values.shape[0]
pixel_values = pixel_values.unsqueeze(0).repeat(2, 1, 1, 1)
patches = pixel_values.reshape(
grid_t,
temporal_patch_size,
channel,
grid_h // merge_size,
merge_size,
patch_size,
grid_w // merge_size,
merge_size,
patch_size,
)
patches = patches.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w,
channel * temporal_patch_size * patch_size * patch_size
)
return flatten_patches, image_grid_thw
class VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
embed_dim: int = 3584,
device=None,
dtype=None,
ops=None,
):
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = ops.Conv3d(
in_channels,
embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=False,
device=device,
dtype=dtype
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.view(
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj(hidden_states)
return hidden_states.view(-1, self.embed_dim)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(q, k, cos, sin):
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, seqlen: int, device) -> torch.Tensor:
inv_freq = 1.0 / (self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float, device=device) / self.dim))
seq = torch.arange(seqlen, device=inv_freq.device, dtype=inv_freq.dtype)
freqs = torch.outer(seq, inv_freq)
return freqs
class PatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size ** 2)
self.ln_q = ops.RMSNorm(context_dim, eps=1e-6, device=device, dtype=dtype)
self.mlp = nn.Sequential(
ops.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype),
nn.GELU(),
ops.Linear(self.hidden_size, dim, device=device, dtype=dtype),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x).reshape(-1, self.hidden_size)
x = self.mlp(x)
return x
class VisionAttention(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.scaling = self.head_dim ** -0.5
self.qkv = ops.Linear(hidden_size, hidden_size * 3, bias=True, device=device, dtype=dtype)
self.proj = ops.Linear(hidden_size, hidden_size, bias=True, device=device, dtype=dtype)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
if hidden_states.dim() == 2:
seq_length, _ = hidden_states.shape
batch_size = 1
hidden_states = hidden_states.unsqueeze(0)
else:
batch_size, seq_length, _ = hidden_states.shape
qkv = self.qkv(hidden_states)
qkv = qkv.reshape(batch_size, seq_length, 3, self.num_heads, self.head_dim)
query_states, key_states, value_states = qkv.reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
query_states = query_states.transpose(0, 1).unsqueeze(0)
key_states = key_states.transpose(0, 1).unsqueeze(0)
value_states = value_states.transpose(0, 1).unsqueeze(0)
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
splits = [
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
]
attn_outputs = [
optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
for q, k, v in zip(*splits)
]
attn_output = torch.cat(attn_outputs, dim=1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
class VisionMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, device=None, dtype=None, ops=None):
super().__init__()
self.gate_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.up_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.down_proj = ops.Linear(intermediate_size, hidden_size, bias=True, device=device, dtype=dtype)
self.act_fn = nn.SiLU()
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class VisionBlock(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.norm1 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.norm2 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.attn = VisionAttention(hidden_size, num_heads, device=device, dtype=dtype, ops=ops)
self.mlp = VisionMLP(hidden_size, intermediate_size, device=device, dtype=dtype, ops=ops)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = self.attn(hidden_states, position_embeddings, cu_seqlens, optimized_attention)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen2VLVisionTransformer(nn.Module):
def __init__(
self,
hidden_size: int = 3584,
output_hidden_size: int = 3584,
intermediate_size: int = 3420,
num_heads: int = 16,
num_layers: int = 32,
patch_size: int = 14,
temporal_patch_size: int = 2,
spatial_merge_size: int = 2,
window_size: int = 112,
device=None,
dtype=None,
ops=None
):
super().__init__()
self.hidden_size = hidden_size
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.window_size = window_size
self.fullatt_block_indexes = [7, 15, 23, 31]
self.patch_embed = VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_channels=3,
embed_dim=hidden_size,
device=device,
dtype=dtype,
ops=ops,
)
head_dim = hidden_size // num_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([
VisionBlock(hidden_size, intermediate_size, num_heads, device, dtype, ops)
for _ in range(num_layers)
])
self.merger = PatchMerger(
dim=output_hidden_size,
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
device=device,
dtype=dtype,
ops=ops,
)
def get_window_index(self, grid_thw):
window_index = []
cu_window_seqlens = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_size * self.spatial_merge_size + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def get_position_embeddings(self, grid_thw, device):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h, device=device).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3).flatten()
wpos_ids = torch.arange(w, device=device).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3).flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size, device)
return rotary_pos_emb_full[pos_ids].flatten(1)
def forward(
self,
pixel_values: torch.Tensor,
image_grid_thw: Optional[torch.Tensor] = None,
) -> torch.Tensor:
optimized_attention = optimized_attention_for_device(pixel_values.device, mask=False, small_input=True)
hidden_states = self.patch_embed(pixel_values)
window_index, cu_window_seqlens = self.get_window_index(image_grid_thw)
cu_window_seqlens = torch.tensor(cu_window_seqlens, device=hidden_states.device)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
position_embeddings = self.get_position_embeddings(image_grid_thw, hidden_states.device)
seq_len, _ = hidden_states.size()
spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
hidden_states = hidden_states.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
position_embeddings = position_embeddings.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
position_embeddings = position_embeddings[window_index, :, :]
position_embeddings = position_embeddings.reshape(seq_len, -1)
position_embeddings = torch.cat((position_embeddings, position_embeddings), dim=-1)
position_embeddings = (position_embeddings.cos(), position_embeddings.sin())
cu_seqlens = torch.repeat_interleave(image_grid_thw[:, 1] * image_grid_thw[:, 2], image_grid_thw[:, 0]).cumsum(
dim=0,
dtype=torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for i, block in enumerate(self.blocks):
if i in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
hidden_states = block(hidden_states, position_embeddings, cu_seqlens_now, optimized_attention=optimized_attention)
hidden_states = self.merger(hidden_states)
return hidden_states

View File

@ -199,7 +199,7 @@ class T5Stack(torch.nn.Module):
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@ -97,6 +97,9 @@ class LoKrAdapter(WeightAdapterBase):
(mat1, mat2, alpha, None, None, None, None, None, None)
)
def to_train(self):
return LokrDiff(self.weights)
@classmethod
def load(
cls,

View File

@ -8,6 +8,7 @@ import av
import io
import json
import numpy as np
import math
import torch
from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents
@ -282,8 +283,6 @@ class VideoFromComponents(VideoInput):
if self.__components.audio:
audio_sample_rate = int(self.__components.audio['sample_rate'])
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
audio_stream.sample_rate = audio_sample_rate
audio_stream.format = 'fltp'
# Encode video
for i, frame in enumerate(self.__components.images):
@ -298,27 +297,12 @@ class VideoFromComponents(VideoInput):
output.mux(packet)
if audio_stream and self.__components.audio:
# Encode audio
samples_per_frame = int(audio_sample_rate / frame_rate)
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
for i in range(num_frames):
start = i * samples_per_frame
end = start + samples_per_frame
# TODO(Feature) - Add support for stereo audio
chunk = (
self.__components.audio["waveform"][0, 0, start:end]
.unsqueeze(0)
.contiguous()
.numpy()
)
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
audio_frame.sample_rate = audio_sample_rate
audio_frame.pts = i * samples_per_frame
for packet in audio_stream.encode(audio_frame):
output.mux(packet)
# Flush audio
for packet in audio_stream.encode(None):
output.mux(packet)
waveform = self.__components.audio['waveform']
waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
frame.sample_rate = audio_sample_rate
frame.pts = 0
output.mux(audio_stream.encode(frame))
# Flush encoder
output.mux(audio_stream.encode(None))

View File

@ -331,7 +331,7 @@ class String(ComfyTypeIO):
})
@comfytype(io_type="COMBO")
class Combo(ComfyTypeI):
class Combo(ComfyTypeIO):
Type = str
class Input(WidgetInput):
"""Combo input (dropdown)."""
@ -360,6 +360,14 @@ class Combo(ComfyTypeI):
"remote": self.remote.as_dict() if self.remote else None,
})
class Output(Output):
def __init__(self, id: str=None, display_name: str=None, options: list[str]=None, tooltip: str=None, is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
self.options = options if options is not None else []
@property
def io_type(self):
return self.options
@comfytype(io_type="COMBO")
class MultiCombo(ComfyTypeI):
@ -740,6 +748,18 @@ class SEGS(ComfyTypeIO):
class AnyType(ComfyTypeIO):
Type = Any
@comfytype(io_type="MODEL_PATCH")
class MODEL_PATCH(ComfyTypeIO):
Type = Any
@comfytype(io_type="AUDIO_ENCODER")
class AudioEncoder(ComfyTypeIO):
Type = Any
@comfytype(io_type="AUDIO_ENCODER_OUTPUT")
class AudioEncoderOutput(ComfyTypeIO):
Type = Any
@comfytype(io_type="COMFY_MULTITYPED_V3")
class MultiType:
Type = Any
@ -1192,13 +1212,18 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
raise NotImplementedError
@classmethod
def validate_inputs(cls, **kwargs) -> bool:
"""Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS."""
def validate_inputs(cls, **kwargs) -> bool | str:
"""Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS.
If the function returns a string, it will be used as the validation error message for the node.
"""
raise NotImplementedError
@classmethod
def fingerprint_inputs(cls, **kwargs) -> Any:
"""Optionally, define this function to fingerprint inputs; equivalent to V1's IS_CHANGED."""
"""Optionally, define this function to fingerprint inputs; equivalent to V1's IS_CHANGED.
If this function returns the same value as last run, the node will not be executed."""
raise NotImplementedError
@classmethod
@ -1594,6 +1619,7 @@ class _IO:
Model = Model
ClipVision = ClipVision
ClipVisionOutput = ClipVisionOutput
AudioEncoderOutput = AudioEncoderOutput
StyleModel = StyleModel
Gligen = Gligen
UpscaleModel = UpscaleModel

View File

@ -518,6 +518,71 @@ async def upload_audio_to_comfyapi(
return await upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs)
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to float 32 bits PCM format. Copy-paste from nodes_audio.py file."""
if wav.dtype.is_floating_point:
return wav
elif wav.dtype == torch.int16:
return wav.float() / (2 ** 15)
elif wav.dtype == torch.int32:
return wav.float() / (2 ** 31)
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
def audio_bytes_to_audio_input(audio_bytes: bytes,) -> dict:
"""
Decode any common audio container from bytes using PyAV and return
a Comfy AUDIO dict: {"waveform": [1, C, T] float32, "sample_rate": int}.
"""
with av.open(io.BytesIO(audio_bytes)) as af:
if not af.streams.audio:
raise ValueError("No audio stream found in response.")
stream = af.streams.audio[0]
in_sr = int(stream.codec_context.sample_rate)
out_sr = in_sr
frames: list[torch.Tensor] = []
n_channels = stream.channels or 1
for frame in af.decode(streams=stream.index):
arr = frame.to_ndarray() # shape can be [C, T] or [T, C] or [T]
buf = torch.from_numpy(arr)
if buf.ndim == 1:
buf = buf.unsqueeze(0) # [T] -> [1, T]
elif buf.shape[0] != n_channels and buf.shape[-1] == n_channels:
buf = buf.transpose(0, 1).contiguous() # [T, C] -> [C, T]
elif buf.shape[0] != n_channels:
buf = buf.reshape(-1, n_channels).t().contiguous() # fallback to [C, T]
frames.append(buf)
if not frames:
raise ValueError("Decoded zero audio frames.")
wav = torch.cat(frames, dim=1) # [C, T]
wav = f32_pcm(wav)
return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr}
def audio_input_to_mp3(audio: AudioInput) -> io.BytesIO:
waveform = audio["waveform"].cpu()
output_buffer = io.BytesIO()
output_container = av.open(output_buffer, mode='w', format="mp3")
out_stream = output_container.add_stream("libmp3lame", rate=audio["sample_rate"])
out_stream.bit_rate = 320000
frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo')
frame.sample_rate = audio["sample_rate"]
frame.pts = 0
output_container.mux(out_stream.encode(frame))
output_container.mux(out_stream.encode(None))
output_container.close()
output_buffer.seek(0)
return output_buffer
def audio_to_base64_string(
audio: AudioInput, container_format: str = "mp4", codec_name: str = "aac"
) -> str:

View File

@ -951,7 +951,11 @@ class MagicPrompt2(str, Enum):
class StyleType1(str, Enum):
AUTO = 'AUTO'
GENERAL = 'GENERAL'
REALISTIC = 'REALISTIC'
DESIGN = 'DESIGN'
FICTION = 'FICTION'
class ImagenImageGenerationInstance(BaseModel):
@ -1315,6 +1319,7 @@ class KlingTaskStatus(str, Enum):
class KlingTextToVideoModelName(str, Enum):
kling_v1 = 'kling-v1'
kling_v1_6 = 'kling-v1-6'
kling_v2_1_master = 'kling-v2-1-master'
class KlingVideoGenAspectRatio(str, Enum):
@ -1347,6 +1352,8 @@ class KlingVideoGenModelName(str, Enum):
kling_v1_5 = 'kling-v1-5'
kling_v1_6 = 'kling-v1-6'
kling_v2_master = 'kling-v2-master'
kling_v2_1 = 'kling-v2-1'
kling_v2_1_master = 'kling-v2-1-master'
class KlingVideoResult(BaseModel):
@ -1620,13 +1627,14 @@ class MinimaxTaskResultResponse(BaseModel):
task_id: str = Field(..., description='The task ID being queried.')
class Model(str, Enum):
class MiniMaxModel(str, Enum):
T2V_01_Director = 'T2V-01-Director'
I2V_01_Director = 'I2V-01-Director'
S2V_01 = 'S2V-01'
I2V_01 = 'I2V-01'
I2V_01_live = 'I2V-01-live'
T2V_01 = 'T2V-01'
Hailuo_02 = 'MiniMax-Hailuo-02'
class SubjectReferenceItem(BaseModel):
@ -1648,7 +1656,7 @@ class MinimaxVideoGenerationRequest(BaseModel):
None,
description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.',
)
model: Model = Field(
model: MiniMaxModel = Field(
...,
description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01',
)
@ -1665,6 +1673,14 @@ class MinimaxVideoGenerationRequest(BaseModel):
None,
description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.',
)
duration: Optional[int] = Field(
None,
description="The length of the output video in seconds."
)
resolution: Optional[str] = Field(
None,
description="The dimensions of the video display. 1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels."
)
class MinimaxVideoGenerationResponse(BaseModel):
@ -2664,7 +2680,7 @@ class ReleaseNote(BaseModel):
class RenderingSpeed(str, Enum):
BALANCED = 'BALANCED'
DEFAULT = 'DEFAULT'
TURBO = 'TURBO'
QUALITY = 'QUALITY'
@ -4906,6 +4922,14 @@ class IdeogramV3EditRequest(BaseModel):
None,
description='A set of images to use as style references (maximum total size 10MB across all style references). The images should be in JPEG, PNG or WebP format.',
)
character_reference_images: Optional[List[str]] = Field(
None,
description='Generations with character reference are subject to the character reference pricing. A set of images to use as character references (maximum total size 10MB across all character references), currently only supports 1 character reference image. The images should be in JPEG, PNG or WebP format.'
)
character_reference_images_mask: Optional[List[str]] = Field(
None,
description='Optional masks for character reference images. When provided, must match the number of character_reference_images. Each mask should be a grayscale image of the same dimensions as the corresponding character reference image. The images should be in JPEG, PNG or WebP format.'
)
class IdeogramV3Request(BaseModel):
@ -4939,6 +4963,14 @@ class IdeogramV3Request(BaseModel):
style_type: Optional[StyleType1] = Field(
None, description='The type of style to apply'
)
character_reference_images: Optional[List[str]] = Field(
None,
description='Generations with character reference are subject to the character reference pricing. A set of images to use as character references (maximum total size 10MB across all character references), currently only supports 1 character reference image. The images should be in JPEG, PNG or WebP format.'
)
character_reference_images_mask: Optional[List[str]] = Field(
None,
description='Optional masks for character reference images. When provided, must match the number of character_reference_images. Each mask should be a grayscale image of the same dimensions as the corresponding character reference image. The images should be in JPEG, PNG or WebP format.'
)
class ImagenGenerateImageResponse(BaseModel):

View File

@ -0,0 +1,19 @@
from __future__ import annotations
from typing import List, Optional
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
from pydantic import BaseModel
class GeminiImageGenerationConfig(GeminiGenerationConfig):
responseModalities: Optional[List[str]] = None
class GeminiImageGenerateContentRequest(BaseModel):
contents: List[GeminiContent]
generationConfig: Optional[GeminiImageGenerationConfig] = None
safetySettings: Optional[List[GeminiSafetySetting]] = None
systemInstruction: Optional[GeminiSystemInstructionContent] = None
tools: Optional[List[GeminiTool]] = None
videoMetadata: Optional[GeminiVideoMetadata] = None

View File

@ -125,3 +125,25 @@ class StabilityResultsGetResponse(BaseModel):
class StabilityAsyncResponse(BaseModel):
id: Optional[str] = Field(None)
class StabilityTextToAudioRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
duration: int = Field(190, ge=1, le=190)
seed: int = Field(0, ge=0, le=4294967294)
steps: int = Field(8, ge=4, le=8)
output_format: str = Field("wav")
class StabilityAudioToAudioRequest(StabilityTextToAudioRequest):
strength: float = Field(0.01, ge=0.01, le=1.0)
class StabilityAudioInpaintRequest(StabilityTextToAudioRequest):
mask_start: int = Field(30, ge=0, le=190)
mask_end: int = Field(190, ge=0, le=190)
class StabilityAudioResponse(BaseModel):
audio: Optional[str] = Field(None)

File diff suppressed because it is too large Load Diff

View File

@ -4,8 +4,12 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer
"""
from __future__ import annotations
import json
import time
import os
import uuid
import base64
from io import BytesIO
from enum import Enum
from typing import Optional, Literal
@ -22,6 +26,7 @@ from comfy_api_nodes.apis import (
GeminiPart,
GeminiMimeType,
)
from comfy_api_nodes.apis.gemini_api import GeminiImageGenerationConfig, GeminiImageGenerateContentRequest
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
@ -32,6 +37,7 @@ from comfy_api_nodes.apinode_utils import (
audio_to_base64_string,
video_to_base64_string,
tensor_to_base64_string,
bytesio_to_image_tensor,
)
@ -46,6 +52,16 @@ class GeminiModel(str, Enum):
gemini_2_5_pro_preview_05_06 = "gemini-2.5-pro-preview-05-06"
gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17"
gemini_2_5_pro = "gemini-2.5-pro"
gemini_2_5_flash = "gemini-2.5-flash"
class GeminiImageModel(str, Enum):
"""
Gemini Image Model Names allowed by comfy-api
"""
gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview"
def get_gemini_endpoint(
@ -70,6 +86,135 @@ def get_gemini_endpoint(
)
def get_gemini_image_endpoint(
model: GeminiImageModel,
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
"""
Get the API endpoint for a given Gemini model.
Args:
model: The Gemini model to use, either as enum or string value.
Returns:
ApiEndpoint configured for the specific Gemini model.
"""
if isinstance(model, str):
model = GeminiImageModel(model)
return ApiEndpoint(
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
method=HttpMethod.POST,
request_model=GeminiImageGenerateContentRequest,
response_model=GeminiGenerateContentResponse,
)
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(
image_input[image_index].unsqueeze(0)
)
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
)
)
)
return image_parts
def create_text_part(text: str) -> GeminiPart:
"""
Create a text part for the Gemini API request.
Args:
text: The text content to include in the request.
Returns:
A GeminiPart object with the text content.
"""
return GeminiPart(text=text)
def get_parts_from_response(
response: GeminiGenerateContentResponse
) -> list[GeminiPart]:
"""
Extract all parts from the Gemini API response.
Args:
response: The API response from Gemini.
Returns:
List of response parts from the first candidate.
"""
return response.candidates[0].content.parts
def get_parts_by_type(
response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
) -> list[GeminiPart]:
"""
Filter response parts by their type.
Args:
response: The API response from Gemini.
part_type: Type of parts to extract ("text" or a MIME type).
Returns:
List of response parts matching the requested type.
"""
parts = []
for part in get_parts_from_response(response):
if part_type == "text" and hasattr(part, "text") and part.text:
parts.append(part)
elif (
hasattr(part, "inlineData")
and part.inlineData
and part.inlineData.mimeType == part_type
):
parts.append(part)
# Skip parts that don't match the requested type
return parts
def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
"""
Extract and concatenate all text parts from the response.
Args:
response: The API response from Gemini.
Returns:
Combined text from all text parts in the response.
"""
parts = get_parts_by_type(response, "text")
return "\n".join([part.text for part in parts])
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
image_tensors: list[torch.Tensor] = []
parts = get_parts_by_type(response, "image/png")
for part in parts:
image_data = base64.b64decode(part.inlineData.data)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
image_tensors.append(returned_image)
if len(image_tensors) == 0:
return torch.zeros((1,1024,1024,4))
return torch.cat(image_tensors, dim=0)
class GeminiNode(ComfyNodeABC):
"""
Node to generate text responses from a Gemini model.
@ -97,7 +242,7 @@ class GeminiNode(ComfyNodeABC):
{
"tooltip": "The Gemini model to use for generating responses.",
"options": [model.value for model in GeminiModel],
"default": GeminiModel.gemini_2_5_pro_preview_05_06.value,
"default": GeminiModel.gemini_2_5_pro.value,
},
),
"seed": (
@ -154,59 +299,6 @@ class GeminiNode(ComfyNodeABC):
CATEGORY = "api node/text/Gemini"
API_NODE = True
def get_parts_from_response(
self, response: GeminiGenerateContentResponse
) -> list[GeminiPart]:
"""
Extract all parts from the Gemini API response.
Args:
response: The API response from Gemini.
Returns:
List of response parts from the first candidate.
"""
return response.candidates[0].content.parts
def get_parts_by_type(
self, response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
) -> list[GeminiPart]:
"""
Filter response parts by their type.
Args:
response: The API response from Gemini.
part_type: Type of parts to extract ("text" or a MIME type).
Returns:
List of response parts matching the requested type.
"""
parts = []
for part in self.get_parts_from_response(response):
if part_type == "text" and hasattr(part, "text") and part.text:
parts.append(part)
elif (
hasattr(part, "inlineData")
and part.inlineData
and part.inlineData.mimeType == part_type
):
parts.append(part)
# Skip parts that don't match the requested type
return parts
def get_text_from_response(self, response: GeminiGenerateContentResponse) -> str:
"""
Extract and concatenate all text parts from the response.
Args:
response: The API response from Gemini.
Returns:
Combined text from all text parts in the response.
"""
parts = self.get_parts_by_type(response, "text")
return "\n".join([part.text for part in parts])
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
"""
Convert video input to Gemini API compatible parts.
@ -266,43 +358,6 @@ class GeminiNode(ComfyNodeABC):
)
return audio_parts
def create_image_parts(self, image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(
image_input[image_index].unsqueeze(0)
)
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
)
)
)
return image_parts
def create_text_part(self, text: str) -> GeminiPart:
"""
Create a text part for the Gemini API request.
Args:
text: The text content to include in the request.
Returns:
A GeminiPart object with the text content.
"""
return GeminiPart(text=text)
async def api_call(
self,
prompt: str,
@ -318,11 +373,11 @@ class GeminiNode(ComfyNodeABC):
validate_string(prompt, strip_whitespace=False)
# Create parts list with text prompt as the first part
parts: list[GeminiPart] = [self.create_text_part(prompt)]
parts: list[GeminiPart] = [create_text_part(prompt)]
# Add other modal parts
if images is not None:
image_parts = self.create_image_parts(images)
image_parts = create_image_parts(images)
parts.extend(image_parts)
if audio is not None:
parts.extend(self.create_audio_parts(audio))
@ -346,9 +401,29 @@ class GeminiNode(ComfyNodeABC):
).execute()
# Get result output
output_text = self.get_text_from_response(response)
output_text = get_text_from_response(response)
if unique_id and output_text:
PromptServer.instance.send_progress_text(output_text, node_id=unique_id)
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
return (output_text or "Empty response from Gemini model...",)
@ -437,12 +512,162 @@ class GeminiInputFiles(ComfyNodeABC):
return (files,)
class GeminiImage(ComfyNodeABC):
"""
Node to generate text and image responses from a Gemini model.
This node allows users to interact with Google's Gemini AI models, providing
multimodal inputs (text, images, files) to generate coherent
text and image responses. The node works with the latest Gemini models, handling the
API communication and response parsing.
"""
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text prompt for generation",
},
),
"model": (
IO.COMBO,
{
"tooltip": "The Gemini model to use for generating responses.",
"options": [model.value for model in GeminiImageModel],
"default": GeminiImageModel.gemini_2_5_flash_image_preview.value,
},
),
"seed": (
IO.INT,
{
"default": 42,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
},
),
},
"optional": {
"images": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
},
),
"files": (
"GEMINI_INPUT_FILES",
{
"default": None,
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
},
),
# TODO: later we can add this parameter later
# "n": (
# IO.INT,
# {
# "default": 1,
# "min": 1,
# "max": 8,
# "step": 1,
# "display": "number",
# "tooltip": "How many images to generate",
# },
# ),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = (IO.IMAGE, IO.STRING)
FUNCTION = "api_call"
CATEGORY = "api node/image/Gemini"
DESCRIPTION = "Edit images synchronously via Google API."
API_NODE = True
async def api_call(
self,
prompt: str,
model: GeminiImageModel,
images: Optional[IO.IMAGE] = None,
files: Optional[list[GeminiPart]] = None,
n=1,
unique_id: Optional[str] = None,
**kwargs,
):
# Validate inputs
validate_string(prompt, strip_whitespace=True, min_length=1)
# Create parts list with text prompt as the first part
parts: list[GeminiPart] = [create_text_part(prompt)]
# Add other modal parts
if images is not None:
image_parts = create_image_parts(images)
parts.extend(image_parts)
if files is not None:
parts.extend(files)
response = await SynchronousOperation(
endpoint=get_gemini_image_endpoint(model),
request=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(
role="user",
parts=parts,
),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=["TEXT","IMAGE"]
)
),
auth_kwargs=kwargs,
).execute()
output_image = get_image_from_response(response)
output_text = get_text_from_response(response)
if unique_id and output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
output_text = output_text or "Empty response from Gemini model..."
return (output_image, output_text,)
NODE_CLASS_MAPPINGS = {
"GeminiNode": GeminiNode,
"GeminiImageNode": GeminiImage,
"GeminiInputFiles": GeminiInputFiles,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"GeminiNode": "Google Gemini",
"GeminiImageNode": "Google Gemini Image",
"GeminiInputFiles": "Gemini Input Files",
}

View File

@ -1,8 +1,8 @@
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from inspect import cleandoc
from io import BytesIO
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io as comfy_io
from PIL import Image
import numpy as np
import io
import torch
from comfy_api_nodes.apis import (
IdeogramGenerateRequest,
@ -246,90 +246,82 @@ def display_image_urls_on_node(image_urls, node_id):
PromptServer.instance.send_progress_text(urls_text, node_id)
class IdeogramV1(ComfyNodeABC):
"""
Generates images using the Ideogram V1 model.
"""
def __init__(self):
pass
class IdeogramV1(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="IdeogramV1",
display_name="Ideogram V1",
category="api node/image/Ideogram",
description="Generates images using the Ideogram V1 model.",
is_api_node=True,
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation",
),
"turbo": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
}
comfy_io.Boolean.Input(
"turbo",
default=False,
tooltip="Whether to use turbo mode (faster generation, potentially lower quality)",
),
},
"optional": {
"aspect_ratio": (
IO.COMBO,
{
"options": list(V1_V2_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=list(V1_V2_RATIO_MAP.keys()),
default="1:1",
tooltip="The aspect ratio for image generation.",
optional=True,
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
comfy_io.Combo.Input(
"magic_prompt_option",
options=["AUTO", "ON", "OFF"],
default="AUTO",
tooltip="Determine if MagicPrompt should be used in generation",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Description of what to exclude from the image",
},
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Description of what to exclude from the image",
optional=True,
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
comfy_io.Int.Input(
"num_images",
default=1,
min=1,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
)
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
async def api_call(
self,
@classmethod
async def execute(
cls,
prompt,
turbo=False,
aspect_ratio="1:1",
@ -337,13 +329,15 @@ class IdeogramV1(ComfyNodeABC):
seed=0,
negative_prompt="",
num_images=1,
unique_id=None,
**kwargs,
):
# Determine the model based on turbo setting
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
model = "V_1_TURBO" if turbo else "V_1"
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
@ -364,7 +358,7 @@ class IdeogramV1(ComfyNodeABC):
negative_prompt=negative_prompt if negative_prompt else None,
)
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response = await operation.execute()
@ -377,93 +371,86 @@ class IdeogramV1(ComfyNodeABC):
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, unique_id)
return (await download_and_process_images(image_urls),)
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
class IdeogramV2(ComfyNodeABC):
"""
Generates images using the Ideogram V2 model.
"""
def __init__(self):
pass
class IdeogramV2(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="IdeogramV2",
display_name="Ideogram V2",
category="api node/image/Ideogram",
description="Generates images using the Ideogram V2 model.",
is_api_node=True,
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation",
),
"turbo": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
}
comfy_io.Boolean.Input(
"turbo",
default=False,
tooltip="Whether to use turbo mode (faster generation, potentially lower quality)",
),
},
"optional": {
"aspect_ratio": (
IO.COMBO,
{
"options": list(V1_V2_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=list(V1_V2_RATIO_MAP.keys()),
default="1:1",
tooltip="The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
optional=True,
),
"resolution": (
IO.COMBO,
{
"options": list(V1_V1_RES_MAP.keys()),
"default": "Auto",
"tooltip": "The resolution for image generation. If not set to AUTO, this overrides the aspect_ratio setting.",
},
comfy_io.Combo.Input(
"resolution",
options=list(V1_V1_RES_MAP.keys()),
default="Auto",
tooltip="The resolution for image generation. "
"If not set to AUTO, this overrides the aspect_ratio setting.",
optional=True,
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
comfy_io.Combo.Input(
"magic_prompt_option",
options=["AUTO", "ON", "OFF"],
default="AUTO",
tooltip="Determine if MagicPrompt should be used in generation",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"style_type": (
IO.COMBO,
{
"options": ["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
"default": "NONE",
"tooltip": "Style type for generation (V2 only)",
},
comfy_io.Combo.Input(
"style_type",
options=["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
default="NONE",
tooltip="Style type for generation (V2 only)",
optional=True,
),
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Description of what to exclude from the image",
},
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Description of what to exclude from the image",
optional=True,
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
comfy_io.Int.Input(
"num_images",
default=1,
min=1,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
#"color_palette": (
# IO.STRING,
@ -473,22 +460,20 @@ class IdeogramV2(ComfyNodeABC):
# "tooltip": "Color palette preset name or hex colors with weights",
# },
#),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
)
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
async def api_call(
self,
@classmethod
async def execute(
cls,
prompt,
turbo=False,
aspect_ratio="1:1",
@ -499,8 +484,6 @@ class IdeogramV2(ComfyNodeABC):
negative_prompt="",
num_images=1,
color_palette="",
unique_id=None,
**kwargs,
):
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
resolution = V1_V1_RES_MAP.get(resolution, None)
@ -517,6 +500,10 @@ class IdeogramV2(ComfyNodeABC):
else:
final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
@ -540,7 +527,7 @@ class IdeogramV2(ComfyNodeABC):
color_palette=color_palette if color_palette else None,
)
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response = await operation.execute()
@ -553,108 +540,110 @@ class IdeogramV2(ComfyNodeABC):
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, unique_id)
return (await download_and_process_images(image_urls),)
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
class IdeogramV3(ComfyNodeABC):
"""
Generates images using the Ideogram V3 model. Supports both regular image generation from text prompts and image editing with mask.
"""
def __init__(self):
pass
class IdeogramV3(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation or editing",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="IdeogramV3",
display_name="Ideogram V3",
category="api node/image/Ideogram",
description="Generates images using the Ideogram V3 model. "
"Supports both regular image generation from text prompts and image editing with mask.",
is_api_node=True,
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation or editing",
),
},
"optional": {
"image": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional reference image for image editing.",
},
comfy_io.Image.Input(
"image",
tooltip="Optional reference image for image editing.",
optional=True,
),
"mask": (
IO.MASK,
{
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
},
comfy_io.Mask.Input(
"mask",
tooltip="Optional mask for inpainting (white areas will be replaced)",
optional=True,
),
"aspect_ratio": (
IO.COMBO,
{
"options": list(V3_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=list(V3_RATIO_MAP.keys()),
default="1:1",
tooltip="The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
optional=True,
),
"resolution": (
IO.COMBO,
{
"options": V3_RESOLUTIONS,
"default": "Auto",
"tooltip": "The resolution for image generation. If not set to Auto, this overrides the aspect_ratio setting.",
},
comfy_io.Combo.Input(
"resolution",
options=V3_RESOLUTIONS,
default="Auto",
tooltip="The resolution for image generation. "
"If not set to Auto, this overrides the aspect_ratio setting.",
optional=True,
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
comfy_io.Combo.Input(
"magic_prompt_option",
options=["AUTO", "ON", "OFF"],
default="AUTO",
tooltip="Determine if MagicPrompt should be used in generation",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
comfy_io.Int.Input(
"num_images",
default=1,
min=1,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"rendering_speed": (
IO.COMBO,
{
"options": ["BALANCED", "TURBO", "QUALITY"],
"default": "BALANCED",
"tooltip": "Controls the trade-off between generation speed and quality",
},
comfy_io.Combo.Input(
"rendering_speed",
options=["DEFAULT", "TURBO", "QUALITY"],
default="DEFAULT",
tooltip="Controls the trade-off between generation speed and quality",
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
comfy_io.Image.Input(
"character_image",
tooltip="Image to use as character reference.",
optional=True,
),
comfy_io.Mask.Input(
"character_mask",
tooltip="Optional mask for character reference image.",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
)
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
async def api_call(
self,
@classmethod
async def execute(
cls,
prompt,
image=None,
mask=None,
@ -663,10 +652,46 @@ class IdeogramV3(ComfyNodeABC):
magic_prompt_option="AUTO",
seed=0,
num_images=1,
rendering_speed="BALANCED",
unique_id=None,
**kwargs,
rendering_speed="DEFAULT",
character_image=None,
character_mask=None,
):
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
if rendering_speed == "BALANCED": # for backward compatibility
rendering_speed = "DEFAULT"
character_img_binary = None
character_mask_binary = None
if character_image is not None:
input_tensor = character_image.squeeze().cpu()
if character_mask is not None:
character_mask = resize_mask_to_image(character_mask, character_image, allow_gradient=False)
character_mask = 1.0 - character_mask
if character_mask.shape[1:] != character_image.shape[1:-1]:
raise Exception("Character mask and image must be the same size")
mask_np = (character_mask.squeeze().cpu().numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_byte_arr = BytesIO()
mask_img.save(mask_byte_arr, format="PNG")
mask_byte_arr.seek(0)
character_mask_binary = mask_byte_arr
character_mask_binary.name = "mask.png"
img_np = (input_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(img_np)
img_byte_arr = BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
character_img_binary = img_byte_arr
character_img_binary.name = "image.png"
elif character_mask is not None:
raise Exception("Character mask requires character image to be present")
# Check if both image and mask are provided for editing mode
if image is not None and mask is not None:
# Edit mode
@ -686,7 +711,7 @@ class IdeogramV3(ComfyNodeABC):
# Process image
img_np = (input_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(img_np)
img_byte_arr = io.BytesIO()
img_byte_arr = BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
img_binary = img_byte_arr
@ -695,7 +720,7 @@ class IdeogramV3(ComfyNodeABC):
# Process mask - white areas will be replaced
mask_np = (mask.squeeze().cpu().numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_byte_arr = io.BytesIO()
mask_byte_arr = BytesIO()
mask_img.save(mask_byte_arr, format="PNG")
mask_byte_arr.seek(0)
mask_binary = mask_byte_arr
@ -715,6 +740,15 @@ class IdeogramV3(ComfyNodeABC):
if num_images > 1:
edit_request.num_images = num_images
files = {
"image": img_binary,
"mask": mask_binary,
}
if character_img_binary:
files["character_reference_images"] = character_img_binary
if character_mask_binary:
files["character_mask_binary"] = character_mask_binary
# Execute the operation for edit mode
operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -724,12 +758,9 @@ class IdeogramV3(ComfyNodeABC):
response_model=IdeogramGenerateResponse,
),
request=edit_request,
files={
"image": img_binary,
"mask": mask_binary,
},
files=files,
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
elif image is not None or mask is not None:
@ -761,6 +792,14 @@ class IdeogramV3(ComfyNodeABC):
if num_images > 1:
gen_request.num_images = num_images
files = {}
if character_img_binary:
files["character_reference_images"] = character_img_binary
if character_mask_binary:
files["character_mask_binary"] = character_mask_binary
if files:
gen_request.style_type = "AUTO"
# Execute the operation for generation mode
operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -770,7 +809,9 @@ class IdeogramV3(ComfyNodeABC):
response_model=IdeogramGenerateResponse,
),
request=gen_request,
auth_kwargs=kwargs,
files=files if files else None,
content_type="multipart/form-data",
auth_kwargs=auth,
)
# Execute the operation and process response
@ -784,18 +825,18 @@ class IdeogramV3(ComfyNodeABC):
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, unique_id)
return (await download_and_process_images(image_urls),)
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
NODE_CLASS_MAPPINGS = {
"IdeogramV1": IdeogramV1,
"IdeogramV2": IdeogramV2,
"IdeogramV3": IdeogramV3,
}
class IdeogramExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
IdeogramV1,
IdeogramV2,
IdeogramV3,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"IdeogramV1": "Ideogram V1",
"IdeogramV2": "Ideogram V2",
"IdeogramV3": "Ideogram V3",
}
async def comfy_entrypoint() -> IdeogramExtension:
return IdeogramExtension()

View File

@ -421,6 +421,8 @@ class KlingTextToVideoNode(KlingNodeBase):
"pro mode / 10s duration / kling-v2-master": ("pro", "10", "kling-v2-master"),
"standard mode / 5s duration / kling-v2-master": ("std", "5", "kling-v2-master"),
"standard mode / 10s duration / kling-v2-master": ("std", "10", "kling-v2-master"),
"pro mode / 5s duration / kling-v2-1-master": ("pro", "5", "kling-v2-1-master"),
"pro mode / 10s duration / kling-v2-1-master": ("pro", "10", "kling-v2-1-master"),
}
@classmethod
@ -844,6 +846,8 @@ class KlingStartEndFrameNode(KlingImage2VideoNode):
"pro mode / 10s duration / kling-v1-5": ("pro", "10", "kling-v1-5"),
"pro mode / 5s duration / kling-v1-6": ("pro", "5", "kling-v1-6"),
"pro mode / 10s duration / kling-v1-6": ("pro", "10", "kling-v1-6"),
"pro mode / 5s duration / kling-v2-1": ("pro", "5", "kling-v2-1"),
"pro mode / 10s duration / kling-v2-1": ("pro", "10", "kling-v2-1"),
}
@classmethod

View File

@ -1,8 +1,10 @@
from typing import Union
from inspect import cleandoc
from typing import Optional
import logging
import torch
from comfy.comfy_types.node_typing import IO
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
MinimaxVideoGenerationRequest,
@ -10,7 +12,7 @@ from comfy_api_nodes.apis import (
MinimaxFileRetrieveResponse,
MinimaxTaskResultResponse,
SubjectReferenceItem,
Model
MiniMaxModel,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
@ -30,88 +32,410 @@ from server import PromptServer
I2V_AVERAGE_DURATION = 114
T2V_AVERAGE_DURATION = 234
class MinimaxTextToVideoNode:
async def _generate_mm_video(
*,
auth: dict[str, str],
node_id: str,
prompt_text: str,
seed: int,
model: str,
image: Optional[torch.Tensor] = None, # used for ImageToVideo
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
average_duration: Optional[int] = None,
) -> comfy_io.NodeOutput:
if image is None:
validate_string(prompt_text, field_name="prompt_text")
# upload image, if passed in
image_url = None
if image is not None:
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth))[0]
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
subject_reference = None
if subject is not None:
subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=auth))[0]
subject_reference = [SubjectReferenceItem(image=subject_url)]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/video_generation",
method=HttpMethod.POST,
request_model=MinimaxVideoGenerationRequest,
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
model=MiniMaxModel(model),
prompt=prompt_text,
callback_url=None,
first_frame_image=image_url,
subject_reference=subject_reference,
prompt_optimizer=None,
),
auth_kwargs=auth,
)
response = await video_generate_operation.execute()
task_id = response.task_id
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxTaskResultResponse,
query_params={"task_id": task_id},
),
completed_statuses=["Success"],
failed_statuses=["Fail"],
status_extractor=lambda x: x.status.value,
estimated_duration=average_duration,
node_id=node_id,
auth_kwargs=auth,
)
task_result = await video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
raise Exception("Request was not successful. Missing file ID.")
file_retrieve_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/files/retrieve",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxFileRetrieveResponse,
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_kwargs=auth,
)
file_result = await file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info("Generated video URL: %s", file_url)
if node_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
else:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, node_id)
# Download and return as VideoFromFile
video_io = await download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return comfy_io.NodeOutput(VideoFromFile(video_io))
class MinimaxTextToVideoNode(comfy_io.ComfyNode):
"""
Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API.
"""
AVERAGE_DURATION = T2V_AVERAGE_DURATION
@classmethod
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MinimaxTextToVideoNode",
display_name="MiniMax Text to Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.String.Input(
"prompt_text",
multiline=True,
default="",
tooltip="Text prompt to guide the video generation",
),
comfy_io.Combo.Input(
"model",
options=["T2V-01", "T2V-01-Director"],
default="T2V-01",
tooltip="Model to use for video generation",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
step=1,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
optional=True,
),
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"T2V-01",
"T2V-01-Director",
],
{
"default": "T2V-01",
"tooltip": "Model to use for video generation",
},
),
async def execute(
cls,
prompt_text: str,
model: str = "T2V-01",
seed: int = 0,
) -> comfy_io.NodeOutput:
return await _generate_mm_video(
auth={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
node_id=cls.hidden.unique_id,
prompt_text=prompt_text,
seed=seed,
model=model,
image=None,
subject=None,
average_duration=T2V_AVERAGE_DURATION,
)
class MinimaxImageToVideoNode(comfy_io.ComfyNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MinimaxImageToVideoNode",
display_name="MiniMax Image to Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.Image.Input(
"image",
tooltip="Image to use as first frame of video generation",
),
comfy_io.String.Input(
"prompt_text",
multiline=True,
default="",
tooltip="Text prompt to guide the video generation",
),
comfy_io.Combo.Input(
"model",
options=["I2V-01-Director", "I2V-01", "I2V-01-live"],
default="I2V-01",
tooltip="Model to use for video generation",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
step=1,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
optional=True,
),
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
image: torch.Tensor,
prompt_text: str,
model: str = "I2V-01",
seed: int = 0,
) -> comfy_io.NodeOutput:
return await _generate_mm_video(
auth={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
node_id=cls.hidden.unique_id,
prompt_text=prompt_text,
seed=seed,
model=model,
image=image,
subject=None,
average_duration=I2V_AVERAGE_DURATION,
)
class MinimaxSubjectToVideoNode(comfy_io.ComfyNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MinimaxSubjectToVideoNode",
display_name="MiniMax Subject to Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.Image.Input(
"subject",
tooltip="Image of subject to reference for video generation",
),
comfy_io.String.Input(
"prompt_text",
multiline=True,
default="",
tooltip="Text prompt to guide the video generation",
),
comfy_io.Combo.Input(
"model",
options=["S2V-01"],
default="S2V-01",
tooltip="Model to use for video generation",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
step=1,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
optional=True,
),
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
subject: torch.Tensor,
prompt_text: str,
model: str = "S2V-01",
seed: int = 0,
) -> comfy_io.NodeOutput:
return await _generate_mm_video(
auth={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
node_id=cls.hidden.unique_id,
prompt_text=prompt_text,
seed=seed,
model=model,
image=None,
subject=subject,
average_duration=T2V_AVERAGE_DURATION,
)
class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
"""Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model."""
@classmethod
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MinimaxHailuoVideoNode",
display_name="MiniMax Hailuo Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.String.Input(
"prompt_text",
multiline=True,
default="",
tooltip="Text prompt to guide the video generation.",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
step=1,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
optional=True,
),
comfy_io.Image.Input(
"first_frame_image",
tooltip="Optional image to use as the first frame to generate a video.",
optional=True,
),
comfy_io.Boolean.Input(
"prompt_optimizer",
default=True,
tooltip="Optimize prompt to improve generation quality when needed.",
optional=True,
),
comfy_io.Combo.Input(
"duration",
options=[6, 10],
default=6,
tooltip="The length of the output video in seconds.",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=["768P", "1080P"],
default="768P",
tooltip="The dimensions of the video display. 1080p is 1920x1080, 768p is 1366x768.",
optional=True,
),
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt_text: str,
seed: int = 0,
first_frame_image: Optional[torch.Tensor] = None, # used for ImageToVideo
prompt_optimizer: bool = True,
duration: int = 6,
resolution: str = "768P",
model: str = "MiniMax-Hailuo-02",
) -> comfy_io.NodeOutput:
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
async def generate_video(
self,
prompt_text,
seed=0,
model="T2V-01",
image: torch.Tensor=None, # used for ImageToVideo
subject: torch.Tensor=None, # used for SubjectToVideo
unique_id: Union[str, None]=None,
**kwargs,
):
'''
Function used between MiniMax nodes - supports T2V, I2V, and S2V, based on provided arguments.
'''
if image is None:
if first_frame_image is None:
validate_string(prompt_text, field_name="prompt_text")
if model == "MiniMax-Hailuo-02" and resolution.upper() == "1080P" and duration != 6:
raise Exception(
"When model is MiniMax-Hailuo-02 and resolution is 1080P, duration is limited to 6 seconds."
)
# upload image, if passed in
image_url = None
if image is not None:
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs))[0]
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
subject_reference = None
if subject is not None:
subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=kwargs))[0]
subject_reference = [SubjectReferenceItem(image=subject_url)]
if first_frame_image is not None:
image_url = (await upload_images_to_comfyapi(first_frame_image, max_images=1, auth_kwargs=auth))[0]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -121,14 +445,15 @@ class MinimaxTextToVideoNode:
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
model=Model(model),
model=MiniMaxModel(model),
prompt=prompt_text,
callback_url=None,
first_frame_image=image_url,
subject_reference=subject_reference,
prompt_optimizer=None,
prompt_optimizer=prompt_optimizer,
duration=duration,
resolution=resolution,
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response = await video_generate_operation.execute()
@ -136,6 +461,7 @@ class MinimaxTextToVideoNode:
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
average_duration = 120 if resolution == "768P" else 240
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
@ -147,9 +473,9 @@ class MinimaxTextToVideoNode:
completed_statuses=["Success"],
failed_statuses=["Fail"],
status_extractor=lambda x: x.status.value,
estimated_duration=self.AVERAGE_DURATION,
node_id=unique_id,
auth_kwargs=kwargs,
estimated_duration=average_duration,
node_id=cls.hidden.unique_id,
auth_kwargs=auth,
)
task_result = await video_generate_operation.execute()
@ -165,7 +491,7 @@ class MinimaxTextToVideoNode:
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
file_result = await file_retrieve_operation.execute()
@ -175,158 +501,31 @@ class MinimaxTextToVideoNode:
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info(f"Generated video URL: {file_url}")
if unique_id:
if cls.hidden.unique_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
else:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, unique_id)
PromptServer.instance.send_progress_text(message, cls.hidden.unique_id)
video_io = await download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return (VideoFromFile(video_io),)
return comfy_io.NodeOutput(VideoFromFile(video_io))
class MinimaxImageToVideoNode(MinimaxTextToVideoNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
AVERAGE_DURATION = I2V_AVERAGE_DURATION
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (
IO.IMAGE,
{
"tooltip": "Image to use as first frame of video generation"
},
),
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"I2V-01-Director",
"I2V-01",
"I2V-01-live",
],
{
"default": "I2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from an image and prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
class MinimaxExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
MinimaxTextToVideoNode,
MinimaxImageToVideoNode,
# MinimaxSubjectToVideoNode,
MinimaxHailuoVideoNode,
]
class MinimaxSubjectToVideoNode(MinimaxTextToVideoNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
AVERAGE_DURATION = T2V_AVERAGE_DURATION
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"subject": (
IO.IMAGE,
{
"tooltip": "Image of subject to reference video generation"
},
),
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation",
},
),
"model": (
[
"S2V-01",
],
{
"default": "S2V-01",
"tooltip": "Model to use for video generation",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = "Generates videos from an image and prompts using MiniMax's API"
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"MinimaxTextToVideoNode": MinimaxTextToVideoNode,
"MinimaxImageToVideoNode": MinimaxImageToVideoNode,
# "MinimaxSubjectToVideoNode": MinimaxSubjectToVideoNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"MinimaxTextToVideoNode": "MiniMax Text to Video",
"MinimaxImageToVideoNode": "MiniMax Image to Video",
"MinimaxSubjectToVideoNode": "MiniMax Subject to Video",
}
async def comfy_entrypoint() -> MinimaxExtension:
return MinimaxExtension()

View File

@ -1,6 +1,7 @@
import logging
from typing import Any, Callable, Optional, TypeVar
import torch
from typing_extensions import override
from comfy_api_nodes.util.validation_utils import (
get_image_dimensions,
validate_image_dimensions,
@ -26,11 +27,9 @@ from comfy_api_nodes.apinode_utils import (
upload_images_to_comfyapi,
upload_video_to_comfyapi,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input.video_types import VideoInput
from comfy.comfy_types.node_typing import IO
from comfy_api.input_impl import VideoFromFile
from comfy_api.input import VideoInput
from comfy_api.latest import ComfyExtension, InputImpl, io as comfy_io
import av
import io
@ -362,7 +361,7 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
# Return as VideoFromFile using the buffer
output_buffer.seek(0)
return VideoFromFile(output_buffer)
return InputImpl.VideoFromFile(output_buffer)
except Exception as e:
# Clean up on error
@ -373,166 +372,150 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
raise RuntimeError(f"Failed to trim video: {str(e)}") from e
# --- BaseMoonvalleyVideoNode ---
class BaseMoonvalleyVideoNode:
def parseWidthHeightFromRes(self, resolution: str):
# Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict
res_map = {
"16:9 (1920 x 1080)": {"width": 1920, "height": 1080},
"9:16 (1080 x 1920)": {"width": 1080, "height": 1920},
"1:1 (1152 x 1152)": {"width": 1152, "height": 1152},
"4:3 (1536 x 1152)": {"width": 1536, "height": 1152},
"3:4 (1152 x 1536)": {"width": 1152, "height": 1536},
"21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
}
if resolution in res_map:
return res_map[resolution]
else:
# Default to 1920x1080 if unknown
return {"width": 1920, "height": 1080}
def parse_width_height_from_res(resolution: str):
# Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict
res_map = {
"16:9 (1920 x 1080)": {"width": 1920, "height": 1080},
"9:16 (1080 x 1920)": {"width": 1080, "height": 1920},
"1:1 (1152 x 1152)": {"width": 1152, "height": 1152},
"4:3 (1536 x 1152)": {"width": 1536, "height": 1152},
"3:4 (1152 x 1536)": {"width": 1152, "height": 1536},
"21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
}
return res_map.get(resolution, {"width": 1920, "height": 1080})
def parseControlParameter(self, value):
control_map = {
"Motion Transfer": "motion_control",
"Canny": "canny_control",
"Pose Transfer": "pose_control",
"Depth": "depth_control",
}
if value in control_map:
return control_map[value]
else:
return control_map["Motion Transfer"]
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> MoonvalleyPromptResponse:
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MoonvalleyPromptResponse,
),
result_url_extractor=get_video_url_from_response,
node_id=node_id,
)
def parse_control_parameter(value):
control_map = {
"Motion Transfer": "motion_control",
"Canny": "canny_control",
"Pose Transfer": "pose_control",
"Depth": "depth_control",
}
return control_map.get(value, control_map["Motion Transfer"])
async def get_response(
task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> MoonvalleyPromptResponse:
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MoonvalleyPromptResponse,
),
result_url_extractor=get_video_url_from_response,
node_id=node_id,
)
class MoonvalleyImg2VideoNode(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyTextToVideoRequest,
"prompt_text",
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MoonvalleyImg2VideoNode",
display_name="Moonvalley Marey Image to Video",
category="api node/video/Moonvalley Marey",
description="Moonvalley Marey Image to Video Node",
inputs=[
comfy_io.Image.Input(
"image",
tooltip="The reference image used to generate the video",
),
comfy_io.String.Input(
"prompt",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyTextToVideoInferenceParams,
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring",
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, "
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
tooltip="Negative prompt text",
),
"resolution": (
IO.COMBO,
{
"options": [
"16:9 (1920 x 1080)",
"9:16 (1080 x 1920)",
"1:1 (1152 x 1152)",
"4:3 (1440 x 1080)",
"3:4 (1080 x 1440)",
"21:9 (2560 x 1080)",
],
"default": "16:9 (1920 x 1080)",
"tooltip": "Resolution of the output video",
},
comfy_io.Combo.Input(
"resolution",
options=[
"16:9 (1920 x 1080)",
"9:16 (1080 x 1920)",
"1:1 (1152 x 1152)",
"4:3 (1536 x 1152)",
"3:4 (1152 x 1536)",
"21:9 (2560 x 1080)",
],
default="16:9 (1920 x 1080)",
tooltip="Resolution of the output video",
),
"prompt_adherence": model_field_to_node_input(
IO.FLOAT,
MoonvalleyTextToVideoInferenceParams,
"guidance_scale",
comfy_io.Float.Input(
"prompt_adherence",
default=10.0,
step=1,
min=1,
max=20,
min=1.0,
max=20.0,
step=1.0,
tooltip="Guidance scale for generation control",
),
"seed": model_field_to_node_input(
IO.INT,
MoonvalleyTextToVideoInferenceParams,
comfy_io.Int.Input(
"seed",
default=9,
min=0,
max=4294967295,
step=1,
display="number",
display_mode=comfy_io.NumberDisplay.number,
tooltip="Random seed value",
),
"steps": model_field_to_node_input(
IO.INT,
MoonvalleyTextToVideoInferenceParams,
comfy_io.Int.Input(
"steps",
default=100,
min=1,
max=100,
step=1,
tooltip="Number of denoising steps",
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
"optional": {
"image": model_field_to_node_input(
IO.IMAGE,
MoonvalleyTextToVideoRequest,
"image_url",
tooltip="The reference image used to generate the video",
),
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "generate"
CATEGORY = "api node/video/Moonvalley Marey"
API_NODE = True
def generate(self, **kwargs):
return None
# --- MoonvalleyImg2VideoNode ---
class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(cls):
return super().INPUT_TYPES()
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
DESCRIPTION = "Moonvalley Marey Image to Video Node"
async def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
image = kwargs.get("image", None)
if image is None:
raise MoonvalleyApiError("image is required")
async def execute(
cls,
image: torch.Tensor,
prompt: str,
negative_prompt: str,
resolution: str,
prompt_adherence: float,
seed: int,
steps: int,
) -> comfy_io.NodeOutput:
validate_input_image(image, True)
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
width_height = parse_width_height_from_res(resolution)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
inference_params = MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
steps=steps,
seed=seed,
guidance_scale=prompt_adherence,
num_frames=128,
width=width_height.get("width"),
height=width_height.get("height"),
width=width_height["width"],
height=width_height["height"],
use_negative_prompts=True,
)
"""Upload image to comfy backend to have a URL available for further processing"""
@ -541,7 +524,7 @@ class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
image_url = (
await upload_images_to_comfyapi(
image, max_images=1, auth_kwargs=kwargs, mime_type=mime_type
image, max_images=1, auth_kwargs=auth, mime_type=mime_type
)
)[0]
@ -556,127 +539,102 @@ class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
response_model=MoonvalleyPromptResponse,
),
request=request,
auth_kwargs=kwargs,
auth_kwargs=auth,
)
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
final_response = await get_response(
task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id
)
video = await download_url_to_video_output(final_response.output_url)
return (video,)
return comfy_io.NodeOutput(video)
# --- MoonvalleyVid2VidNode ---
class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
def __init__(self):
super().__init__()
class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyVideoToVideoRequest,
"prompt_text",
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MoonvalleyVideo2VideoNode",
display_name="Moonvalley Marey Video to Video",
category="api node/video/Moonvalley Marey",
description="",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="Describes the video to generate",
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyVideoToVideoInferenceParams,
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring",
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, "
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
tooltip="Negative prompt text",
),
"seed": model_field_to_node_input(
IO.INT,
MoonvalleyVideoToVideoInferenceParams,
comfy_io.Int.Input(
"seed",
default=9,
min=0,
max=4294967295,
step=1,
display="number",
display_mode=comfy_io.NumberDisplay.number,
tooltip="Random seed value",
control_after_generate=False,
),
"prompt_adherence": model_field_to_node_input(
IO.FLOAT,
MoonvalleyVideoToVideoInferenceParams,
"guidance_scale",
default=10.0,
comfy_io.Video.Input(
"video",
tooltip="The reference video used to generate the output video. Must be at least 5 seconds long. "
"Videos longer than 5s will be automatically trimmed. Only MP4 format supported.",
),
comfy_io.Combo.Input(
"control_type",
options=["Motion Transfer", "Pose Transfer"],
default="Motion Transfer",
optional=True,
),
comfy_io.Int.Input(
"motion_intensity",
default=100,
min=0,
max=100,
step=1,
min=1,
max=20,
tooltip="Only used if control_type is 'Motion Transfer'",
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
"optional": {
"video": (
IO.VIDEO,
{
"default": "",
"multiline": False,
"tooltip": "The reference video used to generate the output video. Must be at least 5 seconds long. Videos longer than 5s will be automatically trimmed. Only MP4 format supported.",
},
),
"control_type": (
["Motion Transfer", "Pose Transfer"],
{"default": "Motion Transfer"},
),
"motion_intensity": (
"INT",
{
"default": 100,
"step": 1,
"min": 0,
"max": 100,
"tooltip": "Only used if control_type is 'Motion Transfer'",
},
),
"image": model_field_to_node_input(
IO.IMAGE,
MoonvalleyTextToVideoRequest,
"image_url",
tooltip="The reference image used to generate the video",
),
},
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
negative_prompt: str,
seed: int,
video: Optional[VideoInput] = None,
control_type: str = "Motion Transfer",
motion_intensity: Optional[int] = 100,
) -> comfy_io.NodeOutput:
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
async def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
video = kwargs.get("video")
image = kwargs.get("image", None)
if not video:
raise MoonvalleyApiError("video is required")
video_url = ""
if video:
validated_video = validate_video_to_video_input(video)
video_url = await upload_video_to_comfyapi(
validated_video, auth_kwargs=kwargs
)
mime_type = "image/png"
if not image is None:
validate_input_image(image, with_frame_conditioning=True)
image_url = await upload_images_to_comfyapi(
image=image, auth_kwargs=kwargs, max_images=1, mime_type=mime_type
)
control_type = kwargs.get("control_type")
motion_intensity = kwargs.get("motion_intensity")
validated_video = validate_video_to_video_input(video)
video_url = await upload_video_to_comfyapi(validated_video, auth_kwargs=auth)
"""Validate prompts and inference input"""
validate_prompts(prompt, negative_prompt)
@ -688,11 +646,11 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
inference_params = MoonvalleyVideoToVideoInferenceParams(
negative_prompt=negative_prompt,
seed=kwargs.get("seed"),
seed=seed,
control_params=control_params,
)
control = self.parseControlParameter(control_type)
control = parse_control_parameter(control_type)
request = MoonvalleyVideoToVideoRequest(
control_type=control,
@ -700,7 +658,6 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
prompt_text=prompt,
inference_params=inference_params,
)
request.image_url = image_url if not image is None else None
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -710,58 +667,125 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
response_model=MoonvalleyPromptResponse,
),
request=request,
auth_kwargs=kwargs,
auth_kwargs=auth,
)
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
final_response = await get_response(
task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id
)
video = await download_url_to_video_output(final_response.output_url)
return (video,)
return comfy_io.NodeOutput(video)
# --- MoonvalleyTxt2VideoNode ---
class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
def __init__(self):
super().__init__()
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
input_types = super().INPUT_TYPES()
# Remove image-specific parameters
for param in ["image"]:
if param in input_types["optional"]:
del input_types["optional"][param]
return input_types
def define_schema(cls) -> comfy_io.Schema:
return comfy_io.Schema(
node_id="MoonvalleyTxt2VideoNode",
display_name="Moonvalley Marey Text to Video",
category="api node/video/Moonvalley Marey",
description="",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
),
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, "
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
tooltip="Negative prompt text",
),
comfy_io.Combo.Input(
"resolution",
options=[
"16:9 (1920 x 1080)",
"9:16 (1080 x 1920)",
"1:1 (1152 x 1152)",
"4:3 (1536 x 1152)",
"3:4 (1152 x 1536)",
"21:9 (2560 x 1080)",
],
default="16:9 (1920 x 1080)",
tooltip="Resolution of the output video",
),
comfy_io.Float.Input(
"prompt_adherence",
default=10.0,
min=1.0,
max=20.0,
step=1.0,
tooltip="Guidance scale for generation control",
),
comfy_io.Int.Input(
"seed",
default=9,
min=0,
max=4294967295,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Random seed value",
),
comfy_io.Int.Input(
"steps",
default=100,
min=1,
max=100,
step=1,
tooltip="Inference steps",
),
],
outputs=[comfy_io.Video.Output()],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
async def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
@classmethod
async def execute(
cls,
prompt: str,
negative_prompt: str,
resolution: str,
prompt_adherence: float,
seed: int,
steps: int,
) -> comfy_io.NodeOutput:
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
width_height = parse_width_height_from_res(resolution)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
inference_params = MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
steps=steps,
seed=seed,
guidance_scale=prompt_adherence,
num_frames=128,
width=width_height.get("width"),
height=width_height.get("height"),
width=width_height["width"],
height=width_height["height"],
)
request = MoonvalleyTextToVideoRequest(
prompt_text=prompt, inference_params=inference_params
)
initial_operation = SynchronousOperation(
init_op = SynchronousOperation(
endpoint=ApiEndpoint(
path=API_TXT2VIDEO_ENDPOINT,
method=HttpMethod.POST,
@ -769,29 +793,29 @@ class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
response_model=MoonvalleyPromptResponse,
),
request=request,
auth_kwargs=kwargs,
auth_kwargs=auth,
)
task_creation_response = await initial_operation.execute()
task_creation_response = await init_op.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
final_response = await get_response(
task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id
)
video = await download_url_to_video_output(final_response.output_url)
return (video,)
return comfy_io.NodeOutput(video)
NODE_CLASS_MAPPINGS = {
"MoonvalleyImg2VideoNode": MoonvalleyImg2VideoNode,
"MoonvalleyTxt2VideoNode": MoonvalleyTxt2VideoNode,
"MoonvalleyVideo2VideoNode": MoonvalleyVideo2VideoNode,
}
class MoonvalleyExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
MoonvalleyImg2VideoNode,
MoonvalleyTxt2VideoNode,
MoonvalleyVideo2VideoNode,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"MoonvalleyImg2VideoNode": "Moonvalley Marey Image to Video",
"MoonvalleyTxt2VideoNode": "Moonvalley Marey Text to Video",
"MoonvalleyVideo2VideoNode": "Moonvalley Marey Video to Video",
}
async def comfy_entrypoint() -> MoonvalleyExtension:
return MoonvalleyExtension()

View File

@ -80,6 +80,9 @@ class SupportedOpenAIModel(str, Enum):
gpt_4_1 = "gpt-4.1"
gpt_4_1_mini = "gpt-4.1-mini"
gpt_4_1_nano = "gpt-4.1-nano"
gpt_5 = "gpt-5"
gpt_5_mini = "gpt-5-mini"
gpt_5_nano = "gpt-5-nano"
class OpenAIDalle2(ComfyNodeABC):
@ -995,7 +998,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"OpenAIDalle2": "OpenAI DALL·E 2",
"OpenAIDalle3": "OpenAI DALL·E 3",
"OpenAIGPTImage1": "OpenAI GPT Image 1",
"OpenAIChatNode": "OpenAI Chat",
"OpenAIInputFiles": "OpenAI Chat Input Files",
"OpenAIChatConfig": "OpenAI Chat Advanced Options",
"OpenAIChatNode": "OpenAI ChatGPT",
"OpenAIInputFiles": "OpenAI ChatGPT Input Files",
"OpenAIChatConfig": "OpenAI ChatGPT Advanced Options",
}

View File

@ -12,6 +12,7 @@ User Guides:
"""
from typing import Union, Optional, Any
from typing_extensions import override
from enum import Enum
import torch
@ -46,9 +47,9 @@ from comfy_api_nodes.apinode_utils import (
validate_string,
download_url_to_image_tensor,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input_impl import VideoFromFile
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api_nodes.util.validation_utils import validate_image_dimensions, validate_image_aspect_ratio
PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video"
PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image"
@ -85,20 +86,11 @@ class RunwayGen3aAspectRatio(str, Enum):
def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
"""Returns the video URL from the task status response if it exists."""
if response.output and len(response.output) > 0:
if hasattr(response, "output") and len(response.output) > 0:
return response.output[0]
return None
# TODO: replace with updated image validation utils (upstream)
def validate_input_image(image: torch.Tensor) -> bool:
"""
Validate the input image is within the size limits for the Runway API.
See: https://docs.dev.runwayml.com/assets/inputs/#common-error-reasons
"""
return image.shape[2] < 8000 and image.shape[1] < 8000
async def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, TaskStatusResponse],
@ -134,458 +126,438 @@ def extract_progress_from_task_status(
def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
"""Returns the image URL from the task status response if it exists."""
if response.output and len(response.output) > 0:
if hasattr(response, "output") and len(response.output) > 0:
return response.output[0]
return None
class RunwayVideoGenNode(ComfyNodeABC):
"""Runway Video Node Base."""
async def get_response(
task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None, estimated_duration: Optional[int] = None
) -> TaskStatusResponse:
"""Poll the task status until it is finished then get the response."""
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=estimated_duration,
node_id=node_id,
)
RETURN_TYPES = ("VIDEO",)
FUNCTION = "api_call"
CATEGORY = "api node/video/Runway"
API_NODE = True
def validate_task_created(self, response: RunwayImageToVideoResponse) -> bool:
"""
Validate the task creation response from the Runway API matches
expected format.
"""
if not bool(response.id):
raise RunwayApiError("Invalid initial response from Runway API.")
return True
async def generate_video(
request: RunwayImageToVideoRequest,
auth_kwargs: dict[str, str],
node_id: Optional[str] = None,
estimated_duration: Optional[int] = None,
) -> VideoFromFile:
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_IMAGE_TO_VIDEO,
method=HttpMethod.POST,
request_model=RunwayImageToVideoRequest,
response_model=RunwayImageToVideoResponse,
),
request=request,
auth_kwargs=auth_kwargs,
)
def validate_response(self, response: RunwayImageToVideoResponse) -> bool:
"""
Validate the successful task status response from the Runway API
matches expected format.
"""
if not response.output or len(response.output) == 0:
raise RunwayApiError(
"Runway task succeeded but no video data found in response."
)
return True
initial_response = await initial_operation.execute()
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> RunwayImageToVideoResponse:
"""Poll the task status until it is finished then get the response."""
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
node_id=node_id,
final_response = await get_response(initial_response.id, auth_kwargs, node_id, estimated_duration)
if not final_response.output:
raise RunwayApiError("Runway task succeeded but no video data found in response.")
video_url = get_video_url_from_task_status(final_response)
return await download_url_to_video_output(video_url)
class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="RunwayImageToVideoNodeGen3a",
display_name="Runway Image to Video (Gen3a Turbo)",
category="api node/video/Runway",
description="Generate a video from a single starting frame using Gen3a Turbo model. "
"Before diving in, review these best practices to ensure that "
"your input selections will set your generation up for success: "
"https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text prompt for the generation",
),
comfy_io.Image.Input(
"start_frame",
tooltip="Start frame to be used for the video",
),
comfy_io.Combo.Input(
"duration",
options=[model.value for model in Duration],
),
comfy_io.Combo.Input(
"ratio",
options=[model.value for model in RunwayGen3aAspectRatio],
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967295,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Random seed for generation",
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
async def generate_video(
self,
request: RunwayImageToVideoRequest,
auth_kwargs: dict[str, str],
node_id: Optional[str] = None,
) -> tuple[VideoFromFile]:
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_IMAGE_TO_VIDEO,
method=HttpMethod.POST,
request_model=RunwayImageToVideoRequest,
response_model=RunwayImageToVideoResponse,
),
request=request,
@classmethod
async def execute(
cls,
prompt: str,
start_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
) -> comfy_io.NodeOutput:
validate_string(prompt, min_length=1)
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
download_urls = await upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
auth_kwargs=auth_kwargs,
)
initial_response = await initial_operation.execute()
self.validate_task_created(initial_response)
task_id = initial_response.id
final_response = await self.get_response(task_id, auth_kwargs, node_id)
self.validate_response(final_response)
video_url = get_video_url_from_task_status(final_response)
return (await download_url_to_video_output(video_url),)
return comfy_io.NodeOutput(
await generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen3a_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
)
]
),
),
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
)
)
class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
"""Runway Image to Video Node using Gen3a Turbo model."""
DESCRIPTION = "Generate a video from a single starting frame using Gen3a Turbo model. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo."
class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
def define_schema(cls):
return comfy_io.Schema(
node_id="RunwayImageToVideoNodeGen4",
display_name="Runway Image to Video (Gen4 Turbo)",
category="api node/video/Runway",
description="Generate a video from a single starting frame using Gen4 Turbo model. "
"Before diving in, review these best practices to ensure that "
"your input selections will set your generation up for success: "
"https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text prompt for the generation",
),
"start_frame": (
IO.IMAGE,
{"tooltip": "Start frame to be used for the video"},
comfy_io.Image.Input(
"start_frame",
tooltip="Start frame to be used for the video",
),
"duration": model_field_to_node_input(
IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
comfy_io.Combo.Input(
"duration",
options=[model.value for model in Duration],
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayImageToVideoRequest,
comfy_io.Combo.Input(
"ratio",
enum_type=RunwayGen3aAspectRatio,
options=[model.value for model in RunwayGen4TurboAspectRatio],
),
"seed": model_field_to_node_input(
IO.INT,
RunwayImageToVideoRequest,
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967295,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Random seed for generation",
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
async def api_call(
self,
@classmethod
async def execute(
cls,
prompt: str,
start_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[VideoFromFile]:
# Validate inputs
) -> comfy_io.NodeOutput:
validate_string(prompt, min_length=1)
validate_input_image(start_frame)
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# Upload image
download_urls = await upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
auth_kwargs=kwargs,
auth_kwargs=auth_kwargs,
)
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return await self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen3a_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
)
]
return comfy_io.NodeOutput(
await generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen4_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
)
]
),
),
),
auth_kwargs=kwargs,
node_id=unique_id,
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
)
)
class RunwayImageToVideoNodeGen4(RunwayVideoGenNode):
"""Runway Image to Video Node using Gen4 Turbo model."""
DESCRIPTION = "Generate a video from a single starting frame using Gen4 Turbo model. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video."
class RunwayFirstLastFrameNode(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
def define_schema(cls):
return comfy_io.Schema(
node_id="RunwayFirstLastFrameNode",
display_name="Runway First-Last-Frame to Video",
category="api node/video/Runway",
description="Upload first and last keyframes, draft a prompt, and generate a video. "
"More complex transitions, such as cases where the Last frame is completely different "
"from the First frame, may benefit from the longer 10s duration. "
"This would give the generation more time to smoothly transition between the two inputs. "
"Before diving in, review these best practices to ensure that your input selections "
"will set your generation up for success: "
"https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text prompt for the generation",
),
"start_frame": (
IO.IMAGE,
{"tooltip": "Start frame to be used for the video"},
comfy_io.Image.Input(
"start_frame",
tooltip="Start frame to be used for the video",
),
"duration": model_field_to_node_input(
IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
comfy_io.Image.Input(
"end_frame",
tooltip="End frame to be used for the video. Supported for gen3a_turbo only.",
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayImageToVideoRequest,
comfy_io.Combo.Input(
"duration",
options=[model.value for model in Duration],
),
comfy_io.Combo.Input(
"ratio",
enum_type=RunwayGen4TurboAspectRatio,
options=[model.value for model in RunwayGen3aAspectRatio],
),
"seed": model_field_to_node_input(
IO.INT,
RunwayImageToVideoRequest,
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967295,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Random seed for generation",
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
async def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[VideoFromFile]:
# Validate inputs
validate_string(prompt, min_length=1)
validate_input_image(start_frame)
# Upload image
download_urls = await upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
auth_kwargs=kwargs,
)
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return await self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen4_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
)
]
),
),
auth_kwargs=kwargs,
node_id=unique_id,
)
class RunwayFirstLastFrameNode(RunwayVideoGenNode):
"""Runway First-Last Frame Node."""
DESCRIPTION = "Upload first and last keyframes, draft a prompt, and generate a video. More complex transitions, such as cases where the Last frame is completely different from the First frame, may benefit from the longer 10s duration. This would give the generation more time to smoothly transition between the two inputs. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3."
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> RunwayImageToVideoResponse:
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
node_id=node_id,
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
),
"start_frame": (
IO.IMAGE,
{"tooltip": "Start frame to be used for the video"},
),
"end_frame": (
IO.IMAGE,
{
"tooltip": "End frame to be used for the video. Supported for gen3a_turbo only."
},
),
"duration": model_field_to_node_input(
IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayImageToVideoRequest,
"ratio",
enum_type=RunwayGen3aAspectRatio,
),
"seed": model_field_to_node_input(
IO.INT,
RunwayImageToVideoRequest,
"seed",
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"unique_id": "UNIQUE_ID",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
async def api_call(
self,
async def execute(
cls,
prompt: str,
start_frame: torch.Tensor,
end_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[VideoFromFile]:
# Validate inputs
) -> comfy_io.NodeOutput:
validate_string(prompt, min_length=1)
validate_input_image(start_frame)
validate_input_image(end_frame)
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
validate_image_dimensions(end_frame, max_width=7999, max_height=7999)
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
validate_image_aspect_ratio(end_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# Upload images
stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame)
download_urls = await upload_images_to_comfyapi(
stacked_input_images,
max_images=2,
mime_type="image/png",
auth_kwargs=kwargs,
auth_kwargs=auth_kwargs,
)
if len(download_urls) != 2:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return await self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen3a_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
),
RunwayPromptImageDetailedObject(
uri=str(download_urls[1]), position="last"
),
]
return comfy_io.NodeOutput(
await generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen3a_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
),
RunwayPromptImageDetailedObject(
uri=str(download_urls[1]), position="last"
),
]
),
),
),
auth_kwargs=kwargs,
node_id=unique_id,
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
)
)
class RunwayTextToImageNode(ComfyNodeABC):
"""Runway Text to Image Node."""
RETURN_TYPES = ("IMAGE",)
FUNCTION = "api_call"
CATEGORY = "api node/image/Runway"
API_NODE = True
DESCRIPTION = "Generate an image from a text prompt using Runway's Gen 4 model. You can also include reference images to guide the generation."
class RunwayTextToImageNode(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayTextToImageRequest, "promptText", multiline=True
def define_schema(cls):
return comfy_io.Schema(
node_id="RunwayTextToImageNode",
display_name="Runway Text to Image",
category="api node/image/Runway",
description="Generate an image from a text prompt using Runway's Gen 4 model. "
"You can also include reference image to guide the generation.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text prompt for the generation",
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayTextToImageRequest,
comfy_io.Combo.Input(
"ratio",
enum_type=RunwayTextToImageAspectRatioEnum,
options=[model.value for model in RunwayTextToImageAspectRatioEnum],
),
},
"optional": {
"reference_image": (
IO.IMAGE,
{"tooltip": "Optional reference image to guide the generation"},
)
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
def validate_task_created(self, response: RunwayTextToImageResponse) -> bool:
"""
Validate the task creation response from the Runway API matches
expected format.
"""
if not bool(response.id):
raise RunwayApiError("Invalid initial response from Runway API.")
return True
def validate_response(self, response: TaskStatusResponse) -> bool:
"""
Validate the successful task status response from the Runway API
matches expected format.
"""
if not response.output or len(response.output) == 0:
raise RunwayApiError(
"Runway task succeeded but no image data found in response."
)
return True
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> TaskStatusResponse:
"""Poll the task status until it is finished then get the response."""
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=AVERAGE_DURATION_T2I_SECONDS,
node_id=node_id,
comfy_io.Image.Input(
"reference_image",
tooltip="Optional reference image to guide the generation",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
async def api_call(
self,
@classmethod
async def execute(
cls,
prompt: str,
ratio: str,
reference_image: Optional[torch.Tensor] = None,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[torch.Tensor]:
# Validate inputs
) -> comfy_io.NodeOutput:
validate_string(prompt, min_length=1)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# Prepare reference images if provided
reference_images = None
if reference_image is not None:
validate_input_image(reference_image)
validate_image_dimensions(reference_image, max_width=7999, max_height=7999)
validate_image_aspect_ratio(reference_image, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
download_urls = await upload_images_to_comfyapi(
reference_image,
max_images=1,
mime_type="image/png",
auth_kwargs=kwargs,
auth_kwargs=auth_kwargs,
)
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload reference image to comfy api.")
reference_images = [ReferenceImage(uri=str(download_urls[0]))]
# Create request
request = RunwayTextToImageRequest(
promptText=prompt,
model=Model4.gen4_image,
@ -593,7 +565,6 @@ class RunwayTextToImageNode(ComfyNodeABC):
referenceImages=reference_images,
)
# Execute initial request
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_TEXT_TO_IMAGE,
@ -602,34 +573,33 @@ class RunwayTextToImageNode(ComfyNodeABC):
response_model=RunwayTextToImageResponse,
),
request=request,
auth_kwargs=kwargs,
auth_kwargs=auth_kwargs,
)
initial_response = await initial_operation.execute()
self.validate_task_created(initial_response)
task_id = initial_response.id
# Poll for completion
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
final_response = await get_response(
initial_response.id,
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=AVERAGE_DURATION_T2I_SECONDS,
)
self.validate_response(final_response)
if not final_response.output:
raise RunwayApiError("Runway task succeeded but no image data found in response.")
# Download and return image
image_url = get_image_url_from_task_status(final_response)
return (await download_url_to_image_tensor(image_url),)
return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_task_status(final_response)))
NODE_CLASS_MAPPINGS = {
"RunwayFirstLastFrameNode": RunwayFirstLastFrameNode,
"RunwayImageToVideoNodeGen3a": RunwayImageToVideoNodeGen3a,
"RunwayImageToVideoNodeGen4": RunwayImageToVideoNodeGen4,
"RunwayTextToImageNode": RunwayTextToImageNode,
}
class RunwayExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
RunwayFirstLastFrameNode,
RunwayImageToVideoNodeGen3a,
RunwayImageToVideoNodeGen4,
RunwayTextToImageNode,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"RunwayFirstLastFrameNode": "Runway First-Last-Frame to Video",
"RunwayImageToVideoNodeGen3a": "Runway Image to Video (Gen3a Turbo)",
"RunwayImageToVideoNodeGen4": "Runway Image to Video (Gen4 Turbo)",
"RunwayTextToImageNode": "Runway Text to Image",
}
async def comfy_entrypoint() -> RunwayExtension:
return RunwayExtension()

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +1,18 @@
import io
import logging
import base64
import aiohttp
import torch
from io import BytesIO
from typing import Optional
from typing_extensions import override
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
VeoGenVidRequest,
VeoGenVidResponse,
VeoGenVidPollRequest,
VeoGenVidPollResponse
VeoGenVidPollResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
@ -22,7 +23,7 @@ from comfy_api_nodes.apis.client import (
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
tensor_to_base64_string
tensor_to_base64_string,
)
AVERAGE_DURATION_VIDEO_GEN = 32
@ -50,7 +51,7 @@ def get_video_url_from_response(poll_response: VeoGenVidPollResponse) -> Optiona
return None
class VeoVideoGenerationNode(ComfyNodeABC):
class VeoVideoGenerationNode(comfy_io.ComfyNode):
"""
Generates videos from text prompts using Google's Veo API.
@ -59,101 +60,93 @@ class VeoVideoGenerationNode(ComfyNodeABC):
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text description of the video",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="VeoVideoGenerationNode",
display_name="Google Veo 2 Video Generation",
category="api node/video/Veo",
description="Generates videos from text prompts using Google's Veo 2 API",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text description of the video",
),
"aspect_ratio": (
IO.COMBO,
{
"options": ["16:9", "9:16"],
"default": "16:9",
"tooltip": "Aspect ratio of the output video",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16"],
default="16:9",
tooltip="Aspect ratio of the output video",
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Negative text prompt to guide what to avoid in the video",
},
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Negative text prompt to guide what to avoid in the video",
optional=True,
),
"duration_seconds": (
IO.INT,
{
"default": 5,
"min": 5,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "Duration of the output video in seconds",
},
comfy_io.Int.Input(
"duration_seconds",
default=5,
min=5,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
"enhance_prompt": (
IO.BOOLEAN,
{
"default": True,
"tooltip": "Whether to enhance the prompt with AI assistance",
}
comfy_io.Boolean.Input(
"enhance_prompt",
default=True,
tooltip="Whether to enhance the prompt with AI assistance",
optional=True,
),
"person_generation": (
IO.COMBO,
{
"options": ["ALLOW", "BLOCK"],
"default": "ALLOW",
"tooltip": "Whether to allow generating people in the video",
},
comfy_io.Combo.Input(
"person_generation",
options=["ALLOW", "BLOCK"],
default="ALLOW",
tooltip="Whether to allow generating people in the video",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFF,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "Seed for video generation (0 for random)",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFF,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image to guide video generation",
}),
"model": (
IO.COMBO,
{
"options": ["veo-2.0-generate-001"],
"default": "veo-2.0-generate-001",
"tooltip": "Veo 2 model to use for video generation",
},
comfy_io.Image.Input(
"image",
tooltip="Optional reference image to guide video generation",
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
comfy_io.Combo.Input(
"model",
options=["veo-2.0-generate-001"],
default="veo-2.0-generate-001",
tooltip="Veo 2 model to use for video generation",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "generate_video"
CATEGORY = "api node/video/Veo"
DESCRIPTION = "Generates videos from text prompts using Google's Veo 2 API"
API_NODE = True
async def generate_video(
self,
@classmethod
async def execute(
cls,
prompt,
aspect_ratio="16:9",
negative_prompt="",
@ -164,8 +157,6 @@ class VeoVideoGenerationNode(ComfyNodeABC):
image=None,
model="veo-2.0-generate-001",
generate_audio=False,
unique_id: Optional[str] = None,
**kwargs,
):
# Prepare the instances for the request
instances = []
@ -202,6 +193,10 @@ class VeoVideoGenerationNode(ComfyNodeABC):
if "veo-3.0" in model:
parameters["generateAudio"] = generate_audio
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# Initial request to start video generation
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -214,7 +209,7 @@ class VeoVideoGenerationNode(ComfyNodeABC):
instances=instances,
parameters=parameters
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
initial_response = await initial_operation.execute()
@ -248,10 +243,10 @@ class VeoVideoGenerationNode(ComfyNodeABC):
request=VeoGenVidPollRequest(
operationName=operation_name
),
auth_kwargs=kwargs,
auth_kwargs=auth,
poll_interval=5.0,
result_url_extractor=get_video_url_from_response,
node_id=unique_id,
node_id=cls.hidden.unique_id,
estimated_duration=AVERAGE_DURATION_VIDEO_GEN,
)
@ -304,10 +299,10 @@ class VeoVideoGenerationNode(ComfyNodeABC):
logging.info("Video generation completed successfully")
# Convert video data to BytesIO object
video_io = io.BytesIO(video_data)
video_io = BytesIO(video_data)
# Return VideoFromFile object
return (VideoFromFile(video_io),)
return comfy_io.NodeOutput(VideoFromFile(video_io))
class Veo3VideoGenerationNode(VeoVideoGenerationNode):
@ -323,51 +318,104 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
"""
@classmethod
def INPUT_TYPES(s):
parent_input = super().INPUT_TYPES()
# Update model options for Veo 3
parent_input["optional"]["model"] = (
IO.COMBO,
{
"options": ["veo-3.0-generate-001", "veo-3.0-fast-generate-001"],
"default": "veo-3.0-generate-001",
"tooltip": "Veo 3 model to use for video generation",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="Veo3VideoGenerationNode",
display_name="Google Veo 3 Video Generation",
category="api node/video/Veo",
description="Generates videos from text prompts using Google's Veo 3 API",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text description of the video",
),
comfy_io.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16"],
default="16:9",
tooltip="Aspect ratio of the output video",
),
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Negative text prompt to guide what to avoid in the video",
optional=True,
),
comfy_io.Int.Input(
"duration_seconds",
default=8,
min=8,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds (Veo 3 only supports 8 seconds)",
optional=True,
),
comfy_io.Boolean.Input(
"enhance_prompt",
default=True,
tooltip="Whether to enhance the prompt with AI assistance",
optional=True,
),
comfy_io.Combo.Input(
"person_generation",
options=["ALLOW", "BLOCK"],
default="ALLOW",
tooltip="Whether to allow generating people in the video",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFF,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Image.Input(
"image",
tooltip="Optional reference image to guide video generation",
optional=True,
),
comfy_io.Combo.Input(
"model",
options=["veo-3.0-generate-001", "veo-3.0-fast-generate-001"],
default="veo-3.0-generate-001",
tooltip="Veo 3 model to use for video generation",
optional=True,
),
comfy_io.Boolean.Input(
"generate_audio",
default=False,
tooltip="Generate audio for the video. Supported by all Veo 3 models.",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
# Add generateAudio parameter
parent_input["optional"]["generate_audio"] = (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Generate audio for the video. Supported by all Veo 3 models.",
}
)
# Update duration constraints for Veo 3 (only 8 seconds supported)
parent_input["optional"]["duration_seconds"] = (
IO.INT,
{
"default": 8,
"min": 8,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "Duration of the output video in seconds (Veo 3 only supports 8 seconds)",
},
)
class VeoExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
VeoVideoGenerationNode,
Veo3VideoGenerationNode,
]
return parent_input
# Register the nodes
NODE_CLASS_MAPPINGS = {
"VeoVideoGenerationNode": VeoVideoGenerationNode,
"Veo3VideoGenerationNode": Veo3VideoGenerationNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"VeoVideoGenerationNode": "Google Veo 2 Video Generation",
"Veo3VideoGenerationNode": "Google Veo 3 Video Generation",
}
async def comfy_entrypoint() -> VeoExtension:
return VeoExtension()

View File

@ -0,0 +1,622 @@
import logging
from enum import Enum
from typing import Any, Callable, Optional, Literal, TypeVar
from typing_extensions import override
import torch
from pydantic import BaseModel, Field
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api_nodes.util.validation_utils import (
validate_aspect_ratio_closeness,
validate_image_dimensions,
validate_image_aspect_ratio_range,
get_number_of_images,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import download_url_to_video_output, upload_images_to_comfyapi
VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video"
VIDU_IMAGE_TO_VIDEO = "/proxy/vidu/img2video"
VIDU_REFERENCE_VIDEO = "/proxy/vidu/reference2video"
VIDU_START_END_VIDEO = "/proxy/vidu/start-end2video"
VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations"
R = TypeVar("R")
class VideoModelName(str, Enum):
vidu_q1 = 'viduq1'
class AspectRatio(str, Enum):
r_16_9 = "16:9"
r_9_16 = "9:16"
r_1_1 = "1:1"
class Resolution(str, Enum):
r_1080p = "1080p"
class MovementAmplitude(str, Enum):
auto = "auto"
small = "small"
medium = "medium"
large = "large"
class TaskCreationRequest(BaseModel):
model: VideoModelName = VideoModelName.vidu_q1
prompt: Optional[str] = Field(None, max_length=1500)
duration: Optional[Literal[5]] = 5
seed: Optional[int] = Field(0, ge=0, le=2147483647)
aspect_ratio: Optional[AspectRatio] = AspectRatio.r_16_9
resolution: Optional[Resolution] = Resolution.r_1080p
movement_amplitude: Optional[MovementAmplitude] = MovementAmplitude.auto
images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL")
class TaskStatus(str, Enum):
created = "created"
queueing = "queueing"
processing = "processing"
success = "success"
failed = "failed"
class TaskCreationResponse(BaseModel):
task_id: str = Field(...)
state: TaskStatus = Field(...)
created_at: str = Field(...)
code: Optional[int] = Field(None, description="Error code")
class TaskResult(BaseModel):
id: str = Field(..., description="Creation id")
url: str = Field(..., description="The URL of the generated results, valid for one hour")
cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour")
class TaskStatusResponse(BaseModel):
state: TaskStatus = Field(...)
err_code: Optional[str] = Field(None)
creations: list[TaskResult] = Field(..., description="Generated results")
async def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, R],
result_url_extractor: Optional[Callable[[R], str]] = None,
estimated_duration: Optional[int] = None,
node_id: Optional[str] = None,
) -> R:
return await PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[TaskStatus.success.value],
failed_statuses=[TaskStatus.failed.value],
status_extractor=lambda response: response.state.value,
auth_kwargs=auth_kwargs,
result_url_extractor=result_url_extractor,
estimated_duration=estimated_duration,
node_id=node_id,
poll_interval=16.0,
max_poll_attempts=256,
).execute()
def get_video_url_from_response(response) -> Optional[str]:
if response.creations:
return response.creations[0].url
return None
def get_video_from_response(response) -> TaskResult:
if not response.creations:
error_msg = f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}"
logging.info(error_msg)
raise RuntimeError(error_msg)
logging.info("Vidu task %s succeeded. Video URL: %s", response.creations[0].id, response.creations[0].url)
return response.creations[0]
async def execute_task(
vidu_endpoint: str,
auth_kwargs: Optional[dict[str, str]],
payload: TaskCreationRequest,
estimated_duration: int,
node_id: str,
) -> R:
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=vidu_endpoint,
method=HttpMethod.POST,
request_model=TaskCreationRequest,
response_model=TaskCreationResponse,
),
request=payload,
auth_kwargs=auth_kwargs,
).execute()
if response.state == TaskStatus.failed:
error_msg = f"Vidu request failed. Code: {response.code}"
logging.error(error_msg)
raise RuntimeError(error_msg)
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=VIDU_GET_GENERATION_STATUS % response.task_id,
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
result_url_extractor=get_video_url_from_response,
estimated_duration=estimated_duration,
node_id=node_id,
)
class ViduTextToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduTextToVideoNode",
display_name="Vidu Text To Video Generation",
category="api node/video/Vidu",
description="Generate video from text prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation",
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"aspect_ratio",
options=[model.value for model in AspectRatio],
default=AspectRatio.r_16_9.value,
tooltip="The aspect ratio of the output video",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
duration: int,
seed: int,
aspect_ratio: str,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
if not prompt:
raise ValueError("The prompt field is required and cannot be empty.")
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
aspect_ratio=aspect_ratio,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
results = await execute_task(VIDU_TEXT_TO_VIDEO, auth, payload, 320, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduImageToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduImageToVideoNode",
display_name="Vidu Image To Video Generation",
category="api node/video/Vidu",
description="Generate video from image and optional prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"image",
tooltip="An image to be used as the start frame of the generated video",
),
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="A textual description for video generation",
optional=True,
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: torch.Tensor,
prompt: str,
duration: int,
seed: int,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
if get_number_of_images(image) > 1:
raise ValueError("Only one input image is allowed.")
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
payload.images = await upload_images_to_comfyapi(
image,
max_images=1,
mime_type="image/png",
auth_kwargs=auth,
)
results = await execute_task(VIDU_IMAGE_TO_VIDEO, auth, payload, 120, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduReferenceVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduReferenceVideoNode",
display_name="Vidu Reference To Video Generation",
category="api node/video/Vidu",
description="Generate video from multiple images and prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"images",
tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation",
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"aspect_ratio",
options=[model.value for model in AspectRatio],
default=AspectRatio.r_16_9.value,
tooltip="The aspect ratio of the output video",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
images: torch.Tensor,
prompt: str,
duration: int,
seed: int,
aspect_ratio: str,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
if not prompt:
raise ValueError("The prompt field is required and cannot be empty.")
a = get_number_of_images(images)
if a > 7:
raise ValueError("Too many images, maximum allowed is 7.")
for image in images:
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
validate_image_dimensions(image, min_width=128, min_height=128)
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
aspect_ratio=aspect_ratio,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
payload.images = await upload_images_to_comfyapi(
images,
max_images=7,
mime_type="image/png",
auth_kwargs=auth,
)
results = await execute_task(VIDU_REFERENCE_VIDEO, auth, payload, 120, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduStartEndToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduStartEndToVideoNode",
display_name="Vidu Start End To Video Generation",
category="api node/video/Vidu",
description="Generate a video from start and end frames and a prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"first_frame",
tooltip="Start frame",
),
comfy_io.Image.Input(
"end_frame",
tooltip="End frame",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation",
optional=True,
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
first_frame: torch.Tensor,
end_frame: torch.Tensor,
prompt: str,
duration: int,
seed: int,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
validate_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
payload.images = [
(await upload_images_to_comfyapi(frame, max_images=1, mime_type="image/png", auth_kwargs=auth))[0]
for frame in (first_frame, end_frame)
]
results = await execute_task(VIDU_START_END_VIDEO, auth, payload, 96, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
ViduTextToVideoNode,
ViduImageToVideoNode,
ViduReferenceVideoNode,
ViduStartEndToVideoNode,
]
async def comfy_entrypoint() -> ViduExtension:
return ViduExtension()

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import torch
from comfy_api.input.video_types import VideoInput
from comfy_api.latest import Input
def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]:
@ -53,8 +53,55 @@ def validate_image_aspect_ratio(
)
def validate_image_aspect_ratio_range(
image: torch.Tensor,
min_ratio: tuple[float, float], # e.g. (1, 4)
max_ratio: tuple[float, float], # e.g. (4, 1)
*,
strict: bool = True, # True -> (min, max); False -> [min, max]
) -> float:
a1, b1 = min_ratio
a2, b2 = max_ratio
if a1 <= 0 or b1 <= 0 or a2 <= 0 or b2 <= 0:
raise ValueError("Ratios must be positive, like (1, 4) or (4, 1).")
lo, hi = (a1 / b1), (a2 / b2)
if lo > hi:
lo, hi = hi, lo
a1, b1, a2, b2 = a2, b2, a1, b1 # swap only for error text
w, h = get_image_dimensions(image)
if w <= 0 or h <= 0:
raise ValueError(f"Invalid image dimensions: {w}x{h}")
ar = w / h
ok = (lo < ar < hi) if strict else (lo <= ar <= hi)
if not ok:
op = "<" if strict else ""
raise ValueError(f"Image aspect ratio {ar:.6g} is outside allowed range: {a1}:{b1} {op} ratio {op} {a2}:{b2}")
return ar
def validate_aspect_ratio_closeness(
start_img,
end_img,
min_rel: float,
max_rel: float,
*,
strict: bool = False, # True => exclusive, False => inclusive
) -> None:
w1, h1 = get_image_dimensions(start_img)
w2, h2 = get_image_dimensions(end_img)
if min(w1, h1, w2, h2) <= 0:
raise ValueError("Invalid image dimensions")
ar1 = w1 / h1
ar2 = w2 / h2
# Normalize so it is symmetric (no need to check both ar1/ar2 and ar2/ar1)
closeness = max(ar1, ar2) / min(ar1, ar2)
limit = max(max_rel, 1.0 / min_rel) # for 0.8..1.25 this is 1.25
if (closeness >= limit) if strict else (closeness > limit):
raise ValueError(f"Aspect ratios must be close: start/end={ar1/ar2:.4f}, allowed range {min_rel}{max_rel}.")
def validate_video_dimensions(
video: VideoInput,
video: Input.Video,
min_width: Optional[int] = None,
max_width: Optional[int] = None,
min_height: Optional[int] = None,
@ -79,7 +126,7 @@ def validate_video_dimensions(
def validate_video_duration(
video: VideoInput,
video: Input.Video,
min_duration: Optional[float] = None,
max_duration: Optional[float] = None,
):
@ -98,3 +145,23 @@ def validate_video_duration(
raise ValueError(
f"Video duration must be at most {max_duration}s, got {duration}s"
)
def get_number_of_images(images):
if isinstance(images, torch.Tensor):
return images.shape[0] if images.ndim >= 4 else 1
return len(images)
def validate_audio_duration(
audio: Input.Audio,
min_duration: Optional[float] = None,
max_duration: Optional[float] = None,
) -> None:
sr = int(audio["sample_rate"])
dur = int(audio["waveform"].shape[-1]) / sr
eps = 1.0 / sr
if min_duration is not None and dur + eps < min_duration:
raise ValueError(f"Audio duration must be at least {min_duration}s, got {dur + eps:.2f}s")
if max_duration is not None and dur - eps > max_duration:
raise ValueError(f"Audio duration must be at most {max_duration}s, got {dur - eps:.2f}s")

View File

@ -181,8 +181,9 @@ class WebUIProgressHandler(ProgressHandler):
}
# Send a combined progress_state message with all node states
# Include client_id to ensure message is only sent to the initiating client
self.server_instance.send_sync(
"progress_state", {"prompt_id": prompt_id, "nodes": active_nodes}
"progress_state", {"prompt_id": prompt_id, "nodes": active_nodes}, self.server_instance.client_id
)
@override

View File

@ -1,49 +1,63 @@
import torch
from typing_extensions import override
import comfy.model_management
import node_helpers
from comfy_api.latest import ComfyExtension, io
class TextEncodeAceStepAudio:
class TextEncodeAceStepAudio(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"tags": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"lyrics": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"lyrics_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
def define_schema(cls):
return io.Schema(
node_id="TextEncodeAceStepAudio",
category="conditioning",
inputs=[
io.Clip.Input("clip"),
io.String.Input("tags", multiline=True, dynamic_prompts=True),
io.String.Input("lyrics", multiline=True, dynamic_prompts=True),
io.Float.Input("lyrics_strength", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Conditioning.Output()],
)
CATEGORY = "conditioning"
def encode(self, clip, tags, lyrics, lyrics_strength):
@classmethod
def execute(cls, clip, tags, lyrics, lyrics_strength) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics)
conditioning = clip.encode_from_tokens_scheduled(tokens)
conditioning = node_helpers.conditioning_set_values(conditioning, {"lyrics_strength": lyrics_strength})
return (conditioning, )
return io.NodeOutput(conditioning)
class EmptyAceStepLatentAudio:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
class EmptyAceStepLatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyAceStepLatentAudio",
category="latent/audio",
inputs=[
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.1),
io.Int.Input(
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[io.Latent.Output()],
)
@classmethod
def INPUT_TYPES(s):
return {"required": {"seconds": ("FLOAT", {"default": 120.0, "min": 1.0, "max": 1000.0, "step": 0.1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/audio"
def generate(self, seconds, batch_size):
def execute(cls, seconds, batch_size) -> io.NodeOutput:
length = int(seconds * 44100 / 512 / 8)
latent = torch.zeros([batch_size, 8, 16, length], device=self.device)
return ({"samples": latent, "type": "audio"}, )
latent = torch.zeros([batch_size, 8, 16, length], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent, "type": "audio"})
NODE_CLASS_MAPPINGS = {
"TextEncodeAceStepAudio": TextEncodeAceStepAudio,
"EmptyAceStepLatentAudio": EmptyAceStepLatentAudio,
}
class AceExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
TextEncodeAceStepAudio,
EmptyAceStepLatentAudio,
]
async def comfy_entrypoint() -> AceExtension:
return AceExtension()

View File

@ -1,8 +1,13 @@
import numpy as np
import torch
from tqdm.auto import trange
from typing_extensions import override
import comfy.model_patcher
import comfy.samplers
import comfy.utils
import torch
import numpy as np
from tqdm.auto import trange
from comfy.k_diffusion.sampling import to_d
from comfy_api.latest import ComfyExtension, io
@torch.no_grad()
@ -33,30 +38,29 @@ def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable
return x
class SamplerLCMUpscale:
upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
class SamplerLCMUpscale(io.ComfyNode):
UPSCALE_METHODS = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
@classmethod
def INPUT_TYPES(s):
return {"required":
{"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}),
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
"upscale_method": (s.upscale_methods,),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="SamplerLCMUpscale",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("scale_ratio", default=1.0, min=0.1, max=20.0, step=0.01),
io.Int.Input("scale_steps", default=-1, min=-1, max=1000, step=1),
io.Combo.Input("upscale_method", options=cls.UPSCALE_METHODS),
],
outputs=[io.Sampler.Output()],
)
FUNCTION = "get_sampler"
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
@classmethod
def execute(cls, scale_ratio, scale_steps, upscale_method) -> io.NodeOutput:
if scale_steps < 0:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )
return io.NodeOutput(sampler)
from comfy.k_diffusion.sampling import to_d
import comfy.model_patcher
@torch.no_grad()
def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
@ -82,30 +86,36 @@ def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=No
return x
class SamplerEulerCFGpp:
class SamplerEulerCFGpp(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required":
{"version": (["regular", "alternative"],),}
}
RETURN_TYPES = ("SAMPLER",)
# CATEGORY = "sampling/custom_sampling/samplers"
CATEGORY = "_for_testing"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="SamplerEulerCFGpp",
display_name="SamplerEulerCFG++",
category="_for_testing", # "sampling/custom_sampling/samplers"
inputs=[
io.Combo.Input("version", options=["regular", "alternative"]),
],
outputs=[io.Sampler.Output()],
is_experimental=True,
)
FUNCTION = "get_sampler"
def get_sampler(self, version):
@classmethod
def execute(cls, version) -> io.NodeOutput:
if version == "alternative":
sampler = comfy.samplers.KSAMPLER(sample_euler_pp)
else:
sampler = comfy.samplers.ksampler("euler_cfg_pp")
return (sampler, )
return io.NodeOutput(sampler)
NODE_CLASS_MAPPINGS = {
"SamplerLCMUpscale": SamplerLCMUpscale,
"SamplerEulerCFGpp": SamplerEulerCFGpp,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SamplerEulerCFGpp": "SamplerEulerCFG++",
}
class AdvancedSamplersExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
SamplerLCMUpscale,
SamplerEulerCFGpp,
]
async def comfy_entrypoint() -> AdvancedSamplersExtension:
return AdvancedSamplersExtension()

View File

@ -1,6 +1,10 @@
#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
import numpy as np
import torch
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def loglinear_interp(t_steps, num_steps):
"""
@ -19,25 +23,30 @@ NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.694615152
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
class AlignYourStepsScheduler:
class AlignYourStepsScheduler(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_type": (["SD1", "SDXL", "SVD"], ),
"steps": ("INT", {"default": 10, "min": 1, "max": 10000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="AlignYourStepsScheduler",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Combo.Input("model_type", options=["SD1", "SDXL", "SVD"]),
io.Int.Input("steps", default=10, min=1, max=10000),
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
],
outputs=[io.Sigmas.Output()],
)
def get_sigmas(self, model_type, steps, denoise):
# Deprecated: use the V3 schema's `execute` method instead of this.
return AlignYourStepsScheduler().execute(model_type, steps, denoise).result
@classmethod
def execute(cls, model_type, steps, denoise) -> io.NodeOutput:
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
return io.NodeOutput(torch.FloatTensor([]))
total_steps = round(steps * denoise)
sigmas = NOISE_LEVELS[model_type][:]
@ -46,8 +55,15 @@ class AlignYourStepsScheduler:
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )
return io.NodeOutput(torch.FloatTensor(sigmas))
NODE_CLASS_MAPPINGS = {
"AlignYourStepsScheduler": AlignYourStepsScheduler,
}
class AlignYourStepsExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
AlignYourStepsScheduler,
]
async def comfy_entrypoint() -> AlignYourStepsExtension:
return AlignYourStepsExtension()

View File

@ -1,4 +1,8 @@
import torch
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def project(v0, v1):
v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3])
@ -6,22 +10,45 @@ def project(v0, v1):
v0_orthogonal = v0 - v0_parallel
return v0_parallel, v0_orthogonal
class APG:
class APG(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"eta": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01, "tooltip": "Controls the scale of the parallel guidance vector. Default CFG behavior at a setting of 1."}),
"norm_threshold": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 50.0, "step": 0.1, "tooltip": "Normalize guidance vector to this value, normalization disable at a setting of 0."}),
"momentum": ("FLOAT", {"default": 0.0, "min": -5.0, "max": 1.0, "step": 0.01, "tooltip":"Controls a running average of guidance during diffusion, disabled at a setting of 0."}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "sampling/custom_sampling"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="APG",
display_name="Adaptive Projected Guidance",
category="sampling/custom_sampling",
inputs=[
io.Model.Input("model"),
io.Float.Input(
"eta",
default=1.0,
min=-10.0,
max=10.0,
step=0.01,
tooltip="Controls the scale of the parallel guidance vector. Default CFG behavior at a setting of 1.",
),
io.Float.Input(
"norm_threshold",
default=5.0,
min=0.0,
max=50.0,
step=0.1,
tooltip="Normalize guidance vector to this value, normalization disable at a setting of 0.",
),
io.Float.Input(
"momentum",
default=0.0,
min=-5.0,
max=1.0,
step=0.01,
tooltip="Controls a running average of guidance during diffusion, disabled at a setting of 0.",
),
],
outputs=[io.Model.Output()],
)
def patch(self, model, eta, norm_threshold, momentum):
@classmethod
def execute(cls, model, eta, norm_threshold, momentum) -> io.NodeOutput:
running_avg = 0
prev_sigma = None
@ -65,12 +92,15 @@ class APG:
m = model.clone()
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
return (m,)
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"APG": APG,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"APG": "Adaptive Projected Guidance",
}
class ApgExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
APG,
]
async def comfy_entrypoint() -> ApgExtension:
return ApgExtension()

View File

@ -1,3 +1,7 @@
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def attention_multiply(attn, model, q, k, v, out):
m = model.clone()
@ -16,57 +20,71 @@ def attention_multiply(attn, model, q, k, v, out):
return m
class UNetSelfAttentionMultiply:
class UNetSelfAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetSelfAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
@classmethod
def execute(cls, model, q, k, v, out) -> io.NodeOutput:
m = attention_multiply("attn1", model, q, k, v, out)
return (m, )
return io.NodeOutput(m)
class UNetCrossAttentionMultiply:
class UNetCrossAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetCrossAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
@classmethod
def execute(cls, model, q, k, v, out) -> io.NodeOutput:
m = attention_multiply("attn2", model, q, k, v, out)
return (m, )
return io.NodeOutput(m)
class CLIPAttentionMultiply:
class CLIPAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CLIPAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Clip.Input("clip"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Clip.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, clip, q, k, v, out):
@classmethod
def execute(cls, clip, q, k, v, out) -> io.NodeOutput:
m = clip.clone()
sd = m.patcher.model_state_dict()
@ -79,23 +97,28 @@ class CLIPAttentionMultiply:
m.add_patches({key: (None,)}, 0.0, v)
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
m.add_patches({key: (None,)}, 0.0, out)
return (m, )
return io.NodeOutput(m)
class UNetTemporalAttentionMultiply:
class UNetTemporalAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetTemporalAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("self_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("cross_structural", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("cross_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
@classmethod
def execute(cls, model, self_structural, self_temporal, cross_structural, cross_temporal) -> io.NodeOutput:
m = model.clone()
sd = model.model_state_dict()
@ -110,11 +133,18 @@ class UNetTemporalAttentionMultiply:
m.add_patches({k: (None,)}, 0.0, cross_temporal)
else:
m.add_patches({k: (None,)}, 0.0, cross_structural)
return (m, )
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
"CLIPAttentionMultiply": CLIPAttentionMultiply,
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
}
class AttentionMultiplyExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
UNetSelfAttentionMultiply,
UNetCrossAttentionMultiply,
CLIPAttentionMultiply,
UNetTemporalAttentionMultiply,
]
async def comfy_entrypoint() -> AttentionMultiplyExtension:
return AttentionMultiplyExtension()

View File

@ -0,0 +1,44 @@
import folder_paths
import comfy.audio_encoders.audio_encoders
import comfy.utils
class AudioEncoderLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio_encoder_name": (folder_paths.get_filename_list("audio_encoders"), ),
}}
RETURN_TYPES = ("AUDIO_ENCODER",)
FUNCTION = "load_model"
CATEGORY = "loaders"
def load_model(self, audio_encoder_name):
audio_encoder_name = folder_paths.get_full_path_or_raise("audio_encoders", audio_encoder_name)
sd = comfy.utils.load_torch_file(audio_encoder_name, safe_load=True)
audio_encoder = comfy.audio_encoders.audio_encoders.load_audio_encoder_from_sd(sd)
if audio_encoder is None:
raise RuntimeError("ERROR: audio encoder file is invalid and does not contain a valid model.")
return (audio_encoder,)
class AudioEncoderEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio_encoder": ("AUDIO_ENCODER",),
"audio": ("AUDIO",),
}}
RETURN_TYPES = ("AUDIO_ENCODER_OUTPUT",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, audio_encoder, audio):
output = audio_encoder.encode_audio(audio["waveform"], audio["sample_rate"])
return (output,)
NODE_CLASS_MAPPINGS = {
"AudioEncoderLoader": AudioEncoderLoader,
"AudioEncoderEncode": AudioEncoderEncode,
}

View File

@ -2,12 +2,12 @@ import nodes
import torch
import numpy as np
from einops import rearrange
from typing_extensions import override
import comfy.model_management
from comfy_api.latest import ComfyExtension, io
MAX_RESOLUTION = nodes.MAX_RESOLUTION
CAMERA_DICT = {
"base_T_norm": 1.5,
"base_angle": np.pi/3,
@ -148,32 +148,47 @@ def get_camera_motion(angle, T, speed, n=81):
RT = np.stack(RT)
return RT
class WanCameraEmbedding:
class WanCameraEmbedding(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"camera_pose":(["Static","Pan Up","Pan Down","Pan Left","Pan Right","Zoom In","Zoom Out","Anti Clockwise (ACW)", "ClockWise (CW)"],{"default":"Static"}),
"width": ("INT", {"default": 832, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": MAX_RESOLUTION, "step": 4}),
},
"optional":{
"speed":("FLOAT",{"default":1.0, "min": 0, "max": 10.0, "step": 0.1}),
"fx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}),
"fy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}),
"cx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}),
"cy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}),
}
def define_schema(cls):
return io.Schema(
node_id="WanCameraEmbedding",
category="camera",
inputs=[
io.Combo.Input(
"camera_pose",
options=[
"Static",
"Pan Up",
"Pan Down",
"Pan Left",
"Pan Right",
"Zoom In",
"Zoom Out",
"Anti Clockwise (ACW)",
"ClockWise (CW)",
],
default="Static",
),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Float.Input("speed", default=1.0, min=0, max=10.0, step=0.1, optional=True),
io.Float.Input("fx", default=0.5, min=0, max=1, step=0.000000001, optional=True),
io.Float.Input("fy", default=0.5, min=0, max=1, step=0.000000001, optional=True),
io.Float.Input("cx", default=0.5, min=0, max=1, step=0.01, optional=True),
io.Float.Input("cy", default=0.5, min=0, max=1, step=0.01, optional=True),
],
outputs=[
io.WanCameraEmbedding.Output(display_name="camera_embedding"),
io.Int.Output(display_name="width"),
io.Int.Output(display_name="height"),
io.Int.Output(display_name="length"),
],
)
}
RETURN_TYPES = ("WAN_CAMERA_EMBEDDING","INT","INT","INT")
RETURN_NAMES = ("camera_embedding","width","height","length")
FUNCTION = "run"
CATEGORY = "camera"
def run(self, camera_pose, width, height, length, speed=1.0, fx=0.5, fy=0.5, cx=0.5, cy=0.5):
@classmethod
def execute(cls, camera_pose, width, height, length, speed=1.0, fx=0.5, fy=0.5, cx=0.5, cy=0.5) -> io.NodeOutput:
"""
Use Camera trajectory as extrinsic parameters to calculate Plücker embeddings (Sitzmannet al., 2021)
Adapted from https://github.com/aigc-apps/VideoX-Fun/blob/main/comfyui/comfyui_nodes.py
@ -210,9 +225,15 @@ class WanCameraEmbedding:
control_camera_video = control_camera_video.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
control_camera_video = control_camera_video.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)
return (control_camera_video, width, height, length)
return io.NodeOutput(control_camera_video, width, height, length)
NODE_CLASS_MAPPINGS = {
"WanCameraEmbedding": WanCameraEmbedding,
}
class CameraTrajectoryExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
WanCameraEmbedding,
]
async def comfy_entrypoint() -> CameraTrajectoryExtension:
return CameraTrajectoryExtension()

View File

@ -1,25 +1,41 @@
from kornia.filters import canny
from typing_extensions import override
import comfy.model_management
from comfy_api.latest import ComfyExtension, io
class Canny:
class Canny(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
}}
def define_schema(cls):
return io.Schema(
node_id="Canny",
category="image/preprocessors",
inputs=[
io.Image.Input("image"),
io.Float.Input("low_threshold", default=0.4, min=0.01, max=0.99, step=0.01),
io.Float.Input("high_threshold", default=0.8, min=0.01, max=0.99, step=0.01),
],
outputs=[io.Image.Output()],
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
@classmethod
def detect_edge(cls, image, low_threshold, high_threshold):
# Deprecated: use the V3 schema's `execute` method instead of this.
return cls.execute(image, low_threshold, high_threshold)
CATEGORY = "image/preprocessors"
def detect_edge(self, image, low_threshold, high_threshold):
@classmethod
def execute(cls, image, low_threshold, high_threshold) -> io.NodeOutput:
output = canny(image.to(comfy.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold)
img_out = output[1].to(comfy.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1)
return (img_out,)
return io.NodeOutput(img_out)
NODE_CLASS_MAPPINGS = {
"Canny": Canny,
}
class CannyExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [Canny]
async def comfy_entrypoint() -> CannyExtension:
return CannyExtension()

Some files were not shown because too many files have changed in this diff Show More