diff --git a/comfy/ldm/wan/vae.py b/comfy/ldm/wan/vae.py index 08315f1a8..40e767213 100644 --- a/comfy/ldm/wan/vae.py +++ b/comfy/ldm/wan/vae.py @@ -5,7 +5,7 @@ import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange -from comfy.ldm.modules.diffusionmodules.model import vae_attention +from comfy.ldm.modules.diffusionmodules.model import vae_attention, torch_cat_if_needed import comfy.ops ops = comfy.ops.disable_weight_init @@ -20,22 +20,29 @@ class CausalConv3d(ops.Conv3d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) - self._padding = (self.padding[2], self.padding[2], self.padding[1], - self.padding[1], 2 * self.padding[0], 0) - self.padding = (0, 0, 0) + self._padding = 2 * self.padding[0] + self.padding = (0, self.padding[1], self.padding[2]) def forward(self, x, cache_x=None, cache_list=None, cache_idx=None): if cache_list is not None: cache_x = cache_list[cache_idx] cache_list[cache_idx] = None - padding = list(self._padding) - if cache_x is not None and self._padding[4] > 0: - cache_x = cache_x.to(x.device) - x = torch.cat([cache_x, x], dim=2) - padding[4] -= cache_x.shape[2] + if cache_x is None and x.shape[2] == 1: + #Fast path - the op will pad for use by truncating the weight + #and save math on a pile of zeros. + return super().forward(x, autopad="causal_zero") + + if self._padding > 0: + padding_needed = self._padding + if cache_x is not None: + cache_x = cache_x.to(x.device) + padding_needed = max(0, padding_needed - cache_x.shape[2]) + padding_shape = list(x.shape) + padding_shape[2] = padding_needed + padding = torch.zeros(padding_shape, device=x.device, dtype=x.dtype) + x = torch_cat_if_needed([padding, cache_x, x], dim=2) del cache_x - x = F.pad(x, padding) return super().forward(x) diff --git a/comfy/ops.py b/comfy/ops.py index 415c39e92..e406ba7ed 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -203,7 +203,9 @@ class disable_weight_init: def reset_parameters(self): return None - def _conv_forward(self, input, weight, bias, *args, **kwargs): + def _conv_forward(self, input, weight, bias, autopad=None, *args, **kwargs): + if autopad == "causal_zero": + weight = weight[:, :, -input.shape[2]:, :, :] if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16): out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True) if bias is not None: @@ -212,15 +214,15 @@ class disable_weight_init: else: return super()._conv_forward(input, weight, bias, *args, **kwargs) - def forward_comfy_cast_weights(self, input): + def forward_comfy_cast_weights(self, input, autopad=None): weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) - x = self._conv_forward(input, weight, bias) + x = self._conv_forward(input, weight, bias, autopad=autopad) uncast_bias_weight(self, weight, bias, offload_stream) return x def forward(self, *args, **kwargs): run_every_op() - if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: + if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0 or "autopad" in kwargs: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs)