From 139addd53c6cab97fb0ac28d1c895b3ecc7dff6c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 9 Oct 2025 13:37:35 -0700 Subject: [PATCH 1/6] More surgical fix for #10267 (#10276) --- comfy/model_patcher.py | 28 +++++++++++++++++++++------- comfy/ops.py | 4 +++- 2 files changed, 24 insertions(+), 8 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 1fd03d9d1..e8c859689 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -123,16 +123,26 @@ def move_weight_functions(m, device): return memory class LowVramPatch: - def __init__(self, key, patches): + def __init__(self, key, patches, convert_func=None, set_func=None): self.key = key self.patches = patches + self.convert_func = convert_func + self.set_func = set_func + def __call__(self, weight): + if self.convert_func is not None: + weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True) + intermediate_dtype = weight.dtype - if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops + if self.set_func is None and intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops intermediate_dtype = torch.float32 return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key)) - return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) + out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) + if self.set_func is not None: + return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) + else: + return out def get_key_weight(model, key): set_func = None @@ -657,13 +667,15 @@ class ModelPatcher: if force_patch_weights: self.patch_weight_to_device(weight_key) else: - m.weight_function = [LowVramPatch(weight_key, self.patches)] + _, set_func, convert_func = get_key_weight(self.model, weight_key) + m.weight_function = [LowVramPatch(weight_key, self.patches, convert_func, set_func)] patch_counter += 1 if bias_key in self.patches: if force_patch_weights: self.patch_weight_to_device(bias_key) else: - m.bias_function = [LowVramPatch(bias_key, self.patches)] + _, set_func, convert_func = get_key_weight(self.model, bias_key) + m.bias_function = [LowVramPatch(bias_key, self.patches, convert_func, set_func)] patch_counter += 1 cast_weight = True @@ -825,10 +837,12 @@ class ModelPatcher: module_mem += move_weight_functions(m, device_to) if lowvram_possible: if weight_key in self.patches: - m.weight_function.append(LowVramPatch(weight_key, self.patches)) + _, set_func, convert_func = get_key_weight(self.model, weight_key) + m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func)) patch_counter += 1 if bias_key in self.patches: - m.bias_function.append(LowVramPatch(bias_key, self.patches)) + _, set_func, convert_func = get_key_weight(self.model, bias_key) + m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func)) patch_counter += 1 cast_weight = True diff --git a/comfy/ops.py b/comfy/ops.py index 9d7dedd37..2415c96bf 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -416,8 +416,10 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None else: return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype) - def set_weight(self, weight, inplace_update=False, seed=None, **kwargs): + def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed) + if return_weight: + return weight if inplace_update: self.weight.data.copy_(weight) else: From f3d5d328a39d2f264b35d43f0e9c5a0b4d780c2f Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 10 Oct 2025 01:15:03 +0300 Subject: [PATCH 2/6] fix(v3,api-nodes): V3 schema typing; corrected Pika API nodes (#10265) --- comfy_api/latest/__init__.py | 9 +- comfy_api/latest/_input/video_types.py | 4 +- comfy_api/latest/_io.py | 146 ++++++------- comfy_api/latest/_ui.py | 25 +-- comfy_api_nodes/apinode_utils.py | 2 +- comfy_api_nodes/apis/client.py | 58 +++--- comfy_api_nodes/apis/pika_defs.py | 100 +++++++++ comfy_api_nodes/nodes_pika.py | 277 ++++++++----------------- 8 files changed, 309 insertions(+), 312 deletions(-) create mode 100644 comfy_api_nodes/apis/pika_defs.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index 2cee65aa9..b19a97f1d 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -8,8 +8,8 @@ from comfy_api.internal.async_to_sync import create_sync_class from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents -from comfy_api.latest._io import _IO as io #noqa: F401 -from comfy_api.latest._ui import _UI as ui #noqa: F401 +from . import _io as io +from . import _ui as ui # from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple @@ -114,6 +114,8 @@ if TYPE_CHECKING: ComfyAPISync: Type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub] ComfyAPISync = create_sync_class(ComfyAPI_latest) +comfy_io = io # create the new alias for io + __all__ = [ "ComfyAPI", "ComfyAPISync", @@ -121,4 +123,7 @@ __all__ = [ "InputImpl", "Types", "ComfyExtension", + "io", + "comfy_io", + "ui", ] diff --git a/comfy_api/latest/_input/video_types.py b/comfy_api/latest/_input/video_types.py index 5d95dc507..a335df4d0 100644 --- a/comfy_api/latest/_input/video_types.py +++ b/comfy_api/latest/_input/video_types.py @@ -1,6 +1,6 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Optional, Union +from typing import Optional, Union, IO import io import av from comfy_api.util import VideoContainer, VideoCodec, VideoComponents @@ -23,7 +23,7 @@ class VideoInput(ABC): @abstractmethod def save_to( self, - path: str, + path: Union[str, IO[bytes]], format: VideoContainer = VideoContainer.AUTO, codec: VideoCodec = VideoCodec.AUTO, metadata: Optional[dict] = None diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 661309f19..0b701260f 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -1582,78 +1582,78 @@ class _UIOutput(ABC): ... -class _IO: - FolderType = FolderType - UploadType = UploadType - RemoteOptions = RemoteOptions - NumberDisplay = NumberDisplay +__all__ = [ + "FolderType", + "UploadType", + "RemoteOptions", + "NumberDisplay", - comfytype = staticmethod(comfytype) - Custom = staticmethod(Custom) - Input = Input - WidgetInput = WidgetInput - Output = Output - ComfyTypeI = ComfyTypeI - ComfyTypeIO = ComfyTypeIO - #--------------------------------- + "comfytype", + "Custom", + "Input", + "WidgetInput", + "Output", + "ComfyTypeI", + "ComfyTypeIO", # Supported Types - Boolean = Boolean - Int = Int - Float = Float - String = String - Combo = Combo - MultiCombo = MultiCombo - Image = Image - WanCameraEmbedding = WanCameraEmbedding - Webcam = Webcam - Mask = Mask - Latent = Latent - Conditioning = Conditioning - Sampler = Sampler - Sigmas = Sigmas - Noise = Noise - Guider = Guider - Clip = Clip - ControlNet = ControlNet - Vae = Vae - Model = Model - ClipVision = ClipVision - ClipVisionOutput = ClipVisionOutput - AudioEncoder = AudioEncoder - AudioEncoderOutput = AudioEncoderOutput - StyleModel = StyleModel - Gligen = Gligen - UpscaleModel = UpscaleModel - Audio = Audio - Video = Video - SVG = SVG - LoraModel = LoraModel - LossMap = LossMap - Voxel = Voxel - Mesh = Mesh - Hooks = Hooks - HookKeyframes = HookKeyframes - TimestepsRange = TimestepsRange - LatentOperation = LatentOperation - FlowControl = FlowControl - Accumulation = Accumulation - Load3DCamera = Load3DCamera - Load3D = Load3D - Load3DAnimation = Load3DAnimation - Photomaker = Photomaker - Point = Point - FaceAnalysis = FaceAnalysis - BBOX = BBOX - SEGS = SEGS - AnyType = AnyType - MultiType = MultiType - #--------------------------------- - HiddenHolder = HiddenHolder - Hidden = Hidden - NodeInfoV1 = NodeInfoV1 - NodeInfoV3 = NodeInfoV3 - Schema = Schema - ComfyNode = ComfyNode - NodeOutput = NodeOutput - add_to_dict_v1 = staticmethod(add_to_dict_v1) - add_to_dict_v3 = staticmethod(add_to_dict_v3) + "Boolean", + "Int", + "Float", + "String", + "Combo", + "MultiCombo", + "Image", + "WanCameraEmbedding", + "Webcam", + "Mask", + "Latent", + "Conditioning", + "Sampler", + "Sigmas", + "Noise", + "Guider", + "Clip", + "ControlNet", + "Vae", + "Model", + "ClipVision", + "ClipVisionOutput", + "AudioEncoder", + "AudioEncoderOutput", + "StyleModel", + "Gligen", + "UpscaleModel", + "Audio", + "Video", + "SVG", + "LoraModel", + "LossMap", + "Voxel", + "Mesh", + "Hooks", + "HookKeyframes", + "TimestepsRange", + "LatentOperation", + "FlowControl", + "Accumulation", + "Load3DCamera", + "Load3D", + "Load3DAnimation", + "Photomaker", + "Point", + "FaceAnalysis", + "BBOX", + "SEGS", + "AnyType", + "MultiType", + # Other classes + "HiddenHolder", + "Hidden", + "NodeInfoV1", + "NodeInfoV3", + "Schema", + "ComfyNode", + "NodeOutput", + "add_to_dict_v1", + "add_to_dict_v3", +] diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index 26a55615f..b0bbabe2a 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -449,15 +449,16 @@ class PreviewText(_UIOutput): return {"text": (self.value,)} -class _UI: - SavedResult = SavedResult - SavedImages = SavedImages - SavedAudios = SavedAudios - ImageSaveHelper = ImageSaveHelper - AudioSaveHelper = AudioSaveHelper - PreviewImage = PreviewImage - PreviewMask = PreviewMask - PreviewAudio = PreviewAudio - PreviewVideo = PreviewVideo - PreviewUI3D = PreviewUI3D - PreviewText = PreviewText +__all__ = [ + "SavedResult", + "SavedImages", + "SavedAudios", + "ImageSaveHelper", + "AudioSaveHelper", + "PreviewImage", + "PreviewMask", + "PreviewAudio", + "PreviewVideo", + "PreviewUI3D", + "PreviewText", +] diff --git a/comfy_api_nodes/apinode_utils.py b/comfy_api_nodes/apinode_utils.py index 2e0dc4dc1..4bab539f7 100644 --- a/comfy_api_nodes/apinode_utils.py +++ b/comfy_api_nodes/apinode_utils.py @@ -269,7 +269,7 @@ def tensor_to_bytesio( mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). Returns: - Named BytesIO object containing the image data. + Named BytesIO object containing the image data, with pointer set to the start of buffer. """ if not mime_type: mime_type = "image/png" diff --git a/comfy_api_nodes/apis/client.py b/comfy_api_nodes/apis/client.py index a3ceafbae..e08dfb093 100644 --- a/comfy_api_nodes/apis/client.py +++ b/comfy_api_nodes/apis/client.py @@ -98,7 +98,7 @@ import io import os import socket from aiohttp.client_exceptions import ClientError, ClientResponseError -from typing import Dict, Type, Optional, Any, TypeVar, Generic, Callable, Tuple +from typing import Type, Optional, Any, TypeVar, Generic, Callable from enum import Enum import json from urllib.parse import urljoin, urlparse @@ -175,7 +175,7 @@ class ApiClient: max_retries: int = 3, retry_delay: float = 1.0, retry_backoff_factor: float = 2.0, - retry_status_codes: Optional[Tuple[int, ...]] = None, + retry_status_codes: Optional[tuple[int, ...]] = None, session: Optional[aiohttp.ClientSession] = None, ): self.base_url = base_url @@ -199,9 +199,9 @@ class ApiClient: @staticmethod def _create_json_payload_args( - data: Optional[Dict[str, Any]] = None, - headers: Optional[Dict[str, str]] = None, - ) -> Dict[str, Any]: + data: Optional[dict[str, Any]] = None, + headers: Optional[dict[str, str]] = None, + ) -> dict[str, Any]: return { "json": data, "headers": headers, @@ -209,11 +209,11 @@ class ApiClient: def _create_form_data_args( self, - data: Dict[str, Any] | None, - files: Dict[str, Any] | None, - headers: Optional[Dict[str, str]] = None, + data: dict[str, Any] | None, + files: dict[str, Any] | None, + headers: Optional[dict[str, str]] = None, multipart_parser: Callable | None = None, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: if headers and "Content-Type" in headers: del headers["Content-Type"] @@ -254,9 +254,9 @@ class ApiClient: @staticmethod def _create_urlencoded_form_data_args( - data: Dict[str, Any], - headers: Optional[Dict[str, str]] = None, - ) -> Dict[str, Any]: + data: dict[str, Any], + headers: Optional[dict[str, str]] = None, + ) -> dict[str, Any]: headers = headers or {} headers["Content-Type"] = "application/x-www-form-urlencoded" return { @@ -264,7 +264,7 @@ class ApiClient: "headers": headers, } - def get_headers(self) -> Dict[str, str]: + def get_headers(self) -> dict[str, str]: """Get headers for API requests, including authentication if available""" headers = {"Content-Type": "application/json", "Accept": "application/json"} @@ -275,7 +275,7 @@ class ApiClient: return headers - async def _check_connectivity(self, target_url: str) -> Dict[str, bool]: + async def _check_connectivity(self, target_url: str) -> dict[str, bool]: """ Check connectivity to determine if network issues are local or server-related. @@ -316,14 +316,14 @@ class ApiClient: self, method: str, path: str, - params: Optional[Dict[str, Any]] = None, - data: Optional[Dict[str, Any]] = None, - files: Optional[Dict[str, Any] | list[tuple[str, Any]]] = None, - headers: Optional[Dict[str, str]] = None, + params: Optional[dict[str, Any]] = None, + data: Optional[dict[str, Any]] = None, + files: Optional[dict[str, Any] | list[tuple[str, Any]]] = None, + headers: Optional[dict[str, str]] = None, content_type: str = "application/json", multipart_parser: Callable | None = None, retry_count: int = 0, # Used internally for tracking retries - ) -> Dict[str, Any]: + ) -> dict[str, Any]: """ Make an HTTP request to the API with automatic retries for transient errors. @@ -485,7 +485,7 @@ class ApiClient: retry_delay: Initial delay between retries in seconds retry_backoff_factor: Multiplier for the delay after each retry """ - headers: Dict[str, str] = {} + headers: dict[str, str] = {} skip_auto_headers: set[str] = set() if content_type: headers["Content-Type"] = content_type @@ -558,7 +558,7 @@ class ApiClient: *req_meta, retry_count: int, response_content: dict | str = "", - ) -> Dict[str, Any]: + ) -> dict[str, Any]: status_code = exc.status if status_code == 401: user_friendly = "Unauthorized: Please login first to use this node." @@ -659,7 +659,7 @@ class ApiEndpoint(Generic[T, R]): method: HttpMethod, request_model: Type[T], response_model: Type[R], - query_params: Optional[Dict[str, Any]] = None, + query_params: Optional[dict[str, Any]] = None, ): """Initialize an API endpoint definition. @@ -684,11 +684,11 @@ class SynchronousOperation(Generic[T, R]): self, endpoint: ApiEndpoint[T, R], request: T, - files: Optional[Dict[str, Any] | list[tuple[str, Any]]] = None, + files: Optional[dict[str, Any] | list[tuple[str, Any]]] = None, api_base: str | None = None, auth_token: Optional[str] = None, comfy_api_key: Optional[str] = None, - auth_kwargs: Optional[Dict[str, str]] = None, + auth_kwargs: Optional[dict[str, str]] = None, timeout: float = 7200.0, verify_ssl: bool = True, content_type: str = "application/json", @@ -729,7 +729,7 @@ class SynchronousOperation(Generic[T, R]): ) try: - request_dict: Optional[Dict[str, Any]] + request_dict: Optional[dict[str, Any]] if isinstance(self.request, EmptyRequest): request_dict = None else: @@ -782,14 +782,14 @@ class PollingOperation(Generic[T, R]): poll_endpoint: ApiEndpoint[EmptyRequest, R], completed_statuses: list[str], failed_statuses: list[str], - status_extractor: Callable[[R], str], - progress_extractor: Callable[[R], float] | None = None, - result_url_extractor: Callable[[R], str] | None = None, + status_extractor: Callable[[R], Optional[str]], + progress_extractor: Callable[[R], Optional[float]] | None = None, + result_url_extractor: Callable[[R], Optional[str]] | None = None, request: Optional[T] = None, api_base: str | None = None, auth_token: Optional[str] = None, comfy_api_key: Optional[str] = None, - auth_kwargs: Optional[Dict[str, str]] = None, + auth_kwargs: Optional[dict[str, str]] = None, poll_interval: float = 5.0, max_poll_attempts: int = 120, # Default max polling attempts (10 minutes with 5s interval) max_retries: int = 3, # Max retries per individual API call diff --git a/comfy_api_nodes/apis/pika_defs.py b/comfy_api_nodes/apis/pika_defs.py new file mode 100644 index 000000000..232558cd7 --- /dev/null +++ b/comfy_api_nodes/apis/pika_defs.py @@ -0,0 +1,100 @@ +from typing import Optional +from enum import Enum +from pydantic import BaseModel, Field + + +class Pikaffect(str, Enum): + Cake_ify = "Cake-ify" + Crumble = "Crumble" + Crush = "Crush" + Decapitate = "Decapitate" + Deflate = "Deflate" + Dissolve = "Dissolve" + Explode = "Explode" + Eye_pop = "Eye-pop" + Inflate = "Inflate" + Levitate = "Levitate" + Melt = "Melt" + Peel = "Peel" + Poke = "Poke" + Squish = "Squish" + Ta_da = "Ta-da" + Tear = "Tear" + + +class PikaBodyGenerate22C2vGenerate22PikascenesPost(BaseModel): + aspectRatio: Optional[float] = Field(None, description='Aspect ratio (width / height)') + duration: Optional[int] = Field(5) + ingredientsMode: str = Field(...) + negativePrompt: Optional[str] = Field(None) + promptText: Optional[str] = Field(None) + resolution: Optional[str] = Field('1080p') + seed: Optional[int] = Field(None) + + +class PikaGenerateResponse(BaseModel): + video_id: str = Field(...) + + +class PikaBodyGenerate22I2vGenerate22I2vPost(BaseModel): + duration: Optional[int] = 5 + negativePrompt: Optional[str] = Field(None) + promptText: Optional[str] = Field(None) + resolution: Optional[str] = '1080p' + seed: Optional[int] = Field(None) + + +class PikaBodyGenerate22KeyframeGenerate22PikaframesPost(BaseModel): + duration: Optional[int] = Field(None, ge=5, le=10) + negativePrompt: Optional[str] = Field(None) + promptText: str = Field(...) + resolution: Optional[str] = '1080p' + seed: Optional[int] = Field(None) + + +class PikaBodyGenerate22T2vGenerate22T2vPost(BaseModel): + aspectRatio: Optional[float] = Field( + 1.7777777777777777, + description='Aspect ratio (width / height)', + ge=0.4, + le=2.5, + ) + duration: Optional[int] = 5 + negativePrompt: Optional[str] = Field(None) + promptText: str = Field(...) + resolution: Optional[str] = '1080p' + seed: Optional[int] = Field(None) + + +class PikaBodyGeneratePikadditionsGeneratePikadditionsPost(BaseModel): + negativePrompt: Optional[str] = Field(None) + promptText: Optional[str] = Field(None) + seed: Optional[int] = Field(None) + + +class PikaBodyGeneratePikaffectsGeneratePikaffectsPost(BaseModel): + negativePrompt: Optional[str] = Field(None) + pikaffect: Optional[str] = None + promptText: Optional[str] = Field(None) + seed: Optional[int] = Field(None) + + +class PikaBodyGeneratePikaswapsGeneratePikaswapsPost(BaseModel): + negativePrompt: Optional[str] = Field(None) + promptText: Optional[str] = Field(None) + seed: Optional[int] = Field(None) + modifyRegionRoi: Optional[str] = Field(None) + + +class PikaStatusEnum(str, Enum): + queued = "queued" + started = "started" + finished = "finished" + failed = "failed" + + +class PikaVideoResponse(BaseModel): + id: str = Field(...) + progress: Optional[int] = Field(None) + status: PikaStatusEnum + url: Optional[str] = Field(None) diff --git a/comfy_api_nodes/nodes_pika.py b/comfy_api_nodes/nodes_pika.py index 35d6baf1c..10f11666d 100644 --- a/comfy_api_nodes/nodes_pika.py +++ b/comfy_api_nodes/nodes_pika.py @@ -8,30 +8,17 @@ from __future__ import annotations from io import BytesIO import logging from typing import Optional, TypeVar -from enum import Enum -import numpy as np import torch from typing_extensions import override -from comfy_api.latest import ComfyExtension, io as comfy_io -from comfy_api.input_impl import VideoFromFile +from comfy_api.latest import ComfyExtension, comfy_io from comfy_api.input_impl.video_types import VideoCodec, VideoContainer, VideoInput from comfy_api_nodes.apinode_utils import ( download_url_to_video_output, tensor_to_bytesio, ) -from comfy_api_nodes.apis import ( - PikaBodyGenerate22C2vGenerate22PikascenesPost, - PikaBodyGenerate22I2vGenerate22I2vPost, - PikaBodyGenerate22KeyframeGenerate22PikaframesPost, - PikaBodyGenerate22T2vGenerate22T2vPost, - PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - PikaBodyGeneratePikaswapsGeneratePikaswapsPost, - PikaGenerateResponse, - PikaVideoResponse, -) +from comfy_api_nodes.apis import pika_defs from comfy_api_nodes.apis.client import ( ApiEndpoint, EmptyRequest, @@ -55,116 +42,36 @@ PATH_PIKASCENES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikascenes" PATH_VIDEO_GET = "/proxy/pika/videos" -class PikaDurationEnum(int, Enum): - integer_5 = 5 - integer_10 = 10 - - -class PikaResolutionEnum(str, Enum): - field_1080p = "1080p" - field_720p = "720p" - - -class Pikaffect(str, Enum): - Cake_ify = "Cake-ify" - Crumble = "Crumble" - Crush = "Crush" - Decapitate = "Decapitate" - Deflate = "Deflate" - Dissolve = "Dissolve" - Explode = "Explode" - Eye_pop = "Eye-pop" - Inflate = "Inflate" - Levitate = "Levitate" - Melt = "Melt" - Peel = "Peel" - Poke = "Poke" - Squish = "Squish" - Ta_da = "Ta-da" - Tear = "Tear" - - -class PikaApiError(Exception): - """Exception for Pika API errors.""" - - pass - - -def is_valid_video_response(response: PikaVideoResponse) -> bool: - """Check if the video response is valid.""" - return hasattr(response, "url") and response.url is not None - - -def is_valid_initial_response(response: PikaGenerateResponse) -> bool: - """Check if the initial response is valid.""" - return hasattr(response, "video_id") and response.video_id is not None - - -async def poll_for_task_status( - task_id: str, +async def execute_task( + initial_operation: SynchronousOperation[R, pika_defs.PikaGenerateResponse], auth_kwargs: Optional[dict[str, str]] = None, node_id: Optional[str] = None, -) -> PikaGenerateResponse: - polling_operation = PollingOperation( +) -> comfy_io.NodeOutput: + task_id = (await initial_operation.execute()).video_id + final_response: pika_defs.PikaVideoResponse = await PollingOperation( poll_endpoint=ApiEndpoint( path=f"{PATH_VIDEO_GET}/{task_id}", method=HttpMethod.GET, request_model=EmptyRequest, - response_model=PikaVideoResponse, + response_model=pika_defs.PikaVideoResponse, ), - completed_statuses=[ - "finished", - ], + completed_statuses=["finished"], failed_statuses=["failed", "cancelled"], - status_extractor=lambda response: ( - response.status.value if response.status else None - ), - progress_extractor=lambda response: ( - response.progress if hasattr(response, "progress") else None - ), + status_extractor=lambda response: (response.status.value if response.status else None), + progress_extractor=lambda response: (response.progress if hasattr(response, "progress") else None), auth_kwargs=auth_kwargs, - result_url_extractor=lambda response: ( - response.url if hasattr(response, "url") else None - ), + result_url_extractor=lambda response: (response.url if hasattr(response, "url") else None), node_id=node_id, - estimated_duration=60 - ) - return await polling_operation.execute() - - -async def execute_task( - initial_operation: SynchronousOperation[R, PikaGenerateResponse], - auth_kwargs: Optional[dict[str, str]] = None, - node_id: Optional[str] = None, -) -> tuple[VideoFromFile]: - """Executes the initial operation then polls for the task status until it is completed. - - Args: - initial_operation: The initial operation to execute. - auth_kwargs: The authentication token(s) to use for the API call. - - Returns: - A tuple containing the video file as a VIDEO output. - """ - initial_response = await initial_operation.execute() - if not is_valid_initial_response(initial_response): - error_msg = f"Pika initial request failed. Code: {initial_response.code}, Message: {initial_response.message}, Data: {initial_response.data}" + estimated_duration=60, + max_poll_attempts=240, + ).execute() + if not final_response.url: + error_msg = f"Pika task {task_id} succeeded but no video data found in response:\n{final_response}" logging.error(error_msg) - raise PikaApiError(error_msg) - - task_id = initial_response.video_id - final_response = await poll_for_task_status(task_id, auth_kwargs, node_id=node_id) - if not is_valid_video_response(final_response): - error_msg = ( - f"Pika task {task_id} succeeded but no video data found in response." - ) - logging.error(error_msg) - raise PikaApiError(error_msg) - - video_url = str(final_response.url) + raise Exception(error_msg) + video_url = final_response.url logging.info("Pika task %s succeeded. Video URL: %s", task_id, video_url) - - return (await download_url_to_video_output(video_url),) + return comfy_io.NodeOutput(await download_url_to_video_output(video_url)) def get_base_inputs_types() -> list[comfy_io.Input]: @@ -173,16 +80,12 @@ def get_base_inputs_types() -> list[comfy_io.Input]: comfy_io.String.Input("prompt_text", multiline=True), comfy_io.String.Input("negative_prompt", multiline=True), comfy_io.Int.Input("seed", min=0, max=0xFFFFFFFF, control_after_generate=True), - comfy_io.Combo.Input( - "resolution", options=PikaResolutionEnum, default=PikaResolutionEnum.field_1080p - ), - comfy_io.Combo.Input( - "duration", options=PikaDurationEnum, default=PikaDurationEnum.integer_5 - ), + comfy_io.Combo.Input("resolution", options=["1080p", "720p"], default="1080p"), + comfy_io.Combo.Input("duration", options=[5, 10], default=5), ] -class PikaImageToVideoV2_2(comfy_io.ComfyNode): +class PikaImageToVideo(comfy_io.ComfyNode): """Pika 2.2 Image to Video Node.""" @classmethod @@ -215,14 +118,9 @@ class PikaImageToVideoV2_2(comfy_io.ComfyNode): resolution: str, duration: int, ) -> comfy_io.NodeOutput: - # Convert image to BytesIO image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - pika_files = {"image": ("image.png", image_bytes_io, "image/png")} - - # Prepare non-file data - pika_request_data = PikaBodyGenerate22I2vGenerate22I2vPost( + pika_request_data = pika_defs.PikaBodyGenerate22I2vGenerate22I2vPost( promptText=prompt_text, negativePrompt=negative_prompt, seed=seed, @@ -237,8 +135,8 @@ class PikaImageToVideoV2_2(comfy_io.ComfyNode): endpoint=ApiEndpoint( path=PATH_IMAGE_TO_VIDEO, method=HttpMethod.POST, - request_model=PikaBodyGenerate22I2vGenerate22I2vPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGenerate22I2vGenerate22I2vPost, + response_model=pika_defs.PikaGenerateResponse, ), request=pika_request_data, files=pika_files, @@ -248,7 +146,7 @@ class PikaImageToVideoV2_2(comfy_io.ComfyNode): return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id) -class PikaTextToVideoNodeV2_2(comfy_io.ComfyNode): +class PikaTextToVideoNode(comfy_io.ComfyNode): """Pika Text2Video v2.2 Node.""" @classmethod @@ -296,10 +194,10 @@ class PikaTextToVideoNodeV2_2(comfy_io.ComfyNode): endpoint=ApiEndpoint( path=PATH_TEXT_TO_VIDEO, method=HttpMethod.POST, - request_model=PikaBodyGenerate22T2vGenerate22T2vPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGenerate22T2vGenerate22T2vPost, + response_model=pika_defs.PikaGenerateResponse, ), - request=PikaBodyGenerate22T2vGenerate22T2vPost( + request=pika_defs.PikaBodyGenerate22T2vGenerate22T2vPost( promptText=prompt_text, negativePrompt=negative_prompt, seed=seed, @@ -313,7 +211,7 @@ class PikaTextToVideoNodeV2_2(comfy_io.ComfyNode): return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id) -class PikaScenesV2_2(comfy_io.ComfyNode): +class PikaScenes(comfy_io.ComfyNode): """PikaScenes v2.2 Node.""" @classmethod @@ -389,7 +287,6 @@ class PikaScenesV2_2(comfy_io.ComfyNode): image_ingredient_4: Optional[torch.Tensor] = None, image_ingredient_5: Optional[torch.Tensor] = None, ) -> comfy_io.NodeOutput: - # Convert all passed images to BytesIO all_image_bytes_io = [] for image in [ image_ingredient_1, @@ -399,16 +296,14 @@ class PikaScenesV2_2(comfy_io.ComfyNode): image_ingredient_5, ]: if image is not None: - image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - all_image_bytes_io.append(image_bytes_io) + all_image_bytes_io.append(tensor_to_bytesio(image)) pika_files = [ ("images", (f"image_{i}.png", image_bytes_io, "image/png")) for i, image_bytes_io in enumerate(all_image_bytes_io) ] - pika_request_data = PikaBodyGenerate22C2vGenerate22PikascenesPost( + pika_request_data = pika_defs.PikaBodyGenerate22C2vGenerate22PikascenesPost( ingredientsMode=ingredients_mode, promptText=prompt_text, negativePrompt=negative_prompt, @@ -425,8 +320,8 @@ class PikaScenesV2_2(comfy_io.ComfyNode): endpoint=ApiEndpoint( path=PATH_PIKASCENES, method=HttpMethod.POST, - request_model=PikaBodyGenerate22C2vGenerate22PikascenesPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGenerate22C2vGenerate22PikascenesPost, + response_model=pika_defs.PikaGenerateResponse, ), request=pika_request_data, files=pika_files, @@ -477,22 +372,16 @@ class PikAdditionsNode(comfy_io.ComfyNode): negative_prompt: str, seed: int, ) -> comfy_io.NodeOutput: - # Convert video to BytesIO video_bytes_io = BytesIO() video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264) video_bytes_io.seek(0) - # Convert image to BytesIO image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - pika_files = { "video": ("video.mp4", video_bytes_io, "video/mp4"), "image": ("image.png", image_bytes_io, "image/png"), } - - # Prepare non-file data - pika_request_data = PikaBodyGeneratePikadditionsGeneratePikadditionsPost( + pika_request_data = pika_defs.PikaBodyGeneratePikadditionsGeneratePikadditionsPost( promptText=prompt_text, negativePrompt=negative_prompt, seed=seed, @@ -505,8 +394,8 @@ class PikAdditionsNode(comfy_io.ComfyNode): endpoint=ApiEndpoint( path=PATH_PIKADDITIONS, method=HttpMethod.POST, - request_model=PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGeneratePikadditionsGeneratePikadditionsPost, + response_model=pika_defs.PikaGenerateResponse, ), request=pika_request_data, files=pika_files, @@ -529,11 +418,25 @@ class PikaSwapsNode(comfy_io.ComfyNode): category="api node/video/Pika", inputs=[ comfy_io.Video.Input("video", tooltip="The video to swap an object in."), - comfy_io.Image.Input("image", tooltip="The image used to replace the masked object in the video."), - comfy_io.Mask.Input("mask", tooltip="Use the mask to define areas in the video to replace"), - comfy_io.String.Input("prompt_text", multiline=True), - comfy_io.String.Input("negative_prompt", multiline=True), - comfy_io.Int.Input("seed", min=0, max=0xFFFFFFFF, control_after_generate=True), + comfy_io.Image.Input( + "image", + tooltip="The image used to replace the masked object in the video.", + optional=True, + ), + comfy_io.Mask.Input( + "mask", + tooltip="Use the mask to define areas in the video to replace.", + optional=True, + ), + comfy_io.String.Input("prompt_text", multiline=True, optional=True), + comfy_io.String.Input("negative_prompt", multiline=True, optional=True), + comfy_io.Int.Input("seed", min=0, max=0xFFFFFFFF, control_after_generate=True, optional=True), + comfy_io.String.Input( + "region_to_modify", + multiline=True, + optional=True, + tooltip="Plaintext description of the object / region to modify.", + ), ], outputs=[comfy_io.Video.Output()], hidden=[ @@ -548,41 +451,29 @@ class PikaSwapsNode(comfy_io.ComfyNode): async def execute( cls, video: VideoInput, - image: torch.Tensor, - mask: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, + image: Optional[torch.Tensor] = None, + mask: Optional[torch.Tensor] = None, + prompt_text: str = "", + negative_prompt: str = "", + seed: int = 0, + region_to_modify: str = "", ) -> comfy_io.NodeOutput: - # Convert video to BytesIO video_bytes_io = BytesIO() video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264) video_bytes_io.seek(0) - - # Convert mask to binary mask with three channels - mask = torch.round(mask) - mask = mask.repeat(1, 3, 1, 1) - - # Convert 3-channel binary mask to BytesIO - mask_bytes_io = BytesIO() - mask_bytes_io.write(mask.numpy().astype(np.uint8)) - mask_bytes_io.seek(0) - - # Convert image to BytesIO - image_bytes_io = tensor_to_bytesio(image) - image_bytes_io.seek(0) - pika_files = { "video": ("video.mp4", video_bytes_io, "video/mp4"), - "image": ("image.png", image_bytes_io, "image/png"), - "modifyRegionMask": ("mask.png", mask_bytes_io, "image/png"), } + if mask is not None: + pika_files["modifyRegionMask"] = ("mask.png", tensor_to_bytesio(mask), "image/png") + if image is not None: + pika_files["image"] = ("image.png", tensor_to_bytesio(image), "image/png") - # Prepare non-file data - pika_request_data = PikaBodyGeneratePikaswapsGeneratePikaswapsPost( + pika_request_data = pika_defs.PikaBodyGeneratePikaswapsGeneratePikaswapsPost( promptText=prompt_text, negativePrompt=negative_prompt, seed=seed, + modifyRegionRoi=region_to_modify if region_to_modify else None, ) auth = { "auth_token": cls.hidden.auth_token_comfy_org, @@ -590,10 +481,10 @@ class PikaSwapsNode(comfy_io.ComfyNode): } initial_operation = SynchronousOperation( endpoint=ApiEndpoint( - path=PATH_PIKADDITIONS, + path=PATH_PIKASWAPS, method=HttpMethod.POST, - request_model=PikaBodyGeneratePikadditionsGeneratePikadditionsPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGeneratePikaswapsGeneratePikaswapsPost, + response_model=pika_defs.PikaGenerateResponse, ), request=pika_request_data, files=pika_files, @@ -616,7 +507,7 @@ class PikaffectsNode(comfy_io.ComfyNode): inputs=[ comfy_io.Image.Input("image", tooltip="The reference image to apply the Pikaffect to."), comfy_io.Combo.Input( - "pikaffect", options=Pikaffect, default="Cake-ify" + "pikaffect", options=pika_defs.Pikaffect, default="Cake-ify" ), comfy_io.String.Input("prompt_text", multiline=True), comfy_io.String.Input("negative_prompt", multiline=True), @@ -648,10 +539,10 @@ class PikaffectsNode(comfy_io.ComfyNode): endpoint=ApiEndpoint( path=PATH_PIKAFFECTS, method=HttpMethod.POST, - request_model=PikaBodyGeneratePikaffectsGeneratePikaffectsPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGeneratePikaffectsGeneratePikaffectsPost, + response_model=pika_defs.PikaGenerateResponse, ), - request=PikaBodyGeneratePikaffectsGeneratePikaffectsPost( + request=pika_defs.PikaBodyGeneratePikaffectsGeneratePikaffectsPost( pikaffect=pikaffect, promptText=prompt_text, negativePrompt=negative_prompt, @@ -664,7 +555,7 @@ class PikaffectsNode(comfy_io.ComfyNode): return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id) -class PikaStartEndFrameNode2_2(comfy_io.ComfyNode): +class PikaStartEndFrameNode(comfy_io.ComfyNode): """PikaFrames v2.2 Node.""" @classmethod @@ -711,10 +602,10 @@ class PikaStartEndFrameNode2_2(comfy_io.ComfyNode): endpoint=ApiEndpoint( path=PATH_PIKAFRAMES, method=HttpMethod.POST, - request_model=PikaBodyGenerate22KeyframeGenerate22PikaframesPost, - response_model=PikaGenerateResponse, + request_model=pika_defs.PikaBodyGenerate22KeyframeGenerate22PikaframesPost, + response_model=pika_defs.PikaGenerateResponse, ), - request=PikaBodyGenerate22KeyframeGenerate22PikaframesPost( + request=pika_defs.PikaBodyGenerate22KeyframeGenerate22PikaframesPost( promptText=prompt_text, negativePrompt=negative_prompt, seed=seed, @@ -732,13 +623,13 @@ class PikaApiNodesExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: return [ - PikaImageToVideoV2_2, - PikaTextToVideoNodeV2_2, - PikaScenesV2_2, + PikaImageToVideo, + PikaTextToVideoNode, + PikaScenes, PikAdditionsNode, PikaSwapsNode, PikaffectsNode, - PikaStartEndFrameNode2_2, + PikaStartEndFrameNode, ] From fc0fbf141c7deb444fe730af2f2db8e2beddaf60 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 10 Oct 2025 01:18:23 +0300 Subject: [PATCH 3/6] convert nodes_sd3.py and nodes_slg.py to V3 schema (#10162) --- comfy_extras/nodes_sd3.py | 232 +++++++++++++++++++++++++------------- comfy_extras/nodes_slg.py | 108 +++++++++++------- 2 files changed, 219 insertions(+), 121 deletions(-) diff --git a/comfy_extras/nodes_sd3.py b/comfy_extras/nodes_sd3.py index d75b29e60..14782cb2b 100644 --- a/comfy_extras/nodes_sd3.py +++ b/comfy_extras/nodes_sd3.py @@ -3,64 +3,83 @@ import comfy.sd import comfy.model_management import nodes import torch -import comfy_extras.nodes_slg +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_extras.nodes_slg import SkipLayerGuidanceDiT -class TripleCLIPLoader: +class TripleCLIPLoader(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), "clip_name3": (folder_paths.get_filename_list("text_encoders"), ) - }} - RETURN_TYPES = ("CLIP",) - FUNCTION = "load_clip" + def define_schema(cls): + return io.Schema( + node_id="TripleCLIPLoader", + category="advanced/loaders", + description="[Recipes]\n\nsd3: clip-l, clip-g, t5", + inputs=[ + io.Combo.Input("clip_name1", options=folder_paths.get_filename_list("text_encoders")), + io.Combo.Input("clip_name2", options=folder_paths.get_filename_list("text_encoders")), + io.Combo.Input("clip_name3", options=folder_paths.get_filename_list("text_encoders")), + ], + outputs=[ + io.Clip.Output(), + ], + ) - CATEGORY = "advanced/loaders" - - DESCRIPTION = "[Recipes]\n\nsd3: clip-l, clip-g, t5" - - def load_clip(self, clip_name1, clip_name2, clip_name3): + @classmethod + def execute(cls, clip_name1, clip_name2, clip_name3) -> io.NodeOutput: clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1) clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2) clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3) clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3], embedding_directory=folder_paths.get_folder_paths("embeddings")) - return (clip,) + return io.NodeOutput(clip) + + load_clip = execute # TODO: remove -class EmptySD3LatentImage: - def __init__(self): - self.device = comfy.model_management.intermediate_device() +class EmptySD3LatentImage(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="EmptySD3LatentImage", + category="latent/sd3", + inputs=[ + io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" + def execute(cls, width, height, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples":latent}) - CATEGORY = "latent/sd3" - - def generate(self, width, height, batch_size=1): - latent = torch.zeros([batch_size, 16, height // 8, width // 8], device=self.device) - return ({"samples":latent}, ) + generate = execute # TODO: remove -class CLIPTextEncodeSD3: +class CLIPTextEncodeSD3(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "clip": ("CLIP", ), - "clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "clip_g": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "empty_padding": (["none", "empty_prompt"], ) - }} - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "encode" + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeSD3", + category="advanced/conditioning", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("clip_g", multiline=True, dynamic_prompts=True), + io.String.Input("t5xxl", multiline=True, dynamic_prompts=True), + io.Combo.Input("empty_padding", options=["none", "empty_prompt"]), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - CATEGORY = "advanced/conditioning" - - def encode(self, clip, clip_l, clip_g, t5xxl, empty_padding): + @classmethod + def execute(cls, clip, clip_l, clip_g, t5xxl, empty_padding) -> io.NodeOutput: no_padding = empty_padding == "none" tokens = clip.tokenize(clip_g) @@ -82,57 +101,112 @@ class CLIPTextEncodeSD3: tokens["l"] += empty["l"] while len(tokens["l"]) > len(tokens["g"]): tokens["g"] += empty["g"] - return (clip.encode_from_tokens_scheduled(tokens), ) + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) + + encode = execute # TODO: remove -class ControlNetApplySD3(nodes.ControlNetApplyAdvanced): +class ControlNetApplySD3(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "control_net": ("CONTROL_NET", ), - "vae": ("VAE", ), - "image": ("IMAGE", ), - "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), - "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) - }} - CATEGORY = "conditioning/controlnet" - DEPRECATED = True + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="ControlNetApplySD3", + display_name="Apply Controlnet with VAE", + category="conditioning/controlnet", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.ControlNet.Input("control_net"), + io.Vae.Input("vae"), + io.Image.Input("image"), + io.Float.Input("strength", default=1.0, min=0.0, max=10.0, step=0.01), + io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=1.0, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + ], + is_deprecated=True, + ) + + @classmethod + def execute(cls, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None) -> io.NodeOutput: + if strength == 0: + return io.NodeOutput(positive, negative) + + control_hint = image.movedim(-1, 1) + cnets = {} + + out = [] + for conditioning in [positive, negative]: + c = [] + for t in conditioning: + d = t[1].copy() + + prev_cnet = d.get('control', None) + if prev_cnet in cnets: + c_net = cnets[prev_cnet] + else: + c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), + vae=vae, extra_concat=[]) + c_net.set_previous_controlnet(prev_cnet) + cnets[prev_cnet] = c_net + + d['control'] = c_net + d['control_apply_to_uncond'] = False + n = [t[0], d] + c.append(n) + out.append(c) + return io.NodeOutput(out[0], out[1]) + + apply_controlnet = execute # TODO: remove -class SkipLayerGuidanceSD3(comfy_extras.nodes_slg.SkipLayerGuidanceDiT): +class SkipLayerGuidanceSD3(io.ComfyNode): ''' Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) Experimental implementation by Dango233@StabilityAI. ''' + @classmethod - def INPUT_TYPES(s): - return {"required": {"model": ("MODEL", ), - "layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), - "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}) - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "skip_guidance_sd3" + def define_schema(cls): + return io.Schema( + node_id="SkipLayerGuidanceSD3", + category="advanced/guidance", + description="Generic version of SkipLayerGuidance node that can be used on every DiT model.", + inputs=[ + io.Model.Input("model"), + io.String.Input("layers", default="7, 8, 9", multiline=False), + io.Float.Input("scale", default=3.0, min=0.0, max=10.0, step=0.1), + io.Float.Input("start_percent", default=0.01, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=0.15, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Model.Output(), + ], + is_experimental=True, + ) - CATEGORY = "advanced/guidance" + @classmethod + def execute(cls, model, layers, scale, start_percent, end_percent) -> io.NodeOutput: + return SkipLayerGuidanceDiT().execute(model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers) - def skip_guidance_sd3(self, model, layers, scale, start_percent, end_percent): - return self.skip_guidance(model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers) + skip_guidance_sd3 = execute # TODO: remove -NODE_CLASS_MAPPINGS = { - "TripleCLIPLoader": TripleCLIPLoader, - "EmptySD3LatentImage": EmptySD3LatentImage, - "CLIPTextEncodeSD3": CLIPTextEncodeSD3, - "ControlNetApplySD3": ControlNetApplySD3, - "SkipLayerGuidanceSD3": SkipLayerGuidanceSD3, -} +class SD3Extension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + TripleCLIPLoader, + EmptySD3LatentImage, + CLIPTextEncodeSD3, + ControlNetApplySD3, + SkipLayerGuidanceSD3, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - # Sampling - "ControlNetApplySD3": "Apply Controlnet with VAE", -} + +async def comfy_entrypoint() -> SD3Extension: + return SD3Extension() diff --git a/comfy_extras/nodes_slg.py b/comfy_extras/nodes_slg.py index 7adff202e..f462faa8f 100644 --- a/comfy_extras/nodes_slg.py +++ b/comfy_extras/nodes_slg.py @@ -1,33 +1,40 @@ import comfy.model_patcher import comfy.samplers import re +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io -class SkipLayerGuidanceDiT: +class SkipLayerGuidanceDiT(io.ComfyNode): ''' Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) Original experimental implementation for SD3 by Dango233@StabilityAI. ''' + @classmethod - def INPUT_TYPES(s): - return {"required": {"model": ("MODEL", ), - "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), - "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}), - "rescaling_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "skip_guidance" - EXPERIMENTAL = True + def define_schema(cls): + return io.Schema( + node_id="SkipLayerGuidanceDiT", + category="advanced/guidance", + description="Generic version of SkipLayerGuidance node that can be used on every DiT model.", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.String.Input("double_layers", default="7, 8, 9"), + io.String.Input("single_layers", default="7, 8, 9"), + io.Float.Input("scale", default=3.0, min=0.0, max=10.0, step=0.1), + io.Float.Input("start_percent", default=0.01, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=0.15, min=0.0, max=1.0, step=0.001), + io.Float.Input("rescaling_scale", default=0.0, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + io.Model.Output(), + ], + ) - DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model." - - CATEGORY = "advanced/guidance" - - def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0): + @classmethod + def execute(cls, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0) -> io.NodeOutput: # check if layer is comma separated integers def skip(args, extra_args): return args @@ -43,7 +50,7 @@ class SkipLayerGuidanceDiT: single_layers = [int(i) for i in single_layers] if len(double_layers) == 0 and len(single_layers) == 0: - return (model, ) + return io.NodeOutput(model) def post_cfg_function(args): model = args["model"] @@ -76,29 +83,36 @@ class SkipLayerGuidanceDiT: m = model.clone() m.set_model_sampler_post_cfg_function(post_cfg_function) - return (m, ) + return io.NodeOutput(m) -class SkipLayerGuidanceDiTSimple: + skip_guidance = execute # TODO: remove + + +class SkipLayerGuidanceDiTSimple(io.ComfyNode): ''' Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass. ''' @classmethod - def INPUT_TYPES(s): - return {"required": {"model": ("MODEL", ), - "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), - "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), - "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "skip_guidance" - EXPERIMENTAL = True + def define_schema(cls): + return io.Schema( + node_id="SkipLayerGuidanceDiTSimple", + category="advanced/guidance", + description="Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass.", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.String.Input("double_layers", default="7, 8, 9"), + io.String.Input("single_layers", default="7, 8, 9"), + io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001), + io.Float.Input("end_percent", default=1.0, min=0.0, max=1.0, step=0.001), + ], + outputs=[ + io.Model.Output(), + ], + ) - DESCRIPTION = "Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass." - - CATEGORY = "advanced/guidance" - - def skip_guidance(self, model, start_percent, end_percent, double_layers="", single_layers=""): + @classmethod + def execute(cls, model, start_percent, end_percent, double_layers="", single_layers="") -> io.NodeOutput: def skip(args, extra_args): return args @@ -113,7 +127,7 @@ class SkipLayerGuidanceDiTSimple: single_layers = [int(i) for i in single_layers] if len(double_layers) == 0 and len(single_layers) == 0: - return (model, ) + return io.NodeOutput(model) def calc_cond_batch_function(args): x = args["input"] @@ -144,9 +158,19 @@ class SkipLayerGuidanceDiTSimple: m = model.clone() m.set_model_sampler_calc_cond_batch_function(calc_cond_batch_function) - return (m, ) + return io.NodeOutput(m) -NODE_CLASS_MAPPINGS = { - "SkipLayerGuidanceDiT": SkipLayerGuidanceDiT, - "SkipLayerGuidanceDiTSimple": SkipLayerGuidanceDiTSimple, -} + skip_guidance = execute # TODO: remove + + +class SkipLayerGuidanceExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + SkipLayerGuidanceDiT, + SkipLayerGuidanceDiTSimple, + ] + + +async def comfy_entrypoint() -> SkipLayerGuidanceExtension: + return SkipLayerGuidanceExtension() From f1dd6e50f891b1d2b17e4b8d26d422634fe49595 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 9 Oct 2025 16:02:40 -0700 Subject: [PATCH 4/6] Fix bug with applying loras on fp8 scaled without fp8 ops. (#10279) --- comfy/model_patcher.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index e8c859689..c0b68fb8c 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -130,17 +130,21 @@ class LowVramPatch: self.set_func = set_func def __call__(self, weight): + intermediate_dtype = weight.dtype if self.convert_func is not None: weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True) - intermediate_dtype = weight.dtype - if self.set_func is None and intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops + if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops intermediate_dtype = torch.float32 - return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key)) + out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype) + if self.set_func is None: + return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key)) + else: + return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) if self.set_func is not None: - return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) + return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype) else: return out From 90853fb9cd42ebbee7b3fcf46e518e5632912b11 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 10 Oct 2025 02:07:17 +0300 Subject: [PATCH 5/6] convert nodes_flux to V3 schema (#10122) --- comfy_extras/nodes_flux.py | 189 ++++++++++++++++++++++--------------- 1 file changed, 115 insertions(+), 74 deletions(-) diff --git a/comfy_extras/nodes_flux.py b/comfy_extras/nodes_flux.py index 25e029ffd..ce1b2e89f 100644 --- a/comfy_extras/nodes_flux.py +++ b/comfy_extras/nodes_flux.py @@ -1,60 +1,80 @@ import node_helpers import comfy.utils +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io -class CLIPTextEncodeFlux: + +class CLIPTextEncodeFlux(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "clip": ("CLIP", ), - "clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}), - "guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step": 0.1}), - }} - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "encode" + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeFlux", + category="advanced/conditioning/flux", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("t5xxl", multiline=True, dynamic_prompts=True), + io.Float.Input("guidance", default=3.5, min=0.0, max=100.0, step=0.1), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - CATEGORY = "advanced/conditioning/flux" - - def encode(self, clip, clip_l, t5xxl, guidance): + @classmethod + def execute(cls, clip, clip_l, t5xxl, guidance) -> io.NodeOutput: tokens = clip.tokenize(clip_l) tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"] - return (clip.encode_from_tokens_scheduled(tokens, add_dict={"guidance": guidance}), ) + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens, add_dict={"guidance": guidance})) -class FluxGuidance: + encode = execute # TODO: remove + + +class FluxGuidance(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "conditioning": ("CONDITIONING", ), - "guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step": 0.1}), - }} + def define_schema(cls): + return io.Schema( + node_id="FluxGuidance", + category="advanced/conditioning/flux", + inputs=[ + io.Conditioning.Input("conditioning"), + io.Float.Input("guidance", default=3.5, min=0.0, max=100.0, step=0.1), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "append" - - CATEGORY = "advanced/conditioning/flux" - - def append(self, conditioning, guidance): + @classmethod + def execute(cls, conditioning, guidance) -> io.NodeOutput: c = node_helpers.conditioning_set_values(conditioning, {"guidance": guidance}) - return (c, ) + return io.NodeOutput(c) + + append = execute # TODO: remove -class FluxDisableGuidance: +class FluxDisableGuidance(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "conditioning": ("CONDITIONING", ), - }} + def define_schema(cls): + return io.Schema( + node_id="FluxDisableGuidance", + category="advanced/conditioning/flux", + description="This node completely disables the guidance embed on Flux and Flux like models", + inputs=[ + io.Conditioning.Input("conditioning"), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "append" - - CATEGORY = "advanced/conditioning/flux" - DESCRIPTION = "This node completely disables the guidance embed on Flux and Flux like models" - - def append(self, conditioning): + @classmethod + def execute(cls, conditioning) -> io.NodeOutput: c = node_helpers.conditioning_set_values(conditioning, {"guidance": None}) - return (c, ) + return io.NodeOutput(c) + + append = execute # TODO: remove PREFERED_KONTEXT_RESOLUTIONS = [ @@ -78,52 +98,73 @@ PREFERED_KONTEXT_RESOLUTIONS = [ ] -class FluxKontextImageScale: +class FluxKontextImageScale(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"image": ("IMAGE", ), - }, - } + def define_schema(cls): + return io.Schema( + node_id="FluxKontextImageScale", + category="advanced/conditioning/flux", + description="This node resizes the image to one that is more optimal for flux kontext.", + inputs=[ + io.Image.Input("image"), + ], + outputs=[ + io.Image.Output(), + ], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "scale" - - CATEGORY = "advanced/conditioning/flux" - DESCRIPTION = "This node resizes the image to one that is more optimal for flux kontext." - - def scale(self, image): + @classmethod + def execute(cls, image) -> io.NodeOutput: width = image.shape[2] height = image.shape[1] aspect_ratio = width / height _, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS) image = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "lanczos", "center").movedim(1, -1) - return (image, ) + return io.NodeOutput(image) + + scale = execute # TODO: remove -class FluxKontextMultiReferenceLatentMethod: +class FluxKontextMultiReferenceLatentMethod(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "conditioning": ("CONDITIONING", ), - "reference_latents_method": (("offset", "index", "uxo/uno"), ), - }} + def define_schema(cls): + return io.Schema( + node_id="FluxKontextMultiReferenceLatentMethod", + category="advanced/conditioning/flux", + inputs=[ + io.Conditioning.Input("conditioning"), + io.Combo.Input( + "reference_latents_method", + options=["offset", "index", "uxo/uno"], + ), + ], + outputs=[ + io.Conditioning.Output(), + ], + is_experimental=True, + ) - RETURN_TYPES = ("CONDITIONING",) - FUNCTION = "append" - EXPERIMENTAL = True - - CATEGORY = "advanced/conditioning/flux" - - def append(self, conditioning, reference_latents_method): + @classmethod + def execute(cls, conditioning, reference_latents_method) -> io.NodeOutput: if "uxo" in reference_latents_method or "uso" in reference_latents_method: reference_latents_method = "uxo" c = node_helpers.conditioning_set_values(conditioning, {"reference_latents_method": reference_latents_method}) - return (c, ) + return io.NodeOutput(c) -NODE_CLASS_MAPPINGS = { - "CLIPTextEncodeFlux": CLIPTextEncodeFlux, - "FluxGuidance": FluxGuidance, - "FluxDisableGuidance": FluxDisableGuidance, - "FluxKontextImageScale": FluxKontextImageScale, - "FluxKontextMultiReferenceLatentMethod": FluxKontextMultiReferenceLatentMethod, -} + append = execute # TODO: remove + + +class FluxExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + CLIPTextEncodeFlux, + FluxGuidance, + FluxDisableGuidance, + FluxKontextImageScale, + FluxKontextMultiReferenceLatentMethod, + ] + + +async def comfy_entrypoint() -> FluxExtension: + return FluxExtension() From 81e4dac107c24b1655babc47c99c33551c96a644 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 10 Oct 2025 02:08:40 +0300 Subject: [PATCH 6/6] convert nodes_upscale_model.py to V3 schema (#10149) --- comfy_extras/nodes_upscale_model.py | 76 +++++++++++++++++++---------- nodes.py | 2 - 2 files changed, 51 insertions(+), 27 deletions(-) diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index 04c948341..4d62b87be 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -4,6 +4,8 @@ from comfy import model_management import torch import comfy.utils import folder_paths +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io try: from spandrel_extra_arches import EXTRA_REGISTRY @@ -13,17 +15,23 @@ try: except: pass -class UpscaleModelLoader: +class UpscaleModelLoader(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), - }} - RETURN_TYPES = ("UPSCALE_MODEL",) - FUNCTION = "load_model" + def define_schema(cls): + return io.Schema( + node_id="UpscaleModelLoader", + display_name="Load Upscale Model", + category="loaders", + inputs=[ + io.Combo.Input("model_name", options=folder_paths.get_filename_list("upscale_models")), + ], + outputs=[ + io.UpscaleModel.Output(), + ], + ) - CATEGORY = "loaders" - - def load_model(self, model_name): + @classmethod + def execute(cls, model_name) -> io.NodeOutput: model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) sd = comfy.utils.load_torch_file(model_path, safe_load=True) if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: @@ -33,21 +41,29 @@ class UpscaleModelLoader: if not isinstance(out, ImageModelDescriptor): raise Exception("Upscale model must be a single-image model.") - return (out, ) + return io.NodeOutput(out) + + load_model = execute # TODO: remove -class ImageUpscaleWithModel: +class ImageUpscaleWithModel(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "upscale_model": ("UPSCALE_MODEL",), - "image": ("IMAGE",), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "upscale" + def define_schema(cls): + return io.Schema( + node_id="ImageUpscaleWithModel", + display_name="Upscale Image (using Model)", + category="image/upscaling", + inputs=[ + io.UpscaleModel.Input("upscale_model"), + io.Image.Input("image"), + ], + outputs=[ + io.Image.Output(), + ], + ) - CATEGORY = "image/upscaling" - - def upscale(self, upscale_model, image): + @classmethod + def execute(cls, upscale_model, image) -> io.NodeOutput: device = model_management.get_torch_device() memory_required = model_management.module_size(upscale_model.model) @@ -75,9 +91,19 @@ class ImageUpscaleWithModel: upscale_model.to("cpu") s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) - return (s,) + return io.NodeOutput(s) -NODE_CLASS_MAPPINGS = { - "UpscaleModelLoader": UpscaleModelLoader, - "ImageUpscaleWithModel": ImageUpscaleWithModel -} + upscale = execute # TODO: remove + + +class UpscaleModelExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + UpscaleModelLoader, + ImageUpscaleWithModel, + ] + + +async def comfy_entrypoint() -> UpscaleModelExtension: + return UpscaleModelExtension() diff --git a/nodes.py b/nodes.py index 2a2a5f2ad..7cfa8ca14 100644 --- a/nodes.py +++ b/nodes.py @@ -2027,7 +2027,6 @@ NODE_DISPLAY_NAME_MAPPINGS = { "DiffControlNetLoader": "Load ControlNet Model (diff)", "StyleModelLoader": "Load Style Model", "CLIPVisionLoader": "Load CLIP Vision", - "UpscaleModelLoader": "Load Upscale Model", "UNETLoader": "Load Diffusion Model", # Conditioning "CLIPVisionEncode": "CLIP Vision Encode", @@ -2065,7 +2064,6 @@ NODE_DISPLAY_NAME_MAPPINGS = { "LoadImageOutput": "Load Image (from Outputs)", "ImageScale": "Upscale Image", "ImageScaleBy": "Upscale Image By", - "ImageUpscaleWithModel": "Upscale Image (using Model)", "ImageInvert": "Invert Image", "ImagePadForOutpaint": "Pad Image for Outpainting", "ImageBatch": "Batch Images",