mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-22 20:40:49 +08:00
Merge branch 'master' into dr-support-pip-cm
This commit is contained in:
commit
4e95c0c104
@ -65,12 +65,13 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
|||||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||||
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
|
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
|
||||||
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
||||||
|
- [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
|
||||||
- Video Models
|
- Video Models
|
||||||
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
||||||
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
||||||
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
|
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
|
||||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
|
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) and [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
|
||||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||||
- Audio Models
|
- Audio Models
|
||||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||||
|
|||||||
@ -781,6 +781,7 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
old_denoised = denoised
|
old_denoised = denoised
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||||
"""DPM-Solver++(2M) SDE."""
|
"""DPM-Solver++(2M) SDE."""
|
||||||
@ -796,9 +797,12 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
|
||||||
|
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||||
|
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||||
|
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||||
|
|
||||||
old_denoised = None
|
old_denoised = None
|
||||||
h_last = None
|
h, h_last = None, None
|
||||||
h = None
|
|
||||||
|
|
||||||
for i in trange(len(sigmas) - 1, disable=disable):
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||||
@ -809,26 +813,29 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
x = denoised
|
x = denoised
|
||||||
else:
|
else:
|
||||||
# DPM-Solver++(2M) SDE
|
# DPM-Solver++(2M) SDE
|
||||||
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||||
h = s - t
|
h = lambda_t - lambda_s
|
||||||
eta_h = eta * h
|
h_eta = h * (eta + 1)
|
||||||
|
|
||||||
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||||
|
|
||||||
|
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
|
||||||
|
|
||||||
if old_denoised is not None:
|
if old_denoised is not None:
|
||||||
r = h_last / h
|
r = h_last / h
|
||||||
if solver_type == 'heun':
|
if solver_type == 'heun':
|
||||||
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
x = x + alpha_t * ((-h_eta).expm1().neg() / (-h_eta) + 1) * (1 / r) * (denoised - old_denoised)
|
||||||
elif solver_type == 'midpoint':
|
elif solver_type == 'midpoint':
|
||||||
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
x = x + 0.5 * alpha_t * (-h_eta).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
||||||
|
|
||||||
if eta:
|
if eta > 0 and s_noise > 0:
|
||||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
||||||
|
|
||||||
old_denoised = denoised
|
old_denoised = denoised
|
||||||
h_last = h
|
h_last = h
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||||
"""DPM-Solver++(3M) SDE."""
|
"""DPM-Solver++(3M) SDE."""
|
||||||
@ -842,6 +849,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
|
||||||
|
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||||
|
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||||
|
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||||
|
|
||||||
denoised_1, denoised_2 = None, None
|
denoised_1, denoised_2 = None, None
|
||||||
h, h_1, h_2 = None, None, None
|
h, h_1, h_2 = None, None, None
|
||||||
|
|
||||||
@ -853,13 +864,16 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
# Denoising step
|
# Denoising step
|
||||||
x = denoised
|
x = denoised
|
||||||
else:
|
else:
|
||||||
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||||
h = s - t
|
h = lambda_t - lambda_s
|
||||||
h_eta = h * (eta + 1)
|
h_eta = h * (eta + 1)
|
||||||
|
|
||||||
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||||
|
|
||||||
|
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
|
||||||
|
|
||||||
if h_2 is not None:
|
if h_2 is not None:
|
||||||
|
# DPM-Solver++(3M) SDE
|
||||||
r0 = h_1 / h
|
r0 = h_1 / h
|
||||||
r1 = h_2 / h
|
r1 = h_2 / h
|
||||||
d1_0 = (denoised - denoised_1) / r0
|
d1_0 = (denoised - denoised_1) / r0
|
||||||
@ -868,20 +882,22 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
d2 = (d1_0 - d1_1) / (r0 + r1)
|
d2 = (d1_0 - d1_1) / (r0 + r1)
|
||||||
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
||||||
phi_3 = phi_2 / h_eta - 0.5
|
phi_3 = phi_2 / h_eta - 0.5
|
||||||
x = x + phi_2 * d1 - phi_3 * d2
|
x = x + (alpha_t * phi_2) * d1 - (alpha_t * phi_3) * d2
|
||||||
elif h_1 is not None:
|
elif h_1 is not None:
|
||||||
|
# DPM-Solver++(2M) SDE
|
||||||
r = h_1 / h
|
r = h_1 / h
|
||||||
d = (denoised - denoised_1) / r
|
d = (denoised - denoised_1) / r
|
||||||
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
||||||
x = x + phi_2 * d
|
x = x + (alpha_t * phi_2) * d
|
||||||
|
|
||||||
if eta:
|
if eta > 0 and s_noise > 0:
|
||||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
||||||
|
|
||||||
denoised_1, denoised_2 = denoised, denoised_1
|
denoised_1, denoised_2 = denoised, denoised_1
|
||||||
h_1, h_2 = h, h_1
|
h_1, h_2 = h, h_1
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||||
if len(sigmas) <= 1:
|
if len(sigmas) <= 1:
|
||||||
@ -891,6 +907,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
|||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||||
if len(sigmas) <= 1:
|
if len(sigmas) <= 1:
|
||||||
@ -900,6 +917,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
|||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||||
if len(sigmas) <= 1:
|
if len(sigmas) <= 1:
|
||||||
|
|||||||
@ -123,6 +123,8 @@ class ControlNetFlux(Flux):
|
|||||||
|
|
||||||
if y is None:
|
if y is None:
|
||||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||||
|
else:
|
||||||
|
y = y[:, :self.params.vec_in_dim]
|
||||||
|
|
||||||
# running on sequences img
|
# running on sequences img
|
||||||
img = self.img_in(img)
|
img = self.img_in(img)
|
||||||
|
|||||||
@ -118,7 +118,7 @@ class Modulation(nn.Module):
|
|||||||
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
||||||
if modulation_dims is None:
|
if modulation_dims is None:
|
||||||
if m_add is not None:
|
if m_add is not None:
|
||||||
return tensor * m_mult + m_add
|
return torch.addcmul(m_add, tensor, m_mult)
|
||||||
else:
|
else:
|
||||||
return tensor * m_mult
|
return tensor * m_mult
|
||||||
else:
|
else:
|
||||||
|
|||||||
@ -31,7 +31,7 @@ def dynamic_slice(
|
|||||||
starts: List[int],
|
starts: List[int],
|
||||||
sizes: List[int],
|
sizes: List[int],
|
||||||
) -> Tensor:
|
) -> Tensor:
|
||||||
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
slicing = tuple(slice(start, start + size) for start, size in zip(starts, sizes))
|
||||||
return x[slicing]
|
return x[slicing]
|
||||||
|
|
||||||
class AttnChunk(NamedTuple):
|
class AttnChunk(NamedTuple):
|
||||||
|
|||||||
@ -462,7 +462,7 @@ class SDTokenizer:
|
|||||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||||
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
|
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
|
||||||
self.min_length = min_length
|
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
|
||||||
self.end_token = None
|
self.end_token = None
|
||||||
self.min_padding = min_padding
|
self.min_padding = min_padding
|
||||||
|
|
||||||
|
|||||||
@ -11,6 +11,43 @@ from comfy_config.types import (
|
|||||||
PyProjectSettings
|
PyProjectSettings
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def validate_and_extract_os_classifiers(classifiers: list) -> list:
|
||||||
|
os_classifiers = [c for c in classifiers if c.startswith("Operating System :: ")]
|
||||||
|
if not os_classifiers:
|
||||||
|
return []
|
||||||
|
|
||||||
|
os_values = [c[len("Operating System :: ") :] for c in os_classifiers]
|
||||||
|
valid_os_prefixes = {"Microsoft", "POSIX", "MacOS", "OS Independent"}
|
||||||
|
|
||||||
|
for os_value in os_values:
|
||||||
|
if not any(os_value.startswith(prefix) for prefix in valid_os_prefixes):
|
||||||
|
return []
|
||||||
|
|
||||||
|
return os_values
|
||||||
|
|
||||||
|
|
||||||
|
def validate_and_extract_accelerator_classifiers(classifiers: list) -> list:
|
||||||
|
accelerator_classifiers = [c for c in classifiers if c.startswith("Environment ::")]
|
||||||
|
if not accelerator_classifiers:
|
||||||
|
return []
|
||||||
|
|
||||||
|
accelerator_values = [c[len("Environment :: ") :] for c in accelerator_classifiers]
|
||||||
|
|
||||||
|
valid_accelerators = {
|
||||||
|
"GPU :: NVIDIA CUDA",
|
||||||
|
"GPU :: AMD ROCm",
|
||||||
|
"GPU :: Intel Arc",
|
||||||
|
"NPU :: Huawei Ascend",
|
||||||
|
"GPU :: Apple Metal",
|
||||||
|
}
|
||||||
|
|
||||||
|
for accelerator_value in accelerator_values:
|
||||||
|
if accelerator_value not in valid_accelerators:
|
||||||
|
return []
|
||||||
|
|
||||||
|
return accelerator_values
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Extract configuration from a custom node directory's pyproject.toml file or a Python file.
|
Extract configuration from a custom node directory's pyproject.toml file or a Python file.
|
||||||
|
|
||||||
@ -78,6 +115,24 @@ def extract_node_configuration(path) -> Optional[PyProjectConfig]:
|
|||||||
tool_data = raw_settings.tool
|
tool_data = raw_settings.tool
|
||||||
comfy_data = tool_data.get("comfy", {}) if tool_data else {}
|
comfy_data = tool_data.get("comfy", {}) if tool_data else {}
|
||||||
|
|
||||||
|
dependencies = project_data.get("dependencies", [])
|
||||||
|
supported_comfyui_frontend_version = ""
|
||||||
|
for dep in dependencies:
|
||||||
|
if isinstance(dep, str) and dep.startswith("comfyui-frontend-package"):
|
||||||
|
supported_comfyui_frontend_version = dep.removeprefix("comfyui-frontend-package")
|
||||||
|
break
|
||||||
|
|
||||||
|
supported_comfyui_version = comfy_data.get("requires-comfyui", "")
|
||||||
|
|
||||||
|
classifiers = project_data.get('classifiers', [])
|
||||||
|
supported_os = validate_and_extract_os_classifiers(classifiers)
|
||||||
|
supported_accelerators = validate_and_extract_accelerator_classifiers(classifiers)
|
||||||
|
|
||||||
|
project_data['supported_os'] = supported_os
|
||||||
|
project_data['supported_accelerators'] = supported_accelerators
|
||||||
|
project_data['supported_comfyui_frontend_version'] = supported_comfyui_frontend_version
|
||||||
|
project_data['supported_comfyui_version'] = supported_comfyui_version
|
||||||
|
|
||||||
return PyProjectConfig(project=project_data, tool_comfy=comfy_data)
|
return PyProjectConfig(project=project_data, tool_comfy=comfy_data)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -51,7 +51,7 @@ class ComfyConfig(BaseModel):
|
|||||||
models: List[Model] = Field(default_factory=list, alias="Models")
|
models: List[Model] = Field(default_factory=list, alias="Models")
|
||||||
includes: List[str] = Field(default_factory=list)
|
includes: List[str] = Field(default_factory=list)
|
||||||
web: Optional[str] = None
|
web: Optional[str] = None
|
||||||
|
banner_url: str = ""
|
||||||
|
|
||||||
class License(BaseModel):
|
class License(BaseModel):
|
||||||
file: str = ""
|
file: str = ""
|
||||||
@ -66,6 +66,10 @@ class ProjectConfig(BaseModel):
|
|||||||
dependencies: List[str] = Field(default_factory=list)
|
dependencies: List[str] = Field(default_factory=list)
|
||||||
license: License = Field(default_factory=License)
|
license: License = Field(default_factory=License)
|
||||||
urls: URLs = Field(default_factory=URLs)
|
urls: URLs = Field(default_factory=URLs)
|
||||||
|
supported_os: List[str] = Field(default_factory=list)
|
||||||
|
supported_accelerators: List[str] = Field(default_factory=list)
|
||||||
|
supported_comfyui_version: str = ""
|
||||||
|
supported_comfyui_frontend_version: str = ""
|
||||||
|
|
||||||
@field_validator('license', mode='before')
|
@field_validator('license', mode='before')
|
||||||
@classmethod
|
@classmethod
|
||||||
|
|||||||
@ -1,3 +1,3 @@
|
|||||||
# This file is automatically generated by the build process when version is
|
# This file is automatically generated by the build process when version is
|
||||||
# updated in pyproject.toml.
|
# updated in pyproject.toml.
|
||||||
__version__ = "0.3.40"
|
__version__ = "0.3.41"
|
||||||
|
|||||||
11
execution.py
11
execution.py
@ -429,17 +429,20 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
|||||||
|
|
||||||
logging.error(f"!!! Exception during processing !!! {ex}")
|
logging.error(f"!!! Exception during processing !!! {ex}")
|
||||||
logging.error(traceback.format_exc())
|
logging.error(traceback.format_exc())
|
||||||
|
tips = ""
|
||||||
|
|
||||||
|
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
|
||||||
|
tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number."
|
||||||
|
logging.error("Got an OOM, unloading all loaded models.")
|
||||||
|
comfy.model_management.unload_all_models()
|
||||||
|
|
||||||
error_details = {
|
error_details = {
|
||||||
"node_id": real_node_id,
|
"node_id": real_node_id,
|
||||||
"exception_message": str(ex),
|
"exception_message": "{}\n{}".format(ex, tips),
|
||||||
"exception_type": exception_type,
|
"exception_type": exception_type,
|
||||||
"traceback": traceback.format_tb(tb),
|
"traceback": traceback.format_tb(tb),
|
||||||
"current_inputs": input_data_formatted
|
"current_inputs": input_data_formatted
|
||||||
}
|
}
|
||||||
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
|
|
||||||
logging.error("Got an OOM, unloading all loaded models.")
|
|
||||||
comfy.model_management.unload_all_models()
|
|
||||||
|
|
||||||
return (ExecutionResult.FAILURE, error_details, ex)
|
return (ExecutionResult.FAILURE, error_details, ex)
|
||||||
|
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "ComfyUI"
|
name = "ComfyUI"
|
||||||
version = "0.3.40"
|
version = "0.3.41"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
license = { file = "LICENSE" }
|
license = { file = "LICENSE" }
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
comfyui-frontend-package==1.21.7
|
comfyui-frontend-package==1.22.2
|
||||||
comfyui-workflow-templates==0.1.28
|
comfyui-workflow-templates==0.1.29
|
||||||
comfyui-embedded-docs==0.2.2
|
comfyui-embedded-docs==0.2.2
|
||||||
comfyui_manager
|
comfyui_manager
|
||||||
torch
|
torch
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user