Final name changes

This commit is contained in:
Hacker 17082006 2023-02-20 22:11:47 +07:00
parent e0a637c5e6
commit 52b6f1e655

View File

@ -32,7 +32,7 @@ class CannyEdgePreproces:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge" FUNCTION = "detect_edge"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def detect_edge(self, image, low_threshold, high_threshold, l2gradient): def detect_edge(self, image, low_threshold, high_threshold, l2gradient):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_canny2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_canny2image.py
@ -46,7 +46,7 @@ class HEDPreproces:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_boundary" FUNCTION = "detect_boundary"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def detect_boundary(self, image): def detect_boundary(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hed2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hed2image.py
@ -60,7 +60,7 @@ class ScribblePreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_scribble" FUNCTION = "transform_scribble"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def transform_scribble(self, image): def transform_scribble(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_scribble2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_scribble2image.py
@ -76,7 +76,7 @@ class FakeScribblePreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_scribble" FUNCTION = "transform_scribble"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def transform_scribble(self, image): def transform_scribble(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py
@ -87,7 +87,7 @@ class FakeScribblePreprocess:
np_detected_map[np_detected_map < 255] = 0 np_detected_map[np_detected_map < 255] = 0
return (img_np_to_tensor(np_detected_map),) return (img_np_to_tensor(np_detected_map),)
class MIDASDepthPreprocess: class MIDASDepthMapPreprocess:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) , return {"required": { "image": ("IMAGE", ) ,
@ -97,14 +97,14 @@ class MIDASDepthPreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_depth" FUNCTION = "estimate_depth"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def estimate_depth(self, image, a, bg_threshold): def estimate_depth(self, image, a, bg_threshold):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
depth_map_np, normal_map_np = common_annotator_call(midas.MidasDetector(), image, a, bg_threshold) depth_map_np, normal_map_np = common_annotator_call(midas.MidasDetector(), image, a, bg_threshold)
return (img_np_to_tensor(depth_map_np),) return (img_np_to_tensor(depth_map_np),)
class MIDASNormalPreprocess: class MIDASNormalMapPreprocess:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) , return {"required": { "image": ("IMAGE", ) ,
@ -114,7 +114,7 @@ class MIDASNormalPreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_normal" FUNCTION = "estimate_normal"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def estimate_normal(self, image, a, bg_threshold): def estimate_normal(self, image, a, bg_threshold):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
@ -132,7 +132,7 @@ class MLSDPreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge" FUNCTION = "detect_edge"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def detect_edge(self, image, score_threshold, dist_threshold): def detect_edge(self, image, score_threshold, dist_threshold):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hough2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hough2image.py
@ -148,7 +148,7 @@ class OpenposePreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_pose" FUNCTION = "estimate_pose"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def estimate_pose(self, image, detect_hand): def estimate_pose(self, image, detect_hand):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_pose2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_pose2image.py
@ -163,7 +163,7 @@ class UniformerPreprocess:
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "semantic_segmentate" FUNCTION = "semantic_segmentate"
CATEGORY = "preprocessor" CATEGORY = "preprocessors"
def semantic_segmentate(self, image): def semantic_segmentate(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_seg2image.py #Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_seg2image.py
@ -177,8 +177,8 @@ NODE_CLASS_MAPPINGS = {
"ScribblePreprocess": ScribblePreprocess, "ScribblePreprocess": ScribblePreprocess,
"FakeScribblePreprocess": FakeScribblePreprocess, "FakeScribblePreprocess": FakeScribblePreprocess,
"OpenposePreprocess": OpenposePreprocess, "OpenposePreprocess": OpenposePreprocess,
"MiDaS-DepthPreprocess": MIDASDepthPreprocess, "MiDaS-DepthMapPreprocess": MIDASDepthMapPreprocess,
"MiDaS-NormalPreprocess": MIDASNormalPreprocess, "MiDaS-NormalMapPreprocess": MIDASNormalMapPreprocess,
"SemSegPreprocess": UniformerPreprocess "SemSegPreprocess": UniformerPreprocess
} }