mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-16 08:22:36 +08:00
Merge branch 'master' into reroute-shortcut
This commit is contained in:
commit
52e3f392af
6
.gitignore
vendored
6
.gitignore
vendored
@ -9,4 +9,8 @@ custom_nodes/
|
||||
!custom_nodes/example_node.py.example
|
||||
extra_model_paths.yaml
|
||||
/.vs
|
||||
.idea/
|
||||
.idea/
|
||||
venv/
|
||||
web/extensions/*
|
||||
!web/extensions/logging.js.example
|
||||
!web/extensions/core/
|
||||
18
README.md
18
README.md
@ -119,12 +119,22 @@ After this you should have everything installed and can proceed to running Comfy
|
||||
|
||||
### Others:
|
||||
|
||||
[Intel Arc](https://github.com/comfyanonymous/ComfyUI/discussions/476)
|
||||
#### [Intel Arc](https://github.com/comfyanonymous/ComfyUI/discussions/476)
|
||||
|
||||
Mac/MPS: There is basic support in the code but until someone makes some install instruction you are on your own.
|
||||
#### Apple Mac silicon
|
||||
|
||||
Directml: ```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS version.
|
||||
|
||||
1. Install pytorch. For instructions, read the [Accelerated PyTorch training on Mac](https://developer.apple.com/metal/pytorch/) Apple Developer guide.
|
||||
1. Follow the [ComfyUI manual installation](#manual-install-windows-linux) instructions for Windows and Linux.
|
||||
1. Install the ComfyUI [dependencies](#dependencies). If you have another Stable Diffusion UI [you might be able to reuse the dependencies](#i-already-have-another-ui-for-stable-diffusion-installed-do-i-really-have-to-install-all-of-these-dependencies).
|
||||
1. Launch ComfyUI by running `python main.py`.
|
||||
|
||||
> **Note**: Remember to add your models, VAE, LoRAs etc. to the corresponding Comfy folders, as discussed in [ComfyUI manual installation](#manual-install-windows-linux).
|
||||
|
||||
#### DirectML (AMD Cards on Windows)
|
||||
|
||||
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
|
||||
### I already have another UI for Stable Diffusion installed do I really have to install all of these dependencies?
|
||||
|
||||
@ -162,6 +172,8 @@ You can use () to change emphasis of a word or phrase like: (good code:1.2) or (
|
||||
|
||||
You can use {day|night}, for wildcard/dynamic prompts. With this syntax "{wild|card|test}" will be randomly replaced by either "wild", "card" or "test" by the frontend every time you queue the prompt. To use {} characters in your actual prompt escape them like: \\{ or \\}.
|
||||
|
||||
Dynamic prompts also support C-style comments, like `// comment` or `/* comment */`.
|
||||
|
||||
To use a textual inversion concepts/embeddings in a text prompt put them in the models/embeddings directory and use them in the CLIPTextEncode node like this (you can omit the .pt extension):
|
||||
|
||||
```embedding:embedding_filename.pt```
|
||||
|
||||
@ -4,7 +4,7 @@ import yaml
|
||||
|
||||
import folder_paths
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
|
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE, load_checkpoint
|
||||
import os.path as osp
|
||||
import re
|
||||
import torch
|
||||
@ -84,28 +84,4 @@ def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, emb
|
||||
# Put together new checkpoint
|
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
||||
|
||||
clip = None
|
||||
vae = None
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
|
||||
w = WeightsLoader()
|
||||
load_state_dict_to = []
|
||||
if output_vae:
|
||||
vae = VAE(scale_factor=scale_factor, config=vae_config)
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
if output_clip:
|
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config["model"])
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return ModelPatcher(model), clip, vae
|
||||
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config)
|
||||
|
||||
97
comfy/model_base.py
Normal file
97
comfy/model_base.py
Normal file
@ -0,0 +1,97 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
import numpy as np
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
def __init__(self, unet_config, v_prediction=False):
|
||||
super().__init__()
|
||||
|
||||
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
||||
self.diffusion_model = UNetModel(**unet_config)
|
||||
self.v_prediction = v_prediction
|
||||
if self.v_prediction:
|
||||
self.parameterization = "v"
|
||||
else:
|
||||
self.parameterization = "eps"
|
||||
if "adm_in_channels" in unet_config:
|
||||
self.adm_channels = unet_config["adm_in_channels"]
|
||||
else:
|
||||
self.adm_channels = 0
|
||||
print("v_prediction", v_prediction)
|
||||
print("adm", self.adm_channels)
|
||||
|
||||
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if given_betas is not None:
|
||||
betas = given_betas
|
||||
else:
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
|
||||
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([x] + c_concat, dim=1)
|
||||
else:
|
||||
xc = x
|
||||
context = torch.cat(c_crossattn, 1)
|
||||
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options)
|
||||
|
||||
def get_dtype(self):
|
||||
return self.diffusion_model.dtype
|
||||
|
||||
def is_adm(self):
|
||||
return self.adm_channels > 0
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, unet_config, noise_aug_config, v_prediction=True):
|
||||
super().__init__(unet_config, v_prediction)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if unclip_conditioning is not None:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
adm_cond = unclip_cond["clip_vision_output"].image_embeds
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: add a way to control this
|
||||
noise_augment = 0.05
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
else:
|
||||
adm_out = torch.zeros((1, self.adm_channels))
|
||||
|
||||
return adm_out
|
||||
|
||||
class SDInpaint(BaseModel):
|
||||
def __init__(self, unet_config, v_prediction=False):
|
||||
super().__init__(unet_config, v_prediction)
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
@ -248,7 +248,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
|
||||
output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
del input_x
|
||||
|
||||
model_management.throw_exception_if_processing_interrupted()
|
||||
@ -460,36 +460,18 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
uncond[temp[1]] = [o[0], n]
|
||||
|
||||
|
||||
def encode_adm(noise_augmentor, conds, batch_size, device):
|
||||
def encode_adm(model, conds, batch_size, device):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
adm_out = None
|
||||
if 'adm' in x[1]:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
adm_in = x[1]["adm"]
|
||||
for adm_c in adm_in:
|
||||
adm_cond = adm_c[0].image_embeds
|
||||
weight = adm_c[1]
|
||||
noise_augment = adm_c[2]
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: add a way to control this
|
||||
noise_augment = 0.05
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
adm_out = x[1]["adm"]
|
||||
else:
|
||||
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size)
|
||||
params = x[1].copy()
|
||||
adm_out = model.encode_adm(device=device, **params)
|
||||
if adm_out is not None:
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
|
||||
|
||||
return conds
|
||||
|
||||
@ -591,14 +573,14 @@ class KSampler:
|
||||
apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
if self.model.model.diffusion_model.dtype == torch.float16:
|
||||
if self.model.get_dtype() == torch.float16:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
|
||||
if hasattr(self.model, 'noise_augmentor'): #unclip
|
||||
positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device)
|
||||
negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device)
|
||||
if self.model.is_adm():
|
||||
positive = encode_adm(self.model, positive, noise.shape[0], self.device)
|
||||
negative = encode_adm(self.model, negative, noise.shape[0], self.device)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
|
||||
|
||||
|
||||
116
comfy/sd.py
116
comfy/sd.py
@ -15,8 +15,15 @@ from . import utils
|
||||
from . import clip_vision
|
||||
from . import gligen
|
||||
from . import diffusers_convert
|
||||
from . import model_base
|
||||
|
||||
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
|
||||
replace_prefix = {"model.diffusion_model.": "diffusion_model."}
|
||||
for rp in replace_prefix:
|
||||
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), sd.keys())))
|
||||
for x in replace:
|
||||
sd[x[1]] = sd.pop(x[0])
|
||||
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
|
||||
k = list(sd.keys())
|
||||
@ -182,7 +189,7 @@ def model_lora_keys(model, key_map={}):
|
||||
|
||||
counter = 0
|
||||
for b in range(12):
|
||||
tk = "model.diffusion_model.input_blocks.{}.1".format(b)
|
||||
tk = "diffusion_model.input_blocks.{}.1".format(b)
|
||||
up_counter = 0
|
||||
for c in LORA_UNET_MAP_ATTENTIONS:
|
||||
k = "{}.{}.weight".format(tk, c)
|
||||
@ -193,13 +200,13 @@ def model_lora_keys(model, key_map={}):
|
||||
if up_counter >= 4:
|
||||
counter += 1
|
||||
for c in LORA_UNET_MAP_ATTENTIONS:
|
||||
k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
|
||||
k = "diffusion_model.middle_block.1.{}.weight".format(c)
|
||||
if k in sdk:
|
||||
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
|
||||
key_map[lora_key] = k
|
||||
counter = 3
|
||||
for b in range(12):
|
||||
tk = "model.diffusion_model.output_blocks.{}.1".format(b)
|
||||
tk = "diffusion_model.output_blocks.{}.1".format(b)
|
||||
up_counter = 0
|
||||
for c in LORA_UNET_MAP_ATTENTIONS:
|
||||
k = "{}.{}.weight".format(tk, c)
|
||||
@ -223,7 +230,7 @@ def model_lora_keys(model, key_map={}):
|
||||
ds_counter = 0
|
||||
counter = 0
|
||||
for b in range(12):
|
||||
tk = "model.diffusion_model.input_blocks.{}.0".format(b)
|
||||
tk = "diffusion_model.input_blocks.{}.0".format(b)
|
||||
key_in = False
|
||||
for c in LORA_UNET_MAP_RESNET:
|
||||
k = "{}.{}.weight".format(tk, c)
|
||||
@ -242,7 +249,7 @@ def model_lora_keys(model, key_map={}):
|
||||
|
||||
counter = 0
|
||||
for b in range(3):
|
||||
tk = "model.diffusion_model.middle_block.{}".format(b)
|
||||
tk = "diffusion_model.middle_block.{}".format(b)
|
||||
key_in = False
|
||||
for c in LORA_UNET_MAP_RESNET:
|
||||
k = "{}.{}.weight".format(tk, c)
|
||||
@ -256,7 +263,7 @@ def model_lora_keys(model, key_map={}):
|
||||
counter = 0
|
||||
us_counter = 0
|
||||
for b in range(12):
|
||||
tk = "model.diffusion_model.output_blocks.{}.0".format(b)
|
||||
tk = "diffusion_model.output_blocks.{}.0".format(b)
|
||||
key_in = False
|
||||
for c in LORA_UNET_MAP_RESNET:
|
||||
k = "{}.{}.weight".format(tk, c)
|
||||
@ -332,7 +339,7 @@ class ModelPatcher:
|
||||
patch_list[i] = patch_list[i].to(device)
|
||||
|
||||
def model_dtype(self):
|
||||
return self.model.diffusion_model.dtype
|
||||
return self.model.get_dtype()
|
||||
|
||||
def add_patches(self, patches, strength=1.0):
|
||||
p = {}
|
||||
@ -537,6 +544,19 @@ class VAE:
|
||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||
return output
|
||||
|
||||
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample() * self.scale_factor
|
||||
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
def decode(self, samples_in):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
@ -567,28 +587,29 @@ class VAE:
|
||||
def encode(self, pixel_samples):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
||||
samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
try:
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
||||
batch_number = max(1, batch_number)
|
||||
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
|
||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
|
||||
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu() * self.scale_factor
|
||||
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
samples = self.encode_tiled_(pixel_samples)
|
||||
|
||||
self.first_stage_model = self.first_stage_model.cpu()
|
||||
samples = samples.cpu()
|
||||
return samples
|
||||
|
||||
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
||||
|
||||
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
|
||||
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples /= 3.0
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
||||
self.first_stage_model = self.first_stage_model.cpu()
|
||||
samples = samples.cpu()
|
||||
return samples
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
@ -764,7 +785,7 @@ def load_controlnet(ckpt_path, model=None):
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
if x.startswith(c_m):
|
||||
sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
|
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
||||
if sd_key in model_sd:
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
@ -931,9 +952,10 @@ def load_gligen(ckpt_path):
|
||||
model = model.half()
|
||||
return model
|
||||
|
||||
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
if config is None:
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
@ -942,8 +964,19 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
|
||||
fp16 = False
|
||||
if "unet_config" in model_config_params:
|
||||
if "params" in model_config_params["unet_config"]:
|
||||
if "use_fp16" in model_config_params["unet_config"]["params"]:
|
||||
fp16 = model_config_params["unet_config"]["params"]["use_fp16"]
|
||||
unet_config = model_config_params["unet_config"]["params"]
|
||||
if "use_fp16" in unet_config:
|
||||
fp16 = unet_config["use_fp16"]
|
||||
|
||||
noise_aug_config = None
|
||||
if "noise_aug_config" in model_config_params:
|
||||
noise_aug_config = model_config_params["noise_aug_config"]
|
||||
|
||||
v_prediction = False
|
||||
|
||||
if "parameterization" in model_config_params:
|
||||
if model_config_params["parameterization"] == "v":
|
||||
v_prediction = True
|
||||
|
||||
clip = None
|
||||
vae = None
|
||||
@ -963,9 +996,16 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config["model"])
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
if config['model']["target"].endswith("LatentInpaintDiffusion"):
|
||||
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
|
||||
elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
|
||||
model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
|
||||
else:
|
||||
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = utils.load_torch_file(ckpt_path)
|
||||
model = load_model_weights(model, state_dict, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
@ -1073,16 +1113,20 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
|
||||
model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
|
||||
|
||||
unclip_model = False
|
||||
inpaint_model = False
|
||||
if noise_aug_config is not None: #SD2.x unclip model
|
||||
sd_config["noise_aug_config"] = noise_aug_config
|
||||
sd_config["image_size"] = 96
|
||||
sd_config["embedding_dropout"] = 0.25
|
||||
sd_config["conditioning_key"] = 'crossattn-adm'
|
||||
unclip_model = True
|
||||
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
|
||||
elif unet_config["in_channels"] > 4: #inpainting model
|
||||
sd_config["conditioning_key"] = "hybrid"
|
||||
sd_config["finetune_keys"] = None
|
||||
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
||||
inpaint_model = True
|
||||
else:
|
||||
sd_config["conditioning_key"] = "crossattn"
|
||||
|
||||
@ -1096,13 +1140,21 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
unet_config["num_classes"] = "sequential"
|
||||
unet_config["adm_in_channels"] = sd[unclip].shape[1]
|
||||
|
||||
v_prediction = False
|
||||
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
|
||||
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
|
||||
out = sd[k]
|
||||
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
|
||||
v_prediction = True
|
||||
sd_config["parameterization"] = 'v'
|
||||
|
||||
model = instantiate_from_config(model_config)
|
||||
if inpaint_model:
|
||||
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
|
||||
elif unclip_model:
|
||||
model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
|
||||
else:
|
||||
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
||||
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
|
||||
@ -82,6 +82,8 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
next_new_token += 1
|
||||
else:
|
||||
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
|
||||
while len(tokens_temp) < len(x):
|
||||
tokens_temp += [self.empty_tokens[0][-1]]
|
||||
out_tokens += [tokens_temp]
|
||||
|
||||
if len(embedding_weights) > 0:
|
||||
|
||||
@ -728,9 +728,14 @@ class PromptQueue:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_history(self):
|
||||
def get_history(self, prompt_id=None):
|
||||
with self.mutex:
|
||||
return copy.deepcopy(self.history)
|
||||
if prompt_id is None:
|
||||
return copy.deepcopy(self.history)
|
||||
elif prompt_id in self.history:
|
||||
return {prompt_id: copy.deepcopy(self.history[prompt_id])}
|
||||
else:
|
||||
return {}
|
||||
|
||||
def wipe_history(self):
|
||||
with self.mutex:
|
||||
|
||||
30
nodes.py
30
nodes.py
@ -623,11 +623,11 @@ class unCLIPConditioning:
|
||||
c = []
|
||||
for t in conditioning:
|
||||
o = t[1].copy()
|
||||
x = (clip_vision_output, strength, noise_augmentation)
|
||||
if "adm" in o:
|
||||
o["adm"] = o["adm"][:] + [x]
|
||||
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
|
||||
if "unclip_conditioning" in o:
|
||||
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
|
||||
else:
|
||||
o["adm"] = [x]
|
||||
o["unclip_conditioning"] = [x]
|
||||
n = [t[0], o]
|
||||
c.append(n)
|
||||
return (c, )
|
||||
@ -1192,6 +1192,26 @@ class ImageScale:
|
||||
s = s.movedim(1,-1)
|
||||
return (s,)
|
||||
|
||||
class ImageScaleBy:
|
||||
upscale_methods = ["nearest-exact", "bilinear", "area"]
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
||||
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "upscale"
|
||||
|
||||
CATEGORY = "image/upscaling"
|
||||
|
||||
def upscale(self, image, upscale_method, scale_by):
|
||||
samples = image.movedim(-1,1)
|
||||
width = round(samples.shape[3] * scale_by)
|
||||
height = round(samples.shape[2] * scale_by)
|
||||
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
||||
s = s.movedim(1,-1)
|
||||
return (s,)
|
||||
|
||||
class ImageInvert:
|
||||
|
||||
@classmethod
|
||||
@ -1290,6 +1310,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"LoadImage": LoadImage,
|
||||
"LoadImageMask": LoadImageMask,
|
||||
"ImageScale": ImageScale,
|
||||
"ImageScaleBy": ImageScaleBy,
|
||||
"ImageInvert": ImageInvert,
|
||||
"ImagePadForOutpaint": ImagePadForOutpaint,
|
||||
"ConditioningAverage ": ConditioningAverage ,
|
||||
@ -1371,6 +1392,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"LoadImage": "Load Image",
|
||||
"LoadImageMask": "Load Image (as Mask)",
|
||||
"ImageScale": "Upscale Image",
|
||||
"ImageScaleBy": "Upscale Image By",
|
||||
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
||||
"ImageInvert": "Invert Image",
|
||||
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
||||
|
||||
164
script_examples/websockets_api_example.py
Normal file
164
script_examples/websockets_api_example.py
Normal file
@ -0,0 +1,164 @@
|
||||
#This is an example that uses the websockets api to know when a prompt execution is done
|
||||
#Once the prompt execution is done it downloads the images using the /history endpoint
|
||||
|
||||
import websocket
|
||||
import uuid
|
||||
import json
|
||||
import urllib.request
|
||||
import urllib.parse
|
||||
|
||||
server_address = "127.0.0.1:8188"
|
||||
client_id = str(uuid.uuid4())
|
||||
|
||||
def queue_prompt(prompt):
|
||||
p = {"prompt": prompt, "client_id": client_id}
|
||||
data = json.dumps(p).encode('utf-8')
|
||||
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
|
||||
return json.loads(urllib.request.urlopen(req).read())
|
||||
|
||||
def get_image(filename, subfolder, folder_type):
|
||||
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
||||
url_values = urllib.parse.urlencode(data)
|
||||
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
|
||||
return response.read()
|
||||
|
||||
def get_history(prompt_id):
|
||||
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
||||
return json.loads(response.read())
|
||||
|
||||
def get_images(ws, prompt):
|
||||
prompt_id = queue_prompt(prompt)['prompt_id']
|
||||
output_images = {}
|
||||
while True:
|
||||
out = ws.recv()
|
||||
if isinstance(out, str):
|
||||
message = json.loads(out)
|
||||
if message['type'] == 'executing':
|
||||
data = message['data']
|
||||
if data['node'] is None and data['prompt_id'] == prompt_id:
|
||||
break #Execution is done
|
||||
else:
|
||||
continue #previews are binary data
|
||||
|
||||
history = get_history(prompt_id)[prompt_id]
|
||||
for o in history['outputs']:
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
if 'images' in node_output:
|
||||
images_output = []
|
||||
for image in node_output['images']:
|
||||
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
|
||||
return output_images
|
||||
|
||||
prompt_text = """
|
||||
{
|
||||
"3": {
|
||||
"class_type": "KSampler",
|
||||
"inputs": {
|
||||
"cfg": 8,
|
||||
"denoise": 1,
|
||||
"latent_image": [
|
||||
"5",
|
||||
0
|
||||
],
|
||||
"model": [
|
||||
"4",
|
||||
0
|
||||
],
|
||||
"negative": [
|
||||
"7",
|
||||
0
|
||||
],
|
||||
"positive": [
|
||||
"6",
|
||||
0
|
||||
],
|
||||
"sampler_name": "euler",
|
||||
"scheduler": "normal",
|
||||
"seed": 8566257,
|
||||
"steps": 20
|
||||
}
|
||||
},
|
||||
"4": {
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"inputs": {
|
||||
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
"class_type": "EmptyLatentImage",
|
||||
"inputs": {
|
||||
"batch_size": 1,
|
||||
"height": 512,
|
||||
"width": 512
|
||||
}
|
||||
},
|
||||
"6": {
|
||||
"class_type": "CLIPTextEncode",
|
||||
"inputs": {
|
||||
"clip": [
|
||||
"4",
|
||||
1
|
||||
],
|
||||
"text": "masterpiece best quality girl"
|
||||
}
|
||||
},
|
||||
"7": {
|
||||
"class_type": "CLIPTextEncode",
|
||||
"inputs": {
|
||||
"clip": [
|
||||
"4",
|
||||
1
|
||||
],
|
||||
"text": "bad hands"
|
||||
}
|
||||
},
|
||||
"8": {
|
||||
"class_type": "VAEDecode",
|
||||
"inputs": {
|
||||
"samples": [
|
||||
"3",
|
||||
0
|
||||
],
|
||||
"vae": [
|
||||
"4",
|
||||
2
|
||||
]
|
||||
}
|
||||
},
|
||||
"9": {
|
||||
"class_type": "SaveImage",
|
||||
"inputs": {
|
||||
"filename_prefix": "ComfyUI",
|
||||
"images": [
|
||||
"8",
|
||||
0
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
prompt = json.loads(prompt_text)
|
||||
#set the text prompt for our positive CLIPTextEncode
|
||||
prompt["6"]["inputs"]["text"] = "masterpiece best quality man"
|
||||
|
||||
#set the seed for our KSampler node
|
||||
prompt["3"]["inputs"]["seed"] = 5
|
||||
|
||||
ws = websocket.WebSocket()
|
||||
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
|
||||
images = get_images(ws, prompt)
|
||||
|
||||
#Commented out code to display the output images:
|
||||
|
||||
# for node_id in images:
|
||||
# for image_data in images[node_id]:
|
||||
# from PIL import Image
|
||||
# import io
|
||||
# image = Image.open(io.BytesIO(image_data))
|
||||
# image.show()
|
||||
|
||||
@ -372,6 +372,11 @@ class PromptServer():
|
||||
async def get_history(request):
|
||||
return web.json_response(self.prompt_queue.get_history())
|
||||
|
||||
@routes.get("/history/{prompt_id}")
|
||||
async def get_history(request):
|
||||
prompt_id = request.match_info.get("prompt_id", None)
|
||||
return web.json_response(self.prompt_queue.get_history(prompt_id=prompt_id))
|
||||
|
||||
@routes.get("/queue")
|
||||
async def get_queue(request):
|
||||
queue_info = {}
|
||||
|
||||
@ -1,132 +1,138 @@
|
||||
import { app } from "/scripts/app.js";
|
||||
import {app} from "/scripts/app.js";
|
||||
|
||||
// Adds filtering to combo context menus
|
||||
|
||||
const id = "Comfy.ContextMenuFilter";
|
||||
app.registerExtension({
|
||||
name: id,
|
||||
const ext = {
|
||||
name: "Comfy.ContextMenuFilter",
|
||||
init() {
|
||||
const ctxMenu = LiteGraph.ContextMenu;
|
||||
|
||||
LiteGraph.ContextMenu = function (values, options) {
|
||||
const ctx = ctxMenu.call(this, values, options);
|
||||
|
||||
// If we are a dark menu (only used for combo boxes) then add a filter input
|
||||
if (options?.className === "dark" && values?.length > 10) {
|
||||
const filter = document.createElement("input");
|
||||
Object.assign(filter.style, {
|
||||
width: "calc(100% - 10px)",
|
||||
border: "0",
|
||||
boxSizing: "border-box",
|
||||
background: "#333",
|
||||
border: "1px solid #999",
|
||||
margin: "0 0 5px 5px",
|
||||
color: "#fff",
|
||||
});
|
||||
filter.classList.add("comfy-context-menu-filter");
|
||||
filter.placeholder = "Filter list";
|
||||
this.root.prepend(filter);
|
||||
|
||||
let selectedIndex = 0;
|
||||
let items = this.root.querySelectorAll(".litemenu-entry");
|
||||
let itemCount = items.length;
|
||||
let selectedItem;
|
||||
const items = Array.from(this.root.querySelectorAll(".litemenu-entry"));
|
||||
let displayedItems = [...items];
|
||||
let itemCount = displayedItems.length;
|
||||
|
||||
// Apply highlighting to the selected item
|
||||
function updateSelected() {
|
||||
if (selectedItem) {
|
||||
selectedItem.style.setProperty("background-color", "");
|
||||
selectedItem.style.setProperty("color", "");
|
||||
}
|
||||
selectedItem = items[selectedIndex];
|
||||
if (selectedItem) {
|
||||
selectedItem.style.setProperty("background-color", "#ccc", "important");
|
||||
selectedItem.style.setProperty("color", "#000", "important");
|
||||
}
|
||||
}
|
||||
// We must request an animation frame for the current node of the active canvas to update.
|
||||
requestAnimationFrame(() => {
|
||||
const currentNode = LGraphCanvas.active_canvas.current_node;
|
||||
const clickedComboValue = currentNode.widgets
|
||||
.filter(w => w.type === "combo" && w.options.values.length === values.length)
|
||||
.find(w => w.options.values.every((v, i) => v === values[i]))
|
||||
.value;
|
||||
|
||||
const positionList = () => {
|
||||
const rect = this.root.getBoundingClientRect();
|
||||
|
||||
// If the top is off screen then shift the element with scaling applied
|
||||
if (rect.top < 0) {
|
||||
const scale = 1 - this.root.getBoundingClientRect().height / this.root.clientHeight;
|
||||
const shift = (this.root.clientHeight * scale) / 2;
|
||||
this.root.style.top = -shift + "px";
|
||||
}
|
||||
}
|
||||
|
||||
updateSelected();
|
||||
|
||||
// Arrow up/down to select items
|
||||
filter.addEventListener("keydown", (e) => {
|
||||
if (e.key === "ArrowUp") {
|
||||
if (selectedIndex === 0) {
|
||||
selectedIndex = itemCount - 1;
|
||||
} else {
|
||||
selectedIndex--;
|
||||
}
|
||||
updateSelected();
|
||||
e.preventDefault();
|
||||
} else if (e.key === "ArrowDown") {
|
||||
if (selectedIndex === itemCount - 1) {
|
||||
selectedIndex = 0;
|
||||
} else {
|
||||
selectedIndex++;
|
||||
}
|
||||
updateSelected();
|
||||
e.preventDefault();
|
||||
} else if ((selectedItem && e.key === "Enter") || e.keyCode === 13 || e.keyCode === 10) {
|
||||
selectedItem.click();
|
||||
} else if(e.key === "Escape") {
|
||||
this.close();
|
||||
}
|
||||
});
|
||||
|
||||
filter.addEventListener("input", () => {
|
||||
// Hide all items that dont match our filter
|
||||
const term = filter.value.toLocaleLowerCase();
|
||||
items = this.root.querySelectorAll(".litemenu-entry");
|
||||
// When filtering recompute which items are visible for arrow up/down
|
||||
// Try and maintain selection
|
||||
let visibleItems = [];
|
||||
for (const item of items) {
|
||||
const visible = !term || item.textContent.toLocaleLowerCase().includes(term);
|
||||
if (visible) {
|
||||
item.style.display = "block";
|
||||
if (item === selectedItem) {
|
||||
selectedIndex = visibleItems.length;
|
||||
}
|
||||
visibleItems.push(item);
|
||||
} else {
|
||||
item.style.display = "none";
|
||||
if (item === selectedItem) {
|
||||
selectedIndex = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
items = visibleItems;
|
||||
let selectedIndex = values.findIndex(v => v === clickedComboValue);
|
||||
let selectedItem = displayedItems?.[selectedIndex];
|
||||
updateSelected();
|
||||
|
||||
// If we have an event then we can try and position the list under the source
|
||||
if (options.event) {
|
||||
let top = options.event.clientY - 10;
|
||||
|
||||
const bodyRect = document.body.getBoundingClientRect();
|
||||
const rootRect = this.root.getBoundingClientRect();
|
||||
if (bodyRect.height && top > bodyRect.height - rootRect.height - 10) {
|
||||
top = Math.max(0, bodyRect.height - rootRect.height - 10);
|
||||
}
|
||||
|
||||
this.root.style.top = top + "px";
|
||||
positionList();
|
||||
// Apply highlighting to the selected item
|
||||
function updateSelected() {
|
||||
selectedItem?.style.setProperty("background-color", "");
|
||||
selectedItem?.style.setProperty("color", "");
|
||||
selectedItem = displayedItems[selectedIndex];
|
||||
selectedItem?.style.setProperty("background-color", "#ccc", "important");
|
||||
selectedItem?.style.setProperty("color", "#000", "important");
|
||||
}
|
||||
});
|
||||
|
||||
requestAnimationFrame(() => {
|
||||
// Focus the filter box when opening
|
||||
filter.focus();
|
||||
const positionList = () => {
|
||||
const rect = this.root.getBoundingClientRect();
|
||||
|
||||
positionList();
|
||||
});
|
||||
// If the top is off-screen then shift the element with scaling applied
|
||||
if (rect.top < 0) {
|
||||
const scale = 1 - this.root.getBoundingClientRect().height / this.root.clientHeight;
|
||||
const shift = (this.root.clientHeight * scale) / 2;
|
||||
this.root.style.top = -shift + "px";
|
||||
}
|
||||
}
|
||||
|
||||
// Arrow up/down to select items
|
||||
filter.addEventListener("keydown", (event) => {
|
||||
switch (event.key) {
|
||||
case "ArrowUp":
|
||||
event.preventDefault();
|
||||
if (selectedIndex === 0) {
|
||||
selectedIndex = itemCount - 1;
|
||||
} else {
|
||||
selectedIndex--;
|
||||
}
|
||||
updateSelected();
|
||||
break;
|
||||
case "ArrowRight":
|
||||
event.preventDefault();
|
||||
selectedIndex = itemCount - 1;
|
||||
updateSelected();
|
||||
break;
|
||||
case "ArrowDown":
|
||||
event.preventDefault();
|
||||
if (selectedIndex === itemCount - 1) {
|
||||
selectedIndex = 0;
|
||||
} else {
|
||||
selectedIndex++;
|
||||
}
|
||||
updateSelected();
|
||||
break;
|
||||
case "ArrowLeft":
|
||||
event.preventDefault();
|
||||
selectedIndex = 0;
|
||||
updateSelected();
|
||||
break;
|
||||
case "Enter":
|
||||
selectedItem?.click();
|
||||
break;
|
||||
case "Escape":
|
||||
this.close();
|
||||
break;
|
||||
}
|
||||
});
|
||||
|
||||
filter.addEventListener("input", () => {
|
||||
// Hide all items that don't match our filter
|
||||
const term = filter.value.toLocaleLowerCase();
|
||||
// When filtering, recompute which items are visible for arrow up/down and maintain selection.
|
||||
displayedItems = items.filter(item => {
|
||||
const isVisible = !term || item.textContent.toLocaleLowerCase().includes(term);
|
||||
item.style.display = isVisible ? "block" : "none";
|
||||
return isVisible;
|
||||
});
|
||||
|
||||
selectedIndex = 0;
|
||||
if (displayedItems.includes(selectedItem)) {
|
||||
selectedIndex = displayedItems.findIndex(d => d === selectedItem);
|
||||
}
|
||||
itemCount = displayedItems.length;
|
||||
|
||||
updateSelected();
|
||||
|
||||
// If we have an event then we can try and position the list under the source
|
||||
if (options.event) {
|
||||
let top = options.event.clientY - 10;
|
||||
|
||||
const bodyRect = document.body.getBoundingClientRect();
|
||||
const rootRect = this.root.getBoundingClientRect();
|
||||
if (bodyRect.height && top > bodyRect.height - rootRect.height - 10) {
|
||||
top = Math.max(0, bodyRect.height - rootRect.height - 10);
|
||||
}
|
||||
|
||||
this.root.style.top = top + "px";
|
||||
positionList();
|
||||
}
|
||||
});
|
||||
|
||||
requestAnimationFrame(() => {
|
||||
// Focus the filter box when opening
|
||||
filter.focus();
|
||||
|
||||
positionList();
|
||||
});
|
||||
})
|
||||
}
|
||||
|
||||
return ctx;
|
||||
@ -134,4 +140,6 @@ app.registerExtension({
|
||||
|
||||
LiteGraph.ContextMenu.prototype = ctxMenu.prototype;
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
app.registerExtension(ext);
|
||||
|
||||
@ -3,6 +3,13 @@ import { app } from "../../scripts/app.js";
|
||||
// Allows for simple dynamic prompt replacement
|
||||
// Inputs in the format {a|b} will have a random value of a or b chosen when the prompt is queued.
|
||||
|
||||
/*
|
||||
* Strips C-style line and block comments from a string
|
||||
*/
|
||||
function stripComments(str) {
|
||||
return str.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g,'');
|
||||
}
|
||||
|
||||
app.registerExtension({
|
||||
name: "Comfy.DynamicPrompts",
|
||||
nodeCreated(node) {
|
||||
@ -15,7 +22,7 @@ app.registerExtension({
|
||||
for (const widget of widgets) {
|
||||
// Override the serialization of the value to resolve dynamic prompts for all widgets supporting it in this node
|
||||
widget.serializeValue = (workflowNode, widgetIndex) => {
|
||||
let prompt = widget.value;
|
||||
let prompt = stripComments(widget.value);
|
||||
while (prompt.replace("\\{", "").includes("{") && prompt.replace("\\}", "").includes("}")) {
|
||||
const startIndex = prompt.replace("\\{", "00").indexOf("{");
|
||||
const endIndex = prompt.replace("\\}", "00").indexOf("}");
|
||||
|
||||
@ -200,8 +200,23 @@ app.registerExtension({
|
||||
applyToGraph() {
|
||||
if (!this.outputs[0].links?.length) return;
|
||||
|
||||
function get_links(node) {
|
||||
let links = [];
|
||||
for (const l of node.outputs[0].links) {
|
||||
const linkInfo = app.graph.links[l];
|
||||
const n = node.graph.getNodeById(linkInfo.target_id);
|
||||
if (n.type == "Reroute") {
|
||||
links = links.concat(get_links(n));
|
||||
} else {
|
||||
links.push(l);
|
||||
}
|
||||
}
|
||||
return links;
|
||||
}
|
||||
|
||||
let links = get_links(this);
|
||||
// For each output link copy our value over the original widget value
|
||||
for (const l of this.outputs[0].links) {
|
||||
for (const l of links) {
|
||||
const linkInfo = app.graph.links[l];
|
||||
const node = this.graph.getNodeById(linkInfo.target_id);
|
||||
const input = node.inputs[linkInfo.target_slot];
|
||||
|
||||
@ -50,7 +50,7 @@ body {
|
||||
padding: 30px 30px 10px 30px;
|
||||
background-color: var(--comfy-menu-bg); /* Modal background */
|
||||
color: var(--error-text);
|
||||
box-shadow: 0px 0px 20px #888888;
|
||||
box-shadow: 0 0 20px #888888;
|
||||
border-radius: 10px;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
@ -84,7 +84,7 @@ body {
|
||||
font-size: 15px;
|
||||
position: absolute;
|
||||
top: 50%;
|
||||
right: 0%;
|
||||
right: 0;
|
||||
text-align: center;
|
||||
z-index: 100;
|
||||
width: 170px;
|
||||
@ -252,7 +252,7 @@ button.comfy-queue-btn {
|
||||
bottom: 0 !important;
|
||||
left: auto !important;
|
||||
right: 0 !important;
|
||||
border-radius: 0px;
|
||||
border-radius: 0;
|
||||
}
|
||||
.comfy-menu span.drag-handle {
|
||||
visibility:hidden
|
||||
@ -291,7 +291,7 @@ button.comfy-queue-btn {
|
||||
|
||||
.litegraph .dialog {
|
||||
z-index: 1;
|
||||
font-family: Arial;
|
||||
font-family: Arial, sans-serif;
|
||||
}
|
||||
|
||||
.litegraph .litemenu-entry.has_submenu {
|
||||
@ -330,6 +330,13 @@ button.comfy-queue-btn {
|
||||
color: var(--input-text) !important;
|
||||
}
|
||||
|
||||
.comfy-context-menu-filter {
|
||||
box-sizing: border-box;
|
||||
border: 1px solid #999;
|
||||
margin: 0 0 5px 5px;
|
||||
width: calc(100% - 10px);
|
||||
}
|
||||
|
||||
/* Search box */
|
||||
|
||||
.litegraph.litesearchbox {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user