convert CFG nodes to V3 schema (#9717)

This commit is contained in:
Alexander Piskun 2025-09-13 00:39:55 +03:00 committed by GitHub
parent ba68e83f1c
commit 53c9c7d39a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,5 +1,10 @@
from typing_extensions import override
import torch
from comfy_api.latest import ComfyExtension, io
# https://github.com/WeichenFan/CFG-Zero-star
def optimized_scale(positive, negative):
positive_flat = positive.reshape(positive.shape[0], -1)
@ -16,17 +21,20 @@ def optimized_scale(positive, negative):
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1))
class CFGZeroStar:
class CFGZeroStar(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
}}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("patched_model",)
FUNCTION = "patch"
CATEGORY = "advanced/guidance"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CFGZeroStar",
category="advanced/guidance",
inputs=[
io.Model.Input("model"),
],
outputs=[io.Model.Output(display_name="patched_model")],
)
def patch(self, model):
@classmethod
def execute(cls, model) -> io.NodeOutput:
m = model.clone()
def cfg_zero_star(args):
guidance_scale = args['cond_scale']
@ -38,21 +46,24 @@ class CFGZeroStar:
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
m.set_model_sampler_post_cfg_function(cfg_zero_star)
return (m, )
return io.NodeOutput(m)
class CFGNorm:
class CFGNorm(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("patched_model",)
FUNCTION = "patch"
CATEGORY = "advanced/guidance"
EXPERIMENTAL = True
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CFGNorm",
category="advanced/guidance",
inputs=[
io.Model.Input("model"),
io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01),
],
outputs=[io.Model.Output(display_name="patched_model")],
is_experimental=True,
)
def patch(self, model, strength):
@classmethod
def execute(cls, model, strength) -> io.NodeOutput:
m = model.clone()
def cfg_norm(args):
cond_p = args['cond_denoised']
@ -64,9 +75,17 @@ class CFGNorm:
return pred_text_ * scale * strength
m.set_model_sampler_post_cfg_function(cfg_norm)
return (m, )
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"CFGZeroStar": CFGZeroStar,
"CFGNorm": CFGNorm,
}
class CfgExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
CFGZeroStar,
CFGNorm,
]
async def comfy_entrypoint() -> CfgExtension:
return CfgExtension()