add block-wise scaled int8 quantization based on QuantizedLayout mechanism

add more tests by comparing with manual torch implementation

add perf benchmarks

fix errors caused by merging

default no output quant

fix unittest
This commit is contained in:
Yu Li 2025-11-18 17:24:23 -06:00
parent f668c2e3c9
commit 5ba2d28b7f
6 changed files with 4693 additions and 32 deletions

View File

@ -124,6 +124,10 @@ We define 4 possible scaling parameters that should cover most recipes in the ne
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|--------|---------------|--------------|----------------|-----------------|-------------|
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
| int8_blockwise | int8 | float32 (per-block) | - | - | - |
For int8_blockwise with block_size=128 and weight shape (N, K):
- weight_scale shape: (N//128, K//128)
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
@ -131,7 +135,9 @@ You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
The metadata stored alongside the checkpoint contains:
- **format_version**: String to define a version of the standard
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
- **layers**: A dictionary mapping layer names to their quantization configuration. Each layer's config is a dictionary with:
- **format**: Quantization format string that maps to the definitions found in `QUANT_ALGOS`
- **group_size** (optional): Block size for block-wise quantization schemes (e.g., int8_blockwise)
Example:
```json
@ -139,9 +145,9 @@ Example:
"_quantization_metadata": {
"format_version": "1.0",
"layers": {
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
"model.layers.0.mlp.up_proj": {"format": "float8_e4m3fn"},
"model.layers.0.mlp.down_proj": {"format": "int8_blockwise", "group_size": 128},
"model.layers.1.mlp.up_proj": {"format": "int8_blockwise", "group_size": 256}
}
}
}

View File

@ -54,6 +54,8 @@ def stochastic_rounding(value, dtype, seed=0):
return value.to(dtype=torch.float16)
if dtype == torch.bfloat16:
return value.to(dtype=torch.bfloat16)
if dtype == torch.int8:
return value.to(dtype=torch.int8)
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
generator = torch.Generator(device=value.device)
generator.manual_seed(seed)

1194
comfy/int8_kernels.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -546,12 +546,20 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
scale = state_dict.pop(weight_scale_key, None)
if scale is not None:
scale = scale.to(device)
# Check for per-layer group_size override, otherwise use default from QUANT_ALGOS
layer_config = MixedPrecisionOps._layer_quant_config[layer_name]
group_size = layer_config.get("group_size", qconfig.get("group_size", None))
layout_params = {
'scale': scale,
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
'block_size': group_size,
}
if qconfig.get("asymmetric_layout", False):
layout_params['is_weight'] = True
if scale is not None:
manually_loaded_keys.append(weight_scale_key)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff