mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-24 13:30:49 +08:00
Merge branch 'comfyanonymous:master' into ascend/quicker_generate
This commit is contained in:
commit
5c565e9125
27
.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt
Executable file
27
.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt
Executable file
@ -0,0 +1,27 @@
|
||||
As of the time of writing this you need this preview driver for best results:
|
||||
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html
|
||||
|
||||
HOW TO RUN:
|
||||
|
||||
If you have a AMD gpu:
|
||||
|
||||
run_amd_gpu.bat
|
||||
|
||||
If you have memory issues you can try disabling the smart memory management by running comfyui with:
|
||||
|
||||
run_amd_gpu_disable_smart_memory.bat
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion XL one from: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
To update the ComfyUI code: update\update_comfyui.bat
|
||||
|
||||
|
||||
TO SHARE MODELS BETWEEN COMFYUI AND ANOTHER UI:
|
||||
In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
|
||||
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
|
||||
|
||||
@ -1,2 +1,2 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --disable-smart-memory
|
||||
pause
|
||||
@ -0,0 +1,3 @@
|
||||
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
|
||||
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
|
||||
pause
|
||||
3
.ci/windows_nvidia_base_files/run_nvidia_gpu.bat
Executable file
3
.ci/windows_nvidia_base_files/run_nvidia_gpu.bat
Executable file
@ -0,0 +1,3 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
|
||||
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
|
||||
pause
|
||||
@ -0,0 +1,3 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
|
||||
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
|
||||
pause
|
||||
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -8,13 +8,15 @@ body:
|
||||
Before submitting a **Bug Report**, please ensure the following:
|
||||
|
||||
- **1:** You are running the latest version of ComfyUI.
|
||||
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
|
||||
- **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report.
|
||||
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
|
||||
`--disable-all-custom-nodes` command line argument.
|
||||
`--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version.
|
||||
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
|
||||
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
|
||||
|
||||
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
|
||||
## Very Important
|
||||
|
||||
Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored.
|
||||
- type: checkboxes
|
||||
id: custom-nodes-test
|
||||
attributes:
|
||||
|
||||
21
.github/PULL_REQUEST_TEMPLATE/api-node.md
vendored
Normal file
21
.github/PULL_REQUEST_TEMPLATE/api-node.md
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
<!-- API_NODE_PR_CHECKLIST: do not remove -->
|
||||
|
||||
## API Node PR Checklist
|
||||
|
||||
### Scope
|
||||
- [ ] **Is API Node Change**
|
||||
|
||||
### Pricing & Billing
|
||||
- [ ] **Need pricing update**
|
||||
- [ ] **No pricing update**
|
||||
|
||||
If **Need pricing update**:
|
||||
- [ ] Metronome rate cards updated
|
||||
- [ ] Auto‑billing tests updated and passing
|
||||
|
||||
### QA
|
||||
- [ ] **QA done**
|
||||
- [ ] **QA not required**
|
||||
|
||||
### Comms
|
||||
- [ ] Informed **Kosinkadink**
|
||||
58
.github/workflows/api-node-template.yml
vendored
Normal file
58
.github/workflows/api-node-template.yml
vendored
Normal file
@ -0,0 +1,58 @@
|
||||
name: Append API Node PR template
|
||||
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, reopened, synchronize, ready_for_review]
|
||||
paths:
|
||||
- 'comfy_api_nodes/**' # only run if these files changed
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
inject:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Ensure template exists and append to PR body
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const number = context.payload.pull_request.number;
|
||||
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
|
||||
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
|
||||
|
||||
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
|
||||
|
||||
let templateText;
|
||||
try {
|
||||
const res = await github.rest.repos.getContent({
|
||||
owner,
|
||||
repo,
|
||||
path: templatePath,
|
||||
ref: pr.base.ref
|
||||
});
|
||||
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
|
||||
templateText = buf.toString('utf8');
|
||||
} catch (e) {
|
||||
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
|
||||
return;
|
||||
}
|
||||
|
||||
// Enforce the presence of the marker inside the template (for idempotence)
|
||||
if (!templateText.includes(marker)) {
|
||||
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
|
||||
return;
|
||||
}
|
||||
|
||||
// If the PR already contains the marker, do not append again.
|
||||
const body = pr.body || '';
|
||||
if (body.includes(marker)) {
|
||||
core.info('Template already present in PR body; nothing to inject.');
|
||||
return;
|
||||
}
|
||||
|
||||
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
|
||||
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
|
||||
core.notice('API Node template appended to PR description.');
|
||||
78
.github/workflows/release-stable-all.yml
vendored
Normal file
78
.github/workflows/release-stable-all.yml
vendored
Normal file
@ -0,0 +1,78 @@
|
||||
name: "Release Stable All Portable Versions"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
release_nvidia_default:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA Default (cu129)"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu130"
|
||||
python_minor: "13"
|
||||
python_patch: "9"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: ""
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_nvidia_cu128:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA cu128"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu128"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: "_cu128"
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_nvidia_cu126:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA cu126"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu126"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: "_cu126"
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_amd_rocm:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release AMD ROCm 6.4.4"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "rocm644"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "amd"
|
||||
rel_extra_name: ""
|
||||
test_release: false
|
||||
secrets: inherit
|
||||
25
.github/workflows/ruff.yml
vendored
25
.github/workflows/ruff.yml
vendored
@ -21,3 +21,28 @@ jobs:
|
||||
|
||||
- name: Run Ruff
|
||||
run: ruff check .
|
||||
|
||||
pylint:
|
||||
name: Run Pylint
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Install Pylint
|
||||
run: pip install pylint
|
||||
|
||||
- name: Run Pylint
|
||||
run: pylint comfy_api_nodes
|
||||
|
||||
100
.github/workflows/stable-release.yml
vendored
100
.github/workflows/stable-release.yml
vendored
@ -2,17 +2,17 @@
|
||||
name: "Release Stable Version"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
cu:
|
||||
description: 'CUDA version'
|
||||
cache_tag:
|
||||
description: 'Cached dependencies tag'
|
||||
required: true
|
||||
type: string
|
||||
default: "129"
|
||||
default: "cu129"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
@ -23,7 +23,57 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
default: "6"
|
||||
|
||||
rel_name:
|
||||
description: 'Release name'
|
||||
required: true
|
||||
type: string
|
||||
default: "nvidia"
|
||||
rel_extra_name:
|
||||
description: 'Release extra name'
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
test_release:
|
||||
description: 'Test Release'
|
||||
required: true
|
||||
type: boolean
|
||||
default: true
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
cache_tag:
|
||||
description: 'Cached dependencies tag'
|
||||
required: true
|
||||
type: string
|
||||
default: "cu129"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "13"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "6"
|
||||
rel_name:
|
||||
description: 'Release name'
|
||||
required: true
|
||||
type: string
|
||||
default: "nvidia"
|
||||
rel_extra_name:
|
||||
description: 'Release extra name'
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
test_release:
|
||||
description: 'Test Release'
|
||||
required: true
|
||||
type: boolean
|
||||
default: true
|
||||
|
||||
jobs:
|
||||
package_comfy_windows:
|
||||
@ -42,15 +92,15 @@ jobs:
|
||||
id: cache
|
||||
with:
|
||||
path: |
|
||||
cu${{ inputs.cu }}_python_deps.tar
|
||||
${{ inputs.cache_tag }}_python_deps.tar
|
||||
update_comfyui_and_python_dependencies.bat
|
||||
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
|
||||
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}
|
||||
- shell: bash
|
||||
run: |
|
||||
mv cu${{ inputs.cu }}_python_deps.tar ../
|
||||
mv ${{ inputs.cache_tag }}_python_deps.tar ../
|
||||
mv update_comfyui_and_python_dependencies.bat ../
|
||||
cd ..
|
||||
tar xf cu${{ inputs.cu }}_python_deps.tar
|
||||
tar xf ${{ inputs.cache_tag }}_python_deps.tar
|
||||
pwd
|
||||
ls
|
||||
|
||||
@ -65,12 +115,19 @@ jobs:
|
||||
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
|
||||
|
||||
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||
./python.exe -s -m pip install -r requirements_comfyui.txt
|
||||
rm requirements_comfyui.txt
|
||||
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
rm ./Lib/site-packages/torch/lib/libprotoc.lib
|
||||
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
|
||||
if test -f ./Lib/site-packages/torch/lib/dnnl.lib; then
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
rm ./Lib/site-packages/torch/lib/libprotoc.lib
|
||||
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
|
||||
fi
|
||||
|
||||
cd ..
|
||||
|
||||
@ -85,14 +142,18 @@ jobs:
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_${{ inputs.rel_name }}_base_files/* ./
|
||||
cp ../update_comfyui_and_python_dependencies.bat ./update/
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
|
||||
|
||||
- shell: bash
|
||||
if: ${{ inputs.test_release }}
|
||||
run: |
|
||||
cd ..
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
@ -101,10 +162,9 @@ jobs:
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia.7z
|
||||
tag: ${{ inputs.git_tag }}
|
||||
overwrite: true
|
||||
files: ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
|
||||
tag_name: ${{ inputs.git_tag }}
|
||||
draft: true
|
||||
overwrite_files: true
|
||||
|
||||
20
.github/workflows/test-ci.yml
vendored
20
.github/workflows/test-ci.yml
vendored
@ -21,14 +21,15 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
os: [macos, linux]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
python_version: ["3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
# - os: macos
|
||||
# runner_label: [self-hosted, macOS]
|
||||
# flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
@ -73,14 +74,15 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux]
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
python_version: ["3.11"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
# - os: macos
|
||||
# runner_label: [self-hosted, macOS]
|
||||
# flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
|
||||
@ -17,7 +17,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "129"
|
||||
default: "130"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@ -29,7 +29,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "6"
|
||||
default: "9"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@ -56,7 +56,8 @@ jobs:
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
|
||||
64
.github/workflows/windows_release_dependencies_manual.yml
vendored
Normal file
64
.github/workflows/windows_release_dependencies_manual.yml
vendored
Normal file
@ -0,0 +1,64 @@
|
||||
name: "Windows Release dependencies Manual"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
torch_dependencies:
|
||||
description: 'torch dependencies'
|
||||
required: false
|
||||
type: string
|
||||
default: "torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128"
|
||||
cache_tag:
|
||||
description: 'Cached dependencies tag'
|
||||
required: true
|
||||
type: string
|
||||
default: "cu128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
|
||||
jobs:
|
||||
build_dependencies:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }}
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
echo "@echo off
|
||||
call update_comfyui.bat nopause
|
||||
echo -
|
||||
echo This will try to update pytorch and all python dependencies.
|
||||
echo -
|
||||
echo If you just want to update normally, close this and run update_comfyui.bat instead.
|
||||
echo -
|
||||
pause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade ${{ inputs.torch_dependencies }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
|
||||
python -m pip wheel --no-cache-dir ${{ inputs.torch_dependencies }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
mv temp_wheel_dir ${{ inputs.cache_tag }}_python_deps
|
||||
tar cf ${{ inputs.cache_tag }}_python_deps.tar ${{ inputs.cache_tag }}_python_deps
|
||||
|
||||
- uses: actions/cache/save@v4
|
||||
with:
|
||||
path: |
|
||||
${{ inputs.cache_tag }}_python_deps.tar
|
||||
update_comfyui_and_python_dependencies.bat
|
||||
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}
|
||||
@ -68,7 +68,7 @@ jobs:
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
|
||||
|
||||
echo "call update_comfyui.bat nopause
|
||||
|
||||
@ -81,7 +81,7 @@ jobs:
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
|
||||
cp ../update_comfyui_and_python_dependencies.bat ./update/
|
||||
|
||||
cd ..
|
||||
|
||||
168
QUANTIZATION.md
Normal file
168
QUANTIZATION.md
Normal file
@ -0,0 +1,168 @@
|
||||
# The Comfy guide to Quantization
|
||||
|
||||
|
||||
## How does quantization work?
|
||||
|
||||
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
|
||||
|
||||
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
|
||||
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
|
||||
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
|
||||
|
||||
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
|
||||
|
||||
```
|
||||
absmax = max(abs(tensor))
|
||||
scale = amax / max_dynamic_range_low_precision
|
||||
|
||||
# Quantization
|
||||
tensor_q = (tensor / scale).to(low_precision_dtype)
|
||||
|
||||
# De-Quantization
|
||||
tensor_dq = tensor_q.to(fp16) * scale
|
||||
|
||||
tensor_dq ~ tensor
|
||||
```
|
||||
|
||||
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
|
||||
|
||||
|
||||
## Quantization in Comfy
|
||||
|
||||
```
|
||||
QuantizedTensor (torch.Tensor subclass)
|
||||
↓ __torch_dispatch__
|
||||
Two-Level Registry (generic + layout handlers)
|
||||
↓
|
||||
MixedPrecisionOps + Metadata Detection
|
||||
```
|
||||
|
||||
### Representation
|
||||
|
||||
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
|
||||
|
||||
A `Layout` class defines how a specific quantization format behaves:
|
||||
- Required parameters
|
||||
- Quantize method
|
||||
- De-Quantize method
|
||||
|
||||
```python
|
||||
from comfy.quant_ops import QuantizedLayout
|
||||
|
||||
class MyLayout(QuantizedLayout):
|
||||
@classmethod
|
||||
def quantize(cls, tensor, **kwargs):
|
||||
# Convert to quantized format
|
||||
qdata = ...
|
||||
params = {'scale': ..., 'orig_dtype': tensor.dtype}
|
||||
return qdata, params
|
||||
|
||||
@staticmethod
|
||||
def dequantize(qdata, scale, orig_dtype, **kwargs):
|
||||
return qdata.to(orig_dtype) * scale
|
||||
```
|
||||
|
||||
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
|
||||
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
|
||||
|
||||
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
|
||||
```python
|
||||
from comfy.quant_ops import register_layout_op
|
||||
|
||||
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
|
||||
def my_linear(func, args, kwargs):
|
||||
# Extract tensors, call optimized kernel
|
||||
...
|
||||
```
|
||||
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
|
||||
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
|
||||
|
||||
|
||||
### Mixed Precision
|
||||
|
||||
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
|
||||
|
||||
**Architecture:**
|
||||
|
||||
```python
|
||||
class MixedPrecisionOps(disable_weight_init):
|
||||
_layer_quant_config = {} # Maps layer names to quantization configs
|
||||
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
|
||||
```
|
||||
|
||||
**Key mechanism:**
|
||||
|
||||
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
|
||||
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
|
||||
- If the layer name **is** in `_layer_quant_config`:
|
||||
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
|
||||
- Load associated quantization parameters (scales, block_size, etc.)
|
||||
|
||||
**Why it's needed:**
|
||||
|
||||
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
|
||||
|
||||
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
|
||||
|
||||
|
||||
## Checkpoint Format
|
||||
|
||||
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
|
||||
|
||||
The quantized checkpoint will contain the same layers as the original checkpoint but:
|
||||
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
|
||||
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
|
||||
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
|
||||
|
||||
### Scaling Parameters details
|
||||
We define 4 possible scaling parameters that should cover most recipes in the near-future:
|
||||
- **weight_scale**: quantization scalers for the weights
|
||||
- **weight_scale_2**: global scalers in the context of double scaling
|
||||
- **pre_quant_scale**: scalers used for smoothing salient weights
|
||||
- **input_scale**: quantization scalers for the activations
|
||||
|
||||
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|
||||
|--------|---------------|--------------|----------------|-----------------|-------------|
|
||||
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
|
||||
|
||||
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
|
||||
|
||||
### Quantization Metadata
|
||||
|
||||
The metadata stored alongside the checkpoint contains:
|
||||
- **format_version**: String to define a version of the standard
|
||||
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
|
||||
|
||||
Example:
|
||||
```json
|
||||
{
|
||||
"_quantization_metadata": {
|
||||
"format_version": "1.0",
|
||||
"layers": {
|
||||
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
|
||||
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
|
||||
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Creating Quantized Checkpoints
|
||||
|
||||
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
|
||||
|
||||
### Weight Quantization
|
||||
|
||||
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
|
||||
|
||||
### Calibration (for Activation Quantization)
|
||||
|
||||
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
|
||||
|
||||
1. **Collect statistics**: Run inference on N representative samples
|
||||
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
|
||||
3. **Compute scales**: Derive `input_scale` from collected statistics
|
||||
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
|
||||
|
||||
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.
|
||||
63
README.md
63
README.md
@ -112,10 +112,11 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
|
||||
ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
- Releases a new stable version (e.g., v0.7.0) roughly every week.
|
||||
- Commits outside of the stable release tags may be very unstable and break many custom nodes.
|
||||
- Serves as the foundation for the desktop release
|
||||
|
||||
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
|
||||
@ -172,10 +173,20 @@ There is a portable standalone build for Windows that should work for running on
|
||||
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
|
||||
|
||||
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
|
||||
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
Update your Nvidia drivers if it doesn't start.
|
||||
|
||||
#### Alternative Downloads:
|
||||
|
||||
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
|
||||
|
||||
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
|
||||
|
||||
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
|
||||
|
||||
#### How do I share models between another UI and ComfyUI?
|
||||
|
||||
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
@ -191,7 +202,11 @@ comfy install
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
|
||||
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
|
||||
|
||||
### Instructions:
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
@ -200,18 +215,36 @@ Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
|
||||
Put your VAE in: models/vae
|
||||
|
||||
|
||||
### AMD GPUs (Linux only)
|
||||
### AMD GPUs (Linux)
|
||||
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
|
||||
This is the command to install the nightly with ROCm 7.0 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
|
||||
|
||||
|
||||
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
|
||||
|
||||
These have less hardware support than the builds above but they work on windows. You also need to install the pytorch version specific to your hardware.
|
||||
|
||||
RDNA 3 (RX 7000 series):
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-dgpu/```
|
||||
|
||||
RDNA 3.5 (Strix halo/Ryzen AI Max+ 365):
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx1151/```
|
||||
|
||||
RDNA 4 (RX 9000 series):
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/```
|
||||
|
||||
### Intel GPUs (Windows and Linux)
|
||||
|
||||
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
|
||||
1. To install PyTorch xpu, use the following command:
|
||||
|
||||
@ -221,19 +254,15 @@ This is the command to install the Pytorch xpu nightly which might have some per
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
|
||||
|
||||
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
|
||||
|
||||
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu130```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements.
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu130```
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
@ -264,12 +293,6 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
|
||||
|
||||
> **Note**: Remember to add your models, VAE, LoRAs etc. to the corresponding Comfy folders, as discussed in [ComfyUI manual installation](#manual-install-windows-linux).
|
||||
|
||||
#### DirectML (AMD Cards on Windows)
|
||||
|
||||
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
|
||||
|
||||
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
|
||||
#### Ascend NPUs
|
||||
|
||||
For models compatible with Ascend Extension for PyTorch (torch_npu). To get started, ensure your environment meets the prerequisites outlined on the [installation](https://ascend.github.io/docs/sources/ascend/quick_install.html) page. Here's a step-by-step guide tailored to your platform and installation method:
|
||||
|
||||
112
app/subgraph_manager.py
Normal file
112
app/subgraph_manager.py
Normal file
@ -0,0 +1,112 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TypedDict
|
||||
import os
|
||||
import folder_paths
|
||||
import glob
|
||||
from aiohttp import web
|
||||
import hashlib
|
||||
|
||||
|
||||
class Source:
|
||||
custom_node = "custom_node"
|
||||
|
||||
class SubgraphEntry(TypedDict):
|
||||
source: str
|
||||
"""
|
||||
Source of subgraph - custom_nodes vs templates.
|
||||
"""
|
||||
path: str
|
||||
"""
|
||||
Relative path of the subgraph file.
|
||||
For custom nodes, will be the relative directory like <custom_node_dir>/subgraphs/<name>.json
|
||||
"""
|
||||
name: str
|
||||
"""
|
||||
Name of subgraph file.
|
||||
"""
|
||||
info: CustomNodeSubgraphEntryInfo
|
||||
"""
|
||||
Additional info about subgraph; in the case of custom_nodes, will contain nodepack name
|
||||
"""
|
||||
data: str
|
||||
|
||||
class CustomNodeSubgraphEntryInfo(TypedDict):
|
||||
node_pack: str
|
||||
"""Node pack name."""
|
||||
|
||||
class SubgraphManager:
|
||||
def __init__(self):
|
||||
self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None
|
||||
|
||||
async def load_entry_data(self, entry: SubgraphEntry):
|
||||
with open(entry['path'], 'r') as f:
|
||||
entry['data'] = f.read()
|
||||
return entry
|
||||
|
||||
async def sanitize_entry(self, entry: SubgraphEntry | None, remove_data=False) -> SubgraphEntry | None:
|
||||
if entry is None:
|
||||
return None
|
||||
entry = entry.copy()
|
||||
entry.pop('path', None)
|
||||
if remove_data:
|
||||
entry.pop('data', None)
|
||||
return entry
|
||||
|
||||
async def sanitize_entries(self, entries: dict[str, SubgraphEntry], remove_data=False) -> dict[str, SubgraphEntry]:
|
||||
entries = entries.copy()
|
||||
for key in list(entries.keys()):
|
||||
entries[key] = await self.sanitize_entry(entries[key], remove_data)
|
||||
return entries
|
||||
|
||||
async def get_custom_node_subgraphs(self, loadedModules, force_reload=False):
|
||||
# if not forced to reload and cached, return cache
|
||||
if not force_reload and self.cached_custom_node_subgraphs is not None:
|
||||
return self.cached_custom_node_subgraphs
|
||||
# Load subgraphs from custom nodes
|
||||
subfolder = "subgraphs"
|
||||
subgraphs_dict: dict[SubgraphEntry] = {}
|
||||
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes"):
|
||||
pattern = os.path.join(folder, f"*/{subfolder}/*.json")
|
||||
matched_files = glob.glob(pattern)
|
||||
for file in matched_files:
|
||||
# replace backslashes with forward slashes
|
||||
file = file.replace('\\', '/')
|
||||
info: CustomNodeSubgraphEntryInfo = {
|
||||
"node_pack": "custom_nodes." + file.split('/')[-3]
|
||||
}
|
||||
source = Source.custom_node
|
||||
# hash source + path to make sure id will be as unique as possible, but
|
||||
# reproducible across backend reloads
|
||||
id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
|
||||
entry: SubgraphEntry = {
|
||||
"source": Source.custom_node,
|
||||
"name": os.path.splitext(os.path.basename(file))[0],
|
||||
"path": file,
|
||||
"info": info,
|
||||
}
|
||||
subgraphs_dict[id] = entry
|
||||
self.cached_custom_node_subgraphs = subgraphs_dict
|
||||
return subgraphs_dict
|
||||
|
||||
async def get_custom_node_subgraph(self, id: str, loadedModules):
|
||||
subgraphs = await self.get_custom_node_subgraphs(loadedModules)
|
||||
entry: SubgraphEntry = subgraphs.get(id, None)
|
||||
if entry is not None and entry.get('data', None) is None:
|
||||
await self.load_entry_data(entry)
|
||||
return entry
|
||||
|
||||
def add_routes(self, routes, loadedModules):
|
||||
@routes.get("/global_subgraphs")
|
||||
async def get_global_subgraphs(request):
|
||||
subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules)
|
||||
# NOTE: we may want to include other sources of global subgraphs such as templates in the future;
|
||||
# that's the reasoning for the current implementation
|
||||
return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True))
|
||||
|
||||
@routes.get("/global_subgraphs/{id}")
|
||||
async def get_global_subgraph(request):
|
||||
id = request.match_info.get("id", None)
|
||||
subgraph = await self.get_custom_node_subgraph(id, loadedModules)
|
||||
return web.json_response(await self.sanitize_entry(subgraph))
|
||||
@ -105,6 +105,7 @@ cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
|
||||
cache_group.add_argument("--cache-ram", nargs='?', const=4.0, type=float, default=0, help="Use RAM pressure caching with the specified headroom threshold. If available RAM drops below the threhold the cache remove large items to free RAM. Default 4GB")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
@ -145,7 +146,9 @@ class PerformanceFeature(enum.Enum):
|
||||
CublasOps = "cublas_ops"
|
||||
AutoTune = "autotune"
|
||||
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
|
||||
|
||||
parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.")
|
||||
|
||||
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
|
||||
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
|
||||
|
||||
@ -310,11 +310,13 @@ class ControlLoraOps:
|
||||
self.bias = None
|
||||
|
||||
def forward(self, input):
|
||||
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
||||
x = torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
x = torch.nn.functional.linear(input, weight, bias)
|
||||
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(
|
||||
@ -350,12 +352,13 @@ class ControlLoraOps:
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
x = torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
else:
|
||||
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
x = torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
|
||||
|
||||
@ -23,8 +23,6 @@ class MusicDCAE(torch.nn.Module):
|
||||
else:
|
||||
self.source_sample_rate = source_sample_rate
|
||||
|
||||
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
|
||||
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Normalize(0.5, 0.5),
|
||||
])
|
||||
@ -37,10 +35,6 @@ class MusicDCAE(torch.nn.Module):
|
||||
self.scale_factor = 0.1786
|
||||
self.shift_factor = -1.9091
|
||||
|
||||
def load_audio(self, audio_path):
|
||||
audio, sr = torchaudio.load(audio_path)
|
||||
return audio, sr
|
||||
|
||||
def forward_mel(self, audios):
|
||||
mels = []
|
||||
for i in range(len(audios)):
|
||||
@ -73,10 +67,8 @@ class MusicDCAE(torch.nn.Module):
|
||||
latent = self.dcae.encoder(mel.unsqueeze(0))
|
||||
latents.append(latent)
|
||||
latents = torch.cat(latents, dim=0)
|
||||
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
|
||||
latents = (latents - self.shift_factor) * self.scale_factor
|
||||
return latents
|
||||
# return latents, latent_lengths
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, latents, audio_lengths=None, sr=None):
|
||||
@ -91,9 +83,7 @@ class MusicDCAE(torch.nn.Module):
|
||||
wav = self.vocoder.decode(mels[0]).squeeze(1)
|
||||
|
||||
if sr is not None:
|
||||
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
|
||||
wav = torchaudio.functional.resample(wav, 44100, sr)
|
||||
# wav = resampler(wav)
|
||||
else:
|
||||
sr = 44100
|
||||
pred_wavs.append(wav)
|
||||
@ -101,7 +91,6 @@ class MusicDCAE(torch.nn.Module):
|
||||
if audio_lengths is not None:
|
||||
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
|
||||
return torch.stack(pred_wavs)
|
||||
# return sr, pred_wavs
|
||||
|
||||
def forward(self, audios, audio_lengths=None, sr=None):
|
||||
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
|
||||
|
||||
@ -1,15 +1,15 @@
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.math import attention
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
QKNorm,
|
||||
SelfAttention,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
# TODO: remove this in a few months
|
||||
SingleStreamBlock = None
|
||||
DoubleStreamBlock = None
|
||||
|
||||
|
||||
class ChromaModulationOut(ModulationOut):
|
||||
@ -48,124 +48,6 @@ class Approximator(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
|
||||
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
|
||||
|
||||
# calculate the txt bloks
|
||||
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
|
||||
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x.addcmul_(mod.gate, output)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
@ -11,12 +11,12 @@ import comfy.ldm.common_dit
|
||||
from comfy.ldm.flux.layers import (
|
||||
EmbedND,
|
||||
timestep_embedding,
|
||||
DoubleStreamBlock,
|
||||
SingleStreamBlock,
|
||||
)
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
LastLayer,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
ChromaModulationOut,
|
||||
)
|
||||
@ -90,6 +90,7 @@ class Chroma(nn.Module):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
modulation=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@ -98,7 +99,7 @@ class Chroma(nn.Module):
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
@ -10,12 +10,10 @@ from torch import Tensor, nn
|
||||
from einops import repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
|
||||
|
||||
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
||||
from comfy.ldm.chroma.layers import (
|
||||
DoubleStreamBlock,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
)
|
||||
from .layers import (
|
||||
@ -89,7 +87,6 @@ class ChromaRadiance(Chroma):
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
@ -97,6 +94,7 @@ class ChromaRadiance(Chroma):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
modulation=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@ -109,6 +107,7 @@ class ChromaRadiance(Chroma):
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
modulation=False,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
@ -189,15 +188,15 @@ class ChromaRadiance(Chroma):
|
||||
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
|
||||
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
|
||||
|
||||
# Reshape for per-patch processing
|
||||
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
|
||||
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
|
||||
|
||||
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
|
||||
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
|
||||
# the tile size.
|
||||
img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params)
|
||||
img_dct = self.forward_tiled_nerf(nerf_hidden, nerf_pixels, B, C, num_patches, patch_size, params)
|
||||
else:
|
||||
# Reshape for per-patch processing
|
||||
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
|
||||
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
|
||||
|
||||
# Get DCT-encoded pixel embeddings [pixel-dct]
|
||||
img_dct = self.nerf_image_embedder(nerf_pixels)
|
||||
|
||||
@ -240,17 +239,8 @@ class ChromaRadiance(Chroma):
|
||||
end = min(i + tile_size, num_patches)
|
||||
|
||||
# Slice the current tile from the input tensors
|
||||
nerf_hidden_tile = nerf_hidden[:, i:end, :]
|
||||
nerf_pixels_tile = nerf_pixels[:, i:end, :]
|
||||
|
||||
# Get the actual number of patches in this tile (can be smaller for the last tile)
|
||||
num_patches_tile = nerf_hidden_tile.shape[1]
|
||||
|
||||
# Reshape the tile for per-patch processing
|
||||
# [B, NumPatches_tile, D] -> [B * NumPatches_tile, D]
|
||||
nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size)
|
||||
# [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C]
|
||||
nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2)
|
||||
nerf_hidden_tile = nerf_hidden[i * batch:end * batch]
|
||||
nerf_pixels_tile = nerf_pixels[i * batch:end * batch]
|
||||
|
||||
# get DCT-encoded pixel embeddings [pixel-dct]
|
||||
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
|
||||
|
||||
@ -130,13 +130,17 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.modulation = modulation
|
||||
|
||||
if self.modulation:
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
@ -147,7 +151,9 @@ class DoubleStreamBlock(nn.Module):
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
if self.modulation:
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
@ -160,46 +166,65 @@ class DoubleStreamBlock(nn.Module):
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
if self.modulation:
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
else:
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
del img_modulated
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
del img_qkv
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
del txt_modulated
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
del txt_qkv
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
if self.flipped_img_txt:
|
||||
q = torch.cat((img_q, txt_q), dim=2)
|
||||
del img_q, txt_q
|
||||
k = torch.cat((img_k, txt_k), dim=2)
|
||||
del img_k, txt_k
|
||||
v = torch.cat((img_v, txt_v), dim=2)
|
||||
del img_v, txt_v
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((img_q, txt_q), dim=2),
|
||||
torch.cat((img_k, txt_k), dim=2),
|
||||
torch.cat((img_v, txt_v), dim=2),
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
del txt_q, img_q
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
del txt_k, img_k
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
del txt_v, img_v
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
|
||||
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
del img_attn
|
||||
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
|
||||
del txt_attn
|
||||
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
@ -220,6 +245,7 @@ class SingleStreamBlock(nn.Module):
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
modulation=True,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
@ -242,19 +268,29 @@ class SingleStreamBlock(nn.Module):
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
if modulation:
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.modulation = None
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
if self.modulation:
|
||||
mod, _ = self.modulation(vec)
|
||||
else:
|
||||
mod = vec
|
||||
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
del qkv
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
mlp = self.mlp_act(mlp)
|
||||
output = self.linear2(torch.cat((attn, mlp), 2))
|
||||
x += apply_mod(output, mod.gate, None, modulation_dims)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
@ -7,15 +7,7 @@ import comfy.model_management
|
||||
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
|
||||
q_shape = q.shape
|
||||
k_shape = k.shape
|
||||
|
||||
if pe is not None:
|
||||
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
|
||||
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
|
||||
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
|
||||
q, k = apply_rope(q, k, pe)
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
|
||||
return x
|
||||
@ -37,7 +29,10 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
|
||||
def apply_rope1(x: Tensor, freqs_cis: Tensor):
|
||||
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
|
||||
x_out = freqs_cis[..., 0] * x_[..., 0] + freqs_cis[..., 1] * x_[..., 1]
|
||||
|
||||
x_out = freqs_cis[..., 0] * x_[..., 0]
|
||||
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
|
||||
|
||||
return x_out.reshape(*x.shape).type_as(x)
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
|
||||
@ -210,7 +210,7 @@ class Flux(nn.Module):
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0):
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
@ -222,10 +222,22 @@ class Flux(nn.Module):
|
||||
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
|
||||
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
steps_h = h_len
|
||||
steps_w = w_len
|
||||
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
if rope_options is not None:
|
||||
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
|
||||
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
|
||||
|
||||
index += rope_options.get("shift_t", 0.0)
|
||||
h_offset += rope_options.get("shift_y", 0.0)
|
||||
w_offset += rope_options.get("shift_x", 0.0)
|
||||
|
||||
img_ids = torch.zeros((steps_h, steps_w, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 1] + index
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
|
||||
@ -241,7 +253,7 @@ class Flux(nn.Module):
|
||||
|
||||
h_len = ((h_orig + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w_orig + (patch_size // 2)) // patch_size)
|
||||
img, img_ids = self.process_img(x)
|
||||
img, img_ids = self.process_img(x, transformer_options=transformer_options)
|
||||
img_tokens = img.shape[1]
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize
|
||||
import comfy.ops
|
||||
import comfy.ldm.models.autoencoder
|
||||
ops = comfy.ops.disable_weight_init
|
||||
@ -17,11 +17,12 @@ class RMS_norm(nn.Module):
|
||||
return F.normalize(x, dim=1) * self.scale * self.gamma
|
||||
|
||||
class DnSmpl(nn.Module):
|
||||
def __init__(self, ic, oc, tds=True):
|
||||
def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d):
|
||||
super().__init__()
|
||||
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
|
||||
assert oc % fct == 0
|
||||
self.conv = VideoConv3d(ic, oc // fct, kernel_size=3)
|
||||
self.conv = op(ic, oc // fct, kernel_size=3, stride=1, padding=1)
|
||||
self.refiner_vae = refiner_vae
|
||||
|
||||
self.tds = tds
|
||||
self.gs = fct * ic // oc
|
||||
@ -30,7 +31,7 @@ class DnSmpl(nn.Module):
|
||||
r1 = 2 if self.tds else 1
|
||||
h = self.conv(x)
|
||||
|
||||
if self.tds:
|
||||
if self.tds and self.refiner_vae:
|
||||
hf = h[:, :, :1, :, :]
|
||||
b, c, f, ht, wd = hf.shape
|
||||
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
|
||||
@ -66,6 +67,7 @@ class DnSmpl(nn.Module):
|
||||
sc = torch.cat([xf, xn], dim=2)
|
||||
else:
|
||||
b, c, frms, ht, wd = h.shape
|
||||
|
||||
nf = frms // r1
|
||||
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
@ -83,10 +85,11 @@ class DnSmpl(nn.Module):
|
||||
|
||||
|
||||
class UpSmpl(nn.Module):
|
||||
def __init__(self, ic, oc, tus=True):
|
||||
def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d):
|
||||
super().__init__()
|
||||
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
|
||||
self.conv = VideoConv3d(ic, oc * fct, kernel_size=3)
|
||||
self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1)
|
||||
self.refiner_vae = refiner_vae
|
||||
|
||||
self.tus = tus
|
||||
self.rp = fct * oc // ic
|
||||
@ -95,7 +98,7 @@ class UpSmpl(nn.Module):
|
||||
r1 = 2 if self.tus else 1
|
||||
h = self.conv(x)
|
||||
|
||||
if self.tus:
|
||||
if self.tus and self.refiner_vae:
|
||||
hf = h[:, :, :1, :, :]
|
||||
b, c, f, ht, wd = hf.shape
|
||||
nc = c // (2 * 2)
|
||||
@ -148,43 +151,56 @@ class UpSmpl(nn.Module):
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
|
||||
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, **_):
|
||||
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, refiner_vae=True, **_):
|
||||
super().__init__()
|
||||
self.z_channels = z_channels
|
||||
self.block_out_channels = block_out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.conv_in = VideoConv3d(in_channels, block_out_channels[0], 3, 1, 1)
|
||||
self.ffactor_temporal = ffactor_temporal
|
||||
|
||||
self.refiner_vae = refiner_vae
|
||||
if self.refiner_vae:
|
||||
conv_op = VideoConv3d
|
||||
norm_op = RMS_norm
|
||||
else:
|
||||
conv_op = ops.Conv3d
|
||||
norm_op = Normalize
|
||||
|
||||
self.conv_in = conv_op(in_channels, block_out_channels[0], 3, 1, 1)
|
||||
|
||||
self.down = nn.ModuleList()
|
||||
ch = block_out_channels[0]
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
depth_temporal = ((ffactor_spatial // ffactor_temporal) >> 1).bit_length()
|
||||
depth_temporal = ((ffactor_spatial // self.ffactor_temporal) >> 1).bit_length()
|
||||
|
||||
for i, tgt in enumerate(block_out_channels):
|
||||
stage = nn.Module()
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
conv_op=conv_op, norm_op=norm_op)
|
||||
for j in range(num_res_blocks)])
|
||||
ch = tgt
|
||||
if i < depth:
|
||||
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
|
||||
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal)
|
||||
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal, refiner_vae=self.refiner_vae, op=conv_op)
|
||||
ch = nxt
|
||||
self.down.append(stage)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
|
||||
self.norm_out = RMS_norm(ch)
|
||||
self.conv_out = VideoConv3d(ch, z_channels << 1, 3, 1, 1)
|
||||
self.norm_out = norm_op(ch)
|
||||
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
|
||||
|
||||
self.regul = comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer()
|
||||
|
||||
def forward(self, x):
|
||||
if not self.refiner_vae and x.shape[2] == 1:
|
||||
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
|
||||
|
||||
x = self.conv_in(x)
|
||||
|
||||
for stage in self.down:
|
||||
@ -200,31 +216,42 @@ class Encoder(nn.Module):
|
||||
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
|
||||
|
||||
out = self.conv_out(F.silu(self.norm_out(x))) + skip
|
||||
out = self.regul(out)[0]
|
||||
|
||||
out = torch.cat((out[:, :, :1], out), dim=2)
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
b, f_times_2, c, h, w = out.shape
|
||||
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
|
||||
out = out.permute(0, 2, 1, 3, 4).contiguous()
|
||||
if self.refiner_vae:
|
||||
out = self.regul(out)[0]
|
||||
|
||||
out = torch.cat((out[:, :, :1], out), dim=2)
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
b, f_times_2, c, h, w = out.shape
|
||||
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
|
||||
out = out.permute(0, 2, 1, 3, 4).contiguous()
|
||||
|
||||
return out
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
|
||||
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, **_):
|
||||
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, refiner_vae=True, **_):
|
||||
super().__init__()
|
||||
block_out_channels = block_out_channels[::-1]
|
||||
self.z_channels = z_channels
|
||||
self.block_out_channels = block_out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
self.refiner_vae = refiner_vae
|
||||
if self.refiner_vae:
|
||||
conv_op = VideoConv3d
|
||||
norm_op = RMS_norm
|
||||
else:
|
||||
conv_op = ops.Conv3d
|
||||
norm_op = Normalize
|
||||
|
||||
ch = block_out_channels[0]
|
||||
self.conv_in = VideoConv3d(z_channels, ch, 3)
|
||||
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
|
||||
self.up = nn.ModuleList()
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
@ -235,25 +262,26 @@ class Decoder(nn.Module):
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
conv_op=conv_op, norm_op=norm_op)
|
||||
for j in range(num_res_blocks + 1)])
|
||||
ch = tgt
|
||||
if i < depth:
|
||||
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
|
||||
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal)
|
||||
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal, refiner_vae=self.refiner_vae, op=conv_op)
|
||||
ch = nxt
|
||||
self.up.append(stage)
|
||||
|
||||
self.norm_out = RMS_norm(ch)
|
||||
self.conv_out = VideoConv3d(ch, out_channels, 3)
|
||||
self.norm_out = norm_op(ch)
|
||||
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
b, f, c, h, w = z.shape
|
||||
z = z.reshape(b, f, 2, c // 2, h, w)
|
||||
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
z = z[:, :, 1:]
|
||||
if self.refiner_vae:
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
b, f, c, h, w = z.shape
|
||||
z = z.reshape(b, f, 2, c // 2, h, w)
|
||||
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
z = z[:, :, 1:]
|
||||
|
||||
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
@ -264,4 +292,10 @@ class Decoder(nn.Module):
|
||||
if hasattr(stage, 'upsample'):
|
||||
x = stage.upsample(x)
|
||||
|
||||
return self.conv_out(F.silu(self.norm_out(x)))
|
||||
out = self.conv_out(F.silu(self.norm_out(x)))
|
||||
|
||||
if not self.refiner_vae:
|
||||
if z.shape[-3] == 1:
|
||||
out = out[:, :, -1:]
|
||||
|
||||
return out
|
||||
|
||||
@ -3,12 +3,11 @@ from torch import nn
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.modules.attention
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
import math
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
|
||||
|
||||
from comfy.ldm.flux.math import apply_rope1
|
||||
|
||||
def get_timestep_embedding(
|
||||
timesteps: torch.Tensor,
|
||||
@ -238,20 +237,6 @@ class FeedForward(nn.Module):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
|
||||
cos_freqs = freqs_cis[0]
|
||||
sin_freqs = freqs_cis[1]
|
||||
|
||||
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
|
||||
t1, t2 = t_dup.unbind(dim=-1)
|
||||
t_dup = torch.stack((-t2, t1), dim=-1)
|
||||
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
|
||||
|
||||
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
@ -281,8 +266,8 @@ class CrossAttention(nn.Module):
|
||||
k = self.k_norm(k)
|
||||
|
||||
if pe is not None:
|
||||
q = apply_rotary_emb(q, pe)
|
||||
k = apply_rotary_emb(k, pe)
|
||||
q = apply_rope1(q.unsqueeze(1), pe).squeeze(1)
|
||||
k = apply_rope1(k.unsqueeze(1), pe).squeeze(1)
|
||||
|
||||
if mask is None:
|
||||
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
|
||||
@ -306,12 +291,17 @@ class BasicTransformerBlock(nn.Module):
|
||||
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
|
||||
|
||||
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
|
||||
attn1_input = comfy.ldm.common_dit.rms_norm(x)
|
||||
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
|
||||
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
|
||||
x.addcmul_(attn1_input, gate_msa)
|
||||
del attn1_input
|
||||
|
||||
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
|
||||
|
||||
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
|
||||
x += self.ff(y) * gate_mlp
|
||||
y = comfy.ldm.common_dit.rms_norm(x)
|
||||
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
|
||||
x.addcmul_(self.ff(y), gate_mlp)
|
||||
|
||||
return x
|
||||
|
||||
@ -327,41 +317,35 @@ def get_fractional_positions(indices_grid, max_pos):
|
||||
|
||||
|
||||
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
|
||||
dtype = torch.float32 #self.dtype
|
||||
dtype = torch.float32
|
||||
device = indices_grid.device
|
||||
|
||||
# Get fractional positions and compute frequency indices
|
||||
fractional_positions = get_fractional_positions(indices_grid, max_pos)
|
||||
indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2
|
||||
|
||||
start = 1
|
||||
end = theta
|
||||
device = fractional_positions.device
|
||||
# Compute frequencies and apply cos/sin
|
||||
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
|
||||
cos_vals = freqs.cos().repeat_interleave(2, dim=-1)
|
||||
sin_vals = freqs.sin().repeat_interleave(2, dim=-1)
|
||||
|
||||
indices = theta ** (
|
||||
torch.linspace(
|
||||
math.log(start, theta),
|
||||
math.log(end, theta),
|
||||
dim // 6,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
indices = indices.to(dtype=dtype)
|
||||
|
||||
indices = indices * math.pi / 2
|
||||
|
||||
freqs = (
|
||||
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
|
||||
.transpose(-1, -2)
|
||||
.flatten(2)
|
||||
)
|
||||
|
||||
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
||||
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
||||
# Pad if dim is not divisible by 6
|
||||
if dim % 6 != 0:
|
||||
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
||||
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
||||
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
||||
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
||||
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
|
||||
padding_size = dim % 6
|
||||
cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1)
|
||||
sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1)
|
||||
|
||||
# Reshape and extract one value per pair (since repeat_interleave duplicates each value)
|
||||
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
|
||||
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
|
||||
|
||||
# Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension
|
||||
freqs_cis = torch.stack([
|
||||
torch.stack([cos_vals, -sin_vals], dim=-1),
|
||||
torch.stack([sin_vals, cos_vals], dim=-1)
|
||||
], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2]
|
||||
|
||||
return freqs_cis
|
||||
|
||||
|
||||
class LTXVModel(torch.nn.Module):
|
||||
@ -501,7 +485,7 @@ class LTXVModel(torch.nn.Module):
|
||||
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
||||
x = self.norm_out(x)
|
||||
# Modulation
|
||||
x = x * (1 + scale) + shift
|
||||
x = torch.addcmul(x, x, scale).add_(shift)
|
||||
x = self.proj_out(x)
|
||||
|
||||
x = self.patchifier.unpatchify(
|
||||
|
||||
@ -522,7 +522,7 @@ class NextDiT(nn.Module):
|
||||
max_cap_len = max(l_effective_cap_len)
|
||||
max_img_len = max(l_effective_img_len)
|
||||
|
||||
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
|
||||
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.float32, device=device)
|
||||
|
||||
for i in range(bsz):
|
||||
cap_len = l_effective_cap_len[i]
|
||||
@ -531,10 +531,22 @@ class NextDiT(nn.Module):
|
||||
H_tokens, W_tokens = H // pH, W // pW
|
||||
assert H_tokens * W_tokens == img_len
|
||||
|
||||
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
h_scale = 1.0
|
||||
w_scale = 1.0
|
||||
h_start = 0
|
||||
w_start = 0
|
||||
if rope_options is not None:
|
||||
h_scale = rope_options.get("scale_y", 1.0)
|
||||
w_scale = rope_options.get("scale_x", 1.0)
|
||||
|
||||
h_start = rope_options.get("shift_y", 0.0)
|
||||
w_start = rope_options.get("shift_x", 0.0)
|
||||
|
||||
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.float32, device=device)
|
||||
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
|
||||
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
|
||||
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
|
||||
row_ids = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
|
||||
col_ids = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
|
||||
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
|
||||
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
|
||||
|
||||
|
||||
0
comfy/ldm/mmaudio/vae/__init__.py
Normal file
0
comfy/ldm/mmaudio/vae/__init__.py
Normal file
120
comfy/ldm/mmaudio/vae/activations.py
Normal file
120
comfy/ldm/mmaudio/vae/activations.py
Normal file
@ -0,0 +1,120 @@
|
||||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
from torch import nn, sin, pow
|
||||
from torch.nn import Parameter
|
||||
import comfy.model_management
|
||||
|
||||
class Snake(nn.Module):
|
||||
'''
|
||||
Implementation of a sine-based periodic activation function
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snake(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha: trainable parameter
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(Snake, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
else:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Snake ∶= x + 1/a * sin^2 (xa)
|
||||
'''
|
||||
alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SnakeBeta(nn.Module):
|
||||
'''
|
||||
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
References:
|
||||
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snakebeta(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(SnakeBeta, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
self.beta = Parameter(torch.empty(in_features))
|
||||
else:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
self.beta = Parameter(torch.empty(in_features))
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
self.beta.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||||
'''
|
||||
alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
beta = comfy.model_management.cast_to(self.beta, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1)
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
beta = torch.exp(beta)
|
||||
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
157
comfy/ldm/mmaudio/vae/alias_free_torch.py
Normal file
157
comfy/ldm/mmaudio/vae/alias_free_torch.py
Normal file
@ -0,0 +1,157 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
import comfy.model_management
|
||||
|
||||
if 'sinc' in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(x == 0,
|
||||
torch.tensor(1., device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
||||
even = (kernel_size % 2 == 0)
|
||||
half_size = kernel_size // 2
|
||||
|
||||
#For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.:
|
||||
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
||||
else:
|
||||
beta = 0.
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = (torch.arange(-half_size, half_size) + 0.5)
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
||||
# of the constant component in the input signal.
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = 'replicate',
|
||||
kernel_size: int = 12):
|
||||
# kernel_size should be even number for stylegan3 setup,
|
||||
# in this implementation, odd number is also possible.
|
||||
super().__init__()
|
||||
if cutoff < -0.:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = (kernel_size % 2 == 0)
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
#input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right),
|
||||
mode=self.padding_mode)
|
||||
out = F.conv1d(x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device),
|
||||
stride=self.stride, groups=C)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
kernel_size=self.kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device), stride=self.stride, groups=C)
|
||||
x = x[..., self.pad_left:-self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
||||
156
comfy/ldm/mmaudio/vae/autoencoder.py
Normal file
156
comfy/ldm/mmaudio/vae/autoencoder.py
Normal file
@ -0,0 +1,156 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .distributions import DiagonalGaussianDistribution
|
||||
from .vae import VAE_16k
|
||||
from .bigvgan import BigVGANVocoder
|
||||
import logging
|
||||
|
||||
try:
|
||||
import torchaudio
|
||||
except:
|
||||
logging.warning("torchaudio missing, MMAudio VAE model will be broken")
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, *, norm_fn):
|
||||
return norm_fn(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes, norm_fn):
|
||||
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
|
||||
return output
|
||||
|
||||
class MelConverter(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
sampling_rate: float,
|
||||
n_fft: int,
|
||||
num_mels: int,
|
||||
hop_size: int,
|
||||
win_size: int,
|
||||
fmin: float,
|
||||
fmax: float,
|
||||
norm_fn,
|
||||
):
|
||||
super().__init__()
|
||||
self.sampling_rate = sampling_rate
|
||||
self.n_fft = n_fft
|
||||
self.num_mels = num_mels
|
||||
self.hop_size = hop_size
|
||||
self.win_size = win_size
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.norm_fn = norm_fn
|
||||
|
||||
# mel = librosa_mel_fn(sr=self.sampling_rate,
|
||||
# n_fft=self.n_fft,
|
||||
# n_mels=self.num_mels,
|
||||
# fmin=self.fmin,
|
||||
# fmax=self.fmax)
|
||||
# mel_basis = torch.from_numpy(mel).float()
|
||||
mel_basis = torch.empty((num_mels, 1 + n_fft // 2))
|
||||
hann_window = torch.hann_window(self.win_size)
|
||||
|
||||
self.register_buffer('mel_basis', mel_basis)
|
||||
self.register_buffer('hann_window', hann_window)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.mel_basis.device
|
||||
|
||||
def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor:
|
||||
waveform = waveform.clamp(min=-1., max=1.).to(self.device)
|
||||
|
||||
waveform = torch.nn.functional.pad(
|
||||
waveform.unsqueeze(1),
|
||||
[int((self.n_fft - self.hop_size) / 2),
|
||||
int((self.n_fft - self.hop_size) / 2)],
|
||||
mode='reflect')
|
||||
waveform = waveform.squeeze(1)
|
||||
|
||||
spec = torch.stft(waveform,
|
||||
self.n_fft,
|
||||
hop_length=self.hop_size,
|
||||
win_length=self.win_size,
|
||||
window=self.hann_window,
|
||||
center=center,
|
||||
pad_mode='reflect',
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True)
|
||||
|
||||
spec = torch.view_as_real(spec)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
||||
spec = torch.matmul(self.mel_basis, spec)
|
||||
spec = spectral_normalize_torch(spec, self.norm_fn)
|
||||
|
||||
return spec
|
||||
|
||||
class AudioAutoencoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
# ckpt_path: str,
|
||||
mode=Literal['16k', '44k'],
|
||||
need_vae_encoder: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert mode == "16k", "Only 16k mode is supported currently."
|
||||
self.mel_converter = MelConverter(sampling_rate=16_000,
|
||||
n_fft=1024,
|
||||
num_mels=80,
|
||||
hop_size=256,
|
||||
win_size=1024,
|
||||
fmin=0,
|
||||
fmax=8_000,
|
||||
norm_fn=torch.log10)
|
||||
|
||||
self.vae = VAE_16k().eval()
|
||||
|
||||
bigvgan_config = {
|
||||
"resblock": "1",
|
||||
"num_mels": 80,
|
||||
"upsample_rates": [4, 4, 2, 2, 2, 2],
|
||||
"upsample_kernel_sizes": [8, 8, 4, 4, 4, 4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3, 7, 11],
|
||||
"resblock_dilation_sizes": [
|
||||
[1, 3, 5],
|
||||
[1, 3, 5],
|
||||
[1, 3, 5],
|
||||
],
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": True,
|
||||
}
|
||||
|
||||
self.vocoder = BigVGANVocoder(
|
||||
bigvgan_config
|
||||
).eval()
|
||||
|
||||
@torch.inference_mode()
|
||||
def encode_audio(self, x) -> DiagonalGaussianDistribution:
|
||||
# x: (B * L)
|
||||
mel = self.mel_converter(x)
|
||||
dist = self.vae.encode(mel)
|
||||
|
||||
return dist
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, z):
|
||||
mel_decoded = self.vae.decode(z)
|
||||
audio = self.vocoder(mel_decoded)
|
||||
|
||||
audio = torchaudio.functional.resample(audio, 16000, 44100)
|
||||
return audio
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, audio):
|
||||
audio = audio.mean(dim=1)
|
||||
audio = torchaudio.functional.resample(audio, 44100, 16000)
|
||||
dist = self.encode_audio(audio)
|
||||
return dist.mean
|
||||
219
comfy/ldm/mmaudio/vae/bigvgan.py
Normal file
219
comfy/ldm/mmaudio/vae/bigvgan.py
Normal file
@ -0,0 +1,219 @@
|
||||
# Copyright (c) 2022 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from types import SimpleNamespace
|
||||
from . import activations
|
||||
from .alias_free_torch import Activation1d
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
class AMPBlock1(torch.nn.Module):
|
||||
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
||||
super(AMPBlock1, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.convs1 = nn.ModuleList([
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0])),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]))
|
||||
])
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1)),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1)),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1))
|
||||
])
|
||||
|
||||
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
||||
|
||||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||
xt = a1(x)
|
||||
xt = c1(xt)
|
||||
xt = a2(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class AMPBlock2(torch.nn.Module):
|
||||
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
||||
super(AMPBlock2, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.convs = nn.ModuleList([
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0])),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))
|
||||
])
|
||||
|
||||
self.num_layers = len(self.convs) # total number of conv layers
|
||||
|
||||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c, a in zip(self.convs, self.activations):
|
||||
xt = a(x)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class BigVGANVocoder(torch.nn.Module):
|
||||
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
||||
def __init__(self, h):
|
||||
super().__init__()
|
||||
if isinstance(h, dict):
|
||||
h = SimpleNamespace(**h)
|
||||
self.h = h
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
|
||||
# pre conv
|
||||
self.conv_pre = ops.Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
||||
|
||||
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
||||
|
||||
# transposed conv-based upsamplers. does not apply anti-aliasing
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
nn.ModuleList([
|
||||
ops.ConvTranspose1d(h.upsample_initial_channel // (2**i),
|
||||
h.upsample_initial_channel // (2**(i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2)
|
||||
]))
|
||||
|
||||
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2**(i + 1))
|
||||
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
||||
|
||||
# post conv
|
||||
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
||||
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
self.conv_post = ops.Conv1d(ch, 1, 7, 1, padding=3)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
# pre conv
|
||||
x = self.conv_pre(x)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
# upsampling
|
||||
for i_up in range(len(self.ups[i])):
|
||||
x = self.ups[i][i_up](x)
|
||||
# AMP blocks
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
# post conv
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
92
comfy/ldm/mmaudio/vae/distributions.py
Normal file
92
comfy/ldm/mmaudio/vae/distributions.py
Normal file
@ -0,0 +1,92 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AbstractDistribution:
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape, device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
||||
358
comfy/ldm/mmaudio/vae/vae.py
Normal file
358
comfy/ldm/mmaudio/vae/vae.py
Normal file
@ -0,0 +1,358 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
|
||||
Upsample1D, nonlinearity)
|
||||
from .distributions import DiagonalGaussianDistribution
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
log = logging.getLogger()
|
||||
|
||||
DATA_MEAN_80D = [
|
||||
-1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
|
||||
-1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
|
||||
-1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
|
||||
-1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
|
||||
-1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
|
||||
-1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
|
||||
-2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
|
||||
-2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
|
||||
]
|
||||
|
||||
DATA_STD_80D = [
|
||||
1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
|
||||
0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
|
||||
0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
|
||||
0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
|
||||
0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
|
||||
0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
|
||||
1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
|
||||
]
|
||||
|
||||
DATA_MEAN_128D = [
|
||||
-3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
|
||||
-2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
|
||||
-2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
|
||||
-3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
|
||||
-3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
|
||||
-3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
|
||||
-3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
|
||||
-4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
|
||||
-4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
|
||||
-5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
|
||||
-6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
|
||||
-7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
|
||||
-9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
|
||||
]
|
||||
|
||||
DATA_STD_128D = [
|
||||
2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
|
||||
2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
|
||||
2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
|
||||
2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
|
||||
2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
|
||||
2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
|
||||
2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
|
||||
2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
|
||||
2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
|
||||
2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
|
||||
2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
|
||||
]
|
||||
|
||||
|
||||
class VAE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
data_dim: int,
|
||||
embed_dim: int,
|
||||
hidden_dim: int,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if data_dim == 80:
|
||||
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32))
|
||||
self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32))
|
||||
elif data_dim == 128:
|
||||
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32))
|
||||
self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32))
|
||||
|
||||
self.data_mean = self.data_mean.view(1, -1, 1)
|
||||
self.data_std = self.data_std.view(1, -1, 1)
|
||||
|
||||
self.encoder = Encoder1D(
|
||||
dim=hidden_dim,
|
||||
ch_mult=(1, 2, 4),
|
||||
num_res_blocks=2,
|
||||
attn_layers=[3],
|
||||
down_layers=[0],
|
||||
in_dim=data_dim,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
self.decoder = Decoder1D(
|
||||
dim=hidden_dim,
|
||||
ch_mult=(1, 2, 4),
|
||||
num_res_blocks=2,
|
||||
attn_layers=[3],
|
||||
down_layers=[0],
|
||||
in_dim=data_dim,
|
||||
out_dim=data_dim,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.embed_dim = embed_dim
|
||||
# self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
|
||||
# self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
|
||||
|
||||
self.initialize_weights()
|
||||
|
||||
def initialize_weights(self):
|
||||
pass
|
||||
|
||||
def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
|
||||
if normalize:
|
||||
x = self.normalize(x)
|
||||
moments = self.encoder(x)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
|
||||
dec = self.decoder(z)
|
||||
if unnormalize:
|
||||
dec = self.unnormalize(dec)
|
||||
return dec
|
||||
|
||||
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return (x - comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)) / comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device)
|
||||
|
||||
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x * comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device) + comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sample_posterior: bool = True,
|
||||
rng: Optional[torch.Generator] = None,
|
||||
normalize: bool = True,
|
||||
unnormalize: bool = True,
|
||||
) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
|
||||
|
||||
posterior = self.encode(x, normalize=normalize)
|
||||
if sample_posterior:
|
||||
z = posterior.sample(rng)
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z, unnormalize=unnormalize)
|
||||
return dec, posterior
|
||||
|
||||
def load_weights(self, src_dict) -> None:
|
||||
self.load_state_dict(src_dict, strict=True)
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return next(self.parameters()).device
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
def remove_weight_norm(self):
|
||||
return self
|
||||
|
||||
|
||||
class Encoder1D(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
dim: int,
|
||||
ch_mult: tuple[int] = (1, 2, 4, 8),
|
||||
num_res_blocks: int,
|
||||
attn_layers: list[int] = [],
|
||||
down_layers: list[int] = [],
|
||||
resamp_with_conv: bool = True,
|
||||
in_dim: int,
|
||||
embed_dim: int,
|
||||
double_z: bool = True,
|
||||
kernel_size: int = 3,
|
||||
clip_act: float = 256.0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_layers = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.in_channels = in_dim
|
||||
self.clip_act = clip_act
|
||||
self.down_layers = down_layers
|
||||
self.attn_layers = attn_layers
|
||||
self.conv_in = ops.Conv1d(in_dim, self.dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
|
||||
in_ch_mult = (1, ) + tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
# downsampling
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_layers):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = dim * in_ch_mult[i_level]
|
||||
block_out = dim * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock1D(in_dim=block_in,
|
||||
out_dim=block_out,
|
||||
kernel_size=kernel_size,
|
||||
use_norm=True))
|
||||
block_in = block_out
|
||||
if i_level in attn_layers:
|
||||
attn.append(AttnBlock1D(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level in down_layers:
|
||||
down.downsample = Downsample1D(block_in, resamp_with_conv)
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
|
||||
out_dim=block_in,
|
||||
kernel_size=kernel_size,
|
||||
use_norm=True)
|
||||
self.mid.attn_1 = AttnBlock1D(block_in)
|
||||
self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
|
||||
out_dim=block_in,
|
||||
kernel_size=kernel_size,
|
||||
use_norm=True)
|
||||
|
||||
# end
|
||||
self.conv_out = ops.Conv1d(block_in,
|
||||
2 * embed_dim if double_z else embed_dim,
|
||||
kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
|
||||
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
# downsampling
|
||||
h = self.conv_in(x)
|
||||
for i_level in range(self.num_layers):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](h)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
if i_level in self.down_layers:
|
||||
h = self.down[i_level].downsample(h)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
|
||||
# end
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h) * (self.learnable_gain + 1)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder1D(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
dim: int,
|
||||
out_dim: int,
|
||||
ch_mult: tuple[int] = (1, 2, 4, 8),
|
||||
num_res_blocks: int,
|
||||
attn_layers: list[int] = [],
|
||||
down_layers: list[int] = [],
|
||||
kernel_size: int = 3,
|
||||
resamp_with_conv: bool = True,
|
||||
in_dim: int,
|
||||
embed_dim: int,
|
||||
clip_act: float = 256.0):
|
||||
super().__init__()
|
||||
self.ch = dim
|
||||
self.num_layers = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.in_channels = in_dim
|
||||
self.clip_act = clip_act
|
||||
self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
block_in = dim * ch_mult[self.num_layers - 1]
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = ops.Conv1d(embed_dim, block_in, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
||||
self.mid.attn_1 = AttnBlock1D(block_in)
|
||||
self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_layers)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = dim * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
|
||||
block_in = block_out
|
||||
if i_level in attn_layers:
|
||||
attn.append(AttnBlock1D(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level in self.down_layers:
|
||||
up.upsample = Upsample1D(block_in, resamp_with_conv)
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.conv_out = ops.Conv1d(block_in, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
||||
|
||||
def forward(self, z):
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_layers)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
if i_level in self.down_layers:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h) * (self.learnable_gain + 1)
|
||||
return h
|
||||
|
||||
|
||||
def VAE_16k(**kwargs) -> VAE:
|
||||
return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
|
||||
|
||||
|
||||
def VAE_44k(**kwargs) -> VAE:
|
||||
return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
|
||||
|
||||
|
||||
def get_my_vae(name: str, **kwargs) -> VAE:
|
||||
if name == '16k':
|
||||
return VAE_16k(**kwargs)
|
||||
if name == '44k':
|
||||
return VAE_44k(**kwargs)
|
||||
raise ValueError(f'Unknown model: {name}')
|
||||
|
||||
121
comfy/ldm/mmaudio/vae/vae_modules.py
Normal file
121
comfy/ldm/mmaudio/vae/vae_modules.py
Normal file
@ -0,0 +1,121 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import vae_attention
|
||||
import math
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return torch.nn.functional.silu(x) / 0.596
|
||||
|
||||
def mp_sum(a, b, t=0.5):
|
||||
return a.lerp(b, t) / math.sqrt((1 - t)**2 + t**2)
|
||||
|
||||
def normalize(x, dim=None, eps=1e-4):
|
||||
if dim is None:
|
||||
dim = list(range(1, x.ndim))
|
||||
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
|
||||
norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel()))
|
||||
return x / norm.to(x.dtype)
|
||||
|
||||
class ResnetBlock1D(nn.Module):
|
||||
|
||||
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
out_dim = in_dim if out_dim is None else out_dim
|
||||
self.out_dim = out_dim
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
self.use_norm = use_norm
|
||||
|
||||
self.conv1 = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
self.conv2 = ops.Conv1d(out_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
if self.in_dim != self.out_dim:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
else:
|
||||
self.nin_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
# pixel norm
|
||||
if self.use_norm:
|
||||
x = normalize(x, dim=1)
|
||||
|
||||
h = x
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
h = nonlinearity(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_dim != self.out_dim:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return mp_sum(x, h, t=0.3)
|
||||
|
||||
|
||||
class AttnBlock1D(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, num_heads=1):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.qkv = ops.Conv1d(in_channels, in_channels * 3, kernel_size=1, padding=0, bias=False)
|
||||
self.proj_out = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
|
||||
self.optimized_attention = vae_attention()
|
||||
|
||||
def forward(self, x):
|
||||
h = x
|
||||
y = self.qkv(h)
|
||||
y = y.reshape(y.shape[0], -1, 3, y.shape[-1])
|
||||
q, k, v = normalize(y, dim=1).unbind(2)
|
||||
|
||||
h = self.optimized_attention(q, k, v)
|
||||
h = self.proj_out(h)
|
||||
|
||||
return mp_sum(x, h, t=0.3)
|
||||
|
||||
|
||||
class Upsample1D(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = ops.Conv1d(in_channels, in_channels, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample1D(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv1 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
|
||||
self.conv2 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
if self.with_conv:
|
||||
x = self.conv1(x)
|
||||
|
||||
x = F.avg_pool1d(x, kernel_size=2, stride=2)
|
||||
|
||||
if self.with_conv:
|
||||
x = self.conv2(x)
|
||||
|
||||
return x
|
||||
@ -44,7 +44,7 @@ class QwenImageControlNetModel(QwenImageTransformer2DModel):
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
|
||||
del ids, txt_ids, img_ids
|
||||
|
||||
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)
|
||||
|
||||
@ -10,6 +10,7 @@ from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.patcher_extension
|
||||
from comfy.ldm.flux.math import apply_rope1
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
|
||||
@ -134,33 +135,34 @@ class Attention(nn.Module):
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
batch_size = hidden_states.shape[0]
|
||||
seq_img = hidden_states.shape[1]
|
||||
seq_txt = encoder_hidden_states.shape[1]
|
||||
|
||||
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
# Project and reshape to BHND format (batch, heads, seq, dim)
|
||||
img_query = self.to_q(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
|
||||
img_key = self.to_k(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
|
||||
img_value = self.to_v(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2)
|
||||
|
||||
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_query = self.add_q_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
|
||||
txt_key = self.add_k_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
|
||||
txt_value = self.add_v_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2)
|
||||
|
||||
img_query = self.norm_q(img_query)
|
||||
img_key = self.norm_k(img_key)
|
||||
txt_query = self.norm_added_q(txt_query)
|
||||
txt_key = self.norm_added_k(txt_key)
|
||||
|
||||
joint_query = torch.cat([txt_query, img_query], dim=1)
|
||||
joint_key = torch.cat([txt_key, img_key], dim=1)
|
||||
joint_value = torch.cat([txt_value, img_value], dim=1)
|
||||
joint_query = torch.cat([txt_query, img_query], dim=2)
|
||||
joint_key = torch.cat([txt_key, img_key], dim=2)
|
||||
joint_value = torch.cat([txt_value, img_value], dim=2)
|
||||
|
||||
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
|
||||
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
|
||||
joint_query = apply_rope1(joint_query, image_rotary_emb)
|
||||
joint_key = apply_rope1(joint_key, image_rotary_emb)
|
||||
|
||||
joint_query = joint_query.flatten(start_dim=2)
|
||||
joint_key = joint_key.flatten(start_dim=2)
|
||||
joint_value = joint_value.flatten(start_dim=2)
|
||||
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads,
|
||||
attention_mask, transformer_options=transformer_options,
|
||||
skip_reshape=True)
|
||||
|
||||
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
|
||||
img_attn_output = joint_hidden_states[:, seq_txt:, :]
|
||||
@ -234,10 +236,10 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
|
||||
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
|
||||
|
||||
img_normed = self.img_norm1(hidden_states)
|
||||
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
||||
txt_normed = self.txt_norm1(encoder_hidden_states)
|
||||
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
||||
img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1)
|
||||
del img_mod1
|
||||
txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1)
|
||||
del txt_mod1
|
||||
|
||||
img_attn_output, txt_attn_output = self.attn(
|
||||
hidden_states=img_modulated,
|
||||
@ -246,16 +248,20 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
del img_modulated
|
||||
del txt_modulated
|
||||
|
||||
hidden_states = hidden_states + img_gate1 * img_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
||||
del img_attn_output
|
||||
del txt_attn_output
|
||||
del img_gate1
|
||||
del txt_gate1
|
||||
|
||||
img_normed2 = self.img_norm2(hidden_states)
|
||||
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
||||
img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2)
|
||||
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
|
||||
|
||||
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
||||
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
||||
txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2)
|
||||
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
@ -413,7 +419,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
|
||||
del ids, txt_ids, img_ids
|
||||
|
||||
hidden_states = self.img_in(hidden_states)
|
||||
|
||||
@ -232,11 +232,13 @@ class WanAttentionBlock(nn.Module):
|
||||
# assert e[0].dtype == torch.float32
|
||||
|
||||
# self-attention
|
||||
x = x.contiguous() # otherwise implicit in LayerNorm
|
||||
y = self.self_attn(
|
||||
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
|
||||
freqs, transformer_options=transformer_options)
|
||||
|
||||
x = torch.addcmul(x, y, repeat_e(e[2], x))
|
||||
del y
|
||||
|
||||
# cross-attention & ffn
|
||||
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
|
||||
@ -587,7 +589,7 @@ class WanModel(torch.nn.Module):
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
|
||||
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
@ -600,10 +602,22 @@ class WanModel(torch.nn.Module):
|
||||
if steps_w is None:
|
||||
steps_w = w_len
|
||||
|
||||
h_start = 0
|
||||
w_start = 0
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
if rope_options is not None:
|
||||
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
|
||||
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
|
||||
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
|
||||
|
||||
t_start += rope_options.get("shift_t", 0.0)
|
||||
h_start += rope_options.get("shift_y", 0.0)
|
||||
w_start += rope_options.get("shift_x", 0.0)
|
||||
|
||||
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
@ -629,7 +643,7 @@ class WanModel(torch.nn.Module):
|
||||
if self.ref_conv is not None and "reference_latent" in kwargs:
|
||||
t_len += 1
|
||||
|
||||
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
|
||||
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
@ -902,7 +916,7 @@ class MotionEncoder_tc(nn.Module):
|
||||
def __init__(self,
|
||||
in_dim: int,
|
||||
hidden_dim: int,
|
||||
num_heads=int,
|
||||
num_heads: int,
|
||||
need_global=True,
|
||||
dtype=None,
|
||||
device=None,
|
||||
|
||||
@ -468,55 +468,46 @@ class WanVAE(nn.Module):
|
||||
attn_scales, self.temperal_upsample, dropout)
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
## cache
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
## 对encode输入的x,按时间拆分为1、4、4、4....
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(
|
||||
x[:, :, :1, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx)
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx)
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx)
|
||||
out = torch.cat([out, out_], 2)
|
||||
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
||||
self.clear_cache()
|
||||
return mu
|
||||
|
||||
def decode(self, z):
|
||||
self.clear_cache()
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
# z: [b,c,t,h,w]
|
||||
|
||||
iter_ = z.shape[2]
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
self._conv_idx = [0]
|
||||
conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx)
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx)
|
||||
else:
|
||||
out_ = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx)
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx)
|
||||
out = torch.cat([out, out_], 2)
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
#cache encode
|
||||
self._enc_conv_num = count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
|
||||
@ -657,51 +657,51 @@ class WanVAE(nn.Module):
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.encoder)
|
||||
x = patchify(x, patch_size=2)
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(
|
||||
x[:, :, :1, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
||||
self.clear_cache()
|
||||
return mu
|
||||
|
||||
def decode(self, z):
|
||||
self.clear_cache()
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
iter_ = z.shape[2]
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
self._conv_idx = [0]
|
||||
conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
first_chunk=True,
|
||||
)
|
||||
else:
|
||||
out_ = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
out = unpatchify(out, patch_size=2)
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
@ -715,12 +715,3 @@ class WanVAE(nn.Module):
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
# cache encode
|
||||
self._enc_conv_num = count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
|
||||
@ -134,10 +134,11 @@ class BaseModel(torch.nn.Module):
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", False)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config)
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
self.diffusion_model.eval()
|
||||
if comfy.model_management.force_channels_last():
|
||||
self.diffusion_model.to(memory_format=torch.channels_last)
|
||||
logging.debug("using channels last mode for diffusion model")
|
||||
@ -196,8 +197,14 @@ class BaseModel(torch.nn.Module):
|
||||
extra_conds[o] = extra
|
||||
|
||||
t = self.process_timestep(t, x=x, **extra_conds)
|
||||
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
||||
if "latent_shapes" in extra_conds:
|
||||
xc = utils.unpack_latents(xc, extra_conds.pop("latent_shapes"))
|
||||
|
||||
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds)
|
||||
if len(model_output) > 1 and not torch.is_tensor(model_output):
|
||||
model_output, _ = utils.pack_latents(model_output)
|
||||
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output.float(), x)
|
||||
|
||||
def process_timestep(self, timestep, **kwargs):
|
||||
return timestep
|
||||
@ -326,6 +333,14 @@ class BaseModel(torch.nn.Module):
|
||||
if self.model_config.scaled_fp8 is not None:
|
||||
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
|
||||
|
||||
# Save mixed precision metadata
|
||||
if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config:
|
||||
metadata = {
|
||||
"format_version": "1.0",
|
||||
"layers": self.model_config.layer_quant_config
|
||||
}
|
||||
unet_state_dict["_quantization_metadata"] = metadata
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
|
||||
if self.model_type == ModelType.V_PREDICTION:
|
||||
@ -669,7 +684,6 @@ class Lotus(BaseModel):
|
||||
class StableCascade_C(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=StageC)
|
||||
self.diffusion_model.eval().requires_grad_(False)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
@ -698,7 +712,6 @@ class StableCascade_C(BaseModel):
|
||||
class StableCascade_B(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=StageB)
|
||||
self.diffusion_model.eval().requires_grad_(False)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
|
||||
@ -6,6 +6,20 @@ import math
|
||||
import logging
|
||||
import torch
|
||||
|
||||
|
||||
def detect_layer_quantization(metadata):
|
||||
quant_key = "_quantization_metadata"
|
||||
if metadata is not None and quant_key in metadata:
|
||||
quant_metadata = metadata.pop(quant_key)
|
||||
quant_metadata = json.loads(quant_metadata)
|
||||
if isinstance(quant_metadata, dict) and "layers" in quant_metadata:
|
||||
logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})")
|
||||
return quant_metadata["layers"]
|
||||
else:
|
||||
raise ValueError("Invalid quantization metadata format")
|
||||
return None
|
||||
|
||||
|
||||
def count_blocks(state_dict_keys, prefix_string):
|
||||
count = 0
|
||||
while True:
|
||||
@ -213,7 +227,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["nerf_mlp_ratio"] = 4
|
||||
dit_config["nerf_depth"] = 4
|
||||
dit_config["nerf_max_freqs"] = 8
|
||||
dit_config["nerf_tile_size"] = 32
|
||||
dit_config["nerf_tile_size"] = 512
|
||||
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
|
||||
dit_config["nerf_embedder_dtype"] = torch.float32
|
||||
else:
|
||||
@ -365,8 +379,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["patch_size"] = 2
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["dim"] = 2304
|
||||
dit_config["cap_feat_dim"] = 2304
|
||||
dit_config["n_layers"] = 26
|
||||
dit_config["cap_feat_dim"] = state_dict['{}cap_embedder.1.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.')
|
||||
dit_config["n_heads"] = 24
|
||||
dit_config["n_kv_heads"] = 8
|
||||
dit_config["qk_norm"] = True
|
||||
@ -701,6 +715,12 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
|
||||
else:
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
# Detect per-layer quantization (mixed precision)
|
||||
layer_quant_config = detect_layer_quantization(metadata)
|
||||
if layer_quant_config:
|
||||
model_config.layer_quant_config = layer_quant_config
|
||||
logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized")
|
||||
|
||||
return model_config
|
||||
|
||||
def unet_prefix_from_state_dict(state_dict):
|
||||
|
||||
@ -89,6 +89,7 @@ if args.deterministic:
|
||||
|
||||
directml_enabled = False
|
||||
if args.directml is not None:
|
||||
logging.warning("WARNING: torch-directml barely works, is very slow, has not been updated in over 1 year and might be removed soon, please don't use it, there are better options.")
|
||||
import torch_directml
|
||||
directml_enabled = True
|
||||
device_index = args.directml
|
||||
@ -331,13 +332,21 @@ except:
|
||||
|
||||
|
||||
SUPPORT_FP8_OPS = args.supports_fp8_compute
|
||||
|
||||
AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]
|
||||
|
||||
try:
|
||||
if is_amd():
|
||||
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
|
||||
if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)):
|
||||
torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD
|
||||
logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.")
|
||||
|
||||
try:
|
||||
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
|
||||
except:
|
||||
rocm_version = (6, -1)
|
||||
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
|
||||
|
||||
logging.info("AMD arch: {}".format(arch))
|
||||
logging.info("ROCm version: {}".format(rocm_version))
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
@ -345,11 +354,11 @@ try:
|
||||
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
# if torch_version_numeric >= (2, 8):
|
||||
# if any((a in arch) for a in ["gfx1201"]):
|
||||
# ENABLE_PYTORCH_ATTENTION = True
|
||||
if rocm_version >= (7, 0):
|
||||
if any((a in arch) for a in ["gfx1201"]):
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx942", "gfx950"]): # TODO: more arches
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0
|
||||
SUPPORT_FP8_OPS = True
|
||||
|
||||
except:
|
||||
@ -371,6 +380,9 @@ try:
|
||||
except:
|
||||
pass
|
||||
|
||||
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
try:
|
||||
if torch_version_numeric >= (2, 5):
|
||||
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
|
||||
@ -493,6 +505,7 @@ class LoadedModel:
|
||||
if use_more_vram == 0:
|
||||
use_more_vram = 1e32
|
||||
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
|
||||
|
||||
real_model = self.model.model
|
||||
|
||||
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
|
||||
@ -678,7 +691,10 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
current_free_mem = get_free_memory(torch_dev) + loaded_memory
|
||||
|
||||
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
|
||||
lowvram_model_memory = lowvram_model_memory - loaded_memory
|
||||
|
||||
if lowvram_model_memory == 0:
|
||||
lowvram_model_memory = 0.1
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
lowvram_model_memory = 0.1
|
||||
@ -926,11 +942,7 @@ def vae_dtype(device=None, allowed_dtypes=[]):
|
||||
if d == torch.float16 and should_use_fp16(device):
|
||||
return d
|
||||
|
||||
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
|
||||
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
|
||||
# also a problem on RDNA4 except fp32 is also slow there.
|
||||
# This is due to large bf16 convolutions being extremely slow.
|
||||
if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device):
|
||||
if d == torch.bfloat16 and should_use_bf16(device):
|
||||
return d
|
||||
|
||||
return torch.float32
|
||||
@ -992,12 +1004,6 @@ def device_supports_non_blocking(device):
|
||||
return False
|
||||
return True
|
||||
|
||||
def device_should_use_non_blocking(device):
|
||||
if not device_supports_non_blocking(device):
|
||||
return False
|
||||
return False
|
||||
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
|
||||
|
||||
def force_channels_last():
|
||||
if args.force_channels_last:
|
||||
return True
|
||||
@ -1012,6 +1018,16 @@ if args.async_offload:
|
||||
NUM_STREAMS = 2
|
||||
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
|
||||
|
||||
def current_stream(device):
|
||||
if device is None:
|
||||
return None
|
||||
if is_device_cuda(device):
|
||||
return torch.cuda.current_stream()
|
||||
elif is_device_xpu(device):
|
||||
return torch.xpu.current_stream()
|
||||
else:
|
||||
return None
|
||||
|
||||
stream_counters = {}
|
||||
def get_offload_stream(device):
|
||||
stream_counter = stream_counters.get(device, 0)
|
||||
@ -1020,21 +1036,17 @@ def get_offload_stream(device):
|
||||
|
||||
if device in STREAMS:
|
||||
ss = STREAMS[device]
|
||||
s = ss[stream_counter]
|
||||
#Sync the oldest stream in the queue with the current
|
||||
ss[stream_counter].wait_stream(current_stream(device))
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
elif is_device_xpu(device):
|
||||
ss[stream_counter].wait_stream(torch.xpu.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return ss[stream_counter]
|
||||
elif is_device_cuda(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.cuda.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_xpu(device):
|
||||
@ -1043,18 +1055,14 @@ def get_offload_stream(device):
|
||||
ss.append(torch.xpu.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
def sync_stream(device, stream):
|
||||
if stream is None:
|
||||
if stream is None or current_stream(device) is None:
|
||||
return
|
||||
if is_device_cuda(device):
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
elif is_device_xpu(device):
|
||||
torch.xpu.current_stream().wait_stream(stream)
|
||||
current_stream(device).wait_stream(stream)
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
|
||||
if device is None or weight.device == device:
|
||||
@ -1079,6 +1087,79 @@ def cast_to_device(tensor, device, dtype, copy=False):
|
||||
non_blocking = device_supports_non_blocking(device)
|
||||
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
|
||||
PINNED_MEMORY = {}
|
||||
TOTAL_PINNED_MEMORY = 0
|
||||
MAX_PINNED_MEMORY = -1
|
||||
if not args.disable_pinned_memory:
|
||||
if is_nvidia() or is_amd():
|
||||
if WINDOWS:
|
||||
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50%
|
||||
else:
|
||||
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
|
||||
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
|
||||
|
||||
|
||||
def pin_memory(tensor):
|
||||
global TOTAL_PINNED_MEMORY
|
||||
if MAX_PINNED_MEMORY <= 0:
|
||||
return False
|
||||
|
||||
if type(tensor) is not torch.nn.parameter.Parameter:
|
||||
return False
|
||||
|
||||
if not is_device_cpu(tensor.device):
|
||||
return False
|
||||
|
||||
if tensor.is_pinned():
|
||||
#NOTE: Cuda does detect when a tensor is already pinned and would
|
||||
#error below, but there are proven cases where this also queues an error
|
||||
#on the GPU async. So dont trust the CUDA API and guard here
|
||||
return False
|
||||
|
||||
if not tensor.is_contiguous():
|
||||
return False
|
||||
|
||||
size = tensor.numel() * tensor.element_size()
|
||||
if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY:
|
||||
return False
|
||||
|
||||
ptr = tensor.data_ptr()
|
||||
if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0:
|
||||
PINNED_MEMORY[ptr] = size
|
||||
TOTAL_PINNED_MEMORY += size
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def unpin_memory(tensor):
|
||||
global TOTAL_PINNED_MEMORY
|
||||
if MAX_PINNED_MEMORY <= 0:
|
||||
return False
|
||||
|
||||
if not is_device_cpu(tensor.device):
|
||||
return False
|
||||
|
||||
ptr = tensor.data_ptr()
|
||||
size = tensor.numel() * tensor.element_size()
|
||||
|
||||
size_stored = PINNED_MEMORY.get(ptr, None)
|
||||
if size_stored is None:
|
||||
logging.warning("Tried to unpin tensor not pinned by ComfyUI")
|
||||
return False
|
||||
|
||||
if size != size_stored:
|
||||
logging.warning("Size of pinned tensor changed")
|
||||
return False
|
||||
|
||||
if torch.cuda.cudart().cudaHostUnregister(ptr) == 0:
|
||||
TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr)
|
||||
if len(PINNED_MEMORY) == 0:
|
||||
TOTAL_PINNED_MEMORY = 0
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def sage_attention_enabled():
|
||||
return args.use_sage_attention
|
||||
|
||||
@ -1331,7 +1412,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
|
||||
if is_amd():
|
||||
arch = torch.cuda.get_device_properties(device).gcnArchName
|
||||
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
|
||||
if any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH): # RDNA2 and older don't support bf16
|
||||
if manual_cast:
|
||||
return True
|
||||
return False
|
||||
|
||||
@ -123,16 +123,30 @@ def move_weight_functions(m, device):
|
||||
return memory
|
||||
|
||||
class LowVramPatch:
|
||||
def __init__(self, key, patches):
|
||||
def __init__(self, key, patches, convert_func=None, set_func=None):
|
||||
self.key = key
|
||||
self.patches = patches
|
||||
self.convert_func = convert_func
|
||||
self.set_func = set_func
|
||||
|
||||
def __call__(self, weight):
|
||||
intermediate_dtype = weight.dtype
|
||||
if self.convert_func is not None:
|
||||
weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True)
|
||||
|
||||
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
|
||||
intermediate_dtype = torch.float32
|
||||
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
||||
out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype)
|
||||
if self.set_func is None:
|
||||
return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key))
|
||||
else:
|
||||
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True)
|
||||
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
if self.set_func is not None:
|
||||
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype)
|
||||
else:
|
||||
return out
|
||||
|
||||
def get_key_weight(model, key):
|
||||
set_func = None
|
||||
@ -224,6 +238,7 @@ class ModelPatcher:
|
||||
self.force_cast_weights = False
|
||||
self.patches_uuid = uuid.uuid4()
|
||||
self.parent = None
|
||||
self.pinned = set()
|
||||
|
||||
self.attachments: dict[str] = {}
|
||||
self.additional_models: dict[str, list[ModelPatcher]] = {}
|
||||
@ -261,6 +276,9 @@ class ModelPatcher:
|
||||
self.size = comfy.model_management.module_size(self.model)
|
||||
return self.size
|
||||
|
||||
def get_ram_usage(self):
|
||||
return self.model_size()
|
||||
|
||||
def loaded_size(self):
|
||||
return self.model.model_loaded_weight_memory
|
||||
|
||||
@ -280,6 +298,7 @@ class ModelPatcher:
|
||||
n.backup = self.backup
|
||||
n.object_patches_backup = self.object_patches_backup
|
||||
n.parent = self
|
||||
n.pinned = self.pinned
|
||||
|
||||
n.force_cast_weights = self.force_cast_weights
|
||||
|
||||
@ -436,6 +455,19 @@ class ModelPatcher:
|
||||
def set_model_post_input_patch(self, patch):
|
||||
self.set_model_patch(patch, "post_input")
|
||||
|
||||
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
|
||||
rope_options = self.model_options["transformer_options"].get("rope_options", {})
|
||||
rope_options["scale_x"] = scale_x
|
||||
rope_options["scale_y"] = scale_y
|
||||
rope_options["scale_t"] = scale_t
|
||||
|
||||
rope_options["shift_x"] = shift_x
|
||||
rope_options["shift_y"] = shift_y
|
||||
rope_options["shift_t"] = shift_t
|
||||
|
||||
self.model_options["transformer_options"]["rope_options"] = rope_options
|
||||
|
||||
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
@ -604,6 +636,21 @@ class ModelPatcher:
|
||||
else:
|
||||
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
||||
|
||||
def pin_weight_to_device(self, key):
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
if comfy.model_management.pin_memory(weight):
|
||||
self.pinned.add(key)
|
||||
|
||||
def unpin_weight(self, key):
|
||||
if key in self.pinned:
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
comfy.model_management.unpin_memory(weight)
|
||||
self.pinned.remove(key)
|
||||
|
||||
def unpin_all_weights(self):
|
||||
for key in list(self.pinned):
|
||||
self.unpin_weight(key)
|
||||
|
||||
def _load_list(self):
|
||||
loading = []
|
||||
for n, m in self.model.named_modules():
|
||||
@ -625,9 +672,11 @@ class ModelPatcher:
|
||||
mem_counter = 0
|
||||
patch_counter = 0
|
||||
lowvram_counter = 0
|
||||
lowvram_mem_counter = 0
|
||||
loading = self._load_list()
|
||||
|
||||
load_completely = []
|
||||
offloaded = []
|
||||
loading.sort(reverse=True)
|
||||
for x in loading:
|
||||
n = x[1]
|
||||
@ -644,6 +693,7 @@ class ModelPatcher:
|
||||
if mem_counter + module_mem >= lowvram_model_memory:
|
||||
lowvram_weight = True
|
||||
lowvram_counter += 1
|
||||
lowvram_mem_counter += module_mem
|
||||
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
|
||||
continue
|
||||
|
||||
@ -657,16 +707,19 @@ class ModelPatcher:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(weight_key)
|
||||
else:
|
||||
m.weight_function = [LowVramPatch(weight_key, self.patches)]
|
||||
_, set_func, convert_func = get_key_weight(self.model, weight_key)
|
||||
m.weight_function = [LowVramPatch(weight_key, self.patches, convert_func, set_func)]
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(bias_key)
|
||||
else:
|
||||
m.bias_function = [LowVramPatch(bias_key, self.patches)]
|
||||
_, set_func, convert_func = get_key_weight(self.model, bias_key)
|
||||
m.bias_function = [LowVramPatch(bias_key, self.patches, convert_func, set_func)]
|
||||
patch_counter += 1
|
||||
|
||||
cast_weight = True
|
||||
offloaded.append((module_mem, n, m, params))
|
||||
else:
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
wipe_lowvram_weight(m)
|
||||
@ -697,7 +750,9 @@ class ModelPatcher:
|
||||
continue
|
||||
|
||||
for param in params:
|
||||
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
|
||||
key = "{}.{}".format(n, param)
|
||||
self.unpin_weight(key)
|
||||
self.patch_weight_to_device(key, device_to=device_to)
|
||||
|
||||
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
||||
m.comfy_patched_weights = True
|
||||
@ -705,11 +760,17 @@ class ModelPatcher:
|
||||
for x in load_completely:
|
||||
x[2].to(device_to)
|
||||
|
||||
for x in offloaded:
|
||||
n = x[1]
|
||||
params = x[3]
|
||||
for param in params:
|
||||
self.pin_weight_to_device("{}.{}".format(n, param))
|
||||
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
||||
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
if full_load:
|
||||
self.model.to(device_to)
|
||||
@ -746,6 +807,7 @@ class ModelPatcher:
|
||||
self.eject_model()
|
||||
if unpatch_weights:
|
||||
self.unpatch_hooks()
|
||||
self.unpin_all_weights()
|
||||
if self.model.model_lowvram:
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
@ -781,7 +843,7 @@ class ModelPatcher:
|
||||
|
||||
self.object_patches_backup.clear()
|
||||
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
|
||||
with self.use_ejected():
|
||||
hooks_unpatched = False
|
||||
memory_freed = 0
|
||||
@ -825,11 +887,19 @@ class ModelPatcher:
|
||||
module_mem += move_weight_functions(m, device_to)
|
||||
if lowvram_possible:
|
||||
if weight_key in self.patches:
|
||||
m.weight_function.append(LowVramPatch(weight_key, self.patches))
|
||||
patch_counter += 1
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(weight_key)
|
||||
else:
|
||||
_, set_func, convert_func = get_key_weight(self.model, weight_key)
|
||||
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
m.bias_function.append(LowVramPatch(bias_key, self.patches))
|
||||
patch_counter += 1
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(bias_key)
|
||||
else:
|
||||
_, set_func, convert_func = get_key_weight(self.model, bias_key)
|
||||
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
|
||||
patch_counter += 1
|
||||
cast_weight = True
|
||||
|
||||
if cast_weight:
|
||||
@ -839,9 +909,13 @@ class ModelPatcher:
|
||||
memory_freed += module_mem
|
||||
logging.debug("freed {}".format(n))
|
||||
|
||||
for param in params:
|
||||
self.pin_weight_to_device("{}.{}".format(n, param))
|
||||
|
||||
self.model.model_lowvram = True
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.model_loaded_weight_memory -= memory_freed
|
||||
logging.info("loaded partially: {:.2f} MB loaded, lowvram patches: {}".format(self.model.model_loaded_weight_memory / (1024 * 1024), self.model.lowvram_patch_counter))
|
||||
return memory_freed
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
@ -854,6 +928,9 @@ class ModelPatcher:
|
||||
extra_memory += (used - self.model.model_loaded_weight_memory)
|
||||
|
||||
self.patch_model(load_weights=False)
|
||||
if extra_memory < 0 and not unpatch_weights:
|
||||
self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights)
|
||||
return 0
|
||||
full_load = False
|
||||
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
|
||||
self.apply_hooks(self.forced_hooks, force_apply=True)
|
||||
@ -1241,5 +1318,6 @@ class ModelPatcher:
|
||||
self.clear_cached_hook_weights()
|
||||
|
||||
def __del__(self):
|
||||
self.unpin_all_weights()
|
||||
self.detach(unpatch_all=False)
|
||||
|
||||
|
||||
@ -21,17 +21,23 @@ def rescale_zero_terminal_snr_sigmas(sigmas):
|
||||
alphas_bar[-1] = 4.8973451890853435e-08
|
||||
return ((1 - alphas_bar) / alphas_bar) ** 0.5
|
||||
|
||||
def reshape_sigma(sigma, noise_dim):
|
||||
if sigma.nelement() == 1:
|
||||
return sigma.view(())
|
||||
else:
|
||||
return sigma.view(sigma.shape[:1] + (1,) * (noise_dim - 1))
|
||||
|
||||
class EPS:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
if max_denoise:
|
||||
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
|
||||
else:
|
||||
@ -45,12 +51,12 @@ class EPS:
|
||||
|
||||
class V_PREDICTION(EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class EDM(V_PREDICTION):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class CONST:
|
||||
@ -58,15 +64,15 @@ class CONST:
|
||||
return noise
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
return sigma * noise + (1.0 - sigma) * latent_image
|
||||
|
||||
def inverse_noise_scaling(self, sigma, latent):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, latent.ndim)
|
||||
return latent / (1.0 - sigma)
|
||||
|
||||
class X0(EPS):
|
||||
@ -80,16 +86,16 @@ class IMG_TO_IMG(X0):
|
||||
class COSMOS_RFLOW:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = (sigma / (sigma + 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
return noise * (1.0 - sigma)
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = (sigma / (sigma + 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input * (1.0 - sigma) - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
noise = noise * sigma
|
||||
noise += latent_image
|
||||
return noise
|
||||
|
||||
91
comfy/nested_tensor.py
Normal file
91
comfy/nested_tensor.py
Normal file
@ -0,0 +1,91 @@
|
||||
import torch
|
||||
|
||||
class NestedTensor:
|
||||
def __init__(self, tensors):
|
||||
self.tensors = list(tensors)
|
||||
self.is_nested = True
|
||||
|
||||
def _copy(self):
|
||||
return NestedTensor(self.tensors)
|
||||
|
||||
def apply_operation(self, other, operation):
|
||||
o = self._copy()
|
||||
if isinstance(other, NestedTensor):
|
||||
for i, t in enumerate(o.tensors):
|
||||
o.tensors[i] = operation(t, other.tensors[i])
|
||||
else:
|
||||
for i, t in enumerate(o.tensors):
|
||||
o.tensors[i] = operation(t, other)
|
||||
return o
|
||||
|
||||
def __add__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x + y)
|
||||
|
||||
def __sub__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x - y)
|
||||
|
||||
def __mul__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x * y)
|
||||
|
||||
# def __itruediv__(self, b):
|
||||
# return self.apply_operation(b, lambda x, y: x / y)
|
||||
|
||||
def __truediv__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x / y)
|
||||
|
||||
def __getitem__(self, *args, **kwargs):
|
||||
return self.apply_operation(None, lambda x, y: x.__getitem__(*args, **kwargs))
|
||||
|
||||
def unbind(self):
|
||||
return self.tensors
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
o = self._copy()
|
||||
for i, t in enumerate(o.tensors):
|
||||
o.tensors[i] = t.to(*args, **kwargs)
|
||||
return o
|
||||
|
||||
def new_ones(self, *args, **kwargs):
|
||||
return self.tensors[0].new_ones(*args, **kwargs)
|
||||
|
||||
def float(self):
|
||||
return self.to(dtype=torch.float)
|
||||
|
||||
def chunk(self, *args, **kwargs):
|
||||
return self.apply_operation(None, lambda x, y: x.chunk(*args, **kwargs))
|
||||
|
||||
def size(self):
|
||||
return self.tensors[0].size()
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.tensors[0].shape
|
||||
|
||||
@property
|
||||
def ndim(self):
|
||||
dims = 0
|
||||
for t in self.tensors:
|
||||
dims = max(t.ndim, dims)
|
||||
return dims
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.tensors[0].device
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.tensors[0].dtype
|
||||
|
||||
@property
|
||||
def layout(self):
|
||||
return self.tensors[0].layout
|
||||
|
||||
|
||||
def cat_nested(tensors, *args, **kwargs):
|
||||
cated_tensors = []
|
||||
for i in range(len(tensors[0].tensors)):
|
||||
tens = []
|
||||
for j in range(len(tensors)):
|
||||
tens.append(tensors[j].tensors[i])
|
||||
cated_tensors.append(torch.cat(tens, *args, **kwargs))
|
||||
return NestedTensor(cated_tensors)
|
||||
334
comfy/ops.py
334
comfy/ops.py
@ -24,13 +24,18 @@ import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
|
||||
def run_every_op():
|
||||
if torch.compiler.is_compiling():
|
||||
return
|
||||
|
||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
||||
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
||||
|
||||
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
if torch.cuda.is_available() and comfy.model_management.WINDOWS:
|
||||
from torch.nn.attention import SDPBackend, sdpa_kernel
|
||||
import inspect
|
||||
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
|
||||
@ -50,49 +55,89 @@ try:
|
||||
except (ModuleNotFoundError, TypeError):
|
||||
logging.warning("Could not set sdpa backend priority.")
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
|
||||
try:
|
||||
if comfy.model_management.is_nvidia():
|
||||
if torch.backends.cudnn.version() >= 91002 and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
|
||||
#TODO: change upper bound version once it's fixed'
|
||||
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
|
||||
logging.info("working around nvidia conv3d memory bug.")
|
||||
except:
|
||||
pass
|
||||
|
||||
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
|
||||
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
|
||||
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
|
||||
# will add async-offload support to your cast and improve performance.
|
||||
if input is not None:
|
||||
if dtype is None:
|
||||
dtype = input.dtype
|
||||
if isinstance(input, QuantizedTensor):
|
||||
dtype = input._layout_params["orig_dtype"]
|
||||
else:
|
||||
dtype = input.dtype
|
||||
if bias_dtype is None:
|
||||
bias_dtype = dtype
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
if offloadable and (device != s.weight.device or
|
||||
(s.bias is not None and device != s.bias.device)):
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
else:
|
||||
offload_stream = None
|
||||
|
||||
if offload_stream is not None:
|
||||
wf_context = offload_stream
|
||||
else:
|
||||
wf_context = contextlib.nullcontext()
|
||||
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
has_function = len(s.bias_function) > 0
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
|
||||
if has_function:
|
||||
weight_has_function = len(s.weight_function) > 0
|
||||
bias_has_function = len(s.bias_function) > 0
|
||||
|
||||
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
|
||||
|
||||
bias = None
|
||||
if s.bias is not None:
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
||||
|
||||
if bias_has_function:
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
has_function = len(s.weight_function) > 0
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
if has_function:
|
||||
if weight_has_function or weight.dtype != dtype:
|
||||
with wf_context:
|
||||
weight = weight.to(dtype=dtype)
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
return weight, bias
|
||||
if offloadable:
|
||||
return weight, bias, offload_stream
|
||||
else:
|
||||
#Legacy function signature
|
||||
return weight, bias
|
||||
|
||||
|
||||
def uncast_bias_weight(s, weight, bias, offload_stream):
|
||||
if offload_stream is None:
|
||||
return
|
||||
if weight is not None:
|
||||
device = weight.device
|
||||
else:
|
||||
if bias is None:
|
||||
return
|
||||
device = bias.device
|
||||
offload_stream.wait_stream(comfy.model_management.current_stream(device))
|
||||
|
||||
|
||||
class CastWeightBiasOp:
|
||||
comfy_cast_weights = False
|
||||
@ -105,10 +150,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.linear(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -119,10 +167,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._conv_forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -133,10 +184,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._conv_forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -146,11 +200,23 @@ class disable_weight_init:
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def _conv_forward(self, input, weight, bias, *args, **kwargs):
|
||||
if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16):
|
||||
out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True)
|
||||
if bias is not None:
|
||||
out += bias.reshape((1, -1) + (1,) * (out.ndim - 2))
|
||||
return out
|
||||
else:
|
||||
return super()._conv_forward(input, weight, bias, *args, **kwargs)
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._conv_forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -161,10 +227,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -176,13 +245,17 @@ class disable_weight_init:
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
else:
|
||||
weight = None
|
||||
bias = None
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
offload_stream = None
|
||||
x = torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -195,13 +268,18 @@ class disable_weight_init:
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
else:
|
||||
weight = None
|
||||
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
||||
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
||||
bias = None
|
||||
offload_stream = None
|
||||
x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
||||
# x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -217,12 +295,15 @@ class disable_weight_init:
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose2d(
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.conv_transpose2d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -238,12 +319,15 @@ class disable_weight_init:
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose1d(
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.conv_transpose1d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -258,10 +342,14 @@ class disable_weight_init:
|
||||
output_dtype = out_dtype
|
||||
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
||||
out_dtype = None
|
||||
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, device=input.device, dtype=out_dtype, offloadable=True)
|
||||
x = torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -312,20 +400,18 @@ class manual_cast(disable_weight_init):
|
||||
|
||||
|
||||
def fp8_linear(self, input):
|
||||
"""
|
||||
Legacy FP8 linear function for backward compatibility.
|
||||
Uses QuantizedTensor subclass for dispatch.
|
||||
"""
|
||||
dtype = self.weight.dtype
|
||||
if dtype not in [torch.float8_e4m3fn]:
|
||||
return None
|
||||
|
||||
tensor_2d = False
|
||||
if len(input.shape) == 2:
|
||||
tensor_2d = True
|
||||
input = input.unsqueeze(1)
|
||||
|
||||
input_shape = input.shape
|
||||
input_dtype = input.dtype
|
||||
if len(input.shape) == 3:
|
||||
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype)
|
||||
w = w.t()
|
||||
|
||||
if input.ndim == 3 or input.ndim == 2:
|
||||
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
|
||||
|
||||
scale_weight = self.scale_weight
|
||||
scale_input = self.scale_input
|
||||
@ -337,23 +423,20 @@ def fp8_linear(self, input):
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
|
||||
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
|
||||
else:
|
||||
scale_input = scale_input.to(input.device)
|
||||
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
else:
|
||||
o = torch._scaled_mm(input, w, out_dtype=input_dtype, scale_a=scale_input, scale_b=scale_weight)
|
||||
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
||||
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
||||
layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype}
|
||||
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
||||
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
||||
|
||||
if isinstance(o, tuple):
|
||||
o = o[0]
|
||||
|
||||
if tensor_2d:
|
||||
return o.reshape(input_shape[0], -1)
|
||||
|
||||
return o.reshape((-1, input_shape[1], self.weight.shape[0]))
|
||||
uncast_bias_weight(self, w, bias, offload_stream)
|
||||
return o
|
||||
|
||||
return None
|
||||
|
||||
@ -373,8 +456,10 @@ class fp8_ops(manual_cast):
|
||||
except Exception as e:
|
||||
logging.info("Exception during fp8 op: {}".format(e))
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.linear(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
|
||||
@ -402,12 +487,14 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
|
||||
if weight.numel() < input.numel(): #TODO: optimize
|
||||
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
||||
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
||||
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def convert_weight(self, weight, inplace=False, **kwargs):
|
||||
if inplace:
|
||||
@ -416,8 +503,10 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
|
||||
else:
|
||||
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
|
||||
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
|
||||
if return_weight:
|
||||
return weight
|
||||
if inplace_update:
|
||||
self.weight.data.copy_(weight)
|
||||
else:
|
||||
@ -444,7 +533,120 @@ if CUBLAS_IS_AVAILABLE:
|
||||
def forward(self, *args, **kwargs):
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
|
||||
# ==============================================================================
|
||||
# Mixed Precision Operations
|
||||
# ==============================================================================
|
||||
from .quant_ops import QuantizedTensor, QUANT_ALGOS
|
||||
|
||||
class MixedPrecisionOps(disable_weight_init):
|
||||
_layer_quant_config = {}
|
||||
_compute_dtype = torch.bfloat16
|
||||
|
||||
class Linear(torch.nn.Module, CastWeightBiasOp):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
|
||||
# self.factory_kwargs = {"device": device, "dtype": dtype}
|
||||
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
if bias:
|
||||
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
self.tensor_class = None
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
|
||||
strict, missing_keys, unexpected_keys, error_msgs):
|
||||
|
||||
device = self.factory_kwargs["device"]
|
||||
layer_name = prefix.rstrip('.')
|
||||
weight_key = f"{prefix}weight"
|
||||
weight = state_dict.pop(weight_key, None)
|
||||
if weight is None:
|
||||
raise ValueError(f"Missing weight for layer {layer_name}")
|
||||
|
||||
manually_loaded_keys = [weight_key]
|
||||
|
||||
if layer_name not in MixedPrecisionOps._layer_quant_config:
|
||||
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
|
||||
else:
|
||||
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
|
||||
if quant_format is None:
|
||||
raise ValueError(f"Unknown quantization format for layer {layer_name}")
|
||||
|
||||
qconfig = QUANT_ALGOS[quant_format]
|
||||
self.layout_type = qconfig["comfy_tensor_layout"]
|
||||
|
||||
weight_scale_key = f"{prefix}weight_scale"
|
||||
layout_params = {
|
||||
'scale': state_dict.pop(weight_scale_key, None),
|
||||
'orig_dtype': MixedPrecisionOps._compute_dtype,
|
||||
'block_size': qconfig.get("group_size", None),
|
||||
}
|
||||
if layout_params['scale'] is not None:
|
||||
manually_loaded_keys.append(weight_scale_key)
|
||||
|
||||
self.weight = torch.nn.Parameter(
|
||||
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
|
||||
requires_grad=False
|
||||
)
|
||||
|
||||
for param_name in qconfig["parameters"]:
|
||||
param_key = f"{prefix}{param_name}"
|
||||
_v = state_dict.pop(param_key, None)
|
||||
if _v is None:
|
||||
continue
|
||||
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
|
||||
manually_loaded_keys.append(param_key)
|
||||
|
||||
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
||||
|
||||
for key in manually_loaded_keys:
|
||||
if key in missing_keys:
|
||||
missing_keys.remove(key)
|
||||
|
||||
def _forward(self, input, weight, bias):
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, input, *args, **kwargs):
|
||||
run_every_op()
|
||||
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(input, *args, **kwargs)
|
||||
if (getattr(self, 'layout_type', None) is not None and
|
||||
getattr(self, 'input_scale', None) is not None and
|
||||
not isinstance(input, QuantizedTensor)):
|
||||
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
|
||||
return self._forward(input, self.weight, self.bias)
|
||||
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
|
||||
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
|
||||
MixedPrecisionOps._layer_quant_config = model_config.layer_quant_config
|
||||
MixedPrecisionOps._compute_dtype = compute_dtype
|
||||
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
|
||||
return MixedPrecisionOps
|
||||
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
|
||||
|
||||
@ -150,7 +150,7 @@ def merge_nested_dicts(dict1: dict, dict2: dict, copy_dict1=True):
|
||||
for key, value in dict2.items():
|
||||
if isinstance(value, dict):
|
||||
curr_value = merged_dict.setdefault(key, {})
|
||||
merged_dict[key] = merge_nested_dicts(value, curr_value)
|
||||
merged_dict[key] = merge_nested_dicts(curr_value, value)
|
||||
elif isinstance(value, list):
|
||||
merged_dict.setdefault(key, []).extend(value)
|
||||
else:
|
||||
|
||||
545
comfy/quant_ops.py
Normal file
545
comfy/quant_ops.py
Normal file
@ -0,0 +1,545 @@
|
||||
import torch
|
||||
import logging
|
||||
from typing import Tuple, Dict
|
||||
|
||||
_LAYOUT_REGISTRY = {}
|
||||
_GENERIC_UTILS = {}
|
||||
|
||||
|
||||
def register_layout_op(torch_op, layout_type):
|
||||
"""
|
||||
Decorator to register a layout-specific operation handler.
|
||||
Args:
|
||||
torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default)
|
||||
layout_type: Layout class (e.g., TensorCoreFP8Layout)
|
||||
Example:
|
||||
@register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout)
|
||||
def fp8_linear(func, args, kwargs):
|
||||
# FP8-specific linear implementation
|
||||
...
|
||||
"""
|
||||
def decorator(handler_func):
|
||||
if torch_op not in _LAYOUT_REGISTRY:
|
||||
_LAYOUT_REGISTRY[torch_op] = {}
|
||||
_LAYOUT_REGISTRY[torch_op][layout_type] = handler_func
|
||||
return handler_func
|
||||
return decorator
|
||||
|
||||
|
||||
def register_generic_util(torch_op):
|
||||
"""
|
||||
Decorator to register a generic utility that works for all layouts.
|
||||
Args:
|
||||
torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default)
|
||||
|
||||
Example:
|
||||
@register_generic_util(torch.ops.aten.detach.default)
|
||||
def generic_detach(func, args, kwargs):
|
||||
# Works for any layout
|
||||
...
|
||||
"""
|
||||
def decorator(handler_func):
|
||||
_GENERIC_UTILS[torch_op] = handler_func
|
||||
return handler_func
|
||||
return decorator
|
||||
|
||||
|
||||
def _get_layout_from_args(args):
|
||||
for arg in args:
|
||||
if isinstance(arg, QuantizedTensor):
|
||||
return arg._layout_type
|
||||
elif isinstance(arg, (list, tuple)):
|
||||
for item in arg:
|
||||
if isinstance(item, QuantizedTensor):
|
||||
return item._layout_type
|
||||
return None
|
||||
|
||||
|
||||
def _move_layout_params_to_device(params, device):
|
||||
new_params = {}
|
||||
for k, v in params.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
new_params[k] = v.to(device=device)
|
||||
else:
|
||||
new_params[k] = v
|
||||
return new_params
|
||||
|
||||
|
||||
def _copy_layout_params(params):
|
||||
new_params = {}
|
||||
for k, v in params.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
new_params[k] = v.clone()
|
||||
else:
|
||||
new_params[k] = v
|
||||
return new_params
|
||||
|
||||
def _copy_layout_params_inplace(src, dst, non_blocking=False):
|
||||
for k, v in src.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
dst[k].copy_(v, non_blocking=non_blocking)
|
||||
else:
|
||||
dst[k] = v
|
||||
|
||||
class QuantizedLayout:
|
||||
"""
|
||||
Base class for quantization layouts.
|
||||
|
||||
A layout encapsulates the format-specific logic for quantization/dequantization
|
||||
and provides a uniform interface for extracting raw tensors needed for computation.
|
||||
|
||||
New quantization formats should subclass this and implement the required methods.
|
||||
"""
|
||||
@classmethod
|
||||
def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]:
|
||||
raise NotImplementedError(f"{cls.__name__} must implement quantize()")
|
||||
|
||||
@staticmethod
|
||||
def dequantize(qdata, **layout_params) -> torch.Tensor:
|
||||
raise NotImplementedError("TensorLayout must implement dequantize()")
|
||||
|
||||
@classmethod
|
||||
def get_plain_tensors(cls, qtensor) -> torch.Tensor:
|
||||
raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()")
|
||||
|
||||
|
||||
class QuantizedTensor(torch.Tensor):
|
||||
"""
|
||||
Universal quantized tensor that works with any layout.
|
||||
|
||||
This tensor subclass uses a pluggable layout system to support multiple
|
||||
quantization formats (FP8, INT4, INT8, etc.) without code duplication.
|
||||
|
||||
The layout_type determines format-specific behavior, while common operations
|
||||
(detach, clone, to) are handled generically.
|
||||
|
||||
Attributes:
|
||||
_qdata: The quantized tensor data
|
||||
_layout_type: Layout class (e.g., TensorCoreFP8Layout)
|
||||
_layout_params: Dict with layout-specific params (scale, zero_point, etc.)
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def __new__(cls, qdata, layout_type, layout_params):
|
||||
"""
|
||||
Create a quantized tensor.
|
||||
|
||||
Args:
|
||||
qdata: The quantized data tensor
|
||||
layout_type: Layout class (subclass of QuantizedLayout)
|
||||
layout_params: Dict with layout-specific parameters
|
||||
"""
|
||||
return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False)
|
||||
|
||||
def __init__(self, qdata, layout_type, layout_params):
|
||||
self._qdata = qdata
|
||||
self._layout_type = layout_type
|
||||
self._layout_params = layout_params
|
||||
|
||||
def __repr__(self):
|
||||
layout_name = self._layout_type
|
||||
param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2])
|
||||
return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})"
|
||||
|
||||
@property
|
||||
def layout_type(self):
|
||||
return self._layout_type
|
||||
|
||||
def __tensor_flatten__(self):
|
||||
"""
|
||||
Tensor flattening protocol for proper device movement.
|
||||
"""
|
||||
inner_tensors = ["_qdata"]
|
||||
ctx = {
|
||||
"layout_type": self._layout_type,
|
||||
}
|
||||
|
||||
tensor_params = {}
|
||||
non_tensor_params = {}
|
||||
for k, v in self._layout_params.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
tensor_params[k] = v
|
||||
else:
|
||||
non_tensor_params[k] = v
|
||||
|
||||
ctx["tensor_param_keys"] = list(tensor_params.keys())
|
||||
ctx["non_tensor_params"] = non_tensor_params
|
||||
|
||||
for k, v in tensor_params.items():
|
||||
attr_name = f"_layout_param_{k}"
|
||||
object.__setattr__(self, attr_name, v)
|
||||
inner_tensors.append(attr_name)
|
||||
|
||||
return inner_tensors, ctx
|
||||
|
||||
@staticmethod
|
||||
def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride):
|
||||
"""
|
||||
Tensor unflattening protocol for proper device movement.
|
||||
Reconstructs the QuantizedTensor after device movement.
|
||||
"""
|
||||
layout_type = ctx["layout_type"]
|
||||
layout_params = dict(ctx["non_tensor_params"])
|
||||
|
||||
for key in ctx["tensor_param_keys"]:
|
||||
attr_name = f"_layout_param_{key}"
|
||||
layout_params[key] = inner_tensors[attr_name]
|
||||
|
||||
return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params)
|
||||
|
||||
@classmethod
|
||||
def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor':
|
||||
qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs)
|
||||
return cls(qdata, layout_type, layout_params)
|
||||
|
||||
def dequantize(self) -> torch.Tensor:
|
||||
return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params)
|
||||
|
||||
@classmethod
|
||||
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
||||
kwargs = kwargs or {}
|
||||
|
||||
# Step 1: Check generic utilities first (detach, clone, to, etc.)
|
||||
if func in _GENERIC_UTILS:
|
||||
return _GENERIC_UTILS[func](func, args, kwargs)
|
||||
|
||||
# Step 2: Check layout-specific handlers (linear, matmul, etc.)
|
||||
layout_type = _get_layout_from_args(args)
|
||||
if layout_type and func in _LAYOUT_REGISTRY:
|
||||
handler = _LAYOUT_REGISTRY[func].get(layout_type)
|
||||
if handler:
|
||||
return handler(func, args, kwargs)
|
||||
|
||||
# Step 3: Fallback to dequantization
|
||||
if isinstance(args[0] if args else None, QuantizedTensor):
|
||||
logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}")
|
||||
return cls._dequant_and_fallback(func, args, kwargs)
|
||||
|
||||
@classmethod
|
||||
def _dequant_and_fallback(cls, func, args, kwargs):
|
||||
def dequant_arg(arg):
|
||||
if isinstance(arg, QuantizedTensor):
|
||||
return arg.dequantize()
|
||||
elif isinstance(arg, (list, tuple)):
|
||||
return type(arg)(dequant_arg(a) for a in arg)
|
||||
return arg
|
||||
|
||||
new_args = dequant_arg(args)
|
||||
new_kwargs = dequant_arg(kwargs)
|
||||
return func(*new_args, **new_kwargs)
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
# Generic Utilities (Layout-Agnostic Operations)
|
||||
# ==============================================================================
|
||||
|
||||
def _create_transformed_qtensor(qt, transform_fn):
|
||||
new_data = transform_fn(qt._qdata)
|
||||
new_params = _copy_layout_params(qt._layout_params)
|
||||
return QuantizedTensor(new_data, qt._layout_type, new_params)
|
||||
|
||||
|
||||
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
|
||||
if target_dtype is not None and target_dtype != qt.dtype:
|
||||
logging.warning(
|
||||
f"QuantizedTensor: dtype conversion requested to {target_dtype}, "
|
||||
f"but not supported for quantized tensors. Ignoring dtype."
|
||||
)
|
||||
|
||||
if target_layout is not None and target_layout != torch.strided:
|
||||
logging.warning(
|
||||
f"QuantizedTensor: layout change requested to {target_layout}, "
|
||||
f"but not supported. Ignoring layout."
|
||||
)
|
||||
|
||||
# Handle device transfer
|
||||
current_device = qt._qdata.device
|
||||
if target_device is not None:
|
||||
# Normalize device for comparison
|
||||
if isinstance(target_device, str):
|
||||
target_device = torch.device(target_device)
|
||||
if isinstance(current_device, str):
|
||||
current_device = torch.device(current_device)
|
||||
|
||||
if target_device != current_device:
|
||||
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
|
||||
new_q_data = qt._qdata.to(device=target_device)
|
||||
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
|
||||
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
|
||||
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
|
||||
return new_qt
|
||||
|
||||
logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original")
|
||||
return qt
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.detach.default)
|
||||
def generic_detach(func, args, kwargs):
|
||||
"""Detach operation - creates a detached copy of the quantized tensor."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _create_transformed_qtensor(qt, lambda x: x.detach())
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.clone.default)
|
||||
def generic_clone(func, args, kwargs):
|
||||
"""Clone operation - creates a deep copy of the quantized tensor."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _create_transformed_qtensor(qt, lambda x: x.clone())
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten._to_copy.default)
|
||||
def generic_to_copy(func, args, kwargs):
|
||||
"""Device/dtype transfer operation - handles .to(device) calls."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _handle_device_transfer(
|
||||
qt,
|
||||
target_device=kwargs.get('device', None),
|
||||
target_dtype=kwargs.get('dtype', None),
|
||||
op_name="_to_copy"
|
||||
)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.to.dtype_layout)
|
||||
def generic_to_dtype_layout(func, args, kwargs):
|
||||
"""Handle .to(device) calls using the dtype_layout variant."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _handle_device_transfer(
|
||||
qt,
|
||||
target_device=kwargs.get('device', None),
|
||||
target_dtype=kwargs.get('dtype', None),
|
||||
target_layout=kwargs.get('layout', None),
|
||||
op_name="to"
|
||||
)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.copy_.default)
|
||||
def generic_copy_(func, args, kwargs):
|
||||
qt_dest = args[0]
|
||||
src = args[1]
|
||||
non_blocking = args[2] if len(args) > 2 else False
|
||||
if isinstance(qt_dest, QuantizedTensor):
|
||||
if isinstance(src, QuantizedTensor):
|
||||
# Copy from another quantized tensor
|
||||
qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
|
||||
qt_dest._layout_type = src._layout_type
|
||||
_copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
|
||||
else:
|
||||
# Copy from regular tensor - just copy raw data
|
||||
qt_dest._qdata.copy_(src)
|
||||
return qt_dest
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default)
|
||||
def generic_has_compatible_shallow_copy_type(func, args, kwargs):
|
||||
return True
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.empty_like.default)
|
||||
def generic_empty_like(func, args, kwargs):
|
||||
"""Empty_like operation - creates an empty tensor with the same quantized structure."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
# Create empty tensor with same shape and dtype as the quantized data
|
||||
hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"])
|
||||
new_qdata = torch.empty_like(qt._qdata, **kwargs)
|
||||
|
||||
# Handle device transfer for layout params
|
||||
target_device = kwargs.get('device', new_qdata.device)
|
||||
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
|
||||
|
||||
# Update orig_dtype if dtype is specified
|
||||
new_params['orig_dtype'] = hp_dtype
|
||||
|
||||
return QuantizedTensor(new_qdata, qt._layout_type, new_params)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
# ==============================================================================
|
||||
# FP8 Layout + Operation Handlers
|
||||
# ==============================================================================
|
||||
class TensorCoreFP8Layout(QuantizedLayout):
|
||||
"""
|
||||
Storage format:
|
||||
- qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2)
|
||||
- scale: Scalar tensor (float32) for dequantization
|
||||
- orig_dtype: Original dtype before quantization (for casting back)
|
||||
"""
|
||||
@classmethod
|
||||
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn):
|
||||
orig_dtype = tensor.dtype
|
||||
|
||||
if scale is None:
|
||||
scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max
|
||||
|
||||
if not isinstance(scale, torch.Tensor):
|
||||
scale = torch.tensor(scale)
|
||||
scale = scale.to(device=tensor.device, dtype=torch.float32)
|
||||
|
||||
tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype)
|
||||
# TODO: uncomment this if it's actually needed because the clamp has a small performance penality'
|
||||
# lp_amax = torch.finfo(dtype).max
|
||||
# torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled)
|
||||
qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format)
|
||||
|
||||
layout_params = {
|
||||
'scale': scale,
|
||||
'orig_dtype': orig_dtype
|
||||
}
|
||||
return qdata, layout_params
|
||||
|
||||
@staticmethod
|
||||
def dequantize(qdata, scale, orig_dtype, **kwargs):
|
||||
plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype)
|
||||
return plain_tensor * scale
|
||||
|
||||
@classmethod
|
||||
def get_plain_tensors(cls, qtensor):
|
||||
return qtensor._qdata, qtensor._layout_params['scale']
|
||||
|
||||
QUANT_ALGOS = {
|
||||
"float8_e4m3fn": {
|
||||
"storage_t": torch.float8_e4m3fn,
|
||||
"parameters": {"weight_scale", "input_scale"},
|
||||
"comfy_tensor_layout": "TensorCoreFP8Layout",
|
||||
},
|
||||
}
|
||||
|
||||
LAYOUTS = {
|
||||
"TensorCoreFP8Layout": TensorCoreFP8Layout,
|
||||
}
|
||||
|
||||
|
||||
@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout")
|
||||
def fp8_linear(func, args, kwargs):
|
||||
input_tensor = args[0]
|
||||
weight = args[1]
|
||||
bias = args[2] if len(args) > 2 else None
|
||||
|
||||
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
|
||||
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
|
||||
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
|
||||
|
||||
out_dtype = kwargs.get("out_dtype")
|
||||
if out_dtype is None:
|
||||
out_dtype = input_tensor._layout_params['orig_dtype']
|
||||
|
||||
weight_t = plain_weight.t()
|
||||
|
||||
tensor_2d = False
|
||||
if len(plain_input.shape) == 2:
|
||||
tensor_2d = True
|
||||
plain_input = plain_input.unsqueeze(1)
|
||||
|
||||
input_shape = plain_input.shape
|
||||
if len(input_shape) != 3:
|
||||
return None
|
||||
|
||||
try:
|
||||
output = torch._scaled_mm(
|
||||
plain_input.reshape(-1, input_shape[2]).contiguous(),
|
||||
weight_t,
|
||||
bias=bias,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=out_dtype,
|
||||
)
|
||||
|
||||
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
|
||||
output = output[0]
|
||||
|
||||
if not tensor_2d:
|
||||
output = output.reshape((-1, input_shape[1], weight.shape[0]))
|
||||
|
||||
if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
output_scale = scale_a * scale_b
|
||||
output_params = {
|
||||
'scale': output_scale,
|
||||
'orig_dtype': input_tensor._layout_params['orig_dtype']
|
||||
}
|
||||
return QuantizedTensor(output, "TensorCoreFP8Layout", output_params)
|
||||
else:
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}")
|
||||
|
||||
# Case 2: DQ Fallback
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
if isinstance(input_tensor, QuantizedTensor):
|
||||
input_tensor = input_tensor.dequantize()
|
||||
|
||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
||||
|
||||
def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None):
|
||||
if out_dtype is None:
|
||||
out_dtype = input_tensor._layout_params['orig_dtype']
|
||||
|
||||
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
|
||||
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
|
||||
|
||||
output = torch._scaled_mm(
|
||||
plain_input.contiguous(),
|
||||
plain_weight,
|
||||
bias=bias,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=out_dtype,
|
||||
)
|
||||
|
||||
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
|
||||
output = output[0]
|
||||
return output
|
||||
|
||||
@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout")
|
||||
def fp8_addmm(func, args, kwargs):
|
||||
input_tensor = args[1]
|
||||
weight = args[2]
|
||||
bias = args[0]
|
||||
|
||||
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
|
||||
return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None))
|
||||
|
||||
a = list(args)
|
||||
if isinstance(args[0], QuantizedTensor):
|
||||
a[0] = args[0].dequantize()
|
||||
if isinstance(args[1], QuantizedTensor):
|
||||
a[1] = args[1].dequantize()
|
||||
if isinstance(args[2], QuantizedTensor):
|
||||
a[2] = args[2].dequantize()
|
||||
|
||||
return func(*a, **kwargs)
|
||||
|
||||
@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout")
|
||||
def fp8_mm(func, args, kwargs):
|
||||
input_tensor = args[0]
|
||||
weight = args[1]
|
||||
|
||||
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
|
||||
return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None))
|
||||
|
||||
a = list(args)
|
||||
if isinstance(args[0], QuantizedTensor):
|
||||
a[0] = args[0].dequantize()
|
||||
if isinstance(args[1], QuantizedTensor):
|
||||
a[1] = args[1].dequantize()
|
||||
return func(*a, **kwargs)
|
||||
|
||||
@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout")
|
||||
@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout")
|
||||
def fp8_func(func, args, kwargs):
|
||||
input_tensor = args[0]
|
||||
if isinstance(input_tensor, QuantizedTensor):
|
||||
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
|
||||
ar = list(args)
|
||||
ar[0] = plain_input
|
||||
return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params)
|
||||
return func(*args, **kwargs)
|
||||
@ -4,13 +4,9 @@ import comfy.samplers
|
||||
import comfy.utils
|
||||
import numpy as np
|
||||
import logging
|
||||
import comfy.nested_tensor
|
||||
|
||||
def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
"""
|
||||
creates random noise given a latent image and a seed.
|
||||
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
||||
"""
|
||||
generator = torch.manual_seed(seed)
|
||||
def prepare_noise_inner(latent_image, generator, noise_inds=None):
|
||||
if noise_inds is None:
|
||||
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||
|
||||
@ -21,10 +17,29 @@ def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
if i in unique_inds:
|
||||
noises.append(noise)
|
||||
noises = [noises[i] for i in inverse]
|
||||
noises = torch.cat(noises, axis=0)
|
||||
return torch.cat(noises, axis=0)
|
||||
|
||||
def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
"""
|
||||
creates random noise given a latent image and a seed.
|
||||
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
||||
"""
|
||||
generator = torch.manual_seed(seed)
|
||||
|
||||
if latent_image.is_nested:
|
||||
tensors = latent_image.unbind()
|
||||
noises = []
|
||||
for t in tensors:
|
||||
noises.append(prepare_noise_inner(t, generator, noise_inds))
|
||||
noises = comfy.nested_tensor.NestedTensor(noises)
|
||||
else:
|
||||
noises = prepare_noise_inner(latent_image, generator, noise_inds)
|
||||
|
||||
return noises
|
||||
|
||||
def fix_empty_latent_channels(model, latent_image):
|
||||
if latent_image.is_nested:
|
||||
return latent_image
|
||||
latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels
|
||||
if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
|
||||
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)
|
||||
|
||||
@ -306,17 +306,10 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens
|
||||
copy_dict1=False)
|
||||
|
||||
if patches is not None:
|
||||
# TODO: replace with merge_nested_dicts function
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
transformer_options["patches"] = comfy.patcher_extension.merge_nested_dicts(
|
||||
transformer_options.get("patches", {}),
|
||||
patches
|
||||
)
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["uuids"] = uuids[:]
|
||||
@ -789,7 +782,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}):
|
||||
return KSAMPLER(sampler_function, extra_options, inpaint_options)
|
||||
|
||||
|
||||
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
|
||||
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None, latent_shapes=None):
|
||||
for k in conds:
|
||||
conds[k] = conds[k][:]
|
||||
resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
|
||||
@ -799,7 +792,7 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N
|
||||
|
||||
if hasattr(model, 'extra_conds'):
|
||||
for k in conds:
|
||||
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
|
||||
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed, latent_shapes=latent_shapes)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for k in conds:
|
||||
@ -969,11 +962,11 @@ class CFGGuider:
|
||||
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
||||
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
|
||||
|
||||
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
|
||||
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=None):
|
||||
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
|
||||
latent_image = self.inner_model.process_latent_in(latent_image)
|
||||
|
||||
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
|
||||
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed, latent_shapes=latent_shapes)
|
||||
|
||||
extra_model_options = comfy.model_patcher.create_model_options_clone(self.model_options)
|
||||
extra_model_options.setdefault("transformer_options", {})["sample_sigmas"] = sigmas
|
||||
@ -987,7 +980,7 @@ class CFGGuider:
|
||||
samples = executor.execute(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return self.inner_model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None, latent_shapes=None):
|
||||
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
|
||||
device = self.model_patcher.load_device
|
||||
|
||||
@ -1001,7 +994,7 @@ class CFGGuider:
|
||||
|
||||
try:
|
||||
self.model_patcher.pre_run()
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes)
|
||||
finally:
|
||||
self.model_patcher.cleanup()
|
||||
|
||||
@ -1014,6 +1007,12 @@ class CFGGuider:
|
||||
if sigmas.shape[-1] == 0:
|
||||
return latent_image
|
||||
|
||||
if latent_image.is_nested:
|
||||
latent_image, latent_shapes = comfy.utils.pack_latents(latent_image.unbind())
|
||||
noise, _ = comfy.utils.pack_latents(noise.unbind())
|
||||
else:
|
||||
latent_shapes = [latent_image.shape]
|
||||
|
||||
self.conds = {}
|
||||
for k in self.original_conds:
|
||||
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||
@ -1033,7 +1032,7 @@ class CFGGuider:
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, self.model_options, is_model_options=True)
|
||||
)
|
||||
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes)
|
||||
finally:
|
||||
cast_to_load_options(self.model_options, device=self.model_patcher.offload_device)
|
||||
self.model_options = orig_model_options
|
||||
@ -1041,6 +1040,9 @@ class CFGGuider:
|
||||
self.model_patcher.restore_hook_patches()
|
||||
|
||||
del self.conds
|
||||
|
||||
if len(latent_shapes) > 1:
|
||||
output = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(output, latent_shapes))
|
||||
return output
|
||||
|
||||
|
||||
|
||||
153
comfy/sd.py
153
comfy/sd.py
@ -18,6 +18,7 @@ import comfy.ldm.wan.vae2_2
|
||||
import comfy.ldm.hunyuan3d.vae
|
||||
import comfy.ldm.ace.vae.music_dcae_pipeline
|
||||
import comfy.ldm.hunyuan_video.vae
|
||||
import comfy.ldm.mmaudio.vae.autoencoder
|
||||
import comfy.pixel_space_convert
|
||||
import yaml
|
||||
import math
|
||||
@ -142,6 +143,9 @@ class CLIP:
|
||||
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
||||
return n
|
||||
|
||||
def get_ram_usage(self):
|
||||
return self.patcher.get_ram_usage()
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
@ -275,8 +279,13 @@ class VAE:
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
||||
if model_management.is_amd():
|
||||
VAE_KL_MEM_RATIO = 2.73
|
||||
else:
|
||||
VAE_KL_MEM_RATIO = 1.0
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO #These are for AutoencoderKL and need tweaking (should be lower)
|
||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO
|
||||
self.downscale_ratio = 8
|
||||
self.upscale_ratio = 8
|
||||
self.latent_channels = 4
|
||||
@ -287,10 +296,12 @@ class VAE:
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
self.disable_offload = False
|
||||
self.not_video = False
|
||||
self.size = None
|
||||
|
||||
self.downscale_index_formula = None
|
||||
self.upscale_index_formula = None
|
||||
self.extra_1d_channel = None
|
||||
self.crop_input = True
|
||||
|
||||
if config is None:
|
||||
if "decoder.mid.block_1.mix_factor" in sd:
|
||||
@ -332,35 +343,51 @@ class VAE:
|
||||
self.first_stage_model = StageC_coder()
|
||||
self.downscale_ratio = 32
|
||||
self.latent_channels = 16
|
||||
elif "decoder.conv_in.weight" in sd and sd['decoder.conv_in.weight'].shape[1] == 64:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
self.downscale_ratio = 32
|
||||
self.upscale_ratio = 32
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
|
||||
|
||||
elif "decoder.conv_in.weight" in sd:
|
||||
#default SD1.x/SD2.x VAE parameters
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
|
||||
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
|
||||
ddconfig['ch_mult'] = [1, 2, 4]
|
||||
self.downscale_ratio = 4
|
||||
self.upscale_ratio = 4
|
||||
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
if 'post_quant_conv.weight' in sd:
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
||||
else:
|
||||
if sd['decoder.conv_in.weight'].shape[1] == 64:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
self.downscale_ratio = 32
|
||||
self.upscale_ratio = 32
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
||||
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
|
||||
elif sd['decoder.conv_in.weight'].shape[1] == 32:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
|
||||
self.upscale_index_formula = (4, 16, 16)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
|
||||
self.downscale_index_formula = (4, 16, 16)
|
||||
self.latent_dim = 3
|
||||
self.not_video = True
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (2800 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (2800 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
|
||||
else:
|
||||
#default SD1.x/SD2.x VAE parameters
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
|
||||
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
|
||||
ddconfig['ch_mult'] = [1, 2, 4]
|
||||
self.downscale_ratio = 4
|
||||
self.upscale_ratio = 4
|
||||
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
if 'post_quant_conv.weight' in sd:
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
||||
else:
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
||||
elif "decoder.layers.1.layers.0.beta" in sd:
|
||||
self.first_stage_model = AudioOobleckVAE()
|
||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
||||
@ -526,6 +553,25 @@ class VAE:
|
||||
self.latent_channels = 3
|
||||
self.latent_dim = 2
|
||||
self.output_channels = 3
|
||||
elif "vocoder.activation_post.downsample.lowpass.filter" in sd: #MMAudio VAE
|
||||
sample_rate = 16000
|
||||
if sample_rate == 16000:
|
||||
mode = '16k'
|
||||
else:
|
||||
mode = '44k'
|
||||
|
||||
self.first_stage_model = comfy.ldm.mmaudio.vae.autoencoder.AudioAutoencoder(mode=mode)
|
||||
self.memory_used_encode = lambda shape, dtype: (30 * shape[2]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (90 * shape[2] * 1411.2) * model_management.dtype_size(dtype)
|
||||
self.latent_channels = 20
|
||||
self.output_channels = 2
|
||||
self.upscale_ratio = 512 * (44100 / sample_rate)
|
||||
self.downscale_ratio = 512 * (44100 / sample_rate)
|
||||
self.latent_dim = 1
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.float32]
|
||||
self.crop_input = False
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
@ -553,12 +599,25 @@ class VAE:
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||
self.model_size()
|
||||
|
||||
def model_size(self):
|
||||
if self.size is not None:
|
||||
return self.size
|
||||
self.size = comfy.model_management.module_size(self.first_stage_model)
|
||||
return self.size
|
||||
|
||||
def get_ram_usage(self):
|
||||
return self.model_size()
|
||||
|
||||
def throw_exception_if_invalid(self):
|
||||
if self.first_stage_model is None:
|
||||
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
|
||||
|
||||
def vae_encode_crop_pixels(self, pixels):
|
||||
if not self.crop_input:
|
||||
return pixels
|
||||
|
||||
downscale_ratio = self.spacial_compression_encode()
|
||||
|
||||
dims = pixels.shape[1:-1]
|
||||
@ -636,6 +695,7 @@ class VAE:
|
||||
def decode(self, samples_in, vae_options={}):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = None
|
||||
do_tile = False
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
@ -651,6 +711,13 @@ class VAE:
|
||||
pixel_samples[x:x+batch_number] = out
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
#NOTE: We don't know what tensors were allocated to stack variables at the time of the
|
||||
#exception and the exception itself refs them all until we get out of this except block.
|
||||
#So we just set a flag for tiler fallback so that tensor gc can happen once the
|
||||
#exception is fully off the books.
|
||||
do_tile = True
|
||||
|
||||
if do_tile:
|
||||
dims = samples_in.ndim - 2
|
||||
if dims == 1 or self.extra_1d_channel is not None:
|
||||
pixel_samples = self.decode_tiled_1d(samples_in)
|
||||
@ -697,6 +764,7 @@ class VAE:
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
do_tile = False
|
||||
if self.latent_dim == 3 and pixel_samples.ndim < 5:
|
||||
if not self.not_video:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
@ -718,6 +786,13 @@ class VAE:
|
||||
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
#NOTE: We don't know what tensors were allocated to stack variables at the time of the
|
||||
#exception and the exception itself refs them all until we get out of this except block.
|
||||
#So we just set a flag for tiler fallback so that tensor gc can happen once the
|
||||
#exception is fully off the books.
|
||||
do_tile = True
|
||||
|
||||
if do_tile:
|
||||
if self.latent_dim == 3:
|
||||
tile = 256
|
||||
overlap = tile // 4
|
||||
@ -858,6 +933,7 @@ class TEModel(Enum):
|
||||
QWEN25_3B = 10
|
||||
QWEN25_7B = 11
|
||||
BYT5_SMALL_GLYPH = 12
|
||||
GEMMA_3_4B = 13
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@ -880,6 +956,8 @@ def detect_te_model(sd):
|
||||
return TEModel.BYT5_SMALL_GLYPH
|
||||
return TEModel.T5_BASE
|
||||
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
|
||||
if 'model.layers.0.self_attn.q_norm.weight' in sd:
|
||||
return TEModel.GEMMA_3_4B
|
||||
return TEModel.GEMMA_2_2B
|
||||
if 'model.layers.0.self_attn.k_proj.bias' in sd:
|
||||
weight = sd['model.layers.0.self_attn.k_proj.bias']
|
||||
@ -984,6 +1062,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif te_model == TEModel.GEMMA_3_4B:
|
||||
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b")
|
||||
clip_target.tokenizer = comfy.text_encoders.lumina2.NTokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif te_model == TEModel.LLAMA3_8:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
|
||||
@ -1194,7 +1276,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
|
||||
"""
|
||||
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
|
||||
|
||||
@ -1228,7 +1310,7 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
load_device = model_management.get_torch_device()
|
||||
model_config = model_detection.model_config_from_unet(sd, "")
|
||||
model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)
|
||||
|
||||
if model_config is not None:
|
||||
new_sd = sd
|
||||
@ -1262,7 +1344,10 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
else:
|
||||
unet_dtype = dtype
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
if model_config.layer_quant_config is not None:
|
||||
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
|
||||
else:
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
||||
if model_options.get("fp8_optimizations", False):
|
||||
@ -1278,8 +1363,8 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
|
||||
|
||||
def load_diffusion_model(unet_path, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options, metadata=metadata)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
|
||||
|
||||
@ -460,7 +460,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, tokenizer_data={}, tokenizer_args={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||
@ -468,6 +468,7 @@ class SDTokenizer:
|
||||
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
|
||||
self.end_token = None
|
||||
self.min_padding = min_padding
|
||||
self.pad_left = pad_left
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.tokenizer_adds_end_token = has_end_token
|
||||
@ -522,6 +523,12 @@ class SDTokenizer:
|
||||
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
|
||||
return (embed, leftover)
|
||||
|
||||
def pad_tokens(self, tokens, amount):
|
||||
if self.pad_left:
|
||||
for i in range(amount):
|
||||
tokens.insert(0, (self.pad_token, 1.0, 0))
|
||||
else:
|
||||
tokens.extend([(self.pad_token, 1.0, 0)] * amount)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
|
||||
'''
|
||||
@ -600,7 +607,7 @@ class SDTokenizer:
|
||||
if self.end_token is not None:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
|
||||
self.pad_tokens(batch, remaining_length)
|
||||
#start new batch
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
@ -614,11 +621,11 @@ class SDTokenizer:
|
||||
if self.end_token is not None:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if min_padding is not None:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
|
||||
self.pad_tokens(batch, min_padding)
|
||||
if self.pad_to_max_length and len(batch) < self.max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
self.pad_tokens(batch, self.max_length - len(batch))
|
||||
if min_length is not None and len(batch) < min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
|
||||
self.pad_tokens(batch, min_length - len(batch))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
||||
|
||||
@ -50,6 +50,7 @@ class BASE:
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
scaled_fp8 = None
|
||||
layer_quant_config = None # Per-layer quantization configuration for mixed precision
|
||||
optimizations = {"fp8": False}
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -3,6 +3,7 @@ import torch.nn as nn
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Any
|
||||
import math
|
||||
import logging
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.model_management
|
||||
@ -28,6 +29,9 @@ class Llama2Config:
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
|
||||
@dataclass
|
||||
class Qwen25_3BConfig:
|
||||
@ -46,6 +50,9 @@ class Qwen25_3BConfig:
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = True
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
|
||||
@dataclass
|
||||
class Qwen25_7BVLI_Config:
|
||||
@ -64,6 +71,9 @@ class Qwen25_7BVLI_Config:
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = True
|
||||
rope_dims = [16, 24, 24]
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
|
||||
@dataclass
|
||||
class Gemma2_2B_Config:
|
||||
@ -82,6 +92,32 @@ class Gemma2_2B_Config:
|
||||
mlp_activation = "gelu_pytorch_tanh"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
sliding_attention = None
|
||||
rope_scale = None
|
||||
|
||||
@dataclass
|
||||
class Gemma3_4B_Config:
|
||||
vocab_size: int = 262208
|
||||
hidden_size: int = 2560
|
||||
intermediate_size: int = 10240
|
||||
num_hidden_layers: int = 34
|
||||
num_attention_heads: int = 8
|
||||
num_key_value_heads: int = 4
|
||||
max_position_embeddings: int = 131072
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta = [10000.0, 1000000.0]
|
||||
transformer_type: str = "gemma3"
|
||||
head_dim = 256
|
||||
rms_norm_add = True
|
||||
mlp_activation = "gelu_pytorch_tanh"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = "gemma3"
|
||||
k_norm = "gemma3"
|
||||
sliding_attention = [False, False, False, False, False, 1024]
|
||||
rope_scale = [1.0, 8.0]
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
|
||||
@ -106,25 +142,40 @@ def rotate_half(x):
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def precompute_freqs_cis(head_dim, position_ids, theta, rope_dims=None, device=None):
|
||||
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
|
||||
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
|
||||
def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None):
|
||||
if not isinstance(theta, list):
|
||||
theta = [theta]
|
||||
|
||||
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
if rope_dims is not None and position_ids.shape[0] > 1:
|
||||
mrope_section = rope_dims * 2
|
||||
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
else:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
out = []
|
||||
for index, t in enumerate(theta):
|
||||
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
|
||||
inv_freq = 1.0 / (t ** (theta_numerator / head_dim))
|
||||
|
||||
return (cos, sin)
|
||||
if rope_scale is not None:
|
||||
if isinstance(rope_scale, list):
|
||||
inv_freq /= rope_scale[index]
|
||||
else:
|
||||
inv_freq /= rope_scale
|
||||
|
||||
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
if rope_dims is not None and position_ids.shape[0] > 1:
|
||||
mrope_section = rope_dims * 2
|
||||
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
else:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
out.append((cos, sin))
|
||||
|
||||
if len(out) == 1:
|
||||
return out[0]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def apply_rope(xq, xk, freqs_cis):
|
||||
@ -152,6 +203,14 @@ class Attention(nn.Module):
|
||||
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
|
||||
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
|
||||
|
||||
self.q_norm = None
|
||||
self.k_norm = None
|
||||
|
||||
if config.q_norm == "gemma3":
|
||||
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
if config.k_norm == "gemma3":
|
||||
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@ -168,6 +227,11 @@ class Attention(nn.Module):
|
||||
xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
||||
xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
if self.q_norm is not None:
|
||||
xq = self.q_norm(xq)
|
||||
if self.k_norm is not None:
|
||||
xk = self.k_norm(xk)
|
||||
|
||||
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
|
||||
|
||||
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
|
||||
@ -192,7 +256,7 @@ class MLP(nn.Module):
|
||||
return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
|
||||
super().__init__()
|
||||
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
|
||||
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
|
||||
@ -226,7 +290,7 @@ class TransformerBlock(nn.Module):
|
||||
return x
|
||||
|
||||
class TransformerBlockGemma2(nn.Module):
|
||||
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
|
||||
super().__init__()
|
||||
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
|
||||
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
|
||||
@ -235,6 +299,13 @@ class TransformerBlockGemma2(nn.Module):
|
||||
self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
|
||||
if config.sliding_attention is not None: # TODO: implement. (Not that necessary since models are trained on less than 1024 tokens)
|
||||
self.sliding_attention = config.sliding_attention[index % len(config.sliding_attention)]
|
||||
else:
|
||||
self.sliding_attention = False
|
||||
|
||||
self.transformer_type = config.transformer_type
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
@ -242,6 +313,14 @@ class TransformerBlockGemma2(nn.Module):
|
||||
freqs_cis: Optional[torch.Tensor] = None,
|
||||
optimized_attention=None,
|
||||
):
|
||||
if self.transformer_type == 'gemma3':
|
||||
if self.sliding_attention:
|
||||
if x.shape[1] > self.sliding_attention:
|
||||
logging.warning("Warning: sliding attention not implemented, results may be incorrect")
|
||||
freqs_cis = freqs_cis[1]
|
||||
else:
|
||||
freqs_cis = freqs_cis[0]
|
||||
|
||||
# Self Attention
|
||||
residual = x
|
||||
x = self.input_layernorm(x)
|
||||
@ -276,7 +355,7 @@ class Llama2_(nn.Module):
|
||||
device=device,
|
||||
dtype=dtype
|
||||
)
|
||||
if self.config.transformer_type == "gemma2":
|
||||
if self.config.transformer_type == "gemma2" or self.config.transformer_type == "gemma3":
|
||||
transformer = TransformerBlockGemma2
|
||||
self.normalize_in = True
|
||||
else:
|
||||
@ -284,8 +363,8 @@ class Llama2_(nn.Module):
|
||||
self.normalize_in = False
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
transformer(config, device=device, dtype=dtype, ops=ops)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
transformer(config, index=i, device=device, dtype=dtype, ops=ops)
|
||||
for i in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
|
||||
@ -305,6 +384,7 @@ class Llama2_(nn.Module):
|
||||
freqs_cis = precompute_freqs_cis(self.config.head_dim,
|
||||
position_ids,
|
||||
self.config.rope_theta,
|
||||
self.config.rope_scale,
|
||||
self.config.rope_dims,
|
||||
device=x.device)
|
||||
|
||||
@ -433,3 +513,12 @@ class Gemma2_2B(BaseLlama, torch.nn.Module):
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Gemma3_4B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Gemma3_4B_Config(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
@ -11,23 +11,41 @@ class Gemma2BTokenizer(sd1_clip.SDTokenizer):
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class Gemma3_4BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class LuminaTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma2_2b", tokenizer=Gemma2BTokenizer)
|
||||
|
||||
class NTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_4b", tokenizer=Gemma3_4BTokenizer)
|
||||
|
||||
class Gemma2_2BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class Gemma3_4BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class LuminaModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="gemma2_2b", clip_model=Gemma2_2BModel, model_options=model_options)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, name="gemma2_2b", clip_model=Gemma2_2BModel):
|
||||
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"):
|
||||
if model_type == "gemma2_2b":
|
||||
model = Gemma2_2BModel
|
||||
elif model_type == "gemma3_4b":
|
||||
model = Gemma3_4BModel
|
||||
|
||||
class LuminaTEModel_(LuminaModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
@ -35,5 +53,5 @@ def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model)
|
||||
return LuminaTEModel_
|
||||
|
||||
@ -39,7 +39,11 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
|
||||
pass
|
||||
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
|
||||
|
||||
from numpy.core.multiarray import scalar
|
||||
def scalar(*args, **kwargs):
|
||||
from numpy.core.multiarray import scalar as sc
|
||||
return sc(*args, **kwargs)
|
||||
scalar.__module__ = "numpy.core.multiarray"
|
||||
|
||||
from numpy import dtype
|
||||
from numpy.dtypes import Float64DType
|
||||
from _codecs import encode
|
||||
@ -1102,3 +1106,25 @@ def upscale_dit_mask(mask: torch.Tensor, img_size_in, img_size_out):
|
||||
dim=1
|
||||
)
|
||||
return out
|
||||
|
||||
def pack_latents(latents):
|
||||
latent_shapes = []
|
||||
tensors = []
|
||||
for tensor in latents:
|
||||
latent_shapes.append(tensor.shape)
|
||||
tensors.append(tensor.reshape(tensor.shape[0], 1, -1))
|
||||
|
||||
latent = torch.cat(tensors, dim=-1)
|
||||
return latent, latent_shapes
|
||||
|
||||
def unpack_latents(combined_latent, latent_shapes):
|
||||
if len(latent_shapes) > 1:
|
||||
output_tensors = []
|
||||
for shape in latent_shapes:
|
||||
cut = math.prod(shape[1:])
|
||||
tens = combined_latent[:, :, :cut]
|
||||
combined_latent = combined_latent[:, :, cut:]
|
||||
output_tensors.append(tens.reshape([tens.shape[0]] + list(shape)[1:]))
|
||||
else:
|
||||
output_tensors = combined_latent
|
||||
return output_tensors
|
||||
|
||||
@ -8,8 +8,8 @@ from comfy_api.internal.async_to_sync import create_sync_class
|
||||
from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
|
||||
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
|
||||
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents
|
||||
from comfy_api.latest._io import _IO as io #noqa: F401
|
||||
from comfy_api.latest._ui import _UI as ui #noqa: F401
|
||||
from . import _io as io
|
||||
from . import _ui as ui
|
||||
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
|
||||
from comfy_execution.utils import get_executing_context
|
||||
from comfy_execution.progress import get_progress_state, PreviewImageTuple
|
||||
@ -114,6 +114,10 @@ if TYPE_CHECKING:
|
||||
ComfyAPISync: Type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub]
|
||||
ComfyAPISync = create_sync_class(ComfyAPI_latest)
|
||||
|
||||
# create new aliases for io and ui
|
||||
IO = io
|
||||
UI = ui
|
||||
|
||||
__all__ = [
|
||||
"ComfyAPI",
|
||||
"ComfyAPISync",
|
||||
@ -121,4 +125,8 @@ __all__ = [
|
||||
"InputImpl",
|
||||
"Types",
|
||||
"ComfyExtension",
|
||||
"io",
|
||||
"IO",
|
||||
"ui",
|
||||
"UI",
|
||||
]
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Union
|
||||
from typing import Optional, Union, IO
|
||||
import io
|
||||
import av
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
@ -23,7 +23,7 @@ class VideoInput(ABC):
|
||||
@abstractmethod
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
path: Union[str, IO[bytes]],
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
|
||||
@ -336,11 +336,25 @@ class Combo(ComfyTypeIO):
|
||||
class Input(WidgetInput):
|
||||
"""Combo input (dropdown)."""
|
||||
Type = str
|
||||
def __init__(self, id: str, options: list[str]=None, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
||||
default: str=None, control_after_generate: bool=None,
|
||||
upload: UploadType=None, image_folder: FolderType=None,
|
||||
remote: RemoteOptions=None,
|
||||
socketless: bool=None):
|
||||
def __init__(
|
||||
self,
|
||||
id: str,
|
||||
options: list[str] | list[int] | type[Enum] = None,
|
||||
display_name: str=None,
|
||||
optional=False,
|
||||
tooltip: str=None,
|
||||
lazy: bool=None,
|
||||
default: str | int | Enum = None,
|
||||
control_after_generate: bool=None,
|
||||
upload: UploadType=None,
|
||||
image_folder: FolderType=None,
|
||||
remote: RemoteOptions=None,
|
||||
socketless: bool=None,
|
||||
):
|
||||
if isinstance(options, type) and issubclass(options, Enum):
|
||||
options = [v.value for v in options]
|
||||
if isinstance(default, Enum):
|
||||
default = default.value
|
||||
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless)
|
||||
self.multiselect = False
|
||||
self.options = options
|
||||
@ -1568,77 +1582,78 @@ class _UIOutput(ABC):
|
||||
...
|
||||
|
||||
|
||||
class _IO:
|
||||
FolderType = FolderType
|
||||
UploadType = UploadType
|
||||
RemoteOptions = RemoteOptions
|
||||
NumberDisplay = NumberDisplay
|
||||
__all__ = [
|
||||
"FolderType",
|
||||
"UploadType",
|
||||
"RemoteOptions",
|
||||
"NumberDisplay",
|
||||
|
||||
comfytype = staticmethod(comfytype)
|
||||
Custom = staticmethod(Custom)
|
||||
Input = Input
|
||||
WidgetInput = WidgetInput
|
||||
Output = Output
|
||||
ComfyTypeI = ComfyTypeI
|
||||
ComfyTypeIO = ComfyTypeIO
|
||||
#---------------------------------
|
||||
"comfytype",
|
||||
"Custom",
|
||||
"Input",
|
||||
"WidgetInput",
|
||||
"Output",
|
||||
"ComfyTypeI",
|
||||
"ComfyTypeIO",
|
||||
# Supported Types
|
||||
Boolean = Boolean
|
||||
Int = Int
|
||||
Float = Float
|
||||
String = String
|
||||
Combo = Combo
|
||||
MultiCombo = MultiCombo
|
||||
Image = Image
|
||||
WanCameraEmbedding = WanCameraEmbedding
|
||||
Webcam = Webcam
|
||||
Mask = Mask
|
||||
Latent = Latent
|
||||
Conditioning = Conditioning
|
||||
Sampler = Sampler
|
||||
Sigmas = Sigmas
|
||||
Noise = Noise
|
||||
Guider = Guider
|
||||
Clip = Clip
|
||||
ControlNet = ControlNet
|
||||
Vae = Vae
|
||||
Model = Model
|
||||
ClipVision = ClipVision
|
||||
ClipVisionOutput = ClipVisionOutput
|
||||
AudioEncoderOutput = AudioEncoderOutput
|
||||
StyleModel = StyleModel
|
||||
Gligen = Gligen
|
||||
UpscaleModel = UpscaleModel
|
||||
Audio = Audio
|
||||
Video = Video
|
||||
SVG = SVG
|
||||
LoraModel = LoraModel
|
||||
LossMap = LossMap
|
||||
Voxel = Voxel
|
||||
Mesh = Mesh
|
||||
Hooks = Hooks
|
||||
HookKeyframes = HookKeyframes
|
||||
TimestepsRange = TimestepsRange
|
||||
LatentOperation = LatentOperation
|
||||
FlowControl = FlowControl
|
||||
Accumulation = Accumulation
|
||||
Load3DCamera = Load3DCamera
|
||||
Load3D = Load3D
|
||||
Load3DAnimation = Load3DAnimation
|
||||
Photomaker = Photomaker
|
||||
Point = Point
|
||||
FaceAnalysis = FaceAnalysis
|
||||
BBOX = BBOX
|
||||
SEGS = SEGS
|
||||
AnyType = AnyType
|
||||
MultiType = MultiType
|
||||
#---------------------------------
|
||||
HiddenHolder = HiddenHolder
|
||||
Hidden = Hidden
|
||||
NodeInfoV1 = NodeInfoV1
|
||||
NodeInfoV3 = NodeInfoV3
|
||||
Schema = Schema
|
||||
ComfyNode = ComfyNode
|
||||
NodeOutput = NodeOutput
|
||||
add_to_dict_v1 = staticmethod(add_to_dict_v1)
|
||||
add_to_dict_v3 = staticmethod(add_to_dict_v3)
|
||||
"Boolean",
|
||||
"Int",
|
||||
"Float",
|
||||
"String",
|
||||
"Combo",
|
||||
"MultiCombo",
|
||||
"Image",
|
||||
"WanCameraEmbedding",
|
||||
"Webcam",
|
||||
"Mask",
|
||||
"Latent",
|
||||
"Conditioning",
|
||||
"Sampler",
|
||||
"Sigmas",
|
||||
"Noise",
|
||||
"Guider",
|
||||
"Clip",
|
||||
"ControlNet",
|
||||
"Vae",
|
||||
"Model",
|
||||
"ClipVision",
|
||||
"ClipVisionOutput",
|
||||
"AudioEncoder",
|
||||
"AudioEncoderOutput",
|
||||
"StyleModel",
|
||||
"Gligen",
|
||||
"UpscaleModel",
|
||||
"Audio",
|
||||
"Video",
|
||||
"SVG",
|
||||
"LoraModel",
|
||||
"LossMap",
|
||||
"Voxel",
|
||||
"Mesh",
|
||||
"Hooks",
|
||||
"HookKeyframes",
|
||||
"TimestepsRange",
|
||||
"LatentOperation",
|
||||
"FlowControl",
|
||||
"Accumulation",
|
||||
"Load3DCamera",
|
||||
"Load3D",
|
||||
"Load3DAnimation",
|
||||
"Photomaker",
|
||||
"Point",
|
||||
"FaceAnalysis",
|
||||
"BBOX",
|
||||
"SEGS",
|
||||
"AnyType",
|
||||
"MultiType",
|
||||
# Other classes
|
||||
"HiddenHolder",
|
||||
"Hidden",
|
||||
"NodeInfoV1",
|
||||
"NodeInfoV3",
|
||||
"Schema",
|
||||
"ComfyNode",
|
||||
"NodeOutput",
|
||||
"add_to_dict_v1",
|
||||
"add_to_dict_v3",
|
||||
]
|
||||
|
||||
@ -449,15 +449,16 @@ class PreviewText(_UIOutput):
|
||||
return {"text": (self.value,)}
|
||||
|
||||
|
||||
class _UI:
|
||||
SavedResult = SavedResult
|
||||
SavedImages = SavedImages
|
||||
SavedAudios = SavedAudios
|
||||
ImageSaveHelper = ImageSaveHelper
|
||||
AudioSaveHelper = AudioSaveHelper
|
||||
PreviewImage = PreviewImage
|
||||
PreviewMask = PreviewMask
|
||||
PreviewAudio = PreviewAudio
|
||||
PreviewVideo = PreviewVideo
|
||||
PreviewUI3D = PreviewUI3D
|
||||
PreviewText = PreviewText
|
||||
__all__ = [
|
||||
"SavedResult",
|
||||
"SavedImages",
|
||||
"SavedAudios",
|
||||
"ImageSaveHelper",
|
||||
"AudioSaveHelper",
|
||||
"PreviewImage",
|
||||
"PreviewMask",
|
||||
"PreviewAudio",
|
||||
"PreviewVideo",
|
||||
"PreviewUI3D",
|
||||
"PreviewText",
|
||||
]
|
||||
|
||||
@ -1,691 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import aiohttp
|
||||
import io
|
||||
import logging
|
||||
import mimetypes
|
||||
from typing import Optional, Union
|
||||
from comfy.utils import common_upscale
|
||||
from comfy_api.input_impl import VideoFromFile
|
||||
from comfy_api.util import VideoContainer, VideoCodec
|
||||
from comfy_api.input.video_types import VideoInput
|
||||
from comfy_api.input.basic_types import AudioInput
|
||||
from comfy_api_nodes.apis.client import (
|
||||
ApiClient,
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
UploadRequest,
|
||||
UploadResponse,
|
||||
)
|
||||
from server import PromptServer
|
||||
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import torch
|
||||
import math
|
||||
import base64
|
||||
import uuid
|
||||
from io import BytesIO
|
||||
import av
|
||||
|
||||
|
||||
async def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile:
|
||||
"""Downloads a video from a URL and returns a `VIDEO` output.
|
||||
|
||||
Args:
|
||||
video_url: The URL of the video to download.
|
||||
|
||||
Returns:
|
||||
A Comfy node `VIDEO` output.
|
||||
"""
|
||||
video_io = await download_url_to_bytesio(video_url, timeout)
|
||||
if video_io is None:
|
||||
error_msg = f"Failed to download video from {video_url}"
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
return VideoFromFile(video_io)
|
||||
|
||||
|
||||
def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor:
|
||||
"""Downscale input image tensor to roughly the specified total pixels."""
|
||||
samples = image.movedim(-1, 1)
|
||||
total = int(total_pixels)
|
||||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||||
if scale_by >= 1:
|
||||
return image
|
||||
width = round(samples.shape[3] * scale_by)
|
||||
height = round(samples.shape[2] * scale_by)
|
||||
|
||||
s = common_upscale(samples, width, height, "lanczos", "disabled")
|
||||
s = s.movedim(1, -1)
|
||||
return s
|
||||
|
||||
|
||||
async def validate_and_cast_response(
|
||||
response, timeout: int = None, node_id: Union[str, None] = None
|
||||
) -> torch.Tensor:
|
||||
"""Validates and casts a response to a torch.Tensor.
|
||||
|
||||
Args:
|
||||
response: The response to validate and cast.
|
||||
timeout: Request timeout in seconds. Defaults to None (no timeout).
|
||||
|
||||
Returns:
|
||||
A torch.Tensor representing the image (1, H, W, C).
|
||||
|
||||
Raises:
|
||||
ValueError: If the response is not valid.
|
||||
"""
|
||||
# validate raw JSON response
|
||||
data = response.data
|
||||
if not data or len(data) == 0:
|
||||
raise ValueError("No images returned from API endpoint")
|
||||
|
||||
# Initialize list to store image tensors
|
||||
image_tensors: list[torch.Tensor] = []
|
||||
|
||||
# Process each image in the data array
|
||||
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session:
|
||||
for img_data in data:
|
||||
img_bytes: bytes
|
||||
if img_data.b64_json:
|
||||
img_bytes = base64.b64decode(img_data.b64_json)
|
||||
elif img_data.url:
|
||||
if node_id:
|
||||
PromptServer.instance.send_progress_text(f"Result URL: {img_data.url}", node_id)
|
||||
async with session.get(img_data.url) as resp:
|
||||
if resp.status != 200:
|
||||
raise ValueError("Failed to download generated image")
|
||||
img_bytes = await resp.read()
|
||||
else:
|
||||
raise ValueError("Invalid image payload – neither URL nor base64 data present.")
|
||||
|
||||
pil_img = Image.open(BytesIO(img_bytes)).convert("RGBA")
|
||||
arr = np.asarray(pil_img).astype(np.float32) / 255.0
|
||||
image_tensors.append(torch.from_numpy(arr))
|
||||
|
||||
return torch.stack(image_tensors, dim=0)
|
||||
|
||||
|
||||
def validate_aspect_ratio(
|
||||
aspect_ratio: str,
|
||||
minimum_ratio: float,
|
||||
maximum_ratio: float,
|
||||
minimum_ratio_str: str,
|
||||
maximum_ratio_str: str,
|
||||
) -> float:
|
||||
"""Validates and casts an aspect ratio string to a float.
|
||||
|
||||
Args:
|
||||
aspect_ratio: The aspect ratio string to validate.
|
||||
minimum_ratio: The minimum aspect ratio.
|
||||
maximum_ratio: The maximum aspect ratio.
|
||||
minimum_ratio_str: The minimum aspect ratio string.
|
||||
maximum_ratio_str: The maximum aspect ratio string.
|
||||
|
||||
Returns:
|
||||
The validated and cast aspect ratio.
|
||||
|
||||
Raises:
|
||||
Exception: If the aspect ratio is not valid.
|
||||
"""
|
||||
# get ratio values
|
||||
numbers = aspect_ratio.split(":")
|
||||
if len(numbers) != 2:
|
||||
raise TypeError(
|
||||
f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}."
|
||||
)
|
||||
try:
|
||||
numerator = int(numbers[0])
|
||||
denominator = int(numbers[1])
|
||||
except ValueError as exc:
|
||||
raise TypeError(
|
||||
f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}."
|
||||
) from exc
|
||||
calculated_ratio = numerator / denominator
|
||||
# if not close to minimum and maximum, check bounds
|
||||
if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose(
|
||||
calculated_ratio, maximum_ratio
|
||||
):
|
||||
if calculated_ratio < minimum_ratio:
|
||||
raise TypeError(
|
||||
f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
|
||||
)
|
||||
elif calculated_ratio > maximum_ratio:
|
||||
raise TypeError(
|
||||
f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
|
||||
)
|
||||
return aspect_ratio
|
||||
|
||||
|
||||
def mimetype_to_extension(mime_type: str) -> str:
|
||||
"""Converts a MIME type to a file extension."""
|
||||
return mime_type.split("/")[-1].lower()
|
||||
|
||||
|
||||
async def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO:
|
||||
"""Downloads content from a URL using requests and returns it as BytesIO.
|
||||
|
||||
Args:
|
||||
url: The URL to download.
|
||||
timeout: Request timeout in seconds. Defaults to None (no timeout).
|
||||
|
||||
Returns:
|
||||
BytesIO object containing the downloaded content.
|
||||
"""
|
||||
timeout_cfg = aiohttp.ClientTimeout(total=timeout) if timeout else None
|
||||
async with aiohttp.ClientSession(timeout=timeout_cfg) as session:
|
||||
async with session.get(url) as resp:
|
||||
resp.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
|
||||
return BytesIO(await resp.read())
|
||||
|
||||
|
||||
def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor:
|
||||
"""Converts image data from BytesIO to a torch.Tensor.
|
||||
|
||||
Args:
|
||||
image_bytesio: BytesIO object containing the image data.
|
||||
mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA").
|
||||
|
||||
Returns:
|
||||
A torch.Tensor representing the image (1, H, W, C).
|
||||
|
||||
Raises:
|
||||
PIL.UnidentifiedImageError: If the image data cannot be identified.
|
||||
ValueError: If the specified mode is invalid.
|
||||
"""
|
||||
image = Image.open(image_bytesio)
|
||||
image = image.convert(mode)
|
||||
image_array = np.array(image).astype(np.float32) / 255.0
|
||||
return torch.from_numpy(image_array).unsqueeze(0)
|
||||
|
||||
|
||||
async def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor:
|
||||
"""Downloads an image from a URL and returns a [B, H, W, C] tensor."""
|
||||
image_bytesio = await download_url_to_bytesio(url, timeout)
|
||||
return bytesio_to_image_tensor(image_bytesio)
|
||||
|
||||
|
||||
def process_image_response(response_content: bytes | str) -> torch.Tensor:
|
||||
"""Uses content from a Response object and converts it to a torch.Tensor"""
|
||||
return bytesio_to_image_tensor(BytesIO(response_content))
|
||||
|
||||
|
||||
def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image:
|
||||
"""Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling."""
|
||||
if len(image.shape) > 3:
|
||||
image = image[0]
|
||||
# TODO: remove alpha if not allowed and present
|
||||
input_tensor = image.cpu()
|
||||
input_tensor = downscale_image_tensor(
|
||||
input_tensor.unsqueeze(0), total_pixels=total_pixels
|
||||
).squeeze()
|
||||
image_np = (input_tensor.numpy() * 255).astype(np.uint8)
|
||||
img = Image.fromarray(image_np)
|
||||
return img
|
||||
|
||||
|
||||
def _pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO:
|
||||
"""Converts a PIL Image to a BytesIO object."""
|
||||
if not mime_type:
|
||||
mime_type = "image/png"
|
||||
|
||||
img_byte_arr = io.BytesIO()
|
||||
# Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG')
|
||||
pil_format = mime_type.split("/")[-1].upper()
|
||||
if pil_format == "JPG":
|
||||
pil_format = "JPEG"
|
||||
img.save(img_byte_arr, format=pil_format)
|
||||
img_byte_arr.seek(0)
|
||||
return img_byte_arr
|
||||
|
||||
|
||||
def tensor_to_bytesio(
|
||||
image: torch.Tensor,
|
||||
name: Optional[str] = None,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> BytesIO:
|
||||
"""Converts a torch.Tensor image to a named BytesIO object.
|
||||
|
||||
Args:
|
||||
image: Input torch.Tensor image.
|
||||
name: Optional filename for the BytesIO object.
|
||||
total_pixels: Maximum total pixels for potential downscaling.
|
||||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
|
||||
|
||||
Returns:
|
||||
Named BytesIO object containing the image data.
|
||||
"""
|
||||
if not mime_type:
|
||||
mime_type = "image/png"
|
||||
|
||||
pil_image = _tensor_to_pil(image, total_pixels=total_pixels)
|
||||
img_binary = _pil_to_bytesio(pil_image, mime_type=mime_type)
|
||||
img_binary.name = (
|
||||
f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
|
||||
)
|
||||
return img_binary
|
||||
|
||||
|
||||
def tensor_to_base64_string(
|
||||
image_tensor: torch.Tensor,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> str:
|
||||
"""Convert [B, H, W, C] or [H, W, C] tensor to a base64 string.
|
||||
|
||||
Args:
|
||||
image_tensor: Input torch.Tensor image.
|
||||
total_pixels: Maximum total pixels for potential downscaling.
|
||||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
|
||||
|
||||
Returns:
|
||||
Base64 encoded string of the image.
|
||||
"""
|
||||
pil_image = _tensor_to_pil(image_tensor, total_pixels=total_pixels)
|
||||
img_byte_arr = _pil_to_bytesio(pil_image, mime_type=mime_type)
|
||||
img_bytes = img_byte_arr.getvalue()
|
||||
# Encode bytes to base64 string
|
||||
base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8")
|
||||
return base64_encoded_string
|
||||
|
||||
|
||||
def tensor_to_data_uri(
|
||||
image_tensor: torch.Tensor,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> str:
|
||||
"""Converts a tensor image to a Data URI string.
|
||||
|
||||
Args:
|
||||
image_tensor: Input torch.Tensor image.
|
||||
total_pixels: Maximum total pixels for potential downscaling.
|
||||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp').
|
||||
|
||||
Returns:
|
||||
Data URI string (e.g., 'data:image/png;base64,...').
|
||||
"""
|
||||
base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type)
|
||||
return f"data:{mime_type};base64,{base64_string}"
|
||||
|
||||
|
||||
def text_filepath_to_base64_string(filepath: str) -> str:
|
||||
"""Converts a text file to a base64 string."""
|
||||
with open(filepath, "rb") as f:
|
||||
file_content = f.read()
|
||||
return base64.b64encode(file_content).decode("utf-8")
|
||||
|
||||
|
||||
def text_filepath_to_data_uri(filepath: str) -> str:
|
||||
"""Converts a text file to a data URI."""
|
||||
base64_string = text_filepath_to_base64_string(filepath)
|
||||
mime_type, _ = mimetypes.guess_type(filepath)
|
||||
if mime_type is None:
|
||||
mime_type = "application/octet-stream"
|
||||
return f"data:{mime_type};base64,{base64_string}"
|
||||
|
||||
|
||||
async def upload_file_to_comfyapi(
|
||||
file_bytes_io: BytesIO,
|
||||
filename: str,
|
||||
upload_mime_type: Optional[str],
|
||||
auth_kwargs: Optional[dict[str, str]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Uploads a single file to ComfyUI API and returns its download URL.
|
||||
|
||||
Args:
|
||||
file_bytes_io: BytesIO object containing the file data.
|
||||
filename: The filename of the file.
|
||||
upload_mime_type: MIME type of the file.
|
||||
auth_kwargs: Optional authentication token(s).
|
||||
|
||||
Returns:
|
||||
The download URL for the uploaded file.
|
||||
"""
|
||||
if upload_mime_type is None:
|
||||
request_object = UploadRequest(file_name=filename)
|
||||
else:
|
||||
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/customers/storage",
|
||||
method=HttpMethod.POST,
|
||||
request_model=UploadRequest,
|
||||
response_model=UploadResponse,
|
||||
),
|
||||
request=request_object,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
|
||||
response: UploadResponse = await operation.execute()
|
||||
await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type)
|
||||
return response.download_url
|
||||
|
||||
|
||||
def video_to_base64_string(
|
||||
video: VideoInput,
|
||||
container_format: VideoContainer = None,
|
||||
codec: VideoCodec = None
|
||||
) -> str:
|
||||
"""
|
||||
Converts a video input to a base64 string.
|
||||
|
||||
Args:
|
||||
video: The video input to convert
|
||||
container_format: Optional container format to use (defaults to video.container if available)
|
||||
codec: Optional codec to use (defaults to video.codec if available)
|
||||
"""
|
||||
video_bytes_io = io.BytesIO()
|
||||
|
||||
# Use provided format/codec if specified, otherwise use video's own if available
|
||||
format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4)
|
||||
codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264)
|
||||
|
||||
video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use)
|
||||
video_bytes_io.seek(0)
|
||||
return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8")
|
||||
|
||||
|
||||
async def upload_video_to_comfyapi(
|
||||
video: VideoInput,
|
||||
auth_kwargs: Optional[dict[str, str]] = None,
|
||||
container: VideoContainer = VideoContainer.MP4,
|
||||
codec: VideoCodec = VideoCodec.H264,
|
||||
max_duration: Optional[int] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Uploads a single video to ComfyUI API and returns its download URL.
|
||||
Uses the specified container and codec for saving the video before upload.
|
||||
|
||||
Args:
|
||||
video: VideoInput object (Comfy VIDEO type).
|
||||
auth_kwargs: Optional authentication token(s).
|
||||
container: The video container format to use (default: MP4).
|
||||
codec: The video codec to use (default: H264).
|
||||
max_duration: Optional maximum duration of the video in seconds. If the video is longer than this, an error will be raised.
|
||||
|
||||
Returns:
|
||||
The download URL for the uploaded video file.
|
||||
"""
|
||||
if max_duration is not None:
|
||||
try:
|
||||
actual_duration = video.duration_seconds
|
||||
if actual_duration is not None and actual_duration > max_duration:
|
||||
raise ValueError(
|
||||
f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)."
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error getting video duration: {e}")
|
||||
raise ValueError(f"Could not verify video duration from source: {e}") from e
|
||||
|
||||
upload_mime_type = f"video/{container.value.lower()}"
|
||||
filename = f"uploaded_video.{container.value.lower()}"
|
||||
|
||||
# Convert VideoInput to BytesIO using specified container/codec
|
||||
video_bytes_io = io.BytesIO()
|
||||
video.save_to(video_bytes_io, format=container, codec=codec)
|
||||
video_bytes_io.seek(0)
|
||||
|
||||
return await upload_file_to_comfyapi(video_bytes_io, filename, upload_mime_type, auth_kwargs)
|
||||
|
||||
|
||||
def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray:
|
||||
"""
|
||||
Prepares audio waveform for av library by converting to a contiguous numpy array.
|
||||
|
||||
Args:
|
||||
waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type.
|
||||
|
||||
Returns:
|
||||
Contiguous numpy array of the audio waveform. If the audio was batched,
|
||||
the first item is taken.
|
||||
"""
|
||||
if waveform.ndim != 3 or waveform.shape[0] != 1:
|
||||
raise ValueError("Expected waveform tensor shape (1, channels, samples)")
|
||||
|
||||
# If batch is > 1, take first item
|
||||
if waveform.shape[0] > 1:
|
||||
waveform = waveform[0]
|
||||
|
||||
# Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array
|
||||
audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy()
|
||||
if audio_data_np.dtype != np.float32:
|
||||
audio_data_np = audio_data_np.astype(np.float32)
|
||||
|
||||
return audio_data_np
|
||||
|
||||
|
||||
def audio_ndarray_to_bytesio(
|
||||
audio_data_np: np.ndarray,
|
||||
sample_rate: int,
|
||||
container_format: str = "mp4",
|
||||
codec_name: str = "aac",
|
||||
) -> BytesIO:
|
||||
"""
|
||||
Encodes a numpy array of audio data into a BytesIO object.
|
||||
"""
|
||||
audio_bytes_io = io.BytesIO()
|
||||
with av.open(audio_bytes_io, mode="w", format=container_format) as output_container:
|
||||
audio_stream = output_container.add_stream(codec_name, rate=sample_rate)
|
||||
frame = av.AudioFrame.from_ndarray(
|
||||
audio_data_np,
|
||||
format="fltp",
|
||||
layout="stereo" if audio_data_np.shape[0] > 1 else "mono",
|
||||
)
|
||||
frame.sample_rate = sample_rate
|
||||
frame.pts = 0
|
||||
|
||||
for packet in audio_stream.encode(frame):
|
||||
output_container.mux(packet)
|
||||
|
||||
# Flush stream
|
||||
for packet in audio_stream.encode(None):
|
||||
output_container.mux(packet)
|
||||
|
||||
audio_bytes_io.seek(0)
|
||||
return audio_bytes_io
|
||||
|
||||
|
||||
async def upload_audio_to_comfyapi(
|
||||
audio: AudioInput,
|
||||
auth_kwargs: Optional[dict[str, str]] = None,
|
||||
container_format: str = "mp4",
|
||||
codec_name: str = "aac",
|
||||
mime_type: str = "audio/mp4",
|
||||
filename: str = "uploaded_audio.mp4",
|
||||
) -> str:
|
||||
"""
|
||||
Uploads a single audio input to ComfyUI API and returns its download URL.
|
||||
Encodes the raw waveform into the specified format before uploading.
|
||||
|
||||
Args:
|
||||
audio: a Comfy `AUDIO` type (contains waveform tensor and sample_rate)
|
||||
auth_kwargs: Optional authentication token(s).
|
||||
|
||||
Returns:
|
||||
The download URL for the uploaded audio file.
|
||||
"""
|
||||
sample_rate: int = audio["sample_rate"]
|
||||
waveform: torch.Tensor = audio["waveform"]
|
||||
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
|
||||
audio_bytes_io = audio_ndarray_to_bytesio(
|
||||
audio_data_np, sample_rate, container_format, codec_name
|
||||
)
|
||||
|
||||
return await upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs)
|
||||
|
||||
|
||||
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
|
||||
"""Convert audio to float 32 bits PCM format. Copy-paste from nodes_audio.py file."""
|
||||
if wav.dtype.is_floating_point:
|
||||
return wav
|
||||
elif wav.dtype == torch.int16:
|
||||
return wav.float() / (2 ** 15)
|
||||
elif wav.dtype == torch.int32:
|
||||
return wav.float() / (2 ** 31)
|
||||
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
|
||||
|
||||
|
||||
def audio_bytes_to_audio_input(audio_bytes: bytes,) -> dict:
|
||||
"""
|
||||
Decode any common audio container from bytes using PyAV and return
|
||||
a Comfy AUDIO dict: {"waveform": [1, C, T] float32, "sample_rate": int}.
|
||||
"""
|
||||
with av.open(io.BytesIO(audio_bytes)) as af:
|
||||
if not af.streams.audio:
|
||||
raise ValueError("No audio stream found in response.")
|
||||
stream = af.streams.audio[0]
|
||||
|
||||
in_sr = int(stream.codec_context.sample_rate)
|
||||
out_sr = in_sr
|
||||
|
||||
frames: list[torch.Tensor] = []
|
||||
n_channels = stream.channels or 1
|
||||
|
||||
for frame in af.decode(streams=stream.index):
|
||||
arr = frame.to_ndarray() # shape can be [C, T] or [T, C] or [T]
|
||||
buf = torch.from_numpy(arr)
|
||||
if buf.ndim == 1:
|
||||
buf = buf.unsqueeze(0) # [T] -> [1, T]
|
||||
elif buf.shape[0] != n_channels and buf.shape[-1] == n_channels:
|
||||
buf = buf.transpose(0, 1).contiguous() # [T, C] -> [C, T]
|
||||
elif buf.shape[0] != n_channels:
|
||||
buf = buf.reshape(-1, n_channels).t().contiguous() # fallback to [C, T]
|
||||
frames.append(buf)
|
||||
|
||||
if not frames:
|
||||
raise ValueError("Decoded zero audio frames.")
|
||||
|
||||
wav = torch.cat(frames, dim=1) # [C, T]
|
||||
wav = f32_pcm(wav)
|
||||
return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr}
|
||||
|
||||
|
||||
def audio_input_to_mp3(audio: AudioInput) -> io.BytesIO:
|
||||
waveform = audio["waveform"].cpu()
|
||||
|
||||
output_buffer = io.BytesIO()
|
||||
output_container = av.open(output_buffer, mode='w', format="mp3")
|
||||
|
||||
out_stream = output_container.add_stream("libmp3lame", rate=audio["sample_rate"])
|
||||
out_stream.bit_rate = 320000
|
||||
|
||||
frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo')
|
||||
frame.sample_rate = audio["sample_rate"]
|
||||
frame.pts = 0
|
||||
output_container.mux(out_stream.encode(frame))
|
||||
output_container.mux(out_stream.encode(None))
|
||||
output_container.close()
|
||||
output_buffer.seek(0)
|
||||
return output_buffer
|
||||
|
||||
|
||||
def audio_to_base64_string(
|
||||
audio: AudioInput, container_format: str = "mp4", codec_name: str = "aac"
|
||||
) -> str:
|
||||
"""Converts an audio input to a base64 string."""
|
||||
sample_rate: int = audio["sample_rate"]
|
||||
waveform: torch.Tensor = audio["waveform"]
|
||||
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
|
||||
audio_bytes_io = audio_ndarray_to_bytesio(
|
||||
audio_data_np, sample_rate, container_format, codec_name
|
||||
)
|
||||
audio_bytes = audio_bytes_io.getvalue()
|
||||
return base64.b64encode(audio_bytes).decode("utf-8")
|
||||
|
||||
|
||||
async def upload_images_to_comfyapi(
|
||||
image: torch.Tensor,
|
||||
max_images=8,
|
||||
auth_kwargs: Optional[dict[str, str]] = None,
|
||||
mime_type: Optional[str] = None,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Uploads images to ComfyUI API and returns download URLs.
|
||||
To upload multiple images, stack them in the batch dimension first.
|
||||
|
||||
Args:
|
||||
image: Input torch.Tensor image.
|
||||
max_images: Maximum number of images to upload.
|
||||
auth_kwargs: Optional authentication token(s).
|
||||
mime_type: Optional MIME type for the image.
|
||||
"""
|
||||
# if batch, try to upload each file if max_images is greater than 0
|
||||
download_urls: list[str] = []
|
||||
is_batch = len(image.shape) > 3
|
||||
batch_len = image.shape[0] if is_batch else 1
|
||||
|
||||
for idx in range(min(batch_len, max_images)):
|
||||
tensor = image[idx] if is_batch else image
|
||||
img_io = tensor_to_bytesio(tensor, mime_type=mime_type)
|
||||
url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs)
|
||||
download_urls.append(url)
|
||||
return download_urls
|
||||
|
||||
|
||||
def resize_mask_to_image(
|
||||
mask: torch.Tensor,
|
||||
image: torch.Tensor,
|
||||
upscale_method="nearest-exact",
|
||||
crop="disabled",
|
||||
allow_gradient=True,
|
||||
add_channel_dim=False,
|
||||
):
|
||||
"""
|
||||
Resize mask to be the same dimensions as an image, while maintaining proper format for API calls.
|
||||
"""
|
||||
_, H, W, _ = image.shape
|
||||
mask = mask.unsqueeze(-1)
|
||||
mask = mask.movedim(-1, 1)
|
||||
mask = common_upscale(
|
||||
mask, width=W, height=H, upscale_method=upscale_method, crop=crop
|
||||
)
|
||||
mask = mask.movedim(1, -1)
|
||||
if not add_channel_dim:
|
||||
mask = mask.squeeze(-1)
|
||||
if not allow_gradient:
|
||||
mask = (mask > 0.5).float()
|
||||
return mask
|
||||
|
||||
|
||||
def validate_string(
|
||||
string: str,
|
||||
strip_whitespace=True,
|
||||
field_name="prompt",
|
||||
min_length=None,
|
||||
max_length=None,
|
||||
):
|
||||
if string is None:
|
||||
raise Exception(f"Field '{field_name}' cannot be empty.")
|
||||
if strip_whitespace:
|
||||
string = string.strip()
|
||||
if min_length and len(string) < min_length:
|
||||
raise Exception(
|
||||
f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long."
|
||||
)
|
||||
if max_length and len(string) > max_length:
|
||||
raise Exception(
|
||||
f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long."
|
||||
)
|
||||
|
||||
|
||||
def image_tensor_pair_to_batch(
|
||||
image1: torch.Tensor, image2: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Converts a pair of image tensors to a batch tensor.
|
||||
If the images are not the same size, the smaller image is resized to
|
||||
match the larger image.
|
||||
"""
|
||||
if image1.shape[1:] != image2.shape[1:]:
|
||||
image2 = common_upscale(
|
||||
image2.movedim(-1, 1),
|
||||
image1.shape[2],
|
||||
image1.shape[1],
|
||||
"bilinear",
|
||||
"center",
|
||||
).movedim(1, -1)
|
||||
return torch.cat((image1, image2), dim=0)
|
||||
@ -1,17 +0,0 @@
|
||||
# generated by datamodel-codegen:
|
||||
# filename: filtered-openapi.yaml
|
||||
# timestamp: 2025-04-29T23:44:54+00:00
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from . import PixverseDto
|
||||
|
||||
|
||||
class ResponseData(BaseModel):
|
||||
ErrCode: Optional[int] = None
|
||||
ErrMsg: Optional[str] = None
|
||||
Resp: Optional[PixverseDto.V2OpenAPII2VResp] = None
|
||||
@ -1,57 +0,0 @@
|
||||
# generated by datamodel-codegen:
|
||||
# filename: filtered-openapi.yaml
|
||||
# timestamp: 2025-04-29T23:44:54+00:00
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class V2OpenAPII2VResp(BaseModel):
|
||||
video_id: Optional[int] = Field(None, description='Video_id')
|
||||
|
||||
|
||||
class V2OpenAPIT2VReq(BaseModel):
|
||||
aspect_ratio: str = Field(
|
||||
..., description='Aspect ratio (16:9, 4:3, 1:1, 3:4, 9:16)', examples=['16:9']
|
||||
)
|
||||
duration: int = Field(
|
||||
...,
|
||||
description='Video duration (5, 8 seconds, --model=v3.5 only allows 5,8; --quality=1080p does not support 8s)',
|
||||
examples=[5],
|
||||
)
|
||||
model: str = Field(
|
||||
..., description='Model version (only supports v3.5)', examples=['v3.5']
|
||||
)
|
||||
motion_mode: Optional[str] = Field(
|
||||
'normal',
|
||||
description='Motion mode (normal, fast, --fast only available when duration=5; --quality=1080p does not support fast)',
|
||||
examples=['normal'],
|
||||
)
|
||||
negative_prompt: Optional[str] = Field(
|
||||
None, description='Negative prompt\n', max_length=2048
|
||||
)
|
||||
prompt: str = Field(..., description='Prompt', max_length=2048)
|
||||
quality: str = Field(
|
||||
...,
|
||||
description='Video quality ("360p"(Turbo model), "540p", "720p", "1080p")',
|
||||
examples=['540p'],
|
||||
)
|
||||
seed: Optional[int] = Field(None, description='Random seed, range: 0 - 2147483647')
|
||||
style: Optional[str] = Field(
|
||||
None,
|
||||
description='Style (effective when model=v3.5, "anime", "3d_animation", "clay", "comic", "cyberpunk") Do not include style parameter unless needed',
|
||||
examples=['anime'],
|
||||
)
|
||||
template_id: Optional[int] = Field(
|
||||
None,
|
||||
description='Template ID (template_id must be activated before use)',
|
||||
examples=[302325299692608],
|
||||
)
|
||||
water_mark: Optional[bool] = Field(
|
||||
False,
|
||||
description='Watermark (true: add watermark, false: no watermark)',
|
||||
examples=[False],
|
||||
)
|
||||
3
comfy_api_nodes/apis/__init__.py
generated
3
comfy_api_nodes/apis/__init__.py
generated
@ -2,6 +2,7 @@
|
||||
# filename: filtered-openapi.yaml
|
||||
# timestamp: 2025-07-30T08:54:00+00:00
|
||||
|
||||
# pylint: disable
|
||||
from __future__ import annotations
|
||||
|
||||
from datetime import date, datetime
|
||||
@ -1320,6 +1321,7 @@ class KlingTextToVideoModelName(str, Enum):
|
||||
kling_v1 = 'kling-v1'
|
||||
kling_v1_6 = 'kling-v1-6'
|
||||
kling_v2_1_master = 'kling-v2-1-master'
|
||||
kling_v2_5_turbo = 'kling-v2-5-turbo'
|
||||
|
||||
|
||||
class KlingVideoGenAspectRatio(str, Enum):
|
||||
@ -1354,6 +1356,7 @@ class KlingVideoGenModelName(str, Enum):
|
||||
kling_v2_master = 'kling-v2-master'
|
||||
kling_v2_1 = 'kling-v2-1'
|
||||
kling_v2_1_master = 'kling-v2-1-master'
|
||||
kling_v2_5_turbo = 'kling-v2-5-turbo'
|
||||
|
||||
|
||||
class KlingVideoResult(BaseModel):
|
||||
|
||||
@ -50,44 +50,6 @@ class BFLFluxFillImageRequest(BaseModel):
|
||||
mask: str = Field(None, description='A Base64-encoded string representing the mask of the areas you with to modify.')
|
||||
|
||||
|
||||
class BFLFluxCannyImageRequest(BaseModel):
|
||||
prompt: str = Field(..., description='Text prompt for image generation')
|
||||
prompt_upsampling: Optional[bool] = Field(
|
||||
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
|
||||
)
|
||||
canny_low_threshold: Optional[int] = Field(None, description='Low threshold for Canny edge detection')
|
||||
canny_high_threshold: Optional[int] = Field(None, description='High threshold for Canny edge detection')
|
||||
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
|
||||
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
|
||||
guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process')
|
||||
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
|
||||
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
|
||||
)
|
||||
output_format: Optional[BFLOutputFormat] = Field(
|
||||
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
|
||||
)
|
||||
control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided')
|
||||
preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step')
|
||||
|
||||
|
||||
class BFLFluxDepthImageRequest(BaseModel):
|
||||
prompt: str = Field(..., description='Text prompt for image generation')
|
||||
prompt_upsampling: Optional[bool] = Field(
|
||||
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
|
||||
)
|
||||
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
|
||||
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
|
||||
guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process')
|
||||
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
|
||||
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
|
||||
)
|
||||
output_format: Optional[BFLOutputFormat] = Field(
|
||||
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
|
||||
)
|
||||
control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided')
|
||||
preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step')
|
||||
|
||||
|
||||
class BFLFluxProGenerateRequest(BaseModel):
|
||||
prompt: str = Field(..., description='The text prompt for image generation.')
|
||||
prompt_upsampling: Optional[bool] = Field(
|
||||
@ -160,15 +122,8 @@ class BFLStatus(str, Enum):
|
||||
error = "Error"
|
||||
|
||||
|
||||
class BFLFluxProStatusResponse(BaseModel):
|
||||
class BFLFluxStatusResponse(BaseModel):
|
||||
id: str = Field(..., description="The unique identifier for the generation task.")
|
||||
status: BFLStatus = Field(..., description="The status of the task.")
|
||||
result: Optional[Dict[str, Any]] = Field(
|
||||
None, description="The result of the task (null if not completed)."
|
||||
)
|
||||
progress: confloat(ge=0.0, le=1.0) = Field(
|
||||
..., description="The progress of the task (0.0 to 1.0)."
|
||||
)
|
||||
details: Optional[Dict[str, Any]] = Field(
|
||||
None, description="Additional details about the task (null if not available)."
|
||||
)
|
||||
result: Optional[Dict[str, Any]] = Field(None, description="The result of the task (null if not completed).")
|
||||
progress: Optional[float] = Field(None, description="The progress of the task (0.0 to 1.0).", ge=0.0, le=1.0)
|
||||
|
||||
@ -1,957 +0,0 @@
|
||||
"""
|
||||
API Client Framework for api.comfy.org.
|
||||
|
||||
This module provides a flexible framework for making API requests from ComfyUI nodes.
|
||||
It supports both synchronous and asynchronous API operations with proper type validation.
|
||||
|
||||
Key Components:
|
||||
--------------
|
||||
1. ApiClient - Handles HTTP requests with authentication and error handling
|
||||
2. ApiEndpoint - Defines a single HTTP endpoint with its request/response models
|
||||
3. ApiOperation - Executes a single synchronous API operation
|
||||
|
||||
Usage Examples:
|
||||
--------------
|
||||
|
||||
# Example 1: Synchronous API Operation
|
||||
# ------------------------------------
|
||||
# For a simple API call that returns the result immediately:
|
||||
|
||||
# 1. Create the API client
|
||||
api_client = ApiClient(
|
||||
base_url="https://api.example.com",
|
||||
auth_token="your_auth_token_here",
|
||||
comfy_api_key="your_comfy_api_key_here",
|
||||
timeout=30.0,
|
||||
verify_ssl=True
|
||||
)
|
||||
|
||||
# 2. Define the endpoint
|
||||
user_info_endpoint = ApiEndpoint(
|
||||
path="/v1/users/me",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest, # No request body needed
|
||||
response_model=UserProfile, # Pydantic model for the response
|
||||
query_params=None
|
||||
)
|
||||
|
||||
# 3. Create the request object
|
||||
request = EmptyRequest()
|
||||
|
||||
# 4. Create and execute the operation
|
||||
operation = ApiOperation(
|
||||
endpoint=user_info_endpoint,
|
||||
request=request
|
||||
)
|
||||
user_profile = await operation.execute(client=api_client) # Returns immediately with the result
|
||||
|
||||
|
||||
# Example 2: Asynchronous API Operation with Polling
|
||||
# -------------------------------------------------
|
||||
# For an API that starts a task and requires polling for completion:
|
||||
|
||||
# 1. Define the endpoints (initial request and polling)
|
||||
generate_image_endpoint = ApiEndpoint(
|
||||
path="/v1/images/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=ImageGenerationRequest,
|
||||
response_model=TaskCreatedResponse,
|
||||
query_params=None
|
||||
)
|
||||
|
||||
check_task_endpoint = ApiEndpoint(
|
||||
path="/v1/tasks/{task_id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=ImageGenerationResult,
|
||||
query_params=None
|
||||
)
|
||||
|
||||
# 2. Create the request object
|
||||
request = ImageGenerationRequest(
|
||||
prompt="a beautiful sunset over mountains",
|
||||
width=1024,
|
||||
height=1024,
|
||||
num_images=1
|
||||
)
|
||||
|
||||
# 3. Create and execute the polling operation
|
||||
operation = PollingOperation(
|
||||
initial_endpoint=generate_image_endpoint,
|
||||
initial_request=request,
|
||||
poll_endpoint=check_task_endpoint,
|
||||
task_id_field="task_id",
|
||||
status_field="status",
|
||||
completed_statuses=["completed"],
|
||||
failed_statuses=["failed", "error"]
|
||||
)
|
||||
|
||||
# This will make the initial request and then poll until completion
|
||||
result = await operation.execute(client=api_client) # Returns the final ImageGenerationResult when done
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
import aiohttp
|
||||
import asyncio
|
||||
import logging
|
||||
import io
|
||||
import socket
|
||||
from aiohttp.client_exceptions import ClientError, ClientResponseError
|
||||
from typing import Dict, Type, Optional, Any, TypeVar, Generic, Callable, Tuple
|
||||
from enum import Enum
|
||||
import json
|
||||
from urllib.parse import urljoin, urlparse
|
||||
from pydantic import BaseModel, Field
|
||||
import uuid # For generating unique operation IDs
|
||||
|
||||
from server import PromptServer
|
||||
from comfy.cli_args import args
|
||||
from comfy import utils
|
||||
from . import request_logger
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
R = TypeVar("R", bound=BaseModel)
|
||||
P = TypeVar("P", bound=BaseModel) # For poll response
|
||||
|
||||
PROGRESS_BAR_MAX = 100
|
||||
|
||||
|
||||
class NetworkError(Exception):
|
||||
"""Base exception for network-related errors with diagnostic information."""
|
||||
pass
|
||||
|
||||
|
||||
class LocalNetworkError(NetworkError):
|
||||
"""Exception raised when local network connectivity issues are detected."""
|
||||
pass
|
||||
|
||||
|
||||
class ApiServerError(NetworkError):
|
||||
"""Exception raised when the API server is unreachable but internet is working."""
|
||||
pass
|
||||
|
||||
|
||||
class EmptyRequest(BaseModel):
|
||||
"""Base class for empty request bodies.
|
||||
For GET requests, fields will be sent as query parameters."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class UploadRequest(BaseModel):
|
||||
file_name: str = Field(..., description="Filename to upload")
|
||||
content_type: Optional[str] = Field(
|
||||
None,
|
||||
description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.",
|
||||
)
|
||||
|
||||
|
||||
class UploadResponse(BaseModel):
|
||||
download_url: str = Field(..., description="URL to GET uploaded file")
|
||||
upload_url: str = Field(..., description="URL to PUT file to upload")
|
||||
|
||||
|
||||
class HttpMethod(str, Enum):
|
||||
GET = "GET"
|
||||
POST = "POST"
|
||||
PUT = "PUT"
|
||||
DELETE = "DELETE"
|
||||
PATCH = "PATCH"
|
||||
|
||||
|
||||
class ApiClient:
|
||||
"""
|
||||
Client for making HTTP requests to an API with authentication, error handling, and retry logic.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
base_url: str,
|
||||
auth_token: Optional[str] = None,
|
||||
comfy_api_key: Optional[str] = None,
|
||||
timeout: float = 3600.0,
|
||||
verify_ssl: bool = True,
|
||||
max_retries: int = 3,
|
||||
retry_delay: float = 1.0,
|
||||
retry_backoff_factor: float = 2.0,
|
||||
retry_status_codes: Optional[Tuple[int, ...]] = None,
|
||||
session: Optional[aiohttp.ClientSession] = None,
|
||||
):
|
||||
self.base_url = base_url
|
||||
self.auth_token = auth_token
|
||||
self.comfy_api_key = comfy_api_key
|
||||
self.timeout = timeout
|
||||
self.verify_ssl = verify_ssl
|
||||
self.max_retries = max_retries
|
||||
self.retry_delay = retry_delay
|
||||
self.retry_backoff_factor = retry_backoff_factor
|
||||
# Default retry status codes: 408 (Request Timeout), 429 (Too Many Requests),
|
||||
# 500, 502, 503, 504 (Server Errors)
|
||||
self.retry_status_codes = retry_status_codes or (408, 429, 500, 502, 503, 504)
|
||||
self._session: Optional[aiohttp.ClientSession] = session
|
||||
self._owns_session = session is None # Track if we have to close it
|
||||
|
||||
@staticmethod
|
||||
def _generate_operation_id(path: str) -> str:
|
||||
"""Generates a unique operation ID for logging."""
|
||||
return f"{path.strip('/').replace('/', '_')}_{uuid.uuid4().hex[:8]}"
|
||||
|
||||
@staticmethod
|
||||
def _create_json_payload_args(
|
||||
data: Optional[Dict[str, Any]] = None,
|
||||
headers: Optional[Dict[str, str]] = None,
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"json": data,
|
||||
"headers": headers,
|
||||
}
|
||||
|
||||
def _create_form_data_args(
|
||||
self,
|
||||
data: Dict[str, Any] | None,
|
||||
files: Dict[str, Any] | None,
|
||||
headers: Optional[Dict[str, str]] = None,
|
||||
multipart_parser: Callable | None = None,
|
||||
) -> Dict[str, Any]:
|
||||
if headers and "Content-Type" in headers:
|
||||
del headers["Content-Type"]
|
||||
|
||||
if multipart_parser and data:
|
||||
data = multipart_parser(data)
|
||||
|
||||
form = aiohttp.FormData(default_to_multipart=True)
|
||||
if data: # regular text fields
|
||||
for k, v in data.items():
|
||||
if v is None:
|
||||
continue # aiohttp fails to serialize "None" values
|
||||
# aiohttp expects strings or bytes; convert enums etc.
|
||||
form.add_field(k, str(v) if not isinstance(v, (bytes, bytearray)) else v)
|
||||
|
||||
if files:
|
||||
file_iter = files if isinstance(files, list) else files.items()
|
||||
for field_name, file_obj in file_iter:
|
||||
if file_obj is None:
|
||||
continue # aiohttp fails to serialize "None" values
|
||||
# file_obj can be (filename, bytes/io.BytesIO, content_type) tuple
|
||||
if isinstance(file_obj, tuple):
|
||||
filename, file_value, content_type = self._unpack_tuple(file_obj)
|
||||
else:
|
||||
file_value = file_obj
|
||||
filename = getattr(file_obj, "name", field_name)
|
||||
content_type = "application/octet-stream"
|
||||
|
||||
form.add_field(
|
||||
name=field_name,
|
||||
value=file_value,
|
||||
filename=filename,
|
||||
content_type=content_type,
|
||||
)
|
||||
return {"data": form, "headers": headers or {}}
|
||||
|
||||
@staticmethod
|
||||
def _create_urlencoded_form_data_args(
|
||||
data: Dict[str, Any],
|
||||
headers: Optional[Dict[str, str]] = None,
|
||||
) -> Dict[str, Any]:
|
||||
headers = headers or {}
|
||||
headers["Content-Type"] = "application/x-www-form-urlencoded"
|
||||
return {
|
||||
"data": data,
|
||||
"headers": headers,
|
||||
}
|
||||
|
||||
def get_headers(self) -> Dict[str, str]:
|
||||
"""Get headers for API requests, including authentication if available"""
|
||||
headers = {"Content-Type": "application/json", "Accept": "application/json"}
|
||||
|
||||
if self.auth_token:
|
||||
headers["Authorization"] = f"Bearer {self.auth_token}"
|
||||
elif self.comfy_api_key:
|
||||
headers["X-API-KEY"] = self.comfy_api_key
|
||||
|
||||
return headers
|
||||
|
||||
async def _check_connectivity(self, target_url: str) -> Dict[str, bool]:
|
||||
"""
|
||||
Check connectivity to determine if network issues are local or server-related.
|
||||
|
||||
Args:
|
||||
target_url: URL to check connectivity to
|
||||
|
||||
Returns:
|
||||
Dictionary with connectivity status details
|
||||
"""
|
||||
results = {
|
||||
"internet_accessible": False,
|
||||
"api_accessible": False,
|
||||
"is_local_issue": False,
|
||||
"is_api_issue": False,
|
||||
}
|
||||
timeout = aiohttp.ClientTimeout(total=5.0)
|
||||
async with aiohttp.ClientSession(timeout=timeout) as session:
|
||||
try:
|
||||
async with session.get("https://www.google.com", ssl=self.verify_ssl) as resp:
|
||||
results["internet_accessible"] = resp.status < 500
|
||||
except (ClientError, asyncio.TimeoutError, socket.gaierror):
|
||||
results["is_local_issue"] = True
|
||||
return results # cannot reach the internet – early exit
|
||||
|
||||
# Now check API health endpoint
|
||||
parsed = urlparse(target_url)
|
||||
health_url = f"{parsed.scheme}://{parsed.netloc}/health"
|
||||
try:
|
||||
async with session.get(health_url, ssl=self.verify_ssl) as resp:
|
||||
results["api_accessible"] = resp.status < 500
|
||||
except ClientError:
|
||||
pass # leave as False
|
||||
|
||||
results["is_api_issue"] = results["internet_accessible"] and not results["api_accessible"]
|
||||
return results
|
||||
|
||||
async def request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
data: Optional[Dict[str, Any]] = None,
|
||||
files: Optional[Dict[str, Any] | list[tuple[str, Any]]] = None,
|
||||
headers: Optional[Dict[str, str]] = None,
|
||||
content_type: str = "application/json",
|
||||
multipart_parser: Callable | None = None,
|
||||
retry_count: int = 0, # Used internally for tracking retries
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Make an HTTP request to the API with automatic retries for transient errors.
|
||||
|
||||
Args:
|
||||
method: HTTP method (GET, POST, etc.)
|
||||
path: API endpoint path (will be joined with base_url)
|
||||
params: Query parameters
|
||||
data: body data
|
||||
files: Files to upload
|
||||
headers: Additional headers
|
||||
content_type: Content type of the request. Defaults to application/json.
|
||||
retry_count: Internal parameter for tracking retries, do not set manually
|
||||
|
||||
Returns:
|
||||
Parsed JSON response
|
||||
|
||||
Raises:
|
||||
LocalNetworkError: If local network connectivity issues are detected
|
||||
ApiServerError: If the API server is unreachable but internet is working
|
||||
Exception: For other request failures
|
||||
"""
|
||||
|
||||
# Build full URL and merge headers
|
||||
relative_path = path.lstrip("/")
|
||||
url = urljoin(self.base_url, relative_path)
|
||||
self._check_auth(self.auth_token, self.comfy_api_key)
|
||||
|
||||
request_headers = self.get_headers()
|
||||
if headers:
|
||||
request_headers.update(headers)
|
||||
if files:
|
||||
request_headers.pop("Content-Type", None)
|
||||
if params:
|
||||
params = {k: v for k, v in params.items() if v is not None} # aiohttp fails to serialize None values
|
||||
|
||||
logging.debug(f"[DEBUG] Request Headers: {request_headers}")
|
||||
logging.debug(f"[DEBUG] Files: {files}")
|
||||
logging.debug(f"[DEBUG] Params: {params}")
|
||||
logging.debug(f"[DEBUG] Data: {data}")
|
||||
|
||||
if content_type == "application/x-www-form-urlencoded":
|
||||
payload_args = self._create_urlencoded_form_data_args(data or {}, request_headers)
|
||||
elif content_type == "multipart/form-data":
|
||||
payload_args = self._create_form_data_args(data, files, request_headers, multipart_parser)
|
||||
else:
|
||||
payload_args = self._create_json_payload_args(data, request_headers)
|
||||
|
||||
operation_id = self._generate_operation_id(path)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=request_headers,
|
||||
request_params=params,
|
||||
request_data=data if content_type == "application/json" else "[form-data or other]",
|
||||
)
|
||||
|
||||
session = await self._get_session()
|
||||
try:
|
||||
async with session.request(
|
||||
method,
|
||||
url,
|
||||
params=params,
|
||||
ssl=self.verify_ssl,
|
||||
**payload_args,
|
||||
) as resp:
|
||||
if resp.status >= 400:
|
||||
try:
|
||||
error_data = await resp.json()
|
||||
except (aiohttp.ContentTypeError, json.JSONDecodeError):
|
||||
error_data = await resp.text()
|
||||
|
||||
return await self._handle_http_error(
|
||||
ClientResponseError(resp.request_info, resp.history, status=resp.status, message=error_data),
|
||||
operation_id,
|
||||
method,
|
||||
url,
|
||||
params,
|
||||
data,
|
||||
files,
|
||||
headers,
|
||||
content_type,
|
||||
multipart_parser,
|
||||
retry_count=retry_count,
|
||||
response_content=error_data,
|
||||
)
|
||||
|
||||
# Success – parse JSON (safely) and log
|
||||
try:
|
||||
payload = await resp.json()
|
||||
response_content_to_log = payload
|
||||
except (aiohttp.ContentTypeError, json.JSONDecodeError):
|
||||
payload = {}
|
||||
response_content_to_log = await resp.text()
|
||||
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=response_content_to_log,
|
||||
)
|
||||
return payload
|
||||
|
||||
except (ClientError, asyncio.TimeoutError, socket.gaierror) as e:
|
||||
# Treat as *connection* problem – optionally retry, else escalate
|
||||
if retry_count < self.max_retries:
|
||||
delay = self.retry_delay * (self.retry_backoff_factor ** retry_count)
|
||||
logging.warning("Connection error. Retrying in %.2fs (%s/%s): %s", delay, retry_count + 1,
|
||||
self.max_retries, str(e))
|
||||
await asyncio.sleep(delay)
|
||||
return await self.request(
|
||||
method,
|
||||
path,
|
||||
params=params,
|
||||
data=data,
|
||||
files=files,
|
||||
headers=headers,
|
||||
content_type=content_type,
|
||||
multipart_parser=multipart_parser,
|
||||
retry_count=retry_count + 1,
|
||||
)
|
||||
# One final connectivity check for diagnostics
|
||||
connectivity = await self._check_connectivity(self.base_url)
|
||||
if connectivity["is_local_issue"]:
|
||||
raise LocalNetworkError(
|
||||
"Unable to connect to the API server due to local network issues. "
|
||||
"Please check your internet connection and try again."
|
||||
) from e
|
||||
raise ApiServerError(
|
||||
f"The API server at {self.base_url} is currently unreachable. "
|
||||
f"The service may be experiencing issues. Please try again later."
|
||||
) from e
|
||||
|
||||
@staticmethod
|
||||
def _check_auth(auth_token, comfy_api_key):
|
||||
"""Verify that an auth token is present or comfy_api_key is present"""
|
||||
if auth_token is None and comfy_api_key is None:
|
||||
raise Exception("Unauthorized: Please login first to use this node.")
|
||||
return auth_token or comfy_api_key
|
||||
|
||||
@staticmethod
|
||||
async def upload_file(
|
||||
upload_url: str,
|
||||
file: io.BytesIO | str,
|
||||
content_type: str | None = None,
|
||||
max_retries: int = 3,
|
||||
retry_delay: float = 1.0,
|
||||
retry_backoff_factor: float = 2.0,
|
||||
) -> aiohttp.ClientResponse:
|
||||
"""Upload a file to the API with retry logic.
|
||||
|
||||
Args:
|
||||
upload_url: The URL to upload to
|
||||
file: Either a file path string, BytesIO object, or tuple of (file_path, filename)
|
||||
content_type: Optional mime type to set for the upload
|
||||
max_retries: Maximum number of retry attempts
|
||||
retry_delay: Initial delay between retries in seconds
|
||||
retry_backoff_factor: Multiplier for the delay after each retry
|
||||
"""
|
||||
headers: Dict[str, str] = {}
|
||||
skip_auto_headers: set[str] = set()
|
||||
if content_type:
|
||||
headers["Content-Type"] = content_type
|
||||
else:
|
||||
# tell aiohttp not to add Content-Type that will break the request signature and result in a 403 status.
|
||||
skip_auto_headers.add("Content-Type")
|
||||
|
||||
# Extract file bytes
|
||||
if isinstance(file, io.BytesIO):
|
||||
file.seek(0)
|
||||
data = file.read()
|
||||
elif isinstance(file, str):
|
||||
with open(file, "rb") as f:
|
||||
data = f.read()
|
||||
else:
|
||||
raise ValueError("File must be BytesIO or str path")
|
||||
|
||||
operation_id = f"upload_{upload_url.split('/')[-1]}_{uuid.uuid4().hex[:8]}"
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
request_headers=headers,
|
||||
request_data=f"[File data {len(data)} bytes]",
|
||||
)
|
||||
|
||||
delay = retry_delay
|
||||
for attempt in range(max_retries + 1):
|
||||
try:
|
||||
timeout = aiohttp.ClientTimeout(total=None) # honour server side timeouts
|
||||
async with aiohttp.ClientSession(timeout=timeout) as session:
|
||||
async with session.put(
|
||||
upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers,
|
||||
) as resp:
|
||||
resp.raise_for_status()
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content="File uploaded successfully.",
|
||||
)
|
||||
return resp
|
||||
except (ClientError, asyncio.TimeoutError) as e:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
response_status_code=e.status if hasattr(e, "status") else None,
|
||||
response_headers=dict(e.headers) if getattr(e, "headers") else None,
|
||||
response_content=None,
|
||||
error_message=f"{type(e).__name__}: {str(e)}",
|
||||
)
|
||||
if attempt < max_retries:
|
||||
logging.warning(
|
||||
"Upload failed (%s/%s). Retrying in %.2fs. %s", attempt + 1, max_retries, delay, str(e)
|
||||
)
|
||||
await asyncio.sleep(delay)
|
||||
delay *= retry_backoff_factor
|
||||
else:
|
||||
raise NetworkError(f"Failed to upload file after {max_retries + 1} attempts: {e}") from e
|
||||
|
||||
async def _handle_http_error(
|
||||
self,
|
||||
exc: ClientResponseError,
|
||||
operation_id: str,
|
||||
*req_meta,
|
||||
retry_count: int,
|
||||
response_content: dict | str = "",
|
||||
) -> Dict[str, Any]:
|
||||
status_code = exc.status
|
||||
if status_code == 401:
|
||||
user_friendly = "Unauthorized: Please login first to use this node."
|
||||
elif status_code == 402:
|
||||
user_friendly = "Payment Required: Please add credits to your account to use this node."
|
||||
elif status_code == 409:
|
||||
user_friendly = "There is a problem with your account. Please contact support@comfy.org."
|
||||
elif status_code == 429:
|
||||
user_friendly = "Rate Limit Exceeded: Please try again later."
|
||||
else:
|
||||
if isinstance(response_content, dict):
|
||||
if "error" in response_content and "message" in response_content["error"]:
|
||||
user_friendly = f"API Error: {response_content['error']['message']}"
|
||||
if "type" in response_content["error"]:
|
||||
user_friendly += f" (Type: {response_content['error']['type']})"
|
||||
else: # Handle cases where error is just a JSON dict with unknown format
|
||||
user_friendly = f"API Error: {json.dumps(response_content)}"
|
||||
else:
|
||||
if len(response_content) < 200: # Arbitrary limit for display
|
||||
user_friendly = f"API Error (raw): {response_content}"
|
||||
else:
|
||||
user_friendly = f"API Error (raw, status {response_content})"
|
||||
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=req_meta[0],
|
||||
request_url=req_meta[1],
|
||||
response_status_code=exc.status,
|
||||
response_headers=dict(req_meta[5]) if req_meta[5] else None,
|
||||
response_content=response_content,
|
||||
error_message=f"HTTP Error {exc.status}",
|
||||
)
|
||||
|
||||
logging.debug(f"[DEBUG] API Error: {user_friendly} (Status: {status_code})")
|
||||
if response_content:
|
||||
logging.debug(f"[DEBUG] Response content: {response_content}")
|
||||
|
||||
# Retry if eligible
|
||||
if status_code in self.retry_status_codes and retry_count < self.max_retries:
|
||||
delay = self.retry_delay * (self.retry_backoff_factor ** retry_count)
|
||||
logging.warning(
|
||||
"HTTP error %s. Retrying in %.2fs (%s/%s)",
|
||||
status_code,
|
||||
delay,
|
||||
retry_count + 1,
|
||||
self.max_retries,
|
||||
)
|
||||
await asyncio.sleep(delay)
|
||||
return await self.request(
|
||||
req_meta[0], # method
|
||||
req_meta[1].replace(self.base_url, ""), # path
|
||||
params=req_meta[2],
|
||||
data=req_meta[3],
|
||||
files=req_meta[4],
|
||||
headers=req_meta[5],
|
||||
content_type=req_meta[6],
|
||||
multipart_parser=req_meta[7],
|
||||
retry_count=retry_count + 1,
|
||||
)
|
||||
|
||||
raise Exception(user_friendly) from exc
|
||||
|
||||
@staticmethod
|
||||
def _unpack_tuple(t):
|
||||
"""Helper to normalise (filename, file, content_type) tuples."""
|
||||
if len(t) == 3:
|
||||
return t
|
||||
elif len(t) == 2:
|
||||
return t[0], t[1], "application/octet-stream"
|
||||
else:
|
||||
raise ValueError("files tuple must be (filename, file[, content_type])")
|
||||
|
||||
async def _get_session(self) -> aiohttp.ClientSession:
|
||||
if self._session is None or self._session.closed:
|
||||
timeout = aiohttp.ClientTimeout(total=self.timeout)
|
||||
self._session = aiohttp.ClientSession(timeout=timeout)
|
||||
self._owns_session = True
|
||||
return self._session
|
||||
|
||||
async def close(self) -> None:
|
||||
if self._owns_session and self._session and not self._session.closed:
|
||||
await self._session.close()
|
||||
|
||||
async def __aenter__(self) -> "ApiClient":
|
||||
"""Allow usage as async‑context‑manager – ensures clean teardown"""
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc, tb):
|
||||
await self.close()
|
||||
|
||||
|
||||
class ApiEndpoint(Generic[T, R]):
|
||||
"""Defines an API endpoint with its request and response types"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: str,
|
||||
method: HttpMethod,
|
||||
request_model: Type[T],
|
||||
response_model: Type[R],
|
||||
query_params: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
"""Initialize an API endpoint definition.
|
||||
|
||||
Args:
|
||||
path: The URL path for this endpoint, can include placeholders like {id}
|
||||
method: The HTTP method to use (GET, POST, etc.)
|
||||
request_model: Pydantic model class that defines the structure and validation rules for API requests to this endpoint
|
||||
response_model: Pydantic model class that defines the structure and validation rules for API responses from this endpoint
|
||||
query_params: Optional dictionary of query parameters to include in the request
|
||||
"""
|
||||
self.path = path
|
||||
self.method = method
|
||||
self.request_model = request_model
|
||||
self.response_model = response_model
|
||||
self.query_params = query_params or {}
|
||||
|
||||
|
||||
class SynchronousOperation(Generic[T, R]):
|
||||
"""Represents a single synchronous API operation."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
endpoint: ApiEndpoint[T, R],
|
||||
request: T,
|
||||
files: Optional[Dict[str, Any] | list[tuple[str, Any]]] = None,
|
||||
api_base: str | None = None,
|
||||
auth_token: Optional[str] = None,
|
||||
comfy_api_key: Optional[str] = None,
|
||||
auth_kwargs: Optional[Dict[str, str]] = None,
|
||||
timeout: float = 7200.0,
|
||||
verify_ssl: bool = True,
|
||||
content_type: str = "application/json",
|
||||
multipart_parser: Callable | None = None,
|
||||
max_retries: int = 3,
|
||||
retry_delay: float = 1.0,
|
||||
retry_backoff_factor: float = 2.0,
|
||||
) -> None:
|
||||
self.endpoint = endpoint
|
||||
self.request = request
|
||||
self.files = files
|
||||
self.api_base: str = api_base or args.comfy_api_base
|
||||
self.auth_token = auth_token
|
||||
self.comfy_api_key = comfy_api_key
|
||||
if auth_kwargs is not None:
|
||||
self.auth_token = auth_kwargs.get("auth_token", self.auth_token)
|
||||
self.comfy_api_key = auth_kwargs.get("comfy_api_key", self.comfy_api_key)
|
||||
self.timeout = timeout
|
||||
self.verify_ssl = verify_ssl
|
||||
self.content_type = content_type
|
||||
self.multipart_parser = multipart_parser
|
||||
self.max_retries = max_retries
|
||||
self.retry_delay = retry_delay
|
||||
self.retry_backoff_factor = retry_backoff_factor
|
||||
|
||||
async def execute(self, client: Optional[ApiClient] = None) -> R:
|
||||
owns_client = client is None
|
||||
if owns_client:
|
||||
client = ApiClient(
|
||||
base_url=self.api_base,
|
||||
auth_token=self.auth_token,
|
||||
comfy_api_key=self.comfy_api_key,
|
||||
timeout=self.timeout,
|
||||
verify_ssl=self.verify_ssl,
|
||||
max_retries=self.max_retries,
|
||||
retry_delay=self.retry_delay,
|
||||
retry_backoff_factor=self.retry_backoff_factor,
|
||||
)
|
||||
|
||||
try:
|
||||
request_dict: Optional[Dict[str, Any]]
|
||||
if isinstance(self.request, EmptyRequest):
|
||||
request_dict = None
|
||||
else:
|
||||
request_dict = self.request.model_dump(exclude_none=True)
|
||||
for k, v in list(request_dict.items()):
|
||||
if isinstance(v, Enum):
|
||||
request_dict[k] = v.value
|
||||
|
||||
logging.debug(
|
||||
f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}"
|
||||
)
|
||||
logging.debug(f"[DEBUG] Request Data: {json.dumps(request_dict, indent=2)}")
|
||||
logging.debug(f"[DEBUG] Query Params: {self.endpoint.query_params}")
|
||||
|
||||
response_json = await client.request(
|
||||
self.endpoint.method.value,
|
||||
self.endpoint.path,
|
||||
params=self.endpoint.query_params,
|
||||
data=request_dict,
|
||||
files=self.files,
|
||||
content_type=self.content_type,
|
||||
multipart_parser=self.multipart_parser,
|
||||
)
|
||||
|
||||
logging.debug("=" * 50)
|
||||
logging.debug("[DEBUG] RESPONSE DETAILS:")
|
||||
logging.debug("[DEBUG] Status Code: 200 (Success)")
|
||||
logging.debug(f"[DEBUG] Response Body: {json.dumps(response_json, indent=2)}")
|
||||
logging.debug("=" * 50)
|
||||
|
||||
parsed_response = self.endpoint.response_model.model_validate(response_json)
|
||||
logging.debug(f"[DEBUG] Parsed Response: {parsed_response}")
|
||||
return parsed_response
|
||||
finally:
|
||||
if owns_client:
|
||||
await client.close()
|
||||
|
||||
|
||||
class TaskStatus(str, Enum):
|
||||
"""Enum for task status values"""
|
||||
|
||||
COMPLETED = "completed"
|
||||
FAILED = "failed"
|
||||
PENDING = "pending"
|
||||
|
||||
|
||||
class PollingOperation(Generic[T, R]):
|
||||
"""Represents an asynchronous API operation that requires polling for completion."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
poll_endpoint: ApiEndpoint[EmptyRequest, R],
|
||||
completed_statuses: list[str],
|
||||
failed_statuses: list[str],
|
||||
status_extractor: Callable[[R], str],
|
||||
progress_extractor: Callable[[R], float] | None = None,
|
||||
result_url_extractor: Callable[[R], str] | None = None,
|
||||
request: Optional[T] = None,
|
||||
api_base: str | None = None,
|
||||
auth_token: Optional[str] = None,
|
||||
comfy_api_key: Optional[str] = None,
|
||||
auth_kwargs: Optional[Dict[str, str]] = None,
|
||||
poll_interval: float = 5.0,
|
||||
max_poll_attempts: int = 120, # Default max polling attempts (10 minutes with 5s interval)
|
||||
max_retries: int = 3, # Max retries per individual API call
|
||||
retry_delay: float = 1.0,
|
||||
retry_backoff_factor: float = 2.0,
|
||||
estimated_duration: Optional[float] = None,
|
||||
node_id: Optional[str] = None,
|
||||
) -> None:
|
||||
self.poll_endpoint = poll_endpoint
|
||||
self.request = request
|
||||
self.api_base: str = api_base or args.comfy_api_base
|
||||
self.auth_token = auth_token
|
||||
self.comfy_api_key = comfy_api_key
|
||||
if auth_kwargs is not None:
|
||||
self.auth_token = auth_kwargs.get("auth_token", self.auth_token)
|
||||
self.comfy_api_key = auth_kwargs.get("comfy_api_key", self.comfy_api_key)
|
||||
self.poll_interval = poll_interval
|
||||
self.max_poll_attempts = max_poll_attempts
|
||||
self.max_retries = max_retries
|
||||
self.retry_delay = retry_delay
|
||||
self.retry_backoff_factor = retry_backoff_factor
|
||||
self.estimated_duration = estimated_duration
|
||||
self.status_extractor = status_extractor or (lambda x: getattr(x, "status", None))
|
||||
self.progress_extractor = progress_extractor
|
||||
self.result_url_extractor = result_url_extractor
|
||||
self.node_id = node_id
|
||||
self.completed_statuses = completed_statuses
|
||||
self.failed_statuses = failed_statuses
|
||||
self.final_response: Optional[R] = None
|
||||
|
||||
async def execute(self, client: Optional[ApiClient] = None) -> R:
|
||||
owns_client = client is None
|
||||
if owns_client:
|
||||
client = ApiClient(
|
||||
base_url=self.api_base,
|
||||
auth_token=self.auth_token,
|
||||
comfy_api_key=self.comfy_api_key,
|
||||
max_retries=self.max_retries,
|
||||
retry_delay=self.retry_delay,
|
||||
retry_backoff_factor=self.retry_backoff_factor,
|
||||
)
|
||||
try:
|
||||
return await self._poll_until_complete(client)
|
||||
finally:
|
||||
if owns_client:
|
||||
await client.close()
|
||||
|
||||
def _display_text_on_node(self, text: str):
|
||||
if not self.node_id:
|
||||
return
|
||||
PromptServer.instance.send_progress_text(text, self.node_id)
|
||||
|
||||
def _display_time_progress_on_node(self, time_completed: int | float):
|
||||
if not self.node_id:
|
||||
return
|
||||
if self.estimated_duration is not None:
|
||||
remaining = max(0, int(self.estimated_duration) - time_completed)
|
||||
message = f"Task in progress: {time_completed}s (~{remaining}s remaining)"
|
||||
else:
|
||||
message = f"Task in progress: {time_completed}s"
|
||||
self._display_text_on_node(message)
|
||||
|
||||
def _check_task_status(self, response: R) -> TaskStatus:
|
||||
try:
|
||||
status = self.status_extractor(response)
|
||||
if status in self.completed_statuses:
|
||||
return TaskStatus.COMPLETED
|
||||
if status in self.failed_statuses:
|
||||
return TaskStatus.FAILED
|
||||
return TaskStatus.PENDING
|
||||
except Exception as e:
|
||||
logging.error("Error extracting status: %s", e)
|
||||
return TaskStatus.PENDING
|
||||
|
||||
async def _poll_until_complete(self, client: ApiClient) -> R:
|
||||
"""Poll until the task is complete"""
|
||||
consecutive_errors = 0
|
||||
max_consecutive_errors = min(5, self.max_retries * 2) # Limit consecutive errors
|
||||
|
||||
if self.progress_extractor:
|
||||
progress = utils.ProgressBar(PROGRESS_BAR_MAX)
|
||||
|
||||
status = TaskStatus.PENDING
|
||||
for poll_count in range(1, self.max_poll_attempts + 1):
|
||||
try:
|
||||
logging.debug(f"[DEBUG] Polling attempt #{poll_count}")
|
||||
|
||||
request_dict = (
|
||||
None if self.request is None else self.request.model_dump(exclude_none=True)
|
||||
)
|
||||
|
||||
if poll_count == 1:
|
||||
logging.debug(
|
||||
f"[DEBUG] Poll Request: {self.poll_endpoint.method.value} {self.poll_endpoint.path}"
|
||||
)
|
||||
logging.debug(
|
||||
f"[DEBUG] Poll Request Data: {json.dumps(request_dict, indent=2) if request_dict else 'None'}"
|
||||
)
|
||||
|
||||
# Query task status
|
||||
resp = await client.request(
|
||||
self.poll_endpoint.method.value,
|
||||
self.poll_endpoint.path,
|
||||
params=self.poll_endpoint.query_params,
|
||||
data=request_dict,
|
||||
)
|
||||
consecutive_errors = 0 # reset on success
|
||||
response_obj: R = self.poll_endpoint.response_model.model_validate(resp)
|
||||
|
||||
# Check if task is complete
|
||||
status = self._check_task_status(response_obj)
|
||||
logging.debug(f"[DEBUG] Task Status: {status}")
|
||||
|
||||
# If progress extractor is provided, extract progress
|
||||
if self.progress_extractor:
|
||||
new_progress = self.progress_extractor(response_obj)
|
||||
if new_progress is not None:
|
||||
progress.update_absolute(new_progress, total=PROGRESS_BAR_MAX)
|
||||
|
||||
if status == TaskStatus.COMPLETED:
|
||||
message = "Task completed successfully"
|
||||
if self.result_url_extractor:
|
||||
result_url = self.result_url_extractor(response_obj)
|
||||
if result_url:
|
||||
message = f"Result URL: {result_url}"
|
||||
logging.debug(f"[DEBUG] {message}")
|
||||
self._display_text_on_node(message)
|
||||
self.final_response = response_obj
|
||||
if self.progress_extractor:
|
||||
progress.update(100)
|
||||
return self.final_response
|
||||
if status == TaskStatus.FAILED:
|
||||
message = f"Task failed: {json.dumps(resp)}"
|
||||
logging.error(f"[DEBUG] {message}")
|
||||
raise Exception(message)
|
||||
logging.debug("[DEBUG] Task still pending, continuing to poll...")
|
||||
# Task pending – wait
|
||||
for i in range(int(self.poll_interval)):
|
||||
self._display_time_progress_on_node((poll_count - 1) * self.poll_interval + i)
|
||||
await asyncio.sleep(1)
|
||||
|
||||
except (LocalNetworkError, ApiServerError, NetworkError) as e:
|
||||
consecutive_errors += 1
|
||||
if consecutive_errors >= max_consecutive_errors:
|
||||
raise Exception(
|
||||
f"Polling aborted after {consecutive_errors} network errors: {str(e)}"
|
||||
) from e
|
||||
logging.warning("Network error (%s/%s): %s", consecutive_errors, max_consecutive_errors, str(e))
|
||||
await asyncio.sleep(self.poll_interval)
|
||||
except Exception as e:
|
||||
# For other errors, increment count and potentially abort
|
||||
consecutive_errors += 1
|
||||
if consecutive_errors >= max_consecutive_errors or status == TaskStatus.FAILED:
|
||||
raise Exception(
|
||||
f"Polling aborted after {consecutive_errors} consecutive errors: {str(e)}"
|
||||
) from e
|
||||
|
||||
logging.error(f"[DEBUG] Polling error: {str(e)}")
|
||||
logging.warning(
|
||||
f"Error during polling (attempt {poll_count}/{self.max_poll_attempts}): {str(e)}. "
|
||||
f"Will retry in {self.poll_interval} seconds."
|
||||
)
|
||||
await asyncio.sleep(self.poll_interval)
|
||||
|
||||
# If we've exhausted all polling attempts
|
||||
raise Exception(
|
||||
f"Polling timed out after {self.max_poll_attempts} attempts (" f"{self.max_poll_attempts * self.poll_interval} seconds). "
|
||||
"The operation may still be running on the server but is taking longer than expected."
|
||||
)
|
||||
@ -1,19 +1,22 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class GeminiImageConfig(BaseModel):
|
||||
aspectRatio: Optional[str] = None
|
||||
|
||||
|
||||
class GeminiImageGenerationConfig(GeminiGenerationConfig):
|
||||
responseModalities: Optional[List[str]] = None
|
||||
responseModalities: Optional[list[str]] = None
|
||||
imageConfig: Optional[GeminiImageConfig] = None
|
||||
|
||||
|
||||
class GeminiImageGenerateContentRequest(BaseModel):
|
||||
contents: List[GeminiContent]
|
||||
contents: list[GeminiContent]
|
||||
generationConfig: Optional[GeminiImageGenerationConfig] = None
|
||||
safetySettings: Optional[List[GeminiSafetySetting]] = None
|
||||
safetySettings: Optional[list[GeminiSafetySetting]] = None
|
||||
systemInstruction: Optional[GeminiSystemInstructionContent] = None
|
||||
tools: Optional[List[GeminiTool]] = None
|
||||
tools: Optional[list[GeminiTool]] = None
|
||||
videoMetadata: Optional[GeminiVideoMetadata] = None
|
||||
|
||||
120
comfy_api_nodes/apis/minimax_api.py
Normal file
120
comfy_api_nodes/apis/minimax_api.py
Normal file
@ -0,0 +1,120 @@
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MinimaxBaseResponse(BaseModel):
|
||||
status_code: int = Field(
|
||||
...,
|
||||
description='Status code. 0 indicates success, other values indicate errors.',
|
||||
)
|
||||
status_msg: str = Field(
|
||||
..., description='Specific error details or success message.'
|
||||
)
|
||||
|
||||
|
||||
class File(BaseModel):
|
||||
bytes: Optional[int] = Field(None, description='File size in bytes')
|
||||
created_at: Optional[int] = Field(
|
||||
None, description='Unix timestamp when the file was created, in seconds'
|
||||
)
|
||||
download_url: Optional[str] = Field(
|
||||
None, description='The URL to download the video'
|
||||
)
|
||||
backup_download_url: Optional[str] = Field(
|
||||
None, description='The backup URL to download the video'
|
||||
)
|
||||
|
||||
file_id: Optional[int] = Field(None, description='Unique identifier for the file')
|
||||
filename: Optional[str] = Field(None, description='The name of the file')
|
||||
purpose: Optional[str] = Field(None, description='The purpose of using the file')
|
||||
|
||||
|
||||
class MinimaxFileRetrieveResponse(BaseModel):
|
||||
base_resp: MinimaxBaseResponse
|
||||
file: File
|
||||
|
||||
|
||||
class MiniMaxModel(str, Enum):
|
||||
T2V_01_Director = 'T2V-01-Director'
|
||||
I2V_01_Director = 'I2V-01-Director'
|
||||
S2V_01 = 'S2V-01'
|
||||
I2V_01 = 'I2V-01'
|
||||
I2V_01_live = 'I2V-01-live'
|
||||
T2V_01 = 'T2V-01'
|
||||
Hailuo_02 = 'MiniMax-Hailuo-02'
|
||||
|
||||
|
||||
class Status6(str, Enum):
|
||||
Queueing = 'Queueing'
|
||||
Preparing = 'Preparing'
|
||||
Processing = 'Processing'
|
||||
Success = 'Success'
|
||||
Fail = 'Fail'
|
||||
|
||||
|
||||
class MinimaxTaskResultResponse(BaseModel):
|
||||
base_resp: MinimaxBaseResponse
|
||||
file_id: Optional[str] = Field(
|
||||
None,
|
||||
description='After the task status changes to Success, this field returns the file ID corresponding to the generated video.',
|
||||
)
|
||||
status: Status6 = Field(
|
||||
...,
|
||||
description="Task status: 'Queueing' (in queue), 'Preparing' (task is preparing), 'Processing' (generating), 'Success' (task completed successfully), or 'Fail' (task failed).",
|
||||
)
|
||||
task_id: str = Field(..., description='The task ID being queried.')
|
||||
|
||||
|
||||
class SubjectReferenceItem(BaseModel):
|
||||
image: Optional[str] = Field(
|
||||
None, description='URL or base64 encoding of the subject reference image.'
|
||||
)
|
||||
mask: Optional[str] = Field(
|
||||
None,
|
||||
description='URL or base64 encoding of the mask for the subject reference image.',
|
||||
)
|
||||
|
||||
|
||||
class MinimaxVideoGenerationRequest(BaseModel):
|
||||
callback_url: Optional[str] = Field(
|
||||
None,
|
||||
description='Optional. URL to receive real-time status updates about the video generation task.',
|
||||
)
|
||||
first_frame_image: Optional[str] = Field(
|
||||
None,
|
||||
description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.',
|
||||
)
|
||||
model: MiniMaxModel = Field(
|
||||
...,
|
||||
description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01',
|
||||
)
|
||||
prompt: Optional[str] = Field(
|
||||
None,
|
||||
description='Description of the video. Should be less than 2000 characters. Supports camera movement instructions in [brackets].',
|
||||
max_length=2000,
|
||||
)
|
||||
prompt_optimizer: Optional[bool] = Field(
|
||||
True,
|
||||
description='If true (default), the model will automatically optimize the prompt. Set to false for more precise control.',
|
||||
)
|
||||
subject_reference: Optional[list[SubjectReferenceItem]] = Field(
|
||||
None,
|
||||
description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.',
|
||||
)
|
||||
duration: Optional[int] = Field(
|
||||
None,
|
||||
description="The length of the output video in seconds."
|
||||
)
|
||||
resolution: Optional[str] = Field(
|
||||
None,
|
||||
description="The dimensions of the video display. 1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels."
|
||||
)
|
||||
|
||||
|
||||
class MinimaxVideoGenerationResponse(BaseModel):
|
||||
base_resp: MinimaxBaseResponse
|
||||
task_id: str = Field(
|
||||
..., description='The task ID for the asynchronous video generation task.'
|
||||
)
|
||||
100
comfy_api_nodes/apis/pika_api.py
Normal file
100
comfy_api_nodes/apis/pika_api.py
Normal file
@ -0,0 +1,100 @@
|
||||
from typing import Optional
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class Pikaffect(str, Enum):
|
||||
Cake_ify = "Cake-ify"
|
||||
Crumble = "Crumble"
|
||||
Crush = "Crush"
|
||||
Decapitate = "Decapitate"
|
||||
Deflate = "Deflate"
|
||||
Dissolve = "Dissolve"
|
||||
Explode = "Explode"
|
||||
Eye_pop = "Eye-pop"
|
||||
Inflate = "Inflate"
|
||||
Levitate = "Levitate"
|
||||
Melt = "Melt"
|
||||
Peel = "Peel"
|
||||
Poke = "Poke"
|
||||
Squish = "Squish"
|
||||
Ta_da = "Ta-da"
|
||||
Tear = "Tear"
|
||||
|
||||
|
||||
class PikaBodyGenerate22C2vGenerate22PikascenesPost(BaseModel):
|
||||
aspectRatio: Optional[float] = Field(None, description='Aspect ratio (width / height)')
|
||||
duration: Optional[int] = Field(5)
|
||||
ingredientsMode: str = Field(...)
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
promptText: Optional[str] = Field(None)
|
||||
resolution: Optional[str] = Field('1080p')
|
||||
seed: Optional[int] = Field(None)
|
||||
|
||||
|
||||
class PikaGenerateResponse(BaseModel):
|
||||
video_id: str = Field(...)
|
||||
|
||||
|
||||
class PikaBodyGenerate22I2vGenerate22I2vPost(BaseModel):
|
||||
duration: Optional[int] = 5
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
promptText: Optional[str] = Field(None)
|
||||
resolution: Optional[str] = '1080p'
|
||||
seed: Optional[int] = Field(None)
|
||||
|
||||
|
||||
class PikaBodyGenerate22KeyframeGenerate22PikaframesPost(BaseModel):
|
||||
duration: Optional[int] = Field(None, ge=5, le=10)
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
promptText: str = Field(...)
|
||||
resolution: Optional[str] = '1080p'
|
||||
seed: Optional[int] = Field(None)
|
||||
|
||||
|
||||
class PikaBodyGenerate22T2vGenerate22T2vPost(BaseModel):
|
||||
aspectRatio: Optional[float] = Field(
|
||||
1.7777777777777777,
|
||||
description='Aspect ratio (width / height)',
|
||||
ge=0.4,
|
||||
le=2.5,
|
||||
)
|
||||
duration: Optional[int] = 5
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
promptText: str = Field(...)
|
||||
resolution: Optional[str] = '1080p'
|
||||
seed: Optional[int] = Field(None)
|
||||
|
||||
|
||||
class PikaBodyGeneratePikadditionsGeneratePikadditionsPost(BaseModel):
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
promptText: Optional[str] = Field(None)
|
||||
seed: Optional[int] = Field(None)
|
||||
|
||||
|
||||
class PikaBodyGeneratePikaffectsGeneratePikaffectsPost(BaseModel):
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
pikaffect: Optional[str] = None
|
||||
promptText: Optional[str] = Field(None)
|
||||
seed: Optional[int] = Field(None)
|
||||
|
||||
|
||||
class PikaBodyGeneratePikaswapsGeneratePikaswapsPost(BaseModel):
|
||||
negativePrompt: Optional[str] = Field(None)
|
||||
promptText: Optional[str] = Field(None)
|
||||
seed: Optional[int] = Field(None)
|
||||
modifyRegionRoi: Optional[str] = Field(None)
|
||||
|
||||
|
||||
class PikaStatusEnum(str, Enum):
|
||||
queued = "queued"
|
||||
started = "started"
|
||||
finished = "finished"
|
||||
failed = "failed"
|
||||
|
||||
|
||||
class PikaVideoResponse(BaseModel):
|
||||
id: str = Field(...)
|
||||
progress: Optional[int] = Field(None)
|
||||
status: PikaStatusEnum
|
||||
url: Optional[str] = Field(None)
|
||||
@ -52,7 +52,3 @@ class RodinResourceItem(BaseModel):
|
||||
|
||||
class Rodin3DDownloadResponse(BaseModel):
|
||||
list: List[RodinResourceItem] = Field(..., description="Source List")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,13 +1,20 @@
|
||||
from __future__ import annotations
|
||||
from comfy_api_nodes.apis import (
|
||||
TripoModelVersion,
|
||||
TripoTextureQuality,
|
||||
)
|
||||
from enum import Enum
|
||||
from typing import Optional, List, Dict, Any, Union
|
||||
|
||||
from pydantic import BaseModel, Field, RootModel
|
||||
|
||||
class TripoModelVersion(str, Enum):
|
||||
v2_5_20250123 = 'v2.5-20250123'
|
||||
v2_0_20240919 = 'v2.0-20240919'
|
||||
v1_4_20240625 = 'v1.4-20240625'
|
||||
|
||||
|
||||
class TripoTextureQuality(str, Enum):
|
||||
standard = 'standard'
|
||||
detailed = 'detailed'
|
||||
|
||||
|
||||
class TripoStyle(str, Enum):
|
||||
PERSON_TO_CARTOON = "person:person2cartoon"
|
||||
ANIMAL_VENOM = "animal:venom"
|
||||
|
||||
111
comfy_api_nodes/apis/veo_api.py
Normal file
111
comfy_api_nodes/apis/veo_api.py
Normal file
@ -0,0 +1,111 @@
|
||||
from typing import Optional, Union
|
||||
from enum import Enum
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class Image2(BaseModel):
|
||||
bytesBase64Encoded: str
|
||||
gcsUri: Optional[str] = None
|
||||
mimeType: Optional[str] = None
|
||||
|
||||
|
||||
class Image3(BaseModel):
|
||||
bytesBase64Encoded: Optional[str] = None
|
||||
gcsUri: str
|
||||
mimeType: Optional[str] = None
|
||||
|
||||
|
||||
class Instance1(BaseModel):
|
||||
image: Optional[Union[Image2, Image3]] = Field(
|
||||
None, description='Optional image to guide video generation'
|
||||
)
|
||||
prompt: str = Field(..., description='Text description of the video')
|
||||
|
||||
|
||||
class PersonGeneration1(str, Enum):
|
||||
ALLOW = 'ALLOW'
|
||||
BLOCK = 'BLOCK'
|
||||
|
||||
|
||||
class Parameters1(BaseModel):
|
||||
aspectRatio: Optional[str] = Field(None, examples=['16:9'])
|
||||
durationSeconds: Optional[int] = None
|
||||
enhancePrompt: Optional[bool] = None
|
||||
generateAudio: Optional[bool] = Field(
|
||||
None,
|
||||
description='Generate audio for the video. Only supported by veo 3 models.',
|
||||
)
|
||||
negativePrompt: Optional[str] = None
|
||||
personGeneration: Optional[PersonGeneration1] = None
|
||||
sampleCount: Optional[int] = None
|
||||
seed: Optional[int] = None
|
||||
storageUri: Optional[str] = Field(
|
||||
None, description='Optional Cloud Storage URI to upload the video'
|
||||
)
|
||||
|
||||
|
||||
class VeoGenVidRequest(BaseModel):
|
||||
instances: Optional[list[Instance1]] = None
|
||||
parameters: Optional[Parameters1] = None
|
||||
|
||||
|
||||
class VeoGenVidResponse(BaseModel):
|
||||
name: str = Field(
|
||||
...,
|
||||
description='Operation resource name',
|
||||
examples=[
|
||||
'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/a1b07c8e-7b5a-4aba-bb34-3e1ccb8afcc8'
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
class VeoGenVidPollRequest(BaseModel):
|
||||
operationName: str = Field(
|
||||
...,
|
||||
description='Full operation name (from predict response)',
|
||||
examples=[
|
||||
'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/OPERATION_ID'
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
class Video(BaseModel):
|
||||
bytesBase64Encoded: Optional[str] = Field(
|
||||
None, description='Base64-encoded video content'
|
||||
)
|
||||
gcsUri: Optional[str] = Field(None, description='Cloud Storage URI of the video')
|
||||
mimeType: Optional[str] = Field(None, description='Video MIME type')
|
||||
|
||||
|
||||
class Error1(BaseModel):
|
||||
code: Optional[int] = Field(None, description='Error code')
|
||||
message: Optional[str] = Field(None, description='Error message')
|
||||
|
||||
|
||||
class Response1(BaseModel):
|
||||
field_type: Optional[str] = Field(
|
||||
None,
|
||||
alias='@type',
|
||||
examples=[
|
||||
'type.googleapis.com/cloud.ai.large_models.vision.GenerateVideoResponse'
|
||||
],
|
||||
)
|
||||
raiMediaFilteredCount: Optional[int] = Field(
|
||||
None, description='Count of media filtered by responsible AI policies'
|
||||
)
|
||||
raiMediaFilteredReasons: Optional[list[str]] = Field(
|
||||
None, description='Reasons why media was filtered by responsible AI policies'
|
||||
)
|
||||
videos: Optional[list[Video]] = None
|
||||
|
||||
|
||||
class VeoGenVidPollResponse(BaseModel):
|
||||
done: Optional[bool] = None
|
||||
error: Optional[Error1] = Field(
|
||||
None, description='Error details if operation failed'
|
||||
)
|
||||
name: Optional[str] = None
|
||||
response: Optional[Response1] = Field(
|
||||
None, description='The actual prediction response if done is true'
|
||||
)
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -2,44 +2,47 @@
|
||||
API Nodes for Gemini Multimodal LLM Usage via Remote API
|
||||
See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import time
|
||||
import os
|
||||
import uuid
|
||||
import base64
|
||||
from io import BytesIO
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Optional, Literal
|
||||
from io import BytesIO
|
||||
from typing import Literal, Optional
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
import folder_paths
|
||||
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
|
||||
from server import PromptServer
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api.util import VideoCodec, VideoContainer
|
||||
from comfy_api_nodes.apis import (
|
||||
GeminiContent,
|
||||
GeminiGenerateContentRequest,
|
||||
GeminiGenerateContentResponse,
|
||||
GeminiInlineData,
|
||||
GeminiPart,
|
||||
GeminiMimeType,
|
||||
GeminiPart,
|
||||
)
|
||||
from comfy_api_nodes.apis.gemini_api import GeminiImageGenerationConfig, GeminiImageGenerateContentRequest
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.apis.gemini_api import (
|
||||
GeminiImageConfig,
|
||||
GeminiImageGenerateContentRequest,
|
||||
GeminiImageGenerationConfig,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
validate_string,
|
||||
audio_to_base64_string,
|
||||
video_to_base64_string,
|
||||
tensor_to_base64_string,
|
||||
bytesio_to_image_tensor,
|
||||
sync_op,
|
||||
tensor_to_base64_string,
|
||||
validate_string,
|
||||
video_to_base64_string,
|
||||
)
|
||||
|
||||
from server import PromptServer
|
||||
|
||||
GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini"
|
||||
GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
|
||||
@ -62,50 +65,7 @@ class GeminiImageModel(str, Enum):
|
||||
"""
|
||||
|
||||
gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview"
|
||||
|
||||
|
||||
def get_gemini_endpoint(
|
||||
model: GeminiModel,
|
||||
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
||||
"""
|
||||
Get the API endpoint for a given Gemini model.
|
||||
|
||||
Args:
|
||||
model: The Gemini model to use, either as enum or string value.
|
||||
|
||||
Returns:
|
||||
ApiEndpoint configured for the specific Gemini model.
|
||||
"""
|
||||
if isinstance(model, str):
|
||||
model = GeminiModel(model)
|
||||
return ApiEndpoint(
|
||||
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
|
||||
method=HttpMethod.POST,
|
||||
request_model=GeminiGenerateContentRequest,
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
)
|
||||
|
||||
|
||||
def get_gemini_image_endpoint(
|
||||
model: GeminiImageModel,
|
||||
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
||||
"""
|
||||
Get the API endpoint for a given Gemini model.
|
||||
|
||||
Args:
|
||||
model: The Gemini model to use, either as enum or string value.
|
||||
|
||||
Returns:
|
||||
ApiEndpoint configured for the specific Gemini model.
|
||||
"""
|
||||
if isinstance(model, str):
|
||||
model = GeminiImageModel(model)
|
||||
return ApiEndpoint(
|
||||
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
|
||||
method=HttpMethod.POST,
|
||||
request_model=GeminiImageGenerateContentRequest,
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
)
|
||||
gemini_2_5_flash_image = "gemini-2.5-flash-image"
|
||||
|
||||
|
||||
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
|
||||
@ -120,9 +80,7 @@ def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
|
||||
"""
|
||||
image_parts: list[GeminiPart] = []
|
||||
for image_index in range(image_input.shape[0]):
|
||||
image_as_b64 = tensor_to_base64_string(
|
||||
image_input[image_index].unsqueeze(0)
|
||||
)
|
||||
image_as_b64 = tensor_to_base64_string(image_input[image_index].unsqueeze(0))
|
||||
image_parts.append(
|
||||
GeminiPart(
|
||||
inlineData=GeminiInlineData(
|
||||
@ -134,37 +92,7 @@ def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
|
||||
return image_parts
|
||||
|
||||
|
||||
def create_text_part(text: str) -> GeminiPart:
|
||||
"""
|
||||
Create a text part for the Gemini API request.
|
||||
|
||||
Args:
|
||||
text: The text content to include in the request.
|
||||
|
||||
Returns:
|
||||
A GeminiPart object with the text content.
|
||||
"""
|
||||
return GeminiPart(text=text)
|
||||
|
||||
|
||||
def get_parts_from_response(
|
||||
response: GeminiGenerateContentResponse
|
||||
) -> list[GeminiPart]:
|
||||
"""
|
||||
Extract all parts from the Gemini API response.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
|
||||
Returns:
|
||||
List of response parts from the first candidate.
|
||||
"""
|
||||
return response.candidates[0].content.parts
|
||||
|
||||
|
||||
def get_parts_by_type(
|
||||
response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
|
||||
) -> list[GeminiPart]:
|
||||
def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Literal["text"] | str) -> list[GeminiPart]:
|
||||
"""
|
||||
Filter response parts by their type.
|
||||
|
||||
@ -176,14 +104,10 @@ def get_parts_by_type(
|
||||
List of response parts matching the requested type.
|
||||
"""
|
||||
parts = []
|
||||
for part in get_parts_from_response(response):
|
||||
for part in response.candidates[0].content.parts:
|
||||
if part_type == "text" and hasattr(part, "text") and part.text:
|
||||
parts.append(part)
|
||||
elif (
|
||||
hasattr(part, "inlineData")
|
||||
and part.inlineData
|
||||
and part.inlineData.mimeType == part_type
|
||||
):
|
||||
elif hasattr(part, "inlineData") and part.inlineData and part.inlineData.mimeType == part_type:
|
||||
parts.append(part)
|
||||
# Skip parts that don't match the requested type
|
||||
return parts
|
||||
@ -211,11 +135,11 @@ def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Te
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
image_tensors.append(returned_image)
|
||||
if len(image_tensors) == 0:
|
||||
return torch.zeros((1,1024,1024,4))
|
||||
return torch.zeros((1, 1024, 1024, 4))
|
||||
return torch.cat(image_tensors, dim=0)
|
||||
|
||||
|
||||
class GeminiNode(ComfyNodeABC):
|
||||
class GeminiNode(IO.ComfyNode):
|
||||
"""
|
||||
Node to generate text responses from a Gemini model.
|
||||
|
||||
@ -226,96 +150,79 @@ class GeminiNode(ComfyNodeABC):
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Text inputs to the model, used to generate a response. You can include detailed instructions, questions, or context for the model.",
|
||||
},
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="GeminiNode",
|
||||
display_name="Google Gemini",
|
||||
category="api node/text/Gemini",
|
||||
description="Generate text responses with Google's Gemini AI model. "
|
||||
"You can provide multiple types of inputs (text, images, audio, video) "
|
||||
"as context for generating more relevant and meaningful responses.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text inputs to the model, used to generate a response. "
|
||||
"You can include detailed instructions, questions, or context for the model.",
|
||||
),
|
||||
"model": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"tooltip": "The Gemini model to use for generating responses.",
|
||||
"options": [model.value for model in GeminiModel],
|
||||
"default": GeminiModel.gemini_2_5_pro.value,
|
||||
},
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=GeminiModel,
|
||||
default=GeminiModel.gemini_2_5_pro,
|
||||
tooltip="The Gemini model to use for generating responses.",
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 42,
|
||||
"min": 0,
|
||||
"max": 0xFFFFFFFFFFFFFFFF,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
|
||||
},
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=42,
|
||||
min=0,
|
||||
max=0xFFFFFFFFFFFFFFFF,
|
||||
control_after_generate=True,
|
||||
tooltip="When seed is fixed to a specific value, the model makes a best effort to provide "
|
||||
"the same response for repeated requests. Deterministic output isn't guaranteed. "
|
||||
"Also, changing the model or parameter settings, such as the temperature, "
|
||||
"can cause variations in the response even when you use the same seed value. "
|
||||
"By default, a random seed value is used.",
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"images": (
|
||||
IO.IMAGE,
|
||||
{
|
||||
"default": None,
|
||||
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
|
||||
},
|
||||
IO.Image.Input(
|
||||
"images",
|
||||
optional=True,
|
||||
tooltip="Optional image(s) to use as context for the model. "
|
||||
"To include multiple images, you can use the Batch Images node.",
|
||||
),
|
||||
"audio": (
|
||||
IO.AUDIO,
|
||||
{
|
||||
"tooltip": "Optional audio to use as context for the model.",
|
||||
"default": None,
|
||||
},
|
||||
IO.Audio.Input(
|
||||
"audio",
|
||||
optional=True,
|
||||
tooltip="Optional audio to use as context for the model.",
|
||||
),
|
||||
"video": (
|
||||
IO.VIDEO,
|
||||
{
|
||||
"tooltip": "Optional video to use as context for the model.",
|
||||
"default": None,
|
||||
},
|
||||
IO.Video.Input(
|
||||
"video",
|
||||
optional=True,
|
||||
tooltip="Optional video to use as context for the model.",
|
||||
),
|
||||
"files": (
|
||||
"GEMINI_INPUT_FILES",
|
||||
{
|
||||
"default": None,
|
||||
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
},
|
||||
IO.Custom("GEMINI_INPUT_FILES").Input(
|
||||
"files",
|
||||
optional=True,
|
||||
tooltip="Optional file(s) to use as context for the model. "
|
||||
"Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
|
||||
DESCRIPTION = "Generate text responses with Google's Gemini AI model. You can provide multiple types of inputs (text, images, audio, video) as context for generating more relevant and meaningful responses."
|
||||
RETURN_TYPES = ("STRING",)
|
||||
FUNCTION = "api_call"
|
||||
CATEGORY = "api node/text/Gemini"
|
||||
API_NODE = True
|
||||
|
||||
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
|
||||
"""
|
||||
Convert video input to Gemini API compatible parts.
|
||||
|
||||
Args:
|
||||
video_input: Video tensor from ComfyUI.
|
||||
**kwargs: Additional arguments to pass to the conversion function.
|
||||
|
||||
Returns:
|
||||
List of GeminiPart objects containing the encoded video.
|
||||
"""
|
||||
from comfy_api.util import VideoContainer, VideoCodec
|
||||
base_64_string = video_to_base64_string(
|
||||
video_input,
|
||||
container_format=VideoContainer.MP4,
|
||||
codec=VideoCodec.H264
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def create_video_parts(cls, video_input: Input.Video) -> list[GeminiPart]:
|
||||
"""Convert video input to Gemini API compatible parts."""
|
||||
|
||||
base_64_string = video_to_base64_string(video_input, container_format=VideoContainer.MP4, codec=VideoCodec.H264)
|
||||
return [
|
||||
GeminiPart(
|
||||
inlineData=GeminiInlineData(
|
||||
@ -325,7 +232,8 @@ class GeminiNode(ComfyNodeABC):
|
||||
)
|
||||
]
|
||||
|
||||
def create_audio_parts(self, audio_input: IO.AUDIO) -> list[GeminiPart]:
|
||||
@classmethod
|
||||
def create_audio_parts(cls, audio_input: Input.Audio) -> list[GeminiPart]:
|
||||
"""
|
||||
Convert audio input to Gemini API compatible parts.
|
||||
|
||||
@ -338,10 +246,10 @@ class GeminiNode(ComfyNodeABC):
|
||||
audio_parts: list[GeminiPart] = []
|
||||
for batch_index in range(audio_input["waveform"].shape[0]):
|
||||
# Recreate an IO.AUDIO object for the given batch dimension index
|
||||
audio_at_index = {
|
||||
"waveform": audio_input["waveform"][batch_index].unsqueeze(0),
|
||||
"sample_rate": audio_input["sample_rate"],
|
||||
}
|
||||
audio_at_index = Input.Audio(
|
||||
waveform=audio_input["waveform"][batch_index].unsqueeze(0),
|
||||
sample_rate=audio_input["sample_rate"],
|
||||
)
|
||||
# Convert to MP3 format for compatibility with Gemini API
|
||||
audio_bytes = audio_to_base64_string(
|
||||
audio_at_index,
|
||||
@ -358,38 +266,38 @@ class GeminiNode(ComfyNodeABC):
|
||||
)
|
||||
return audio_parts
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
model: GeminiModel,
|
||||
images: Optional[IO.IMAGE] = None,
|
||||
audio: Optional[IO.AUDIO] = None,
|
||||
video: Optional[IO.VIDEO] = None,
|
||||
model: str,
|
||||
seed: int,
|
||||
images: Optional[torch.Tensor] = None,
|
||||
audio: Optional[Input.Audio] = None,
|
||||
video: Optional[Input.Video] = None,
|
||||
files: Optional[list[GeminiPart]] = None,
|
||||
unique_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> tuple[str]:
|
||||
# Validate inputs
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
|
||||
# Create parts list with text prompt as the first part
|
||||
parts: list[GeminiPart] = [create_text_part(prompt)]
|
||||
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
|
||||
|
||||
# Add other modal parts
|
||||
if images is not None:
|
||||
image_parts = create_image_parts(images)
|
||||
parts.extend(image_parts)
|
||||
if audio is not None:
|
||||
parts.extend(self.create_audio_parts(audio))
|
||||
parts.extend(cls.create_audio_parts(audio))
|
||||
if video is not None:
|
||||
parts.extend(self.create_video_parts(video))
|
||||
parts.extend(cls.create_video_parts(video))
|
||||
if files is not None:
|
||||
parts.extend(files)
|
||||
|
||||
# Create response
|
||||
response = await SynchronousOperation(
|
||||
endpoint=get_gemini_endpoint(model),
|
||||
request=GeminiGenerateContentRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
|
||||
data=GeminiGenerateContentRequest(
|
||||
contents=[
|
||||
GeminiContent(
|
||||
role="user",
|
||||
@ -397,15 +305,15 @@ class GeminiNode(ComfyNodeABC):
|
||||
)
|
||||
]
|
||||
),
|
||||
auth_kwargs=kwargs,
|
||||
).execute()
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
)
|
||||
|
||||
# Get result output
|
||||
output_text = get_text_from_response(response)
|
||||
if unique_id and output_text:
|
||||
if output_text:
|
||||
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
||||
render_spec = {
|
||||
"node_id": unique_id,
|
||||
"node_id": cls.hidden.unique_id,
|
||||
"component": "ChatHistoryWidget",
|
||||
"props": {
|
||||
"history": json.dumps(
|
||||
@ -425,10 +333,10 @@ class GeminiNode(ComfyNodeABC):
|
||||
render_spec,
|
||||
)
|
||||
|
||||
return (output_text or "Empty response from Gemini model...",)
|
||||
return IO.NodeOutput(output_text or "Empty response from Gemini model...")
|
||||
|
||||
|
||||
class GeminiInputFiles(ComfyNodeABC):
|
||||
class GeminiInputFiles(IO.ComfyNode):
|
||||
"""
|
||||
Loads and formats input files for use with the Gemini API.
|
||||
|
||||
@ -439,7 +347,7 @@ class GeminiInputFiles(ComfyNodeABC):
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
def define_schema(cls):
|
||||
"""
|
||||
For details about the supported file input types, see:
|
||||
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
|
||||
@ -454,43 +362,40 @@ class GeminiInputFiles(ComfyNodeABC):
|
||||
]
|
||||
input_files = sorted(input_files, key=lambda x: x.name)
|
||||
input_files = [f.name for f in input_files]
|
||||
return {
|
||||
"required": {
|
||||
"file": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"tooltip": "Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.",
|
||||
"options": input_files,
|
||||
"default": input_files[0] if input_files else None,
|
||||
},
|
||||
return IO.Schema(
|
||||
node_id="GeminiInputFiles",
|
||||
display_name="Gemini Input Files",
|
||||
category="api node/text/Gemini",
|
||||
description="Loads and prepares input files to include as inputs for Gemini LLM nodes. "
|
||||
"The files will be read by the Gemini model when generating a response. "
|
||||
"The contents of the text file count toward the token limit. "
|
||||
"🛈 TIP: Can be chained together with other Gemini Input File nodes.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"file",
|
||||
options=input_files,
|
||||
default=input_files[0] if input_files else None,
|
||||
tooltip="Input files to include as context for the model. "
|
||||
"Only accepts text (.txt) and PDF (.pdf) files for now.",
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"GEMINI_INPUT_FILES": (
|
||||
IO.Custom("GEMINI_INPUT_FILES").Input(
|
||||
"GEMINI_INPUT_FILES",
|
||||
{
|
||||
"tooltip": "An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.",
|
||||
"default": None,
|
||||
},
|
||||
optional=True,
|
||||
tooltip="An optional additional file(s) to batch together with the file loaded from this node. "
|
||||
"Allows chaining of input files so that a single message can include multiple input files.",
|
||||
),
|
||||
},
|
||||
}
|
||||
|
||||
DESCRIPTION = "Loads and prepares input files to include as inputs for Gemini LLM nodes. The files will be read by the Gemini model when generating a response. The contents of the text file count toward the token limit. 🛈 TIP: Can be chained together with other Gemini Input File nodes."
|
||||
RETURN_TYPES = ("GEMINI_INPUT_FILES",)
|
||||
FUNCTION = "prepare_files"
|
||||
CATEGORY = "api node/text/Gemini"
|
||||
|
||||
def create_file_part(self, file_path: str) -> GeminiPart:
|
||||
mime_type = (
|
||||
GeminiMimeType.application_pdf
|
||||
if file_path.endswith(".pdf")
|
||||
else GeminiMimeType.text_plain
|
||||
],
|
||||
outputs=[
|
||||
IO.Custom("GEMINI_INPUT_FILES").Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def create_file_part(cls, file_path: str) -> GeminiPart:
|
||||
mime_type = GeminiMimeType.application_pdf if file_path.endswith(".pdf") else GeminiMimeType.text_plain
|
||||
# Use base64 string directly, not the data URI
|
||||
with open(file_path, "rb") as f:
|
||||
file_content = f.read()
|
||||
import base64
|
||||
base64_str = base64.b64encode(file_content).decode("utf-8")
|
||||
|
||||
return GeminiPart(
|
||||
@ -500,143 +405,127 @@ class GeminiInputFiles(ComfyNodeABC):
|
||||
)
|
||||
)
|
||||
|
||||
def prepare_files(
|
||||
self, file: str, GEMINI_INPUT_FILES: list[GeminiPart] = []
|
||||
) -> tuple[list[GeminiPart]]:
|
||||
"""
|
||||
Loads and formats input files for Gemini API.
|
||||
"""
|
||||
file_path = folder_paths.get_annotated_filepath(file)
|
||||
input_file_content = self.create_file_part(file_path)
|
||||
files = [input_file_content] + GEMINI_INPUT_FILES
|
||||
return (files,)
|
||||
|
||||
|
||||
class GeminiImage(ComfyNodeABC):
|
||||
"""
|
||||
Node to generate text and image responses from a Gemini model.
|
||||
|
||||
This node allows users to interact with Google's Gemini AI models, providing
|
||||
multimodal inputs (text, images, files) to generate coherent
|
||||
text and image responses. The node works with the latest Gemini models, handling the
|
||||
API communication and response parsing.
|
||||
"""
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Text prompt for generation",
|
||||
},
|
||||
),
|
||||
"model": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"tooltip": "The Gemini model to use for generating responses.",
|
||||
"options": [model.value for model in GeminiImageModel],
|
||||
"default": GeminiImageModel.gemini_2_5_flash_image_preview.value,
|
||||
},
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 42,
|
||||
"min": 0,
|
||||
"max": 0xFFFFFFFFFFFFFFFF,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"images": (
|
||||
IO.IMAGE,
|
||||
{
|
||||
"default": None,
|
||||
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
|
||||
},
|
||||
),
|
||||
"files": (
|
||||
"GEMINI_INPUT_FILES",
|
||||
{
|
||||
"default": None,
|
||||
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
},
|
||||
),
|
||||
# TODO: later we can add this parameter later
|
||||
# "n": (
|
||||
# IO.INT,
|
||||
# {
|
||||
# "default": 1,
|
||||
# "min": 1,
|
||||
# "max": 8,
|
||||
# "step": 1,
|
||||
# "display": "number",
|
||||
# "tooltip": "How many images to generate",
|
||||
# },
|
||||
# ),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
def execute(cls, file: str, GEMINI_INPUT_FILES: Optional[list[GeminiPart]] = None) -> IO.NodeOutput:
|
||||
"""Loads and formats input files for Gemini API."""
|
||||
if GEMINI_INPUT_FILES is None:
|
||||
GEMINI_INPUT_FILES = []
|
||||
file_path = folder_paths.get_annotated_filepath(file)
|
||||
input_file_content = cls.create_file_part(file_path)
|
||||
return IO.NodeOutput([input_file_content] + GEMINI_INPUT_FILES)
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE, IO.STRING)
|
||||
FUNCTION = "api_call"
|
||||
CATEGORY = "api node/image/Gemini"
|
||||
DESCRIPTION = "Edit images synchronously via Google API."
|
||||
API_NODE = True
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
class GeminiImage(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="GeminiImageNode",
|
||||
display_name="Google Gemini Image",
|
||||
category="api node/image/Gemini",
|
||||
description="Edit images synchronously via Google API.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="Text prompt for generation",
|
||||
default="",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=GeminiImageModel,
|
||||
default=GeminiImageModel.gemini_2_5_flash_image,
|
||||
tooltip="The Gemini model to use for generating responses.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=42,
|
||||
min=0,
|
||||
max=0xFFFFFFFFFFFFFFFF,
|
||||
control_after_generate=True,
|
||||
tooltip="When seed is fixed to a specific value, the model makes a best effort to provide "
|
||||
"the same response for repeated requests. Deterministic output isn't guaranteed. "
|
||||
"Also, changing the model or parameter settings, such as the temperature, "
|
||||
"can cause variations in the response even when you use the same seed value. "
|
||||
"By default, a random seed value is used.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"images",
|
||||
optional=True,
|
||||
tooltip="Optional image(s) to use as context for the model. "
|
||||
"To include multiple images, you can use the Batch Images node.",
|
||||
),
|
||||
IO.Custom("GEMINI_INPUT_FILES").Input(
|
||||
"files",
|
||||
optional=True,
|
||||
tooltip="Optional file(s) to use as context for the model. "
|
||||
"Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"],
|
||||
default="auto",
|
||||
tooltip="Defaults to matching the output image size to that of your input image, "
|
||||
"or otherwise generates 1:1 squares.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
IO.String.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
model: GeminiImageModel,
|
||||
images: Optional[IO.IMAGE] = None,
|
||||
model: str,
|
||||
seed: int,
|
||||
images: Optional[torch.Tensor] = None,
|
||||
files: Optional[list[GeminiPart]] = None,
|
||||
n=1,
|
||||
unique_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
# Validate inputs
|
||||
aspect_ratio: str = "auto",
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=True, min_length=1)
|
||||
# Create parts list with text prompt as the first part
|
||||
parts: list[GeminiPart] = [create_text_part(prompt)]
|
||||
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
|
||||
|
||||
if not aspect_ratio:
|
||||
aspect_ratio = "auto" # for backward compatability with old workflows; to-do remove this in December
|
||||
image_config = GeminiImageConfig(aspectRatio=aspect_ratio)
|
||||
|
||||
# Add other modal parts
|
||||
if images is not None:
|
||||
image_parts = create_image_parts(images)
|
||||
parts.extend(image_parts)
|
||||
if files is not None:
|
||||
parts.extend(files)
|
||||
|
||||
response = await SynchronousOperation(
|
||||
endpoint=get_gemini_image_endpoint(model),
|
||||
request=GeminiImageGenerateContentRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
|
||||
data=GeminiImageGenerateContentRequest(
|
||||
contents=[
|
||||
GeminiContent(
|
||||
role="user",
|
||||
parts=parts,
|
||||
),
|
||||
GeminiContent(role="user", parts=parts),
|
||||
],
|
||||
generationConfig=GeminiImageGenerationConfig(
|
||||
responseModalities=["TEXT","IMAGE"]
|
||||
)
|
||||
responseModalities=["TEXT", "IMAGE"],
|
||||
imageConfig=None if aspect_ratio == "auto" else image_config,
|
||||
),
|
||||
),
|
||||
auth_kwargs=kwargs,
|
||||
).execute()
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
)
|
||||
|
||||
output_image = get_image_from_response(response)
|
||||
output_text = get_text_from_response(response)
|
||||
if unique_id and output_text:
|
||||
if output_text:
|
||||
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
||||
render_spec = {
|
||||
"node_id": unique_id,
|
||||
"node_id": cls.hidden.unique_id,
|
||||
"component": "ChatHistoryWidget",
|
||||
"props": {
|
||||
"history": json.dumps(
|
||||
@ -657,17 +546,18 @@ class GeminiImage(ComfyNodeABC):
|
||||
)
|
||||
|
||||
output_text = output_text or "Empty response from Gemini model..."
|
||||
return (output_image, output_text,)
|
||||
return IO.NodeOutput(output_image, output_text)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"GeminiNode": GeminiNode,
|
||||
"GeminiImageNode": GeminiImage,
|
||||
"GeminiInputFiles": GeminiInputFiles,
|
||||
}
|
||||
class GeminiExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
GeminiNode,
|
||||
GeminiImage,
|
||||
GeminiInputFiles,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"GeminiNode": "Google Gemini",
|
||||
"GeminiImageNode": "Google Gemini Image",
|
||||
"GeminiInputFiles": "Gemini Input Files",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> GeminiExtension:
|
||||
return GeminiExtension()
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
from io import BytesIO
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io as comfy_io
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -11,19 +11,13 @@ from comfy_api_nodes.apis import (
|
||||
IdeogramV3Request,
|
||||
IdeogramV3EditRequest,
|
||||
)
|
||||
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
)
|
||||
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_bytesio,
|
||||
bytesio_to_image_tensor,
|
||||
download_url_as_bytesio,
|
||||
resize_mask_to_image,
|
||||
sync_op,
|
||||
)
|
||||
from server import PromptServer
|
||||
|
||||
V1_V1_RES_MAP = {
|
||||
"Auto":"AUTO",
|
||||
@ -220,7 +214,7 @@ async def download_and_process_images(image_urls):
|
||||
|
||||
for image_url in image_urls:
|
||||
# Using functions from apinode_utils.py to handle downloading and processing
|
||||
image_bytesio = await download_url_to_bytesio(image_url) # Download image content to BytesIO
|
||||
image_bytesio = await download_url_as_bytesio(image_url) # Download image content to BytesIO
|
||||
img_tensor = bytesio_to_image_tensor(image_bytesio, mode="RGB") # Convert to torch.Tensor with RGB mode
|
||||
image_tensors.append(img_tensor)
|
||||
|
||||
@ -233,89 +227,76 @@ async def download_and_process_images(image_urls):
|
||||
return stacked_tensors
|
||||
|
||||
|
||||
def display_image_urls_on_node(image_urls, node_id):
|
||||
if node_id and image_urls:
|
||||
if len(image_urls) == 1:
|
||||
PromptServer.instance.send_progress_text(
|
||||
f"Generated Image URL:\n{image_urls[0]}", node_id
|
||||
)
|
||||
else:
|
||||
urls_text = "Generated Image URLs:\n" + "\n".join(
|
||||
f"{i+1}. {url}" for i, url in enumerate(image_urls)
|
||||
)
|
||||
PromptServer.instance.send_progress_text(urls_text, node_id)
|
||||
|
||||
|
||||
class IdeogramV1(comfy_io.ComfyNode):
|
||||
class IdeogramV1(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="IdeogramV1",
|
||||
display_name="Ideogram V1",
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V1 model.",
|
||||
is_api_node=True,
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt for the image generation",
|
||||
),
|
||||
comfy_io.Boolean.Input(
|
||||
IO.Boolean.Input(
|
||||
"turbo",
|
||||
default=False,
|
||||
tooltip="Whether to use turbo mode (faster generation, potentially lower quality)",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=list(V1_V2_RATIO_MAP.keys()),
|
||||
default="1:1",
|
||||
tooltip="The aspect ratio for image generation.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"magic_prompt_option",
|
||||
options=["AUTO", "ON", "OFF"],
|
||||
default="AUTO",
|
||||
tooltip="Determine if MagicPrompt should be used in generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
control_after_generate=True,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Description of what to exclude from the image",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"num_images",
|
||||
default=1,
|
||||
min=1,
|
||||
max=8,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
)
|
||||
|
||||
@ -334,77 +315,63 @@ class IdeogramV1(comfy_io.ComfyNode):
|
||||
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
|
||||
model = "V_1_TURBO" if turbo else "V_1"
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/ideogram/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=IdeogramGenerateRequest,
|
||||
response_model=IdeogramGenerateResponse,
|
||||
),
|
||||
request=IdeogramGenerateRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/ideogram/generate", method="POST"),
|
||||
response_model=IdeogramGenerateResponse,
|
||||
data=IdeogramGenerateRequest(
|
||||
image_request=ImageRequest(
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
num_images=num_images,
|
||||
seed=seed,
|
||||
aspect_ratio=aspect_ratio if aspect_ratio != "ASPECT_1_1" else None,
|
||||
magic_prompt_option=(
|
||||
magic_prompt_option if magic_prompt_option != "AUTO" else None
|
||||
),
|
||||
magic_prompt_option=(magic_prompt_option if magic_prompt_option != "AUTO" else None),
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
)
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
max_retries=1,
|
||||
)
|
||||
|
||||
response = await operation.execute()
|
||||
|
||||
if not response.data or len(response.data) == 0:
|
||||
raise Exception("No images were generated in the response")
|
||||
|
||||
image_urls = [image_data.url for image_data in response.data if image_data.url]
|
||||
|
||||
if not image_urls:
|
||||
raise Exception("No image URLs were generated in the response")
|
||||
|
||||
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
|
||||
return IO.NodeOutput(await download_and_process_images(image_urls))
|
||||
|
||||
|
||||
class IdeogramV2(comfy_io.ComfyNode):
|
||||
class IdeogramV2(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="IdeogramV2",
|
||||
display_name="Ideogram V2",
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V2 model.",
|
||||
is_api_node=True,
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt for the image generation",
|
||||
),
|
||||
comfy_io.Boolean.Input(
|
||||
IO.Boolean.Input(
|
||||
"turbo",
|
||||
default=False,
|
||||
tooltip="Whether to use turbo mode (faster generation, potentially lower quality)",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=list(V1_V2_RATIO_MAP.keys()),
|
||||
default="1:1",
|
||||
tooltip="The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=list(V1_V1_RES_MAP.keys()),
|
||||
default="Auto",
|
||||
@ -412,44 +379,44 @@ class IdeogramV2(comfy_io.ComfyNode):
|
||||
"If not set to AUTO, this overrides the aspect_ratio setting.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"magic_prompt_option",
|
||||
options=["AUTO", "ON", "OFF"],
|
||||
default="AUTO",
|
||||
tooltip="Determine if MagicPrompt should be used in generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
control_after_generate=True,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"style_type",
|
||||
options=["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
|
||||
default="NONE",
|
||||
tooltip="Style type for generation (V2 only)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Description of what to exclude from the image",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"num_images",
|
||||
default=1,
|
||||
min=1,
|
||||
max=8,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
#"color_palette": (
|
||||
@ -462,12 +429,12 @@ class IdeogramV2(comfy_io.ComfyNode):
|
||||
#),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
)
|
||||
|
||||
@ -500,18 +467,11 @@ class IdeogramV2(comfy_io.ComfyNode):
|
||||
else:
|
||||
final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/ideogram/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=IdeogramGenerateRequest,
|
||||
response_model=IdeogramGenerateResponse,
|
||||
),
|
||||
request=IdeogramGenerateRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/ideogram/generate", method="POST"),
|
||||
response_model=IdeogramGenerateResponse,
|
||||
data=IdeogramGenerateRequest(
|
||||
image_request=ImageRequest(
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
@ -519,36 +479,28 @@ class IdeogramV2(comfy_io.ComfyNode):
|
||||
seed=seed,
|
||||
aspect_ratio=final_aspect_ratio,
|
||||
resolution=final_resolution,
|
||||
magic_prompt_option=(
|
||||
magic_prompt_option if magic_prompt_option != "AUTO" else None
|
||||
),
|
||||
magic_prompt_option=(magic_prompt_option if magic_prompt_option != "AUTO" else None),
|
||||
style_type=style_type if style_type != "NONE" else None,
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
color_palette=color_palette if color_palette else None,
|
||||
)
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
max_retries=1,
|
||||
)
|
||||
|
||||
response = await operation.execute()
|
||||
|
||||
if not response.data or len(response.data) == 0:
|
||||
raise Exception("No images were generated in the response")
|
||||
|
||||
image_urls = [image_data.url for image_data in response.data if image_data.url]
|
||||
|
||||
if not image_urls:
|
||||
raise Exception("No image URLs were generated in the response")
|
||||
|
||||
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
|
||||
return IO.NodeOutput(await download_and_process_images(image_urls))
|
||||
|
||||
|
||||
class IdeogramV3(comfy_io.ComfyNode):
|
||||
class IdeogramV3(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="IdeogramV3",
|
||||
display_name="Ideogram V3",
|
||||
category="api node/image/Ideogram",
|
||||
@ -556,30 +508,30 @@ class IdeogramV3(comfy_io.ComfyNode):
|
||||
"Supports both regular image generation from text prompts and image editing with mask.",
|
||||
is_api_node=True,
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt for the image generation or editing",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="Optional reference image for image editing.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Mask.Input(
|
||||
IO.Mask.Input(
|
||||
"mask",
|
||||
tooltip="Optional mask for inpainting (white areas will be replaced)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=list(V3_RATIO_MAP.keys()),
|
||||
default="1:1",
|
||||
tooltip="The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=V3_RESOLUTIONS,
|
||||
default="Auto",
|
||||
@ -587,57 +539,57 @@ class IdeogramV3(comfy_io.ComfyNode):
|
||||
"If not set to Auto, this overrides the aspect_ratio setting.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"magic_prompt_option",
|
||||
options=["AUTO", "ON", "OFF"],
|
||||
default="AUTO",
|
||||
tooltip="Determine if MagicPrompt should be used in generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
control_after_generate=True,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"num_images",
|
||||
default=1,
|
||||
min=1,
|
||||
max=8,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"rendering_speed",
|
||||
options=["DEFAULT", "TURBO", "QUALITY"],
|
||||
default="DEFAULT",
|
||||
tooltip="Controls the trade-off between generation speed and quality",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"character_image",
|
||||
tooltip="Image to use as character reference.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Mask.Input(
|
||||
IO.Mask.Input(
|
||||
"character_mask",
|
||||
tooltip="Optional mask for character reference image.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
)
|
||||
|
||||
@ -656,10 +608,6 @@ class IdeogramV3(comfy_io.ComfyNode):
|
||||
character_image=None,
|
||||
character_mask=None,
|
||||
):
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
if rendering_speed == "BALANCED": # for backward compatibility
|
||||
rendering_speed = "DEFAULT"
|
||||
|
||||
@ -694,9 +642,6 @@ class IdeogramV3(comfy_io.ComfyNode):
|
||||
|
||||
# Check if both image and mask are provided for editing mode
|
||||
if image is not None and mask is not None:
|
||||
# Edit mode
|
||||
path = "/proxy/ideogram/ideogram-v3/edit"
|
||||
|
||||
# Process image and mask
|
||||
input_tensor = image.squeeze().cpu()
|
||||
# Resize mask to match image dimension
|
||||
@ -749,27 +694,20 @@ class IdeogramV3(comfy_io.ComfyNode):
|
||||
if character_mask_binary:
|
||||
files["character_mask_binary"] = character_mask_binary
|
||||
|
||||
# Execute the operation for edit mode
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=IdeogramV3EditRequest,
|
||||
response_model=IdeogramGenerateResponse,
|
||||
),
|
||||
request=edit_request,
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/ideogram/ideogram-v3/edit", method="POST"),
|
||||
response_model=IdeogramGenerateResponse,
|
||||
data=edit_request,
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
max_retries=1,
|
||||
)
|
||||
|
||||
elif image is not None or mask is not None:
|
||||
# If only one of image or mask is provided, raise an error
|
||||
raise Exception("Ideogram V3 image editing requires both an image AND a mask")
|
||||
else:
|
||||
# Generation mode
|
||||
path = "/proxy/ideogram/ideogram-v3/generate"
|
||||
|
||||
# Create generation request
|
||||
gen_request = IdeogramV3Request(
|
||||
prompt=prompt,
|
||||
@ -800,43 +738,34 @@ class IdeogramV3(comfy_io.ComfyNode):
|
||||
if files:
|
||||
gen_request.style_type = "AUTO"
|
||||
|
||||
# Execute the operation for generation mode
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=IdeogramV3Request,
|
||||
response_model=IdeogramGenerateResponse,
|
||||
),
|
||||
request=gen_request,
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/ideogram/ideogram-v3/generate", method="POST"),
|
||||
response_model=IdeogramGenerateResponse,
|
||||
data=gen_request,
|
||||
files=files if files else None,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
max_retries=1,
|
||||
)
|
||||
|
||||
# Execute the operation and process response
|
||||
response = await operation.execute()
|
||||
|
||||
if not response.data or len(response.data) == 0:
|
||||
raise Exception("No images were generated in the response")
|
||||
|
||||
image_urls = [image_data.url for image_data in response.data if image_data.url]
|
||||
|
||||
if not image_urls:
|
||||
raise Exception("No image URLs were generated in the response")
|
||||
|
||||
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
|
||||
return IO.NodeOutput(await download_and_process_images(image_urls))
|
||||
|
||||
|
||||
class IdeogramExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
IdeogramV1,
|
||||
IdeogramV2,
|
||||
IdeogramV3,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> IdeogramExtension:
|
||||
return IdeogramExtension()
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
199
comfy_api_nodes/nodes_ltxv.py
Normal file
199
comfy_api_nodes/nodes_ltxv.py
Normal file
@ -0,0 +1,199 @@
|
||||
from io import BytesIO
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.input_impl import VideoFromFile
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
get_number_of_images,
|
||||
sync_op_raw,
|
||||
upload_images_to_comfyapi,
|
||||
validate_string,
|
||||
)
|
||||
|
||||
MODELS_MAP = {
|
||||
"LTX-2 (Pro)": "ltx-2-pro",
|
||||
"LTX-2 (Fast)": "ltx-2-fast",
|
||||
}
|
||||
|
||||
|
||||
class ExecuteTaskRequest(BaseModel):
|
||||
prompt: str = Field(...)
|
||||
model: str = Field(...)
|
||||
duration: int = Field(...)
|
||||
resolution: str = Field(...)
|
||||
fps: Optional[int] = Field(25)
|
||||
generate_audio: Optional[bool] = Field(True)
|
||||
image_uri: Optional[str] = Field(None)
|
||||
|
||||
|
||||
class TextToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="LtxvApiTextToVideo",
|
||||
display_name="LTXV Text To Video",
|
||||
category="api node/video/LTXV",
|
||||
description="Professional-quality videos with customizable duration and resolution.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=list(MODELS_MAP.keys())),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
),
|
||||
IO.Combo.Input("duration", options=[6, 8, 10, 12, 14, 16, 18, 20], default=8),
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[
|
||||
"1920x1080",
|
||||
"2560x1440",
|
||||
"3840x2160",
|
||||
],
|
||||
),
|
||||
IO.Combo.Input("fps", options=[25, 50], default=25),
|
||||
IO.Boolean.Input(
|
||||
"generate_audio",
|
||||
default=False,
|
||||
optional=True,
|
||||
tooltip="When true, the generated video will include AI-generated audio matching the scene.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
duration: int,
|
||||
resolution: str,
|
||||
fps: int = 25,
|
||||
generate_audio: bool = False,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1, max_length=10000)
|
||||
if duration > 10 and (model != "LTX-2 (Fast)" or resolution != "1920x1080" or fps != 25):
|
||||
raise ValueError(
|
||||
"Durations over 10s are only available for the Fast model at 1920x1080 resolution and 25 FPS."
|
||||
)
|
||||
response = await sync_op_raw(
|
||||
cls,
|
||||
ApiEndpoint("/proxy/ltx/v1/text-to-video", "POST"),
|
||||
data=ExecuteTaskRequest(
|
||||
prompt=prompt,
|
||||
model=MODELS_MAP[model],
|
||||
duration=duration,
|
||||
resolution=resolution,
|
||||
fps=fps,
|
||||
generate_audio=generate_audio,
|
||||
),
|
||||
as_binary=True,
|
||||
max_retries=1,
|
||||
)
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(response)))
|
||||
|
||||
|
||||
class ImageToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="LtxvApiImageToVideo",
|
||||
display_name="LTXV Image To Video",
|
||||
category="api node/video/LTXV",
|
||||
description="Professional-quality videos with customizable duration and resolution based on start image.",
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="First frame to be used for the video."),
|
||||
IO.Combo.Input("model", options=list(MODELS_MAP.keys())),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
),
|
||||
IO.Combo.Input("duration", options=[6, 8, 10, 12, 14, 16, 18, 20], default=8),
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[
|
||||
"1920x1080",
|
||||
"2560x1440",
|
||||
"3840x2160",
|
||||
],
|
||||
),
|
||||
IO.Combo.Input("fps", options=[25, 50], default=25),
|
||||
IO.Boolean.Input(
|
||||
"generate_audio",
|
||||
default=False,
|
||||
optional=True,
|
||||
tooltip="When true, the generated video will include AI-generated audio matching the scene.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: torch.Tensor,
|
||||
model: str,
|
||||
prompt: str,
|
||||
duration: int,
|
||||
resolution: str,
|
||||
fps: int = 25,
|
||||
generate_audio: bool = False,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1, max_length=10000)
|
||||
if duration > 10 and (model != "LTX-2 (Fast)" or resolution != "1920x1080" or fps != 25):
|
||||
raise ValueError(
|
||||
"Durations over 10s are only available for the Fast model at 1920x1080 resolution and 25 FPS."
|
||||
)
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Currently only one input image is supported.")
|
||||
response = await sync_op_raw(
|
||||
cls,
|
||||
ApiEndpoint("/proxy/ltx/v1/image-to-video", "POST"),
|
||||
data=ExecuteTaskRequest(
|
||||
image_uri=(await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0],
|
||||
prompt=prompt,
|
||||
model=MODELS_MAP[model],
|
||||
duration=duration,
|
||||
resolution=resolution,
|
||||
fps=fps,
|
||||
generate_audio=generate_audio,
|
||||
),
|
||||
as_binary=True,
|
||||
max_retries=1,
|
||||
)
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(response)))
|
||||
|
||||
|
||||
class LtxvApiExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
TextToVideoNode,
|
||||
ImageToVideoNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> LtxvApiExtension:
|
||||
return LtxvApiExtension()
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,71 +1,57 @@
|
||||
from inspect import cleandoc
|
||||
from typing import Optional
|
||||
import logging
|
||||
import torch
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io as comfy_io
|
||||
from comfy_api.input_impl.video_types import VideoFromFile
|
||||
from comfy_api_nodes.apis import (
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis.minimax_api import (
|
||||
MinimaxFileRetrieveResponse,
|
||||
MiniMaxModel,
|
||||
MinimaxTaskResultResponse,
|
||||
MinimaxVideoGenerationRequest,
|
||||
MinimaxVideoGenerationResponse,
|
||||
MinimaxFileRetrieveResponse,
|
||||
MinimaxTaskResultResponse,
|
||||
SubjectReferenceItem,
|
||||
MiniMaxModel,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_bytesio,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_string,
|
||||
)
|
||||
from server import PromptServer
|
||||
|
||||
|
||||
I2V_AVERAGE_DURATION = 114
|
||||
T2V_AVERAGE_DURATION = 234
|
||||
|
||||
|
||||
async def _generate_mm_video(
|
||||
cls: type[IO.ComfyNode],
|
||||
*,
|
||||
auth: dict[str, str],
|
||||
node_id: str,
|
||||
prompt_text: str,
|
||||
seed: int,
|
||||
model: str,
|
||||
image: Optional[torch.Tensor] = None, # used for ImageToVideo
|
||||
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
|
||||
image: Optional[torch.Tensor] = None, # used for ImageToVideo
|
||||
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
|
||||
average_duration: Optional[int] = None,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
if image is None:
|
||||
validate_string(prompt_text, field_name="prompt_text")
|
||||
# upload image, if passed in
|
||||
image_url = None
|
||||
if image is not None:
|
||||
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth))[0]
|
||||
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
|
||||
|
||||
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
|
||||
subject_reference = None
|
||||
if subject is not None:
|
||||
subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=auth))[0]
|
||||
subject_url = (await upload_images_to_comfyapi(cls, subject, max_images=1))[0]
|
||||
subject_reference = [SubjectReferenceItem(image=subject_url)]
|
||||
|
||||
|
||||
video_generate_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/video_generation",
|
||||
method=HttpMethod.POST,
|
||||
request_model=MinimaxVideoGenerationRequest,
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
),
|
||||
request=MinimaxVideoGenerationRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"),
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
data=MinimaxVideoGenerationRequest(
|
||||
model=MiniMaxModel(model),
|
||||
prompt=prompt_text,
|
||||
callback_url=None,
|
||||
@ -73,95 +59,64 @@ async def _generate_mm_video(
|
||||
subject_reference=subject_reference,
|
||||
prompt_optimizer=None,
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response = await video_generate_operation.execute()
|
||||
|
||||
task_id = response.task_id
|
||||
if not task_id:
|
||||
raise Exception(f"MiniMax generation failed: {response.base_resp}")
|
||||
|
||||
video_generate_operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/query/video_generation",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
query_params={"task_id": task_id},
|
||||
),
|
||||
completed_statuses=["Success"],
|
||||
failed_statuses=["Fail"],
|
||||
task_result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}),
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
status_extractor=lambda x: x.status.value,
|
||||
estimated_duration=average_duration,
|
||||
node_id=node_id,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
task_result = await video_generate_operation.execute()
|
||||
|
||||
file_id = task_result.file_id
|
||||
if file_id is None:
|
||||
raise Exception("Request was not successful. Missing file ID.")
|
||||
file_retrieve_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/files/retrieve",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
query_params={"file_id": int(file_id)},
|
||||
),
|
||||
request=EmptyRequest(),
|
||||
auth_kwargs=auth,
|
||||
file_result = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}),
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
)
|
||||
file_result = await file_retrieve_operation.execute()
|
||||
|
||||
file_url = file_result.file.download_url
|
||||
if file_url is None:
|
||||
raise Exception(
|
||||
f"No video was found in the response. Full response: {file_result.model_dump()}"
|
||||
)
|
||||
logging.info("Generated video URL: %s", file_url)
|
||||
if node_id:
|
||||
if hasattr(file_result.file, "backup_download_url"):
|
||||
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
|
||||
else:
|
||||
message = f"Result URL: {file_url}"
|
||||
PromptServer.instance.send_progress_text(message, node_id)
|
||||
|
||||
# Download and return as VideoFromFile
|
||||
video_io = await download_url_to_bytesio(file_url)
|
||||
if video_io is None:
|
||||
error_msg = f"Failed to download video from {file_url}"
|
||||
logging.error(error_msg)
|
||||
raise Exception(error_msg)
|
||||
return comfy_io.NodeOutput(VideoFromFile(video_io))
|
||||
raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}")
|
||||
if file_result.file.backup_download_url:
|
||||
try:
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2))
|
||||
except Exception: # if we have a second URL to retrieve the result, try again using that one
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3)
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url))
|
||||
|
||||
|
||||
class MinimaxTextToVideoNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API.
|
||||
"""
|
||||
|
||||
class MinimaxTextToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxTextToVideoNode",
|
||||
display_name="MiniMax Text to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on a prompt, and optional parameters.",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt to guide the video generation",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["T2V-01", "T2V-01-Director"],
|
||||
default="T2V-01",
|
||||
tooltip="Model to use for video generation",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
@ -172,11 +127,11 @@ class MinimaxTextToVideoNode(comfy_io.ComfyNode):
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -187,13 +142,9 @@ class MinimaxTextToVideoNode(comfy_io.ComfyNode):
|
||||
prompt_text: str,
|
||||
model: str = "T2V-01",
|
||||
seed: int = 0,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
return await _generate_mm_video(
|
||||
auth={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
node_id=cls.hidden.unique_id,
|
||||
cls,
|
||||
prompt_text=prompt_text,
|
||||
seed=seed,
|
||||
model=model,
|
||||
@ -203,36 +154,32 @@ class MinimaxTextToVideoNode(comfy_io.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class MinimaxImageToVideoNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
|
||||
"""
|
||||
|
||||
class MinimaxImageToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxImageToVideoNode",
|
||||
display_name="MiniMax Image to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
|
||||
inputs=[
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="Image to use as first frame of video generation",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt to guide the video generation",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["I2V-01-Director", "I2V-01", "I2V-01-live"],
|
||||
default="I2V-01",
|
||||
tooltip="Model to use for video generation",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
@ -243,11 +190,11 @@ class MinimaxImageToVideoNode(comfy_io.ComfyNode):
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -259,13 +206,9 @@ class MinimaxImageToVideoNode(comfy_io.ComfyNode):
|
||||
prompt_text: str,
|
||||
model: str = "I2V-01",
|
||||
seed: int = 0,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
return await _generate_mm_video(
|
||||
auth={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
node_id=cls.hidden.unique_id,
|
||||
cls,
|
||||
prompt_text=prompt_text,
|
||||
seed=seed,
|
||||
model=model,
|
||||
@ -275,36 +218,32 @@ class MinimaxImageToVideoNode(comfy_io.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class MinimaxSubjectToVideoNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
|
||||
"""
|
||||
|
||||
class MinimaxSubjectToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxSubjectToVideoNode",
|
||||
display_name="MiniMax Subject to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
|
||||
inputs=[
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"subject",
|
||||
tooltip="Image of subject to reference for video generation",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt to guide the video generation",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["S2V-01"],
|
||||
default="S2V-01",
|
||||
tooltip="Model to use for video generation",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
@ -315,11 +254,11 @@ class MinimaxSubjectToVideoNode(comfy_io.ComfyNode):
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -331,13 +270,9 @@ class MinimaxSubjectToVideoNode(comfy_io.ComfyNode):
|
||||
prompt_text: str,
|
||||
model: str = "S2V-01",
|
||||
seed: int = 0,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
return await _generate_mm_video(
|
||||
auth={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
node_id=cls.hidden.unique_id,
|
||||
cls,
|
||||
prompt_text=prompt_text,
|
||||
seed=seed,
|
||||
model=model,
|
||||
@ -347,24 +282,22 @@ class MinimaxSubjectToVideoNode(comfy_io.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
|
||||
"""Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model."""
|
||||
|
||||
class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxHailuoVideoNode",
|
||||
display_name="MiniMax Hailuo Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model.",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt to guide the video generation.",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
@ -374,25 +307,25 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"first_frame_image",
|
||||
tooltip="Optional image to use as the first frame to generate a video.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Boolean.Input(
|
||||
IO.Boolean.Input(
|
||||
"prompt_optimizer",
|
||||
default=True,
|
||||
tooltip="Optimize prompt to improve generation quality when needed.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"duration",
|
||||
options=[6, 10],
|
||||
default=6,
|
||||
tooltip="The length of the output video in seconds.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=["768P", "1080P"],
|
||||
default="768P",
|
||||
@ -400,11 +333,11 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -419,11 +352,7 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
|
||||
duration: int = 6,
|
||||
resolution: str = "768P",
|
||||
model: str = "MiniMax-Hailuo-02",
|
||||
) -> comfy_io.NodeOutput:
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
) -> IO.NodeOutput:
|
||||
if first_frame_image is None:
|
||||
validate_string(prompt_text, field_name="prompt_text")
|
||||
|
||||
@ -435,16 +364,13 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
|
||||
# upload image, if passed in
|
||||
image_url = None
|
||||
if first_frame_image is not None:
|
||||
image_url = (await upload_images_to_comfyapi(first_frame_image, max_images=1, auth_kwargs=auth))[0]
|
||||
image_url = (await upload_images_to_comfyapi(cls, first_frame_image, max_images=1))[0]
|
||||
|
||||
video_generate_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/video_generation",
|
||||
method=HttpMethod.POST,
|
||||
request_model=MinimaxVideoGenerationRequest,
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
),
|
||||
request=MinimaxVideoGenerationRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"),
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
data=MinimaxVideoGenerationRequest(
|
||||
model=MiniMaxModel(model),
|
||||
prompt=prompt_text,
|
||||
callback_url=None,
|
||||
@ -453,72 +379,47 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
|
||||
duration=duration,
|
||||
resolution=resolution,
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response = await video_generate_operation.execute()
|
||||
|
||||
task_id = response.task_id
|
||||
if not task_id:
|
||||
raise Exception(f"MiniMax generation failed: {response.base_resp}")
|
||||
|
||||
average_duration = 120 if resolution == "768P" else 240
|
||||
video_generate_operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/query/video_generation",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
query_params={"task_id": task_id},
|
||||
),
|
||||
completed_statuses=["Success"],
|
||||
failed_statuses=["Fail"],
|
||||
task_result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}),
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
status_extractor=lambda x: x.status.value,
|
||||
estimated_duration=average_duration,
|
||||
node_id=cls.hidden.unique_id,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
task_result = await video_generate_operation.execute()
|
||||
|
||||
file_id = task_result.file_id
|
||||
if file_id is None:
|
||||
raise Exception("Request was not successful. Missing file ID.")
|
||||
file_retrieve_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/files/retrieve",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
query_params={"file_id": int(file_id)},
|
||||
),
|
||||
request=EmptyRequest(),
|
||||
auth_kwargs=auth,
|
||||
file_result = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}),
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
)
|
||||
file_result = await file_retrieve_operation.execute()
|
||||
|
||||
file_url = file_result.file.download_url
|
||||
if file_url is None:
|
||||
raise Exception(
|
||||
f"No video was found in the response. Full response: {file_result.model_dump()}"
|
||||
)
|
||||
logging.info(f"Generated video URL: {file_url}")
|
||||
if cls.hidden.unique_id:
|
||||
if hasattr(file_result.file, "backup_download_url"):
|
||||
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
|
||||
else:
|
||||
message = f"Result URL: {file_url}"
|
||||
PromptServer.instance.send_progress_text(message, cls.hidden.unique_id)
|
||||
raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}")
|
||||
|
||||
video_io = await download_url_to_bytesio(file_url)
|
||||
if video_io is None:
|
||||
error_msg = f"Failed to download video from {file_url}"
|
||||
logging.error(error_msg)
|
||||
raise Exception(error_msg)
|
||||
return comfy_io.NodeOutput(VideoFromFile(video_io))
|
||||
if file_result.file.backup_download_url:
|
||||
try:
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2))
|
||||
except Exception: # if we have a second URL to retrieve the result, try again using that one
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3)
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url))
|
||||
|
||||
|
||||
class MinimaxExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
MinimaxTextToVideoNode,
|
||||
MinimaxImageToVideoNode,
|
||||
|
||||
@ -1,37 +1,30 @@
|
||||
import logging
|
||||
from typing import Any, Callable, Optional, TypeVar
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
from comfy_api_nodes.util.validation_utils import (
|
||||
get_image_dimensions,
|
||||
validate_image_dimensions,
|
||||
)
|
||||
|
||||
|
||||
from comfy_api_nodes.apis import (
|
||||
MoonvalleyTextToVideoRequest,
|
||||
MoonvalleyTextToVideoInferenceParams,
|
||||
MoonvalleyVideoToVideoInferenceParams,
|
||||
MoonvalleyVideoToVideoRequest,
|
||||
MoonvalleyPromptResponse,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_video_output,
|
||||
upload_images_to_comfyapi,
|
||||
upload_video_to_comfyapi,
|
||||
)
|
||||
|
||||
from comfy_api.input import VideoInput
|
||||
from comfy_api.latest import ComfyExtension, InputImpl, io as comfy_io
|
||||
import av
|
||||
import io
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis import (
|
||||
MoonvalleyPromptResponse,
|
||||
MoonvalleyTextToVideoInferenceParams,
|
||||
MoonvalleyTextToVideoRequest,
|
||||
MoonvalleyVideoToVideoInferenceParams,
|
||||
MoonvalleyVideoToVideoRequest,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
trim_video,
|
||||
upload_images_to_comfyapi,
|
||||
upload_video_to_comfyapi,
|
||||
validate_container_format_is_mp4,
|
||||
validate_image_dimensions,
|
||||
validate_string,
|
||||
)
|
||||
|
||||
API_UPLOADS_ENDPOINT = "/proxy/moonvalley/uploads"
|
||||
API_PROMPTS_ENDPOINT = "/proxy/moonvalley/prompts"
|
||||
@ -54,13 +47,6 @@ MAX_VID_HEIGHT = 10000
|
||||
MAX_VIDEO_SIZE = 1024 * 1024 * 1024 # 1 GB max for in-memory video processing
|
||||
|
||||
MOONVALLEY_MAREY_MAX_PROMPT_LENGTH = 5000
|
||||
R = TypeVar("R")
|
||||
|
||||
|
||||
class MoonvalleyApiError(Exception):
|
||||
"""Base exception for Moonvalley API errors."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def is_valid_task_creation_response(response: MoonvalleyPromptResponse) -> bool:
|
||||
@ -72,105 +58,7 @@ def validate_task_creation_response(response) -> None:
|
||||
if not is_valid_task_creation_response(response):
|
||||
error_msg = f"Moonvalley Marey API: Initial request failed. Code: {response.code}, Message: {response.message}, Data: {response}"
|
||||
logging.error(error_msg)
|
||||
raise MoonvalleyApiError(error_msg)
|
||||
|
||||
|
||||
def get_video_from_response(response):
|
||||
video = response.output_url
|
||||
logging.info(
|
||||
"Moonvalley Marey API: Task %s succeeded. Video URL: %s", response.id, video
|
||||
)
|
||||
return video
|
||||
|
||||
|
||||
def get_video_url_from_response(response) -> Optional[str]:
|
||||
"""Returns the first video url from the Moonvalley video generation task result.
|
||||
Will not raise an error if the response is not valid.
|
||||
"""
|
||||
if response:
|
||||
return str(get_video_from_response(response))
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
async def poll_until_finished(
|
||||
auth_kwargs: dict[str, str],
|
||||
api_endpoint: ApiEndpoint[Any, R],
|
||||
result_url_extractor: Optional[Callable[[R], str]] = None,
|
||||
node_id: Optional[str] = None,
|
||||
) -> R:
|
||||
"""Polls the Moonvalley API endpoint until the task reaches a terminal state, then returns the response."""
|
||||
return await PollingOperation(
|
||||
poll_endpoint=api_endpoint,
|
||||
completed_statuses=[
|
||||
"completed",
|
||||
],
|
||||
max_poll_attempts=240, # 64 minutes with 16s interval
|
||||
poll_interval=16.0,
|
||||
failed_statuses=["error"],
|
||||
status_extractor=lambda response: (
|
||||
response.status if response and response.status else None
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
result_url_extractor=result_url_extractor,
|
||||
node_id=node_id,
|
||||
).execute()
|
||||
|
||||
|
||||
def validate_prompts(
|
||||
prompt: str, negative_prompt: str, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH
|
||||
):
|
||||
"""Verifies that the prompt isn't empty and that neither prompt is too long."""
|
||||
if not prompt:
|
||||
raise ValueError("Positive prompt is empty")
|
||||
if len(prompt) > max_length:
|
||||
raise ValueError(f"Positive prompt is too long: {len(prompt)} characters")
|
||||
if negative_prompt and len(negative_prompt) > max_length:
|
||||
raise ValueError(
|
||||
f"Negative prompt is too long: {len(negative_prompt)} characters"
|
||||
)
|
||||
return True
|
||||
|
||||
|
||||
def validate_input_media(width, height, with_frame_conditioning, num_frames_in=None):
|
||||
# inference validation
|
||||
# T = num_frames
|
||||
# in all cases, the following must be true: T divisible by 16 and H,W by 8. in addition...
|
||||
# with image conditioning: H*W must be divisible by 8192
|
||||
# without image conditioning: T divisible by 32
|
||||
if num_frames_in and not num_frames_in % 16 == 0:
|
||||
return False, ("The input video total frame count must be divisible by 16!")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
return False, (
|
||||
f"Height ({height}) and width ({width}) must be " "divisible by 8"
|
||||
)
|
||||
|
||||
if with_frame_conditioning:
|
||||
if (height * width) % 8192 != 0:
|
||||
return False, (
|
||||
f"Height * width ({height * width}) must be "
|
||||
"divisible by 8192 for frame conditioning"
|
||||
)
|
||||
else:
|
||||
if num_frames_in and not num_frames_in % 32 == 0:
|
||||
return False, ("The input video total frame count must be divisible by 32!")
|
||||
|
||||
|
||||
def validate_input_image(
|
||||
image: torch.Tensor, with_frame_conditioning: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
Validates the input image adheres to the expectations of the API:
|
||||
- The image resolution should not be less than 300*300px
|
||||
- The aspect ratio of the image should be between 1:2.5 ~ 2.5:1
|
||||
|
||||
"""
|
||||
height, width = get_image_dimensions(image)
|
||||
validate_input_media(width, height, with_frame_conditioning)
|
||||
validate_image_dimensions(
|
||||
image, min_width=300, min_height=300, max_height=MAX_HEIGHT, max_width=MAX_WIDTH
|
||||
)
|
||||
raise RuntimeError(error_msg)
|
||||
|
||||
|
||||
def validate_video_to_video_input(video: VideoInput) -> VideoInput:
|
||||
@ -189,7 +77,7 @@ def validate_video_to_video_input(video: VideoInput) -> VideoInput:
|
||||
"""
|
||||
width, height = _get_video_dimensions(video)
|
||||
_validate_video_dimensions(width, height)
|
||||
_validate_container_format(video)
|
||||
validate_container_format_is_mp4(video)
|
||||
|
||||
return _validate_and_trim_duration(video)
|
||||
|
||||
@ -214,21 +102,8 @@ def _validate_video_dimensions(width: int, height: int) -> None:
|
||||
}
|
||||
|
||||
if (width, height) not in supported_resolutions:
|
||||
supported_list = ", ".join(
|
||||
[f"{w}x{h}" for w, h in sorted(supported_resolutions)]
|
||||
)
|
||||
raise ValueError(
|
||||
f"Resolution {width}x{height} not supported. Supported: {supported_list}"
|
||||
)
|
||||
|
||||
|
||||
def _validate_container_format(video: VideoInput) -> None:
|
||||
"""Validates video container format is MP4."""
|
||||
container_format = video.get_container_format()
|
||||
if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]:
|
||||
raise ValueError(
|
||||
f"Only MP4 container format supported. Got: {container_format}"
|
||||
)
|
||||
supported_list = ", ".join([f"{w}x{h}" for w, h in sorted(supported_resolutions)])
|
||||
raise ValueError(f"Resolution {width}x{height} not supported. Supported: {supported_list}")
|
||||
|
||||
|
||||
def _validate_and_trim_duration(video: VideoInput) -> VideoInput:
|
||||
@ -241,7 +116,7 @@ def _validate_and_trim_duration(video: VideoInput) -> VideoInput:
|
||||
def _validate_minimum_duration(duration: float) -> None:
|
||||
"""Ensures video is at least 5 seconds long."""
|
||||
if duration < 5:
|
||||
raise MoonvalleyApiError("Input video must be at least 5 seconds long.")
|
||||
raise ValueError("Input video must be at least 5 seconds long.")
|
||||
|
||||
|
||||
def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput:
|
||||
@ -251,127 +126,6 @@ def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput:
|
||||
return video
|
||||
|
||||
|
||||
def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
|
||||
"""
|
||||
Returns a new VideoInput object trimmed from the beginning to the specified duration,
|
||||
using av to avoid loading entire video into memory.
|
||||
|
||||
Args:
|
||||
video: Input video to trim
|
||||
duration_sec: Duration in seconds to keep from the beginning
|
||||
|
||||
Returns:
|
||||
VideoFromFile object that owns the output buffer
|
||||
"""
|
||||
output_buffer = io.BytesIO()
|
||||
|
||||
input_container = None
|
||||
output_container = None
|
||||
|
||||
try:
|
||||
# Get the stream source - this avoids loading entire video into memory
|
||||
# when the source is already a file path
|
||||
input_source = video.get_stream_source()
|
||||
|
||||
# Open containers
|
||||
input_container = av.open(input_source, mode="r")
|
||||
output_container = av.open(output_buffer, mode="w", format="mp4")
|
||||
|
||||
# Set up output streams for re-encoding
|
||||
video_stream = None
|
||||
audio_stream = None
|
||||
|
||||
for stream in input_container.streams:
|
||||
logging.info(f"Found stream: type={stream.type}, class={type(stream)}")
|
||||
if isinstance(stream, av.VideoStream):
|
||||
# Create output video stream with same parameters
|
||||
video_stream = output_container.add_stream(
|
||||
"h264", rate=stream.average_rate
|
||||
)
|
||||
video_stream.width = stream.width
|
||||
video_stream.height = stream.height
|
||||
video_stream.pix_fmt = "yuv420p"
|
||||
logging.info(
|
||||
f"Added video stream: {stream.width}x{stream.height} @ {stream.average_rate}fps"
|
||||
)
|
||||
elif isinstance(stream, av.AudioStream):
|
||||
# Create output audio stream with same parameters
|
||||
audio_stream = output_container.add_stream(
|
||||
"aac", rate=stream.sample_rate
|
||||
)
|
||||
audio_stream.sample_rate = stream.sample_rate
|
||||
audio_stream.layout = stream.layout
|
||||
logging.info(
|
||||
f"Added audio stream: {stream.sample_rate}Hz, {stream.channels} channels"
|
||||
)
|
||||
|
||||
# Calculate target frame count that's divisible by 16
|
||||
fps = input_container.streams.video[0].average_rate
|
||||
estimated_frames = int(duration_sec * fps)
|
||||
target_frames = (
|
||||
estimated_frames // 16
|
||||
) * 16 # Round down to nearest multiple of 16
|
||||
|
||||
if target_frames == 0:
|
||||
raise ValueError("Video too short: need at least 16 frames for Moonvalley")
|
||||
|
||||
frame_count = 0
|
||||
audio_frame_count = 0
|
||||
|
||||
# Decode and re-encode video frames
|
||||
if video_stream:
|
||||
for frame in input_container.decode(video=0):
|
||||
if frame_count >= target_frames:
|
||||
break
|
||||
|
||||
# Re-encode frame
|
||||
for packet in video_stream.encode(frame):
|
||||
output_container.mux(packet)
|
||||
frame_count += 1
|
||||
|
||||
# Flush encoder
|
||||
for packet in video_stream.encode():
|
||||
output_container.mux(packet)
|
||||
|
||||
logging.info(
|
||||
f"Encoded {frame_count} video frames (target: {target_frames})"
|
||||
)
|
||||
|
||||
# Decode and re-encode audio frames
|
||||
if audio_stream:
|
||||
input_container.seek(0) # Reset to beginning for audio
|
||||
for frame in input_container.decode(audio=0):
|
||||
if frame.time >= duration_sec:
|
||||
break
|
||||
|
||||
# Re-encode frame
|
||||
for packet in audio_stream.encode(frame):
|
||||
output_container.mux(packet)
|
||||
audio_frame_count += 1
|
||||
|
||||
# Flush encoder
|
||||
for packet in audio_stream.encode():
|
||||
output_container.mux(packet)
|
||||
|
||||
logging.info(f"Encoded {audio_frame_count} audio frames")
|
||||
|
||||
# Close containers
|
||||
output_container.close()
|
||||
input_container.close()
|
||||
|
||||
# Return as VideoFromFile using the buffer
|
||||
output_buffer.seek(0)
|
||||
return InputImpl.VideoFromFile(output_buffer)
|
||||
|
||||
except Exception as e:
|
||||
# Clean up on error
|
||||
if input_container is not None:
|
||||
input_container.close()
|
||||
if output_container is not None:
|
||||
output_container.close()
|
||||
raise RuntimeError(f"Failed to trim video: {str(e)}") from e
|
||||
|
||||
|
||||
def parse_width_height_from_res(resolution: str):
|
||||
# Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict
|
||||
res_map = {
|
||||
@ -380,7 +134,7 @@ def parse_width_height_from_res(resolution: str):
|
||||
"1:1 (1152 x 1152)": {"width": 1152, "height": 1152},
|
||||
"4:3 (1536 x 1152)": {"width": 1536, "height": 1152},
|
||||
"3:4 (1152 x 1536)": {"width": 1152, "height": 1536},
|
||||
"21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
|
||||
# "21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
|
||||
}
|
||||
return res_map.get(resolution, {"width": 1920, "height": 1080})
|
||||
|
||||
@ -395,52 +149,47 @@ def parse_control_parameter(value):
|
||||
return control_map.get(value, control_map["Motion Transfer"])
|
||||
|
||||
|
||||
async def get_response(
|
||||
task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
|
||||
) -> MoonvalleyPromptResponse:
|
||||
return await poll_until_finished(
|
||||
auth_kwargs,
|
||||
ApiEndpoint(
|
||||
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
),
|
||||
result_url_extractor=get_video_url_from_response,
|
||||
node_id=node_id,
|
||||
async def get_response(cls: type[IO.ComfyNode], task_id: str) -> MoonvalleyPromptResponse:
|
||||
return await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"{API_PROMPTS_ENDPOINT}/{task_id}"),
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
status_extractor=lambda r: (r.status if r and r.status else None),
|
||||
poll_interval=16.0,
|
||||
max_poll_attempts=240,
|
||||
)
|
||||
|
||||
|
||||
class MoonvalleyImg2VideoNode(comfy_io.ComfyNode):
|
||||
class MoonvalleyImg2VideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MoonvalleyImg2VideoNode",
|
||||
display_name="Moonvalley Marey Image to Video",
|
||||
category="api node/video/Moonvalley Marey",
|
||||
description="Moonvalley Marey Image to Video Node",
|
||||
inputs=[
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="The reference image used to generate the video",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, "
|
||||
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
|
||||
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
|
||||
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
|
||||
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
|
||||
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
||||
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
|
||||
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
|
||||
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
|
||||
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
|
||||
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
||||
tooltip="Negative prompt text",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[
|
||||
"16:9 (1920 x 1080)",
|
||||
@ -448,42 +197,43 @@ class MoonvalleyImg2VideoNode(comfy_io.ComfyNode):
|
||||
"1:1 (1152 x 1152)",
|
||||
"4:3 (1536 x 1152)",
|
||||
"3:4 (1152 x 1536)",
|
||||
"21:9 (2560 x 1080)",
|
||||
# "21:9 (2560 x 1080)",
|
||||
],
|
||||
default="16:9 (1920 x 1080)",
|
||||
tooltip="Resolution of the output video",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"prompt_adherence",
|
||||
default=10.0,
|
||||
default=4.5,
|
||||
min=1.0,
|
||||
max=20.0,
|
||||
step=1.0,
|
||||
tooltip="Guidance scale for generation control",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=9,
|
||||
min=0,
|
||||
max=4294967295,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Random seed value",
|
||||
control_after_generate=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"steps",
|
||||
default=100,
|
||||
default=33,
|
||||
min=1,
|
||||
max=100,
|
||||
step=1,
|
||||
tooltip="Number of denoising steps",
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -498,108 +248,87 @@ class MoonvalleyImg2VideoNode(comfy_io.ComfyNode):
|
||||
prompt_adherence: float,
|
||||
seed: int,
|
||||
steps: int,
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_input_image(image, True)
|
||||
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
) -> IO.NodeOutput:
|
||||
validate_image_dimensions(image, min_width=300, min_height=300, max_height=MAX_HEIGHT, max_width=MAX_WIDTH)
|
||||
validate_string(prompt, min_length=1, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
validate_string(negative_prompt, field_name="negative_prompt", max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
width_height = parse_width_height_from_res(resolution)
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
inference_params = MoonvalleyTextToVideoInferenceParams(
|
||||
negative_prompt=negative_prompt,
|
||||
steps=steps,
|
||||
seed=seed,
|
||||
guidance_scale=prompt_adherence,
|
||||
num_frames=128,
|
||||
width=width_height["width"],
|
||||
height=width_height["height"],
|
||||
use_negative_prompts=True,
|
||||
)
|
||||
"""Upload image to comfy backend to have a URL available for further processing"""
|
||||
|
||||
# Get MIME type from tensor - assuming PNG format for image tensors
|
||||
mime_type = "image/png"
|
||||
|
||||
image_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
image, max_images=1, auth_kwargs=auth, mime_type=mime_type
|
||||
)
|
||||
)[0]
|
||||
|
||||
request = MoonvalleyTextToVideoRequest(
|
||||
image_url=image_url, prompt_text=prompt, inference_params=inference_params
|
||||
)
|
||||
initial_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=API_IMG2VIDEO_ENDPOINT,
|
||||
method=HttpMethod.POST,
|
||||
request_model=MoonvalleyTextToVideoRequest,
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type=mime_type))[0]
|
||||
task_creation_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=API_IMG2VIDEO_ENDPOINT, method="POST"),
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
data=MoonvalleyTextToVideoRequest(
|
||||
image_url=image_url, prompt_text=prompt, inference_params=inference_params
|
||||
),
|
||||
request=request,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
task_creation_response = await initial_operation.execute()
|
||||
validate_task_creation_response(task_creation_response)
|
||||
task_id = task_creation_response.id
|
||||
|
||||
final_response = await get_response(
|
||||
task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id
|
||||
)
|
||||
final_response = await get_response(cls, task_creation_response.id)
|
||||
video = await download_url_to_video_output(final_response.output_url)
|
||||
return comfy_io.NodeOutput(video)
|
||||
return IO.NodeOutput(video)
|
||||
|
||||
|
||||
class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode):
|
||||
class MoonvalleyVideo2VideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MoonvalleyVideo2VideoNode",
|
||||
display_name="Moonvalley Marey Video to Video",
|
||||
category="api node/video/Moonvalley Marey",
|
||||
description="",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="Describes the video to generate",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, "
|
||||
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
|
||||
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
|
||||
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
|
||||
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
|
||||
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
||||
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
|
||||
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
|
||||
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
|
||||
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
|
||||
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
||||
tooltip="Negative prompt text",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=9,
|
||||
min=0,
|
||||
max=4294967295,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Random seed value",
|
||||
control_after_generate=False,
|
||||
),
|
||||
comfy_io.Video.Input(
|
||||
IO.Video.Input(
|
||||
"video",
|
||||
tooltip="The reference video used to generate the output video. Must be at least 5 seconds long. "
|
||||
"Videos longer than 5s will be automatically trimmed. Only MP4 format supported.",
|
||||
"Videos longer than 5s will be automatically trimmed. Only MP4 format supported.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"control_type",
|
||||
options=["Motion Transfer", "Pose Transfer"],
|
||||
default="Motion Transfer",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"motion_intensity",
|
||||
default=100,
|
||||
min=0,
|
||||
@ -608,12 +337,21 @@ class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode):
|
||||
tooltip="Only used if control_type is 'Motion Transfer'",
|
||||
optional=True,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"steps",
|
||||
default=33,
|
||||
min=1,
|
||||
max=100,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Number of inference steps",
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -627,17 +365,13 @@ class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode):
|
||||
video: Optional[VideoInput] = None,
|
||||
control_type: str = "Motion Transfer",
|
||||
motion_intensity: Optional[int] = 100,
|
||||
) -> comfy_io.NodeOutput:
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
steps=33,
|
||||
prompt_adherence=4.5,
|
||||
) -> IO.NodeOutput:
|
||||
validated_video = validate_video_to_video_input(video)
|
||||
video_url = await upload_video_to_comfyapi(validated_video, auth_kwargs=auth)
|
||||
|
||||
"""Validate prompts and inference input"""
|
||||
validate_prompts(prompt, negative_prompt)
|
||||
video_url = await upload_video_to_comfyapi(cls, validated_video)
|
||||
validate_string(prompt, min_length=1, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
validate_string(negative_prompt, field_name="negative_prompt", max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
|
||||
# Only include motion_intensity for Motion Transfer
|
||||
control_params = {}
|
||||
@ -648,65 +382,52 @@ class MoonvalleyVideo2VideoNode(comfy_io.ComfyNode):
|
||||
negative_prompt=negative_prompt,
|
||||
seed=seed,
|
||||
control_params=control_params,
|
||||
steps=steps,
|
||||
guidance_scale=prompt_adherence,
|
||||
)
|
||||
|
||||
control = parse_control_parameter(control_type)
|
||||
|
||||
request = MoonvalleyVideoToVideoRequest(
|
||||
control_type=control,
|
||||
video_url=video_url,
|
||||
prompt_text=prompt,
|
||||
inference_params=inference_params,
|
||||
)
|
||||
|
||||
initial_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=API_VIDEO2VIDEO_ENDPOINT,
|
||||
method=HttpMethod.POST,
|
||||
request_model=MoonvalleyVideoToVideoRequest,
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
task_creation_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=API_VIDEO2VIDEO_ENDPOINT, method="POST"),
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
data=MoonvalleyVideoToVideoRequest(
|
||||
control_type=parse_control_parameter(control_type),
|
||||
video_url=video_url,
|
||||
prompt_text=prompt,
|
||||
inference_params=inference_params,
|
||||
),
|
||||
request=request,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
task_creation_response = await initial_operation.execute()
|
||||
validate_task_creation_response(task_creation_response)
|
||||
task_id = task_creation_response.id
|
||||
|
||||
final_response = await get_response(
|
||||
task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id
|
||||
)
|
||||
|
||||
video = await download_url_to_video_output(final_response.output_url)
|
||||
return comfy_io.NodeOutput(video)
|
||||
final_response = await get_response(cls, task_creation_response.id)
|
||||
return IO.NodeOutput(await download_url_to_video_output(final_response.output_url))
|
||||
|
||||
|
||||
class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode):
|
||||
class MoonvalleyTxt2VideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> comfy_io.Schema:
|
||||
return comfy_io.Schema(
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MoonvalleyTxt2VideoNode",
|
||||
display_name="Moonvalley Marey Text to Video",
|
||||
category="api node/video/Moonvalley Marey",
|
||||
description="",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, "
|
||||
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
|
||||
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
|
||||
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
|
||||
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
|
||||
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
||||
"artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, "
|
||||
"flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, "
|
||||
"cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, "
|
||||
"blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, "
|
||||
"wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
||||
tooltip="Negative prompt text",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[
|
||||
"16:9 (1920 x 1080)",
|
||||
@ -719,37 +440,38 @@ class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode):
|
||||
default="16:9 (1920 x 1080)",
|
||||
tooltip="Resolution of the output video",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"prompt_adherence",
|
||||
default=10.0,
|
||||
default=4.0,
|
||||
min=1.0,
|
||||
max=20.0,
|
||||
step=1.0,
|
||||
tooltip="Guidance scale for generation control",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=9,
|
||||
min=0,
|
||||
max=4294967295,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Random seed value",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"steps",
|
||||
default=100,
|
||||
default=33,
|
||||
min=1,
|
||||
max=100,
|
||||
step=1,
|
||||
tooltip="Inference steps",
|
||||
),
|
||||
],
|
||||
outputs=[comfy_io.Video.Output()],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -763,15 +485,11 @@ class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode):
|
||||
prompt_adherence: float,
|
||||
seed: int,
|
||||
steps: int,
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
validate_string(negative_prompt, field_name="negative_prompt", max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
||||
width_height = parse_width_height_from_res(resolution)
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
inference_params = MoonvalleyTextToVideoInferenceParams(
|
||||
negative_prompt=negative_prompt,
|
||||
steps=steps,
|
||||
@ -781,35 +499,21 @@ class MoonvalleyTxt2VideoNode(comfy_io.ComfyNode):
|
||||
width=width_height["width"],
|
||||
height=width_height["height"],
|
||||
)
|
||||
request = MoonvalleyTextToVideoRequest(
|
||||
prompt_text=prompt, inference_params=inference_params
|
||||
)
|
||||
|
||||
init_op = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=API_TXT2VIDEO_ENDPOINT,
|
||||
method=HttpMethod.POST,
|
||||
request_model=MoonvalleyTextToVideoRequest,
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
),
|
||||
request=request,
|
||||
auth_kwargs=auth,
|
||||
task_creation_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=API_TXT2VIDEO_ENDPOINT, method="POST"),
|
||||
response_model=MoonvalleyPromptResponse,
|
||||
data=MoonvalleyTextToVideoRequest(prompt_text=prompt, inference_params=inference_params),
|
||||
)
|
||||
task_creation_response = await init_op.execute()
|
||||
validate_task_creation_response(task_creation_response)
|
||||
task_id = task_creation_response.id
|
||||
|
||||
final_response = await get_response(
|
||||
task_id, auth_kwargs=auth, node_id=cls.hidden.unique_id
|
||||
)
|
||||
|
||||
video = await download_url_to_video_output(final_response.output_url)
|
||||
return comfy_io.NodeOutput(video)
|
||||
final_response = await get_response(cls, task_creation_response.id)
|
||||
return IO.NodeOutput(await download_url_to_video_output(final_response.output_url))
|
||||
|
||||
|
||||
class MoonvalleyExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
MoonvalleyImg2VideoNode,
|
||||
MoonvalleyTxt2VideoNode,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,6 @@
|
||||
from inspect import cleandoc
|
||||
from typing import Optional
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis.pixverse_api import (
|
||||
PixverseTextVideoRequest,
|
||||
PixverseImageVideoRequest,
|
||||
@ -15,157 +16,123 @@ from comfy_api_nodes.apis.pixverse_api import (
|
||||
PixverseIO,
|
||||
pixverse_templates,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
tensor_to_bytesio,
|
||||
validate_string,
|
||||
)
|
||||
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
|
||||
from comfy_api.input_impl import VideoFromFile
|
||||
|
||||
import torch
|
||||
import aiohttp
|
||||
from io import BytesIO
|
||||
|
||||
|
||||
AVERAGE_DURATION_T2V = 32
|
||||
AVERAGE_DURATION_I2V = 30
|
||||
AVERAGE_DURATION_T2T = 52
|
||||
|
||||
|
||||
def get_video_url_from_response(
|
||||
response: PixverseGenerationStatusResponse,
|
||||
) -> Optional[str]:
|
||||
if response.Resp is None or response.Resp.url is None:
|
||||
return None
|
||||
return str(response.Resp.url)
|
||||
|
||||
|
||||
async def upload_image_to_pixverse(image: torch.Tensor, auth_kwargs=None):
|
||||
# first, upload image to Pixverse and get image id to use in actual generation call
|
||||
files = {"image": tensor_to_bytesio(image)}
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/pixverse/image/upload",
|
||||
method=HttpMethod.POST,
|
||||
request_model=EmptyRequest,
|
||||
response_model=PixverseImageUploadResponse,
|
||||
),
|
||||
request=EmptyRequest(),
|
||||
files=files,
|
||||
async def upload_image_to_pixverse(cls: type[IO.ComfyNode], image: torch.Tensor):
|
||||
response_upload = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/pixverse/image/upload", method="POST"),
|
||||
response_model=PixverseImageUploadResponse,
|
||||
files={"image": tensor_to_bytesio(image)},
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_upload: PixverseImageUploadResponse = await operation.execute()
|
||||
|
||||
if response_upload.Resp is None:
|
||||
raise Exception(
|
||||
f"PixVerse image upload request failed: '{response_upload.ErrMsg}'"
|
||||
)
|
||||
|
||||
raise Exception(f"PixVerse image upload request failed: '{response_upload.ErrMsg}'")
|
||||
return response_upload.Resp.img_id
|
||||
|
||||
|
||||
class PixverseTemplateNode:
|
||||
class PixverseTemplateNode(IO.ComfyNode):
|
||||
"""
|
||||
Select template for PixVerse Video generation.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (PixverseIO.TEMPLATE,)
|
||||
RETURN_NAMES = ("pixverse_template",)
|
||||
FUNCTION = "create_template"
|
||||
CATEGORY = "api node/video/PixVerse"
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="PixverseTemplateNode",
|
||||
display_name="PixVerse Template",
|
||||
category="api node/video/PixVerse",
|
||||
inputs=[
|
||||
IO.Combo.Input("template", options=list(pixverse_templates.keys())),
|
||||
],
|
||||
outputs=[IO.Custom(PixverseIO.TEMPLATE).Output(display_name="pixverse_template")],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"template": (list(pixverse_templates.keys()),),
|
||||
}
|
||||
}
|
||||
|
||||
def create_template(self, template: str):
|
||||
def execute(cls, template: str) -> IO.NodeOutput:
|
||||
template_id = pixverse_templates.get(template, None)
|
||||
if template_id is None:
|
||||
raise Exception(f"Template '{template}' is not recognized.")
|
||||
# just return the integer
|
||||
return (template_id,)
|
||||
return IO.NodeOutput(template_id)
|
||||
|
||||
|
||||
class PixverseTextToVideoNode(ComfyNodeABC):
|
||||
"""
|
||||
Generates videos based on prompt and output_size.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/video/PixVerse"
|
||||
class PixverseTextToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="PixverseTextToVideoNode",
|
||||
display_name="PixVerse Text to Video",
|
||||
category="api node/video/PixVerse",
|
||||
description="Generates videos based on prompt and output_size.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt for the video generation",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=PixverseAspectRatio,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"quality",
|
||||
options=PixverseQuality,
|
||||
default=PixverseQuality.res_540p,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"duration_seconds",
|
||||
options=PixverseDuration,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"motion_mode",
|
||||
options=PixverseMotionMode,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="An optional text description of undesired elements on an image.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Custom(PixverseIO.TEMPLATE).Input(
|
||||
"pixverse_template",
|
||||
tooltip="An optional template to influence style of generation, created by the PixVerse Template node.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Prompt for the video generation",
|
||||
},
|
||||
),
|
||||
"aspect_ratio": ([ratio.value for ratio in PixverseAspectRatio],),
|
||||
"quality": (
|
||||
[resolution.value for resolution in PixverseQuality],
|
||||
{
|
||||
"default": PixverseQuality.res_540p,
|
||||
},
|
||||
),
|
||||
"duration_seconds": ([dur.value for dur in PixverseDuration],),
|
||||
"motion_mode": ([mode.value for mode in PixverseMotionMode],),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 2147483647,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "Seed for video generation.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "An optional text description of undesired elements on an image.",
|
||||
},
|
||||
),
|
||||
"pixverse_template": (
|
||||
PixverseIO.TEMPLATE,
|
||||
{
|
||||
"tooltip": "An optional template to influence style of generation, created by the PixVerse Template node."
|
||||
},
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
aspect_ratio: str,
|
||||
quality: str,
|
||||
@ -174,10 +141,8 @@ class PixverseTextToVideoNode(ComfyNodeABC):
|
||||
seed,
|
||||
negative_prompt: str = None,
|
||||
pixverse_template: int = None,
|
||||
unique_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False, min_length=1)
|
||||
# 1080p is limited to 5 seconds duration
|
||||
# only normal motion_mode supported for 1080p or for non-5 second duration
|
||||
if quality == PixverseQuality.res_1080p:
|
||||
@ -186,14 +151,11 @@ class PixverseTextToVideoNode(ComfyNodeABC):
|
||||
elif duration_seconds != PixverseDuration.dur_5:
|
||||
motion_mode = PixverseMotionMode.normal
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/pixverse/video/text/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=PixverseTextVideoRequest,
|
||||
response_model=PixverseVideoResponse,
|
||||
),
|
||||
request=PixverseTextVideoRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/pixverse/video/text/generate", method="POST"),
|
||||
response_model=PixverseVideoResponse,
|
||||
data=PixverseTextVideoRequest(
|
||||
prompt=prompt,
|
||||
aspect_ratio=aspect_ratio,
|
||||
quality=quality,
|
||||
@ -203,20 +165,14 @@ class PixverseTextToVideoNode(ComfyNodeABC):
|
||||
template_id=pixverse_template,
|
||||
seed=seed,
|
||||
),
|
||||
auth_kwargs=kwargs,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.Resp is None:
|
||||
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=PixverseGenerationStatusResponse,
|
||||
),
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"),
|
||||
response_model=PixverseGenerationStatusResponse,
|
||||
completed_statuses=[PixverseStatus.successful],
|
||||
failed_statuses=[
|
||||
PixverseStatus.contents_moderation,
|
||||
@ -224,86 +180,73 @@ class PixverseTextToVideoNode(ComfyNodeABC):
|
||||
PixverseStatus.deleted,
|
||||
],
|
||||
status_extractor=lambda x: x.Resp.status,
|
||||
auth_kwargs=kwargs,
|
||||
node_id=unique_id,
|
||||
result_url_extractor=get_video_url_from_response,
|
||||
estimated_duration=AVERAGE_DURATION_T2V,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.Resp.url) as vid_response:
|
||||
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
|
||||
|
||||
|
||||
class PixverseImageToVideoNode(ComfyNodeABC):
|
||||
"""
|
||||
Generates videos based on prompt and output_size.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/video/PixVerse"
|
||||
class PixverseImageToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="PixverseImageToVideoNode",
|
||||
display_name="PixVerse Image to Video",
|
||||
category="api node/video/PixVerse",
|
||||
description="Generates videos based on prompt and output_size.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt for the video generation",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"quality",
|
||||
options=PixverseQuality,
|
||||
default=PixverseQuality.res_540p,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"duration_seconds",
|
||||
options=PixverseDuration,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"motion_mode",
|
||||
options=PixverseMotionMode,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="An optional text description of undesired elements on an image.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Custom(PixverseIO.TEMPLATE).Input(
|
||||
"pixverse_template",
|
||||
tooltip="An optional template to influence style of generation, created by the PixVerse Template node.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": (IO.IMAGE,),
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Prompt for the video generation",
|
||||
},
|
||||
),
|
||||
"quality": (
|
||||
[resolution.value for resolution in PixverseQuality],
|
||||
{
|
||||
"default": PixverseQuality.res_540p,
|
||||
},
|
||||
),
|
||||
"duration_seconds": ([dur.value for dur in PixverseDuration],),
|
||||
"motion_mode": ([mode.value for mode in PixverseMotionMode],),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 2147483647,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "Seed for video generation.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "An optional text description of undesired elements on an image.",
|
||||
},
|
||||
),
|
||||
"pixverse_template": (
|
||||
PixverseIO.TEMPLATE,
|
||||
{
|
||||
"tooltip": "An optional template to influence style of generation, created by the PixVerse Template node."
|
||||
},
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
async def execute(
|
||||
cls,
|
||||
image: torch.Tensor,
|
||||
prompt: str,
|
||||
quality: str,
|
||||
@ -312,11 +255,9 @@ class PixverseImageToVideoNode(ComfyNodeABC):
|
||||
seed,
|
||||
negative_prompt: str = None,
|
||||
pixverse_template: int = None,
|
||||
unique_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
img_id = await upload_image_to_pixverse(image, auth_kwargs=kwargs)
|
||||
img_id = await upload_image_to_pixverse(cls, image)
|
||||
|
||||
# 1080p is limited to 5 seconds duration
|
||||
# only normal motion_mode supported for 1080p or for non-5 second duration
|
||||
@ -326,14 +267,11 @@ class PixverseImageToVideoNode(ComfyNodeABC):
|
||||
elif duration_seconds != PixverseDuration.dur_5:
|
||||
motion_mode = PixverseMotionMode.normal
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/pixverse/video/img/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=PixverseImageVideoRequest,
|
||||
response_model=PixverseVideoResponse,
|
||||
),
|
||||
request=PixverseImageVideoRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/pixverse/video/img/generate", method="POST"),
|
||||
response_model=PixverseVideoResponse,
|
||||
data=PixverseImageVideoRequest(
|
||||
img_id=img_id,
|
||||
prompt=prompt,
|
||||
quality=quality,
|
||||
@ -343,20 +281,15 @@ class PixverseImageToVideoNode(ComfyNodeABC):
|
||||
template_id=pixverse_template,
|
||||
seed=seed,
|
||||
),
|
||||
auth_kwargs=kwargs,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.Resp is None:
|
||||
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=PixverseGenerationStatusResponse,
|
||||
),
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"),
|
||||
response_model=PixverseGenerationStatusResponse,
|
||||
completed_statuses=[PixverseStatus.successful],
|
||||
failed_statuses=[
|
||||
PixverseStatus.contents_moderation,
|
||||
@ -364,81 +297,69 @@ class PixverseImageToVideoNode(ComfyNodeABC):
|
||||
PixverseStatus.deleted,
|
||||
],
|
||||
status_extractor=lambda x: x.Resp.status,
|
||||
auth_kwargs=kwargs,
|
||||
node_id=unique_id,
|
||||
result_url_extractor=get_video_url_from_response,
|
||||
estimated_duration=AVERAGE_DURATION_I2V,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.Resp.url) as vid_response:
|
||||
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
|
||||
|
||||
|
||||
class PixverseTransitionVideoNode(ComfyNodeABC):
|
||||
"""
|
||||
Generates videos based on prompt and output_size.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/video/PixVerse"
|
||||
class PixverseTransitionVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="PixverseTransitionVideoNode",
|
||||
display_name="PixVerse Transition Video",
|
||||
category="api node/video/PixVerse",
|
||||
description="Generates videos based on prompt and output_size.",
|
||||
inputs=[
|
||||
IO.Image.Input("first_frame"),
|
||||
IO.Image.Input("last_frame"),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt for the video generation",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"quality",
|
||||
options=PixverseQuality,
|
||||
default=PixverseQuality.res_540p,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"duration_seconds",
|
||||
options=PixverseDuration,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"motion_mode",
|
||||
options=PixverseMotionMode,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="An optional text description of undesired elements on an image.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"first_frame": (IO.IMAGE,),
|
||||
"last_frame": (IO.IMAGE,),
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Prompt for the video generation",
|
||||
},
|
||||
),
|
||||
"quality": (
|
||||
[resolution.value for resolution in PixverseQuality],
|
||||
{
|
||||
"default": PixverseQuality.res_540p,
|
||||
},
|
||||
),
|
||||
"duration_seconds": ([dur.value for dur in PixverseDuration],),
|
||||
"motion_mode": ([mode.value for mode in PixverseMotionMode],),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 2147483647,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "Seed for video generation.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "An optional text description of undesired elements on an image.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
async def execute(
|
||||
cls,
|
||||
first_frame: torch.Tensor,
|
||||
last_frame: torch.Tensor,
|
||||
prompt: str,
|
||||
@ -447,12 +368,10 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
|
||||
motion_mode: str,
|
||||
seed,
|
||||
negative_prompt: str = None,
|
||||
unique_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
first_frame_id = await upload_image_to_pixverse(first_frame, auth_kwargs=kwargs)
|
||||
last_frame_id = await upload_image_to_pixverse(last_frame, auth_kwargs=kwargs)
|
||||
first_frame_id = await upload_image_to_pixverse(cls, first_frame)
|
||||
last_frame_id = await upload_image_to_pixverse(cls, last_frame)
|
||||
|
||||
# 1080p is limited to 5 seconds duration
|
||||
# only normal motion_mode supported for 1080p or for non-5 second duration
|
||||
@ -462,14 +381,11 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
|
||||
elif duration_seconds != PixverseDuration.dur_5:
|
||||
motion_mode = PixverseMotionMode.normal
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/pixverse/video/transition/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=PixverseTransitionVideoRequest,
|
||||
response_model=PixverseVideoResponse,
|
||||
),
|
||||
request=PixverseTransitionVideoRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/pixverse/video/transition/generate", method="POST"),
|
||||
response_model=PixverseVideoResponse,
|
||||
data=PixverseTransitionVideoRequest(
|
||||
first_frame_img=first_frame_id,
|
||||
last_frame_img=last_frame_id,
|
||||
prompt=prompt,
|
||||
@ -479,20 +395,15 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
seed=seed,
|
||||
),
|
||||
auth_kwargs=kwargs,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.Resp is None:
|
||||
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=PixverseGenerationStatusResponse,
|
||||
),
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"),
|
||||
response_model=PixverseGenerationStatusResponse,
|
||||
completed_statuses=[PixverseStatus.successful],
|
||||
failed_statuses=[
|
||||
PixverseStatus.contents_moderation,
|
||||
@ -500,28 +411,21 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
|
||||
PixverseStatus.deleted,
|
||||
],
|
||||
status_extractor=lambda x: x.Resp.status,
|
||||
auth_kwargs=kwargs,
|
||||
node_id=unique_id,
|
||||
result_url_extractor=get_video_url_from_response,
|
||||
estimated_duration=AVERAGE_DURATION_T2V,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.Resp.url) as vid_response:
|
||||
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"PixverseTextToVideoNode": PixverseTextToVideoNode,
|
||||
"PixverseImageToVideoNode": PixverseImageToVideoNode,
|
||||
"PixverseTransitionVideoNode": PixverseTransitionVideoNode,
|
||||
"PixverseTemplateNode": PixverseTemplateNode,
|
||||
}
|
||||
class PixVerseExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
PixverseTextToVideoNode,
|
||||
PixverseImageToVideoNode,
|
||||
PixverseTransitionVideoNode,
|
||||
PixverseTemplateNode,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"PixverseTextToVideoNode": "PixVerse Text to Video",
|
||||
"PixverseImageToVideoNode": "PixVerse Image to Video",
|
||||
"PixverseTransitionVideoNode": "PixVerse Transition Video",
|
||||
"PixverseTemplateNode": "PixVerse Template",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> PixVerseExtension:
|
||||
return PixVerseExtension()
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -5,17 +5,14 @@ Rodin API docs: https://developer.hyper3d.ai/
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
from inspect import cleandoc
|
||||
from comfy.comfy_types.node_typing import IO
|
||||
import folder_paths as comfy_paths
|
||||
import aiohttp
|
||||
import os
|
||||
import datetime
|
||||
import asyncio
|
||||
import io
|
||||
import logging
|
||||
import math
|
||||
from typing import Optional
|
||||
from io import BytesIO
|
||||
from typing_extensions import override
|
||||
from PIL import Image
|
||||
from comfy_api_nodes.apis.rodin_api import (
|
||||
Rodin3DGenerateRequest,
|
||||
@ -26,540 +23,498 @@ from comfy_api_nodes.apis.rodin_api import (
|
||||
Rodin3DDownloadResponse,
|
||||
JobStatus,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
sync_op,
|
||||
poll_op,
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
download_url_to_bytesio,
|
||||
)
|
||||
from comfy_api.latest import ComfyExtension, IO
|
||||
|
||||
|
||||
COMMON_PARAMETERS = {
|
||||
"Seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default":0,
|
||||
"min":0,
|
||||
"max":65535,
|
||||
"display":"number"
|
||||
}
|
||||
COMMON_PARAMETERS = [
|
||||
IO.Int.Input(
|
||||
"Seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=65535,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
"Material_Type": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"options": ["PBR", "Shaded"],
|
||||
"default": "PBR"
|
||||
}
|
||||
IO.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True),
|
||||
IO.Combo.Input(
|
||||
"Polygon_count",
|
||||
options=["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "200K-Triangle"],
|
||||
default="18K-Quad",
|
||||
optional=True,
|
||||
),
|
||||
"Polygon_count": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"options": ["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "200K-Triangle"],
|
||||
"default": "18K-Quad"
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
def get_quality_mode(poly_count):
|
||||
polycount = poly_count.split("-")
|
||||
poly = polycount[1]
|
||||
count = polycount[0]
|
||||
if poly == "Triangle":
|
||||
mesh_mode = "Raw"
|
||||
elif poly == "Quad":
|
||||
mesh_mode = "Quad"
|
||||
else:
|
||||
mesh_mode = "Quad"
|
||||
|
||||
if count == "4K":
|
||||
quality_override = 4000
|
||||
elif count == "8K":
|
||||
quality_override = 8000
|
||||
elif count == "18K":
|
||||
quality_override = 18000
|
||||
elif count == "50K":
|
||||
quality_override = 50000
|
||||
elif count == "2K":
|
||||
quality_override = 2000
|
||||
elif count == "20K":
|
||||
quality_override = 20000
|
||||
elif count == "150K":
|
||||
quality_override = 150000
|
||||
elif count == "500K":
|
||||
quality_override = 500000
|
||||
else:
|
||||
quality_override = 18000
|
||||
|
||||
return mesh_mode, quality_override
|
||||
|
||||
|
||||
def tensor_to_filelike(tensor, max_pixels: int = 2048*2048):
|
||||
"""
|
||||
Converts a PyTorch tensor to a file-like object.
|
||||
|
||||
Args:
|
||||
- tensor (torch.Tensor): A tensor representing an image of shape (H, W, C)
|
||||
where C is the number of channels (3 for RGB), H is height, and W is width.
|
||||
|
||||
Returns:
|
||||
- io.BytesIO: A file-like object containing the image data.
|
||||
"""
|
||||
array = tensor.cpu().numpy()
|
||||
array = (array * 255).astype('uint8')
|
||||
image = Image.fromarray(array, 'RGB')
|
||||
|
||||
original_width, original_height = image.size
|
||||
original_pixels = original_width * original_height
|
||||
if original_pixels > max_pixels:
|
||||
scale = math.sqrt(max_pixels / original_pixels)
|
||||
new_width = int(original_width * scale)
|
||||
new_height = int(original_height * scale)
|
||||
else:
|
||||
new_width, new_height = original_width, original_height
|
||||
|
||||
if new_width != original_width or new_height != original_height:
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
|
||||
img_byte_arr = BytesIO()
|
||||
image.save(img_byte_arr, format='PNG') # PNG is used for lossless compression
|
||||
img_byte_arr.seek(0)
|
||||
return img_byte_arr
|
||||
|
||||
|
||||
async def create_generate_task(
|
||||
cls: type[IO.ComfyNode],
|
||||
images=None,
|
||||
seed=1,
|
||||
material="PBR",
|
||||
quality_override=18000,
|
||||
tier="Regular",
|
||||
mesh_mode="Quad",
|
||||
ta_pose: bool = False,
|
||||
):
|
||||
if images is None:
|
||||
raise Exception("Rodin 3D generate requires at least 1 image.")
|
||||
if len(images) > 5:
|
||||
raise Exception("Rodin 3D generate requires up to 5 image.")
|
||||
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/rodin/api/v2/rodin", method="POST"),
|
||||
response_model=Rodin3DGenerateResponse,
|
||||
data=Rodin3DGenerateRequest(
|
||||
seed=seed,
|
||||
tier=tier,
|
||||
material=material,
|
||||
quality_override=quality_override,
|
||||
mesh_mode=mesh_mode,
|
||||
TAPose=ta_pose,
|
||||
),
|
||||
files=[
|
||||
(
|
||||
"images",
|
||||
open(image, "rb") if isinstance(image, str) else tensor_to_filelike(image)
|
||||
)
|
||||
for image in images if image is not None
|
||||
],
|
||||
content_type="multipart/form-data",
|
||||
)
|
||||
}
|
||||
|
||||
def create_task_error(response: Rodin3DGenerateResponse):
|
||||
"""Check if the response has error"""
|
||||
return hasattr(response, "error")
|
||||
if hasattr(response, "error"):
|
||||
error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}"
|
||||
logging.error(error_message)
|
||||
raise Exception(error_message)
|
||||
|
||||
logging.info("[ Rodin3D API - Submit Jobs ] Submit Generate Task Success!")
|
||||
subscription_key = response.jobs.subscription_key
|
||||
task_uuid = response.uuid
|
||||
logging.info("[ Rodin3D API - Submit Jobs ] UUID: %s", task_uuid)
|
||||
return task_uuid, subscription_key
|
||||
|
||||
|
||||
class Rodin3DAPI:
|
||||
"""
|
||||
Generate 3D Assets using Rodin API
|
||||
"""
|
||||
RETURN_TYPES = (IO.STRING,)
|
||||
RETURN_NAMES = ("3D Model Path",)
|
||||
CATEGORY = "api node/3d/Rodin"
|
||||
DESCRIPTION = cleandoc(__doc__ or "")
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
def check_rodin_status(response: Rodin3DCheckStatusResponse) -> str:
|
||||
all_done = all(job.status == JobStatus.Done for job in response.jobs)
|
||||
status_list = [str(job.status) for job in response.jobs]
|
||||
logging.info("[ Rodin3D API - CheckStatus ] Generate Status: %s", status_list)
|
||||
if any(job.status == JobStatus.Failed for job in response.jobs):
|
||||
logging.error("[ Rodin3D API - CheckStatus ] Generate Failed: %s, Please try again.", status_list)
|
||||
raise Exception("[ Rodin3D API ] Generate Failed, Please Try again.")
|
||||
if all_done:
|
||||
return "DONE"
|
||||
return "Generating"
|
||||
|
||||
def tensor_to_filelike(self, tensor, max_pixels: int = 2048*2048):
|
||||
"""
|
||||
Converts a PyTorch tensor to a file-like object.
|
||||
|
||||
Args:
|
||||
- tensor (torch.Tensor): A tensor representing an image of shape (H, W, C)
|
||||
where C is the number of channels (3 for RGB), H is height, and W is width.
|
||||
|
||||
Returns:
|
||||
- io.BytesIO: A file-like object containing the image data.
|
||||
"""
|
||||
array = tensor.cpu().numpy()
|
||||
array = (array * 255).astype('uint8')
|
||||
image = Image.fromarray(array, 'RGB')
|
||||
|
||||
original_width, original_height = image.size
|
||||
original_pixels = original_width * original_height
|
||||
if original_pixels > max_pixels:
|
||||
scale = math.sqrt(max_pixels / original_pixels)
|
||||
new_width = int(original_width * scale)
|
||||
new_height = int(original_height * scale)
|
||||
else:
|
||||
new_width, new_height = original_width, original_height
|
||||
|
||||
if new_width != original_width or new_height != original_height:
|
||||
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
|
||||
img_byte_arr = io.BytesIO()
|
||||
image.save(img_byte_arr, format='PNG') # PNG is used for lossless compression
|
||||
img_byte_arr.seek(0)
|
||||
return img_byte_arr
|
||||
|
||||
def check_rodin_status(self, response: Rodin3DCheckStatusResponse) -> str:
|
||||
has_failed = any(job.status == JobStatus.Failed for job in response.jobs)
|
||||
all_done = all(job.status == JobStatus.Done for job in response.jobs)
|
||||
status_list = [str(job.status) for job in response.jobs]
|
||||
logging.info(f"[ Rodin3D API - CheckStatus ] Generate Status: {status_list}")
|
||||
if has_failed:
|
||||
logging.error(f"[ Rodin3D API - CheckStatus ] Generate Failed: {status_list}, Please try again.")
|
||||
raise Exception("[ Rodin3D API ] Generate Failed, Please Try again.")
|
||||
elif all_done:
|
||||
return "DONE"
|
||||
else:
|
||||
return "Generating"
|
||||
|
||||
async def create_generate_task(self, images=None, seed=1, material="PBR", quality_override=18000, tier="Regular", mesh_mode="Quad", TAPose = False, **kwargs):
|
||||
if images is None:
|
||||
raise Exception("Rodin 3D generate requires at least 1 image.")
|
||||
if len(images) > 5:
|
||||
raise Exception("Rodin 3D generate requires up to 5 image.")
|
||||
|
||||
path = "/proxy/rodin/api/v2/rodin"
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=Rodin3DGenerateRequest,
|
||||
response_model=Rodin3DGenerateResponse,
|
||||
),
|
||||
request=Rodin3DGenerateRequest(
|
||||
seed=seed,
|
||||
tier=tier,
|
||||
material=material,
|
||||
quality_override=quality_override,
|
||||
mesh_mode=mesh_mode,
|
||||
TAPose=TAPose,
|
||||
),
|
||||
files=[
|
||||
(
|
||||
"images",
|
||||
open(image, "rb") if isinstance(image, str) else self.tensor_to_filelike(image)
|
||||
)
|
||||
for image in images if image is not None
|
||||
],
|
||||
content_type = "multipart/form-data",
|
||||
auth_kwargs=kwargs,
|
||||
)
|
||||
|
||||
response = await operation.execute()
|
||||
|
||||
if create_task_error(response):
|
||||
error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}"
|
||||
logging.error(error_message)
|
||||
raise Exception(error_message)
|
||||
|
||||
logging.info("[ Rodin3D API - Submit Jobs ] Submit Generate Task Success!")
|
||||
subscription_key = response.jobs.subscription_key
|
||||
task_uuid = response.uuid
|
||||
logging.info(f"[ Rodin3D API - Submit Jobs ] UUID: {task_uuid}")
|
||||
return task_uuid, subscription_key
|
||||
|
||||
async def poll_for_task_status(self, subscription_key, **kwargs) -> Rodin3DCheckStatusResponse:
|
||||
|
||||
path = "/proxy/rodin/api/v2/status"
|
||||
|
||||
poll_operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path = path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=Rodin3DCheckStatusRequest,
|
||||
response_model=Rodin3DCheckStatusResponse,
|
||||
),
|
||||
request=Rodin3DCheckStatusRequest(
|
||||
subscription_key = subscription_key
|
||||
),
|
||||
completed_statuses=["DONE"],
|
||||
failed_statuses=["FAILED"],
|
||||
status_extractor=self.check_rodin_status,
|
||||
poll_interval=3.0,
|
||||
auth_kwargs=kwargs,
|
||||
)
|
||||
|
||||
logging.info("[ Rodin3D API - CheckStatus ] Generate Start!")
|
||||
|
||||
return await poll_operation.execute()
|
||||
|
||||
async def get_rodin_download_list(self, uuid, **kwargs) -> Rodin3DDownloadResponse:
|
||||
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
|
||||
|
||||
path = "/proxy/rodin/api/v2/download"
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=Rodin3DDownloadRequest,
|
||||
response_model=Rodin3DDownloadResponse,
|
||||
),
|
||||
request=Rodin3DDownloadRequest(
|
||||
task_uuid=uuid
|
||||
),
|
||||
auth_kwargs=kwargs
|
||||
)
|
||||
|
||||
return await operation.execute()
|
||||
|
||||
def get_quality_mode(self, poly_count):
|
||||
polycount = poly_count.split("-")
|
||||
poly = polycount[1]
|
||||
count = polycount[0]
|
||||
if poly == "Triangle":
|
||||
mesh_mode = "Raw"
|
||||
elif poly == "Quad":
|
||||
mesh_mode = "Quad"
|
||||
else:
|
||||
mesh_mode = "Quad"
|
||||
|
||||
if count == "4K":
|
||||
quality_override = 4000
|
||||
elif count == "8K":
|
||||
quality_override = 8000
|
||||
elif count == "18K":
|
||||
quality_override = 18000
|
||||
elif count == "50K":
|
||||
quality_override = 50000
|
||||
elif count == "2K":
|
||||
quality_override = 2000
|
||||
elif count == "20K":
|
||||
quality_override = 20000
|
||||
elif count == "150K":
|
||||
quality_override = 150000
|
||||
elif count == "500K":
|
||||
quality_override = 500000
|
||||
else:
|
||||
quality_override = 18000
|
||||
|
||||
return mesh_mode, quality_override
|
||||
|
||||
async def download_files(self, url_list):
|
||||
save_path = os.path.join(comfy_paths.get_output_directory(), "Rodin3D", datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
model_file_path = None
|
||||
async with aiohttp.ClientSession() as session:
|
||||
for i in url_list.list:
|
||||
url = i.url
|
||||
file_name = i.name
|
||||
file_path = os.path.join(save_path, file_name)
|
||||
if file_path.endswith(".glb"):
|
||||
model_file_path = file_path
|
||||
logging.info(f"[ Rodin3D API - download_files ] Downloading file: {file_path}")
|
||||
max_retries = 5
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
async with session.get(url) as resp:
|
||||
resp.raise_for_status()
|
||||
with open(file_path, "wb") as f:
|
||||
async for chunk in resp.content.iter_chunked(32 * 1024):
|
||||
f.write(chunk)
|
||||
break
|
||||
except Exception as e:
|
||||
logging.info(f"[ Rodin3D API - download_files ] Error downloading {file_path}:{e}")
|
||||
if attempt < max_retries - 1:
|
||||
logging.info("Retrying...")
|
||||
await asyncio.sleep(2)
|
||||
else:
|
||||
logging.info(
|
||||
"[ Rodin3D API - download_files ] Failed to download %s after %s attempts.",
|
||||
file_path,
|
||||
max_retries,
|
||||
)
|
||||
|
||||
return model_file_path
|
||||
def extract_progress(response: Rodin3DCheckStatusResponse) -> Optional[int]:
|
||||
if not response.jobs:
|
||||
return None
|
||||
completed_count = sum(1 for job in response.jobs if job.status == JobStatus.Done)
|
||||
return int((completed_count / len(response.jobs)) * 100)
|
||||
|
||||
|
||||
class Rodin3D_Regular(Rodin3DAPI):
|
||||
async def poll_for_task_status(subscription_key: str, cls: type[IO.ComfyNode]) -> Rodin3DCheckStatusResponse:
|
||||
logging.info("[ Rodin3D API - CheckStatus ] Generate Start!")
|
||||
return await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/rodin/api/v2/status", method="POST"),
|
||||
response_model=Rodin3DCheckStatusResponse,
|
||||
data=Rodin3DCheckStatusRequest(subscription_key=subscription_key),
|
||||
status_extractor=check_rodin_status,
|
||||
progress_extractor=extract_progress,
|
||||
)
|
||||
|
||||
|
||||
async def get_rodin_download_list(uuid: str, cls: type[IO.ComfyNode]) -> Rodin3DDownloadResponse:
|
||||
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
|
||||
return await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/rodin/api/v2/download", method="POST"),
|
||||
response_model=Rodin3DDownloadResponse,
|
||||
data=Rodin3DDownloadRequest(task_uuid=uuid),
|
||||
monitor_progress=False,
|
||||
)
|
||||
|
||||
|
||||
async def download_files(url_list, task_uuid: str):
|
||||
result_folder_name = f"Rodin3D_{task_uuid}"
|
||||
save_path = os.path.join(comfy_paths.get_output_directory(), result_folder_name)
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
model_file_path = None
|
||||
for i in url_list.list:
|
||||
file_path = os.path.join(save_path, i.name)
|
||||
if file_path.endswith(".glb"):
|
||||
model_file_path = os.path.join(result_folder_name, i.name)
|
||||
await download_url_to_bytesio(i.url, file_path)
|
||||
return model_file_path
|
||||
|
||||
|
||||
class Rodin3D_Regular(IO.ComfyNode):
|
||||
"""Generate 3D Assets using Rodin API"""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"Images":
|
||||
(
|
||||
IO.IMAGE,
|
||||
{
|
||||
"forceInput":True,
|
||||
}
|
||||
)
|
||||
},
|
||||
"optional": {
|
||||
**COMMON_PARAMETERS
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="Rodin3D_Regular",
|
||||
display_name="Rodin 3D Generate - Regular Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
*COMMON_PARAMETERS,
|
||||
],
|
||||
outputs=[IO.String.Output(display_name="3D Model Path")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
Images,
|
||||
Seed,
|
||||
Material_Type,
|
||||
Polygon_count,
|
||||
**kwargs
|
||||
):
|
||||
) -> IO.NodeOutput:
|
||||
tier = "Regular"
|
||||
num_images = Images.shape[0]
|
||||
m_images = []
|
||||
for i in range(num_images):
|
||||
m_images.append(Images[i])
|
||||
mesh_mode, quality_override = self.get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
|
||||
quality_override=quality_override, tier=tier, mesh_mode=mesh_mode,
|
||||
**kwargs)
|
||||
await self.poll_for_task_status(subscription_key, **kwargs)
|
||||
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
|
||||
model = await self.download_files(download_list)
|
||||
mesh_mode, quality_override = get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await create_generate_task(
|
||||
cls,
|
||||
images=m_images,
|
||||
seed=Seed,
|
||||
material=Material_Type,
|
||||
quality_override=quality_override,
|
||||
tier=tier,
|
||||
mesh_mode=mesh_mode,
|
||||
)
|
||||
await poll_for_task_status(subscription_key, cls)
|
||||
download_list = await get_rodin_download_list(task_uuid, cls)
|
||||
model = await download_files(download_list, task_uuid)
|
||||
|
||||
return (model,)
|
||||
return IO.NodeOutput(model)
|
||||
|
||||
|
||||
class Rodin3D_Detail(Rodin3DAPI):
|
||||
class Rodin3D_Detail(IO.ComfyNode):
|
||||
"""Generate 3D Assets using Rodin API"""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"Images":
|
||||
(
|
||||
IO.IMAGE,
|
||||
{
|
||||
"forceInput":True,
|
||||
}
|
||||
)
|
||||
},
|
||||
"optional": {
|
||||
**COMMON_PARAMETERS
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="Rodin3D_Detail",
|
||||
display_name="Rodin 3D Generate - Detail Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
*COMMON_PARAMETERS,
|
||||
],
|
||||
outputs=[IO.String.Output(display_name="3D Model Path")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
Images,
|
||||
Seed,
|
||||
Material_Type,
|
||||
Polygon_count,
|
||||
**kwargs
|
||||
):
|
||||
) -> IO.NodeOutput:
|
||||
tier = "Detail"
|
||||
num_images = Images.shape[0]
|
||||
m_images = []
|
||||
for i in range(num_images):
|
||||
m_images.append(Images[i])
|
||||
mesh_mode, quality_override = self.get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
|
||||
quality_override=quality_override, tier=tier, mesh_mode=mesh_mode,
|
||||
**kwargs)
|
||||
await self.poll_for_task_status(subscription_key, **kwargs)
|
||||
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
|
||||
model = await self.download_files(download_list)
|
||||
mesh_mode, quality_override = get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await create_generate_task(
|
||||
cls,
|
||||
images=m_images,
|
||||
seed=Seed,
|
||||
material=Material_Type,
|
||||
quality_override=quality_override,
|
||||
tier=tier,
|
||||
mesh_mode=mesh_mode,
|
||||
)
|
||||
await poll_for_task_status(subscription_key, cls)
|
||||
download_list = await get_rodin_download_list(task_uuid, cls)
|
||||
model = await download_files(download_list, task_uuid)
|
||||
|
||||
return (model,)
|
||||
return IO.NodeOutput(model)
|
||||
|
||||
|
||||
class Rodin3D_Smooth(Rodin3DAPI):
|
||||
class Rodin3D_Smooth(IO.ComfyNode):
|
||||
"""Generate 3D Assets using Rodin API"""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"Images":
|
||||
(
|
||||
IO.IMAGE,
|
||||
{
|
||||
"forceInput":True,
|
||||
}
|
||||
)
|
||||
},
|
||||
"optional": {
|
||||
**COMMON_PARAMETERS
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="Rodin3D_Smooth",
|
||||
display_name="Rodin 3D Generate - Smooth Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
*COMMON_PARAMETERS,
|
||||
],
|
||||
outputs=[IO.String.Output(display_name="3D Model Path")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
Images,
|
||||
Seed,
|
||||
Material_Type,
|
||||
Polygon_count,
|
||||
**kwargs
|
||||
):
|
||||
tier = "Smooth"
|
||||
) -> IO.NodeOutput:
|
||||
num_images = Images.shape[0]
|
||||
m_images = []
|
||||
for i in range(num_images):
|
||||
m_images.append(Images[i])
|
||||
mesh_mode, quality_override = self.get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
|
||||
quality_override=quality_override, tier=tier, mesh_mode=mesh_mode,
|
||||
**kwargs)
|
||||
await self.poll_for_task_status(subscription_key, **kwargs)
|
||||
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
|
||||
model = await self.download_files(download_list)
|
||||
mesh_mode, quality_override = get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await create_generate_task(
|
||||
cls,
|
||||
images=m_images,
|
||||
seed=Seed,
|
||||
material=Material_Type,
|
||||
quality_override=quality_override,
|
||||
tier="Smooth",
|
||||
mesh_mode=mesh_mode,
|
||||
)
|
||||
await poll_for_task_status(subscription_key, cls)
|
||||
download_list = await get_rodin_download_list(task_uuid, cls)
|
||||
model = await download_files(download_list, task_uuid)
|
||||
|
||||
return (model,)
|
||||
return IO.NodeOutput(model)
|
||||
|
||||
|
||||
class Rodin3D_Sketch(Rodin3DAPI):
|
||||
class Rodin3D_Sketch(IO.ComfyNode):
|
||||
"""Generate 3D Assets using Rodin API"""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"Images":
|
||||
(
|
||||
IO.IMAGE,
|
||||
{
|
||||
"forceInput":True,
|
||||
}
|
||||
)
|
||||
},
|
||||
"optional": {
|
||||
"Seed":
|
||||
(
|
||||
IO.INT,
|
||||
{
|
||||
"default":0,
|
||||
"min":0,
|
||||
"max":65535,
|
||||
"display":"number"
|
||||
}
|
||||
)
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="Rodin3D_Sketch",
|
||||
display_name="Rodin 3D Generate - Sketch Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
IO.Int.Input(
|
||||
"Seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=65535,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[IO.String.Output(display_name="3D Model Path")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
Images,
|
||||
Seed,
|
||||
**kwargs
|
||||
):
|
||||
tier = "Sketch"
|
||||
) -> IO.NodeOutput:
|
||||
num_images = Images.shape[0]
|
||||
m_images = []
|
||||
for i in range(num_images):
|
||||
m_images.append(Images[i])
|
||||
material_type = "PBR"
|
||||
quality_override = 18000
|
||||
mesh_mode = "Quad"
|
||||
task_uuid, subscription_key = await self.create_generate_task(
|
||||
images=m_images, seed=Seed, material=material_type, quality_override=quality_override, tier=tier, mesh_mode=mesh_mode, **kwargs
|
||||
task_uuid, subscription_key = await create_generate_task(
|
||||
cls,
|
||||
images=m_images,
|
||||
seed=Seed,
|
||||
material="PBR",
|
||||
quality_override=18000,
|
||||
tier="Sketch",
|
||||
mesh_mode="Quad",
|
||||
)
|
||||
await self.poll_for_task_status(subscription_key, **kwargs)
|
||||
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
|
||||
model = await self.download_files(download_list)
|
||||
await poll_for_task_status(subscription_key, cls)
|
||||
download_list = await get_rodin_download_list(task_uuid, cls)
|
||||
model = await download_files(download_list, task_uuid)
|
||||
|
||||
return (model,)
|
||||
return IO.NodeOutput(model)
|
||||
|
||||
|
||||
class Rodin3D_Gen2(IO.ComfyNode):
|
||||
"""Generate 3D Assets using Rodin API"""
|
||||
|
||||
class Rodin3D_Gen2(Rodin3DAPI):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"Images":
|
||||
(
|
||||
IO.IMAGE,
|
||||
{
|
||||
"forceInput":True,
|
||||
}
|
||||
)
|
||||
},
|
||||
"optional": {
|
||||
"Seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default":0,
|
||||
"min":0,
|
||||
"max":65535,
|
||||
"display":"number"
|
||||
}
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="Rodin3D_Gen2",
|
||||
display_name="Rodin 3D Generate - Gen-2 Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
IO.Int.Input(
|
||||
"Seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=65535,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
),
|
||||
"Material_Type": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"options": ["PBR", "Shaded"],
|
||||
"default": "PBR"
|
||||
}
|
||||
IO.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True),
|
||||
IO.Combo.Input(
|
||||
"Polygon_count",
|
||||
options=["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "2K-Triangle", "20K-Triangle", "150K-Triangle", "500K-Triangle"],
|
||||
default="500K-Triangle",
|
||||
optional=True,
|
||||
),
|
||||
"Polygon_count": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"options": ["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "2K-Triangle", "20K-Triangle", "150K-Triangle", "500K-Triangle"],
|
||||
"default": "500K-Triangle"
|
||||
}
|
||||
),
|
||||
"TAPose": (
|
||||
IO.BOOLEAN,
|
||||
{
|
||||
"default": False,
|
||||
}
|
||||
)
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
IO.Boolean.Input("TAPose", default=False),
|
||||
],
|
||||
outputs=[IO.String.Output(display_name="3D Model Path")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
Images,
|
||||
Seed,
|
||||
Material_Type,
|
||||
Polygon_count,
|
||||
TAPose,
|
||||
**kwargs
|
||||
):
|
||||
) -> IO.NodeOutput:
|
||||
tier = "Gen-2"
|
||||
num_images = Images.shape[0]
|
||||
m_images = []
|
||||
for i in range(num_images):
|
||||
m_images.append(Images[i])
|
||||
mesh_mode, quality_override = self.get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
|
||||
quality_override=quality_override, tier=tier, mesh_mode=mesh_mode, TAPose=TAPose,
|
||||
**kwargs)
|
||||
await self.poll_for_task_status(subscription_key, **kwargs)
|
||||
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
|
||||
model = await self.download_files(download_list)
|
||||
mesh_mode, quality_override = get_quality_mode(Polygon_count)
|
||||
task_uuid, subscription_key = await create_generate_task(
|
||||
cls,
|
||||
images=m_images,
|
||||
seed=Seed,
|
||||
material=Material_Type,
|
||||
quality_override=quality_override,
|
||||
tier=tier,
|
||||
mesh_mode=mesh_mode,
|
||||
ta_pose=TAPose,
|
||||
)
|
||||
await poll_for_task_status(subscription_key, cls)
|
||||
download_list = await get_rodin_download_list(task_uuid, cls)
|
||||
model = await download_files(download_list, task_uuid)
|
||||
|
||||
return (model,)
|
||||
return IO.NodeOutput(model)
|
||||
|
||||
# A dictionary that contains all nodes you want to export with their names
|
||||
# NOTE: names should be globally unique
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"Rodin3D_Regular": Rodin3D_Regular,
|
||||
"Rodin3D_Detail": Rodin3D_Detail,
|
||||
"Rodin3D_Smooth": Rodin3D_Smooth,
|
||||
"Rodin3D_Sketch": Rodin3D_Sketch,
|
||||
"Rodin3D_Gen2": Rodin3D_Gen2,
|
||||
}
|
||||
|
||||
# A dictionary that contains the friendly/humanly readable titles for the nodes
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"Rodin3D_Regular": "Rodin 3D Generate - Regular Generate",
|
||||
"Rodin3D_Detail": "Rodin 3D Generate - Detail Generate",
|
||||
"Rodin3D_Smooth": "Rodin 3D Generate - Smooth Generate",
|
||||
"Rodin3D_Sketch": "Rodin 3D Generate - Sketch Generate",
|
||||
"Rodin3D_Gen2": "Rodin 3D Generate - Gen-2 Generate",
|
||||
}
|
||||
class Rodin3DExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
Rodin3D_Regular,
|
||||
Rodin3D_Detail,
|
||||
Rodin3D_Smooth,
|
||||
Rodin3D_Sketch,
|
||||
Rodin3D_Gen2,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> Rodin3DExtension:
|
||||
return Rodin3DExtension()
|
||||
|
||||
@ -11,7 +11,7 @@ User Guides:
|
||||
|
||||
"""
|
||||
|
||||
from typing import Union, Optional, Any
|
||||
from typing import Union, Optional
|
||||
from typing_extensions import override
|
||||
from enum import Enum
|
||||
|
||||
@ -21,7 +21,6 @@ from comfy_api_nodes.apis import (
|
||||
RunwayImageToVideoRequest,
|
||||
RunwayImageToVideoResponse,
|
||||
RunwayTaskStatusResponse as TaskStatusResponse,
|
||||
RunwayTaskStatusEnum as TaskStatus,
|
||||
RunwayModelEnum as Model,
|
||||
RunwayDurationEnum as Duration,
|
||||
RunwayAspectRatioEnum as AspectRatio,
|
||||
@ -33,23 +32,20 @@ from comfy_api_nodes.apis import (
|
||||
ReferenceImage,
|
||||
RunwayTextToImageAspectRatioEnum,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
upload_images_to_comfyapi,
|
||||
download_url_to_video_output,
|
||||
from comfy_api_nodes.util import (
|
||||
image_tensor_pair_to_batch,
|
||||
validate_string,
|
||||
validate_image_dimensions,
|
||||
validate_image_aspect_ratio,
|
||||
upload_images_to_comfyapi,
|
||||
download_url_to_video_output,
|
||||
download_url_to_image_tensor,
|
||||
ApiEndpoint,
|
||||
sync_op,
|
||||
poll_op,
|
||||
)
|
||||
from comfy_api.input_impl import VideoFromFile
|
||||
from comfy_api.latest import ComfyExtension, io as comfy_io
|
||||
from comfy_api_nodes.util.validation_utils import validate_image_dimensions, validate_image_aspect_ratio
|
||||
from comfy_api.latest import ComfyExtension, IO
|
||||
|
||||
PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video"
|
||||
PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image"
|
||||
@ -91,31 +87,6 @@ def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, N
|
||||
return None
|
||||
|
||||
|
||||
async def poll_until_finished(
|
||||
auth_kwargs: dict[str, str],
|
||||
api_endpoint: ApiEndpoint[Any, TaskStatusResponse],
|
||||
estimated_duration: Optional[int] = None,
|
||||
node_id: Optional[str] = None,
|
||||
) -> TaskStatusResponse:
|
||||
"""Polls the Runway API endpoint until the task reaches a terminal state, then returns the response."""
|
||||
return await PollingOperation(
|
||||
poll_endpoint=api_endpoint,
|
||||
completed_statuses=[
|
||||
TaskStatus.SUCCEEDED.value,
|
||||
],
|
||||
failed_statuses=[
|
||||
TaskStatus.FAILED.value,
|
||||
TaskStatus.CANCELLED.value,
|
||||
],
|
||||
status_extractor=lambda response: response.status.value,
|
||||
auth_kwargs=auth_kwargs,
|
||||
result_url_extractor=get_video_url_from_task_status,
|
||||
estimated_duration=estimated_duration,
|
||||
node_id=node_id,
|
||||
progress_extractor=extract_progress_from_task_status,
|
||||
).execute()
|
||||
|
||||
|
||||
def extract_progress_from_task_status(
|
||||
response: TaskStatusResponse,
|
||||
) -> Union[float, None]:
|
||||
@ -132,42 +103,32 @@ def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, N
|
||||
|
||||
|
||||
async def get_response(
|
||||
task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None, estimated_duration: Optional[int] = None
|
||||
cls: type[IO.ComfyNode], task_id: str, estimated_duration: Optional[int] = None
|
||||
) -> TaskStatusResponse:
|
||||
"""Poll the task status until it is finished then get the response."""
|
||||
return await poll_until_finished(
|
||||
auth_kwargs,
|
||||
ApiEndpoint(
|
||||
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=TaskStatusResponse,
|
||||
),
|
||||
return await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"{PATH_GET_TASK_STATUS}/{task_id}"),
|
||||
response_model=TaskStatusResponse,
|
||||
status_extractor=lambda r: r.status.value,
|
||||
estimated_duration=estimated_duration,
|
||||
node_id=node_id,
|
||||
progress_extractor=extract_progress_from_task_status,
|
||||
)
|
||||
|
||||
|
||||
async def generate_video(
|
||||
cls: type[IO.ComfyNode],
|
||||
request: RunwayImageToVideoRequest,
|
||||
auth_kwargs: dict[str, str],
|
||||
node_id: Optional[str] = None,
|
||||
estimated_duration: Optional[int] = None,
|
||||
) -> VideoFromFile:
|
||||
initial_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=PATH_IMAGE_TO_VIDEO,
|
||||
method=HttpMethod.POST,
|
||||
request_model=RunwayImageToVideoRequest,
|
||||
response_model=RunwayImageToVideoResponse,
|
||||
),
|
||||
request=request,
|
||||
auth_kwargs=auth_kwargs,
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"),
|
||||
response_model=RunwayImageToVideoResponse,
|
||||
data=request,
|
||||
)
|
||||
|
||||
initial_response = await initial_operation.execute()
|
||||
|
||||
final_response = await get_response(initial_response.id, auth_kwargs, node_id, estimated_duration)
|
||||
final_response = await get_response(cls, initial_response.id, estimated_duration)
|
||||
if not final_response.output:
|
||||
raise RunwayApiError("Runway task succeeded but no video data found in response.")
|
||||
|
||||
@ -175,55 +136,55 @@ async def generate_video(
|
||||
return await download_url_to_video_output(video_url)
|
||||
|
||||
|
||||
class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode):
|
||||
class RunwayImageToVideoNodeGen3a(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="RunwayImageToVideoNodeGen3a",
|
||||
display_name="Runway Image to Video (Gen3a Turbo)",
|
||||
category="api node/video/Runway",
|
||||
description="Generate a video from a single starting frame using Gen3a Turbo model. "
|
||||
"Before diving in, review these best practices to ensure that "
|
||||
"your input selections will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo.",
|
||||
"Before diving in, review these best practices to ensure that "
|
||||
"your input selections will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo.",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt for the generation",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"start_frame",
|
||||
tooltip="Start frame to be used for the video",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"duration",
|
||||
options=[model.value for model in Duration],
|
||||
options=Duration,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"ratio",
|
||||
options=[model.value for model in RunwayGen3aAspectRatio],
|
||||
options=RunwayGen3aAspectRatio,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967295,
|
||||
step=1,
|
||||
control_after_generate=True,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Random seed for generation",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -236,25 +197,21 @@ class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode):
|
||||
duration: str,
|
||||
ratio: str,
|
||||
seed: int,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1)
|
||||
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
|
||||
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
|
||||
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
validate_image_aspect_ratio(start_frame, (1, 2), (2, 1))
|
||||
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
cls,
|
||||
start_frame,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
|
||||
return comfy_io.NodeOutput(
|
||||
return IO.NodeOutput(
|
||||
await generate_video(
|
||||
cls,
|
||||
RunwayImageToVideoRequest(
|
||||
promptText=prompt,
|
||||
seed=seed,
|
||||
@ -262,68 +219,62 @@ class RunwayImageToVideoNodeGen3a(comfy_io.ComfyNode):
|
||||
duration=Duration(duration),
|
||||
ratio=AspectRatio(ratio),
|
||||
promptImage=RunwayPromptImageObject(
|
||||
root=[
|
||||
RunwayPromptImageDetailedObject(
|
||||
uri=str(download_urls[0]), position="first"
|
||||
)
|
||||
]
|
||||
root=[RunwayPromptImageDetailedObject(uri=str(download_urls[0]), position="first")]
|
||||
),
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
node_id=cls.hidden.unique_id,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode):
|
||||
class RunwayImageToVideoNodeGen4(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="RunwayImageToVideoNodeGen4",
|
||||
display_name="Runway Image to Video (Gen4 Turbo)",
|
||||
category="api node/video/Runway",
|
||||
description="Generate a video from a single starting frame using Gen4 Turbo model. "
|
||||
"Before diving in, review these best practices to ensure that "
|
||||
"your input selections will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video.",
|
||||
"Before diving in, review these best practices to ensure that "
|
||||
"your input selections will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video.",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt for the generation",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"start_frame",
|
||||
tooltip="Start frame to be used for the video",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"duration",
|
||||
options=[model.value for model in Duration],
|
||||
options=Duration,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"ratio",
|
||||
options=[model.value for model in RunwayGen4TurboAspectRatio],
|
||||
options=RunwayGen4TurboAspectRatio,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967295,
|
||||
step=1,
|
||||
control_after_generate=True,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Random seed for generation",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -336,25 +287,21 @@ class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode):
|
||||
duration: str,
|
||||
ratio: str,
|
||||
seed: int,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1)
|
||||
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
|
||||
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
|
||||
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
validate_image_aspect_ratio(start_frame, (1, 2), (2, 1))
|
||||
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
cls,
|
||||
start_frame,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
|
||||
return comfy_io.NodeOutput(
|
||||
return IO.NodeOutput(
|
||||
await generate_video(
|
||||
cls,
|
||||
RunwayImageToVideoRequest(
|
||||
promptText=prompt,
|
||||
seed=seed,
|
||||
@ -362,76 +309,70 @@ class RunwayImageToVideoNodeGen4(comfy_io.ComfyNode):
|
||||
duration=Duration(duration),
|
||||
ratio=AspectRatio(ratio),
|
||||
promptImage=RunwayPromptImageObject(
|
||||
root=[
|
||||
RunwayPromptImageDetailedObject(
|
||||
uri=str(download_urls[0]), position="first"
|
||||
)
|
||||
]
|
||||
root=[RunwayPromptImageDetailedObject(uri=str(download_urls[0]), position="first")]
|
||||
),
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
node_id=cls.hidden.unique_id,
|
||||
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class RunwayFirstLastFrameNode(comfy_io.ComfyNode):
|
||||
class RunwayFirstLastFrameNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="RunwayFirstLastFrameNode",
|
||||
display_name="Runway First-Last-Frame to Video",
|
||||
category="api node/video/Runway",
|
||||
description="Upload first and last keyframes, draft a prompt, and generate a video. "
|
||||
"More complex transitions, such as cases where the Last frame is completely different "
|
||||
"from the First frame, may benefit from the longer 10s duration. "
|
||||
"This would give the generation more time to smoothly transition between the two inputs. "
|
||||
"Before diving in, review these best practices to ensure that your input selections "
|
||||
"will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3.",
|
||||
"More complex transitions, such as cases where the Last frame is completely different "
|
||||
"from the First frame, may benefit from the longer 10s duration. "
|
||||
"This would give the generation more time to smoothly transition between the two inputs. "
|
||||
"Before diving in, review these best practices to ensure that your input selections "
|
||||
"will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3.",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt for the generation",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"start_frame",
|
||||
tooltip="Start frame to be used for the video",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"end_frame",
|
||||
tooltip="End frame to be used for the video. Supported for gen3a_turbo only.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"duration",
|
||||
options=[model.value for model in Duration],
|
||||
options=Duration,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"ratio",
|
||||
options=[model.value for model in RunwayGen3aAspectRatio],
|
||||
options=RunwayGen3aAspectRatio,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967295,
|
||||
step=1,
|
||||
control_after_generate=True,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Random seed for generation",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -445,30 +386,26 @@ class RunwayFirstLastFrameNode(comfy_io.ComfyNode):
|
||||
duration: str,
|
||||
ratio: str,
|
||||
seed: int,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1)
|
||||
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
|
||||
validate_image_dimensions(end_frame, max_width=7999, max_height=7999)
|
||||
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
|
||||
validate_image_aspect_ratio(end_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
|
||||
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
validate_image_aspect_ratio(start_frame, (1, 2), (2, 1))
|
||||
validate_image_aspect_ratio(end_frame, (1, 2), (2, 1))
|
||||
|
||||
stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame)
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
cls,
|
||||
stacked_input_images,
|
||||
max_images=2,
|
||||
mime_type="image/png",
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
if len(download_urls) != 2:
|
||||
raise RunwayApiError("Failed to upload one or more images to comfy api.")
|
||||
|
||||
return comfy_io.NodeOutput(
|
||||
return IO.NodeOutput(
|
||||
await generate_video(
|
||||
cls,
|
||||
RunwayImageToVideoRequest(
|
||||
promptText=prompt,
|
||||
seed=seed,
|
||||
@ -477,56 +414,50 @@ class RunwayFirstLastFrameNode(comfy_io.ComfyNode):
|
||||
ratio=AspectRatio(ratio),
|
||||
promptImage=RunwayPromptImageObject(
|
||||
root=[
|
||||
RunwayPromptImageDetailedObject(
|
||||
uri=str(download_urls[0]), position="first"
|
||||
),
|
||||
RunwayPromptImageDetailedObject(
|
||||
uri=str(download_urls[1]), position="last"
|
||||
),
|
||||
RunwayPromptImageDetailedObject(uri=str(download_urls[0]), position="first"),
|
||||
RunwayPromptImageDetailedObject(uri=str(download_urls[1]), position="last"),
|
||||
]
|
||||
),
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
node_id=cls.hidden.unique_id,
|
||||
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class RunwayTextToImageNode(comfy_io.ComfyNode):
|
||||
class RunwayTextToImageNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="RunwayTextToImageNode",
|
||||
display_name="Runway Text to Image",
|
||||
category="api node/image/Runway",
|
||||
description="Generate an image from a text prompt using Runway's Gen 4 model. "
|
||||
"You can also include reference image to guide the generation.",
|
||||
"You can also include reference image to guide the generation.",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text prompt for the generation",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"ratio",
|
||||
options=[model.value for model in RunwayTextToImageAspectRatioEnum],
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"reference_image",
|
||||
tooltip="Optional reference image to guide the generation",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -537,63 +468,48 @@ class RunwayTextToImageNode(comfy_io.ComfyNode):
|
||||
prompt: str,
|
||||
ratio: str,
|
||||
reference_image: Optional[torch.Tensor] = None,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1)
|
||||
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
# Prepare reference images if provided
|
||||
reference_images = None
|
||||
if reference_image is not None:
|
||||
validate_image_dimensions(reference_image, max_width=7999, max_height=7999)
|
||||
validate_image_aspect_ratio(reference_image, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
|
||||
validate_image_aspect_ratio(reference_image, (1, 2), (2, 1))
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
cls,
|
||||
reference_image,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
reference_images = [ReferenceImage(uri=str(download_urls[0]))]
|
||||
|
||||
request = RunwayTextToImageRequest(
|
||||
promptText=prompt,
|
||||
model=Model4.gen4_image,
|
||||
ratio=ratio,
|
||||
referenceImages=reference_images,
|
||||
)
|
||||
|
||||
initial_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=PATH_TEXT_TO_IMAGE,
|
||||
method=HttpMethod.POST,
|
||||
request_model=RunwayTextToImageRequest,
|
||||
response_model=RunwayTextToImageResponse,
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=PATH_TEXT_TO_IMAGE, method="POST"),
|
||||
response_model=RunwayTextToImageResponse,
|
||||
data=RunwayTextToImageRequest(
|
||||
promptText=prompt,
|
||||
model=Model4.gen4_image,
|
||||
ratio=ratio,
|
||||
referenceImages=reference_images,
|
||||
),
|
||||
request=request,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
|
||||
initial_response = await initial_operation.execute()
|
||||
|
||||
# Poll for completion
|
||||
final_response = await get_response(
|
||||
cls,
|
||||
initial_response.id,
|
||||
auth_kwargs=auth_kwargs,
|
||||
node_id=cls.hidden.unique_id,
|
||||
estimated_duration=AVERAGE_DURATION_T2I_SECONDS,
|
||||
)
|
||||
if not final_response.output:
|
||||
raise RunwayApiError("Runway task succeeded but no image data found in response.")
|
||||
|
||||
return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_task_status(final_response)))
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_task_status(final_response)))
|
||||
|
||||
|
||||
class RunwayExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
RunwayFirstLastFrameNode,
|
||||
RunwayImageToVideoNodeGen3a,
|
||||
@ -601,5 +517,6 @@ class RunwayExtension(ComfyExtension):
|
||||
RunwayTextToImageNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> RunwayExtension:
|
||||
return RunwayExtension()
|
||||
|
||||
151
comfy_api_nodes/nodes_sora.py
Normal file
151
comfy_api_nodes/nodes_sora.py
Normal file
@ -0,0 +1,151 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_video_output,
|
||||
get_number_of_images,
|
||||
poll_op,
|
||||
sync_op,
|
||||
tensor_to_bytesio,
|
||||
)
|
||||
|
||||
|
||||
class Sora2GenerationRequest(BaseModel):
|
||||
prompt: str = Field(...)
|
||||
model: str = Field(...)
|
||||
seconds: str = Field(...)
|
||||
size: str = Field(...)
|
||||
|
||||
|
||||
class Sora2GenerationResponse(BaseModel):
|
||||
id: str = Field(...)
|
||||
error: Optional[dict] = Field(None)
|
||||
status: Optional[str] = Field(None)
|
||||
|
||||
|
||||
class OpenAIVideoSora2(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="OpenAIVideoSora2",
|
||||
display_name="OpenAI Sora - Video",
|
||||
category="api node/video/Sora",
|
||||
description="OpenAI video and audio generation.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["sora-2", "sora-2-pro"],
|
||||
default="sora-2",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Guiding text; may be empty if an input image is present.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=[
|
||||
"720x1280",
|
||||
"1280x720",
|
||||
"1024x1792",
|
||||
"1792x1024",
|
||||
],
|
||||
default="1280x720",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"duration",
|
||||
options=[4, 8, 12],
|
||||
default=8,
|
||||
),
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
optional=True,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
optional=True,
|
||||
tooltip="Seed to determine if node should re-run; "
|
||||
"actual results are nondeterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
size: str = "1280x720",
|
||||
duration: int = 8,
|
||||
seed: int = 0,
|
||||
image: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if model == "sora-2" and size not in ("720x1280", "1280x720"):
|
||||
raise ValueError("Invalid size for sora-2 model, only 720x1280 and 1280x720 are supported.")
|
||||
files_input = None
|
||||
if image is not None:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Currently only one input image is supported.")
|
||||
files_input = {"input_reference": ("image.png", tensor_to_bytesio(image), "image/png")}
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/openai/v1/videos", method="POST"),
|
||||
data=Sora2GenerationRequest(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
seconds=str(duration),
|
||||
size=size,
|
||||
),
|
||||
files=files_input,
|
||||
response_model=Sora2GenerationResponse,
|
||||
content_type="multipart/form-data",
|
||||
)
|
||||
if initial_response.error:
|
||||
raise Exception(initial_response.error["message"])
|
||||
|
||||
model_time_multiplier = 1 if model == "sora-2" else 2
|
||||
await poll_op(
|
||||
cls,
|
||||
poll_endpoint=ApiEndpoint(path=f"/proxy/openai/v1/videos/{initial_response.id}"),
|
||||
response_model=Sora2GenerationResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
poll_interval=8.0,
|
||||
max_poll_attempts=160,
|
||||
estimated_duration=int(45 * (duration / 4) * model_time_multiplier),
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_video_output(f"/proxy/openai/v1/videos/{initial_response.id}/content", cls=cls),
|
||||
)
|
||||
|
||||
|
||||
class OpenAISoraExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
OpenAIVideoSora2,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> OpenAISoraExtension:
|
||||
return OpenAISoraExtension()
|
||||
@ -2,7 +2,7 @@ from inspect import cleandoc
|
||||
from typing import Optional
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import ComfyExtension, Input, io as comfy_io
|
||||
from comfy_api.latest import ComfyExtension, Input, IO
|
||||
from comfy_api_nodes.apis.stability_api import (
|
||||
StabilityUpscaleConservativeRequest,
|
||||
StabilityUpscaleCreativeRequest,
|
||||
@ -20,21 +20,17 @@ from comfy_api_nodes.apis.stability_api import (
|
||||
StabilityAudioInpaintRequest,
|
||||
StabilityAudioResponse,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
from comfy_api_nodes.util import (
|
||||
validate_audio_duration,
|
||||
validate_string,
|
||||
audio_input_to_mp3,
|
||||
bytesio_to_image_tensor,
|
||||
tensor_to_bytesio,
|
||||
validate_string,
|
||||
audio_bytes_to_audio_input,
|
||||
audio_input_to_mp3,
|
||||
sync_op,
|
||||
poll_op,
|
||||
ApiEndpoint,
|
||||
)
|
||||
from comfy_api_nodes.util.validation_utils import validate_audio_duration
|
||||
|
||||
import torch
|
||||
import base64
|
||||
@ -56,20 +52,20 @@ def get_async_dummy_status(x: StabilityResultsGetResponse):
|
||||
return StabilityPollStatus.in_progress
|
||||
|
||||
|
||||
class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
class StabilityStableImageUltraNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates images synchronously based on prompt and resolution.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityStableImageUltraNode",
|
||||
display_name="Stability AI Stable Image Ultra",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
@ -80,39 +76,39 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
"is a value between 0 and 1. For example: `The sky was a crisp (blue:0.3) and (green:0.8)`" +
|
||||
"would convey a sky that was blue and green, but more green than blue.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=[x.value for x in StabilityAspectRatio],
|
||||
default=StabilityAspectRatio.ratio_1_1.value,
|
||||
options=StabilityAspectRatio,
|
||||
default=StabilityAspectRatio.ratio_1_1,
|
||||
tooltip="Aspect ratio of generated image.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"style_preset",
|
||||
options=get_stability_style_presets(),
|
||||
tooltip="Optional desired style of generated image.",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="A blurb of text describing what you do not wish to see in the output image. This is an advanced feature.",
|
||||
force_input=True,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"image_denoise",
|
||||
default=0.5,
|
||||
min=0.0,
|
||||
@ -123,12 +119,12 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -143,7 +139,7 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
image: Optional[torch.Tensor] = None,
|
||||
negative_prompt: str = "",
|
||||
image_denoise: Optional[float] = 0.5,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
# prepare image binary if image present
|
||||
image_binary = None
|
||||
@ -161,19 +157,11 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/generate/ultra",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityStableUltraRequest,
|
||||
response_model=StabilityStableUltraResponse,
|
||||
),
|
||||
request=StabilityStableUltraRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/generate/ultra", method="POST"),
|
||||
response_model=StabilityStableUltraResponse,
|
||||
data=StabilityStableUltraRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
aspect_ratio=aspect_ratio,
|
||||
@ -183,9 +171,7 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.finish_reason != "SUCCESS":
|
||||
raise Exception(f"Stable Image Ultra generation failed: {response_api.finish_reason}.")
|
||||
@ -193,44 +179,44 @@ class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
return IO.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
class StabilityStableImageSD_3_5Node(IO.ComfyNode):
|
||||
"""
|
||||
Generates images synchronously based on prompt and resolution.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityStableImageSD_3_5Node",
|
||||
display_name="Stability AI Stable Diffusion 3.5 Image",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[x.value for x in Stability_SD3_5_Model],
|
||||
options=Stability_SD3_5_Model,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=[x.value for x in StabilityAspectRatio],
|
||||
default=StabilityAspectRatio.ratio_1_1.value,
|
||||
options=StabilityAspectRatio,
|
||||
default=StabilityAspectRatio.ratio_1_1,
|
||||
tooltip="Aspect ratio of generated image.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"style_preset",
|
||||
options=get_stability_style_presets(),
|
||||
tooltip="Optional desired style of generated image.",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"cfg_scale",
|
||||
default=4.0,
|
||||
min=1.0,
|
||||
@ -238,28 +224,28 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
step=0.1,
|
||||
tooltip="How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
|
||||
force_input=True,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"image_denoise",
|
||||
default=0.5,
|
||||
min=0.0,
|
||||
@ -270,12 +256,12 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -292,7 +278,7 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
image: Optional[torch.Tensor] = None,
|
||||
negative_prompt: str = "",
|
||||
image_denoise: Optional[float] = 0.5,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
# prepare image binary if image present
|
||||
image_binary = None
|
||||
@ -313,19 +299,11 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/generate/sd3",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityStable3_5Request,
|
||||
response_model=StabilityStableUltraResponse,
|
||||
),
|
||||
request=StabilityStable3_5Request(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/generate/sd3", method="POST"),
|
||||
response_model=StabilityStableUltraResponse,
|
||||
data=StabilityStable3_5Request(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
aspect_ratio=aspect_ratio,
|
||||
@ -338,9 +316,7 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.finish_reason != "SUCCESS":
|
||||
raise Exception(f"Stable Diffusion 3.5 Image generation failed: {response_api.finish_reason}.")
|
||||
@ -348,30 +324,30 @@ class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
return IO.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
class StabilityUpscaleConservativeNode(IO.ComfyNode):
|
||||
"""
|
||||
Upscale image with minimal alterations to 4K resolution.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityUpscaleConservativeNode",
|
||||
display_name="Stability AI Upscale Conservative",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Image.Input("image"),
|
||||
comfy_io.String.Input(
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"creativity",
|
||||
default=0.35,
|
||||
min=0.2,
|
||||
@ -379,17 +355,17 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
step=0.01,
|
||||
tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
|
||||
@ -398,12 +374,12 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -416,7 +392,7 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
creativity: float,
|
||||
seed: int,
|
||||
negative_prompt: str = "",
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
|
||||
|
||||
@ -427,19 +403,11 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/upscale/conservative",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityUpscaleConservativeRequest,
|
||||
response_model=StabilityStableUltraResponse,
|
||||
),
|
||||
request=StabilityUpscaleConservativeRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/conservative", method="POST"),
|
||||
response_model=StabilityStableUltraResponse,
|
||||
data=StabilityUpscaleConservativeRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
creativity=round(creativity,2),
|
||||
@ -447,9 +415,7 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.finish_reason != "SUCCESS":
|
||||
raise Exception(f"Stability Upscale Conservative generation failed: {response_api.finish_reason}.")
|
||||
@ -457,30 +423,30 @@ class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
return IO.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
class StabilityUpscaleCreativeNode(IO.ComfyNode):
|
||||
"""
|
||||
Upscale image with minimal alterations to 4K resolution.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityUpscaleCreativeNode",
|
||||
display_name="Stability AI Upscale Creative",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Image.Input("image"),
|
||||
comfy_io.String.Input(
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"creativity",
|
||||
default=0.3,
|
||||
min=0.1,
|
||||
@ -488,22 +454,22 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
step=0.01,
|
||||
tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"style_preset",
|
||||
options=get_stability_style_presets(),
|
||||
tooltip="Optional desired style of generated image.",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
|
||||
@ -512,12 +478,12 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -531,7 +497,7 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
style_preset: str,
|
||||
seed: int,
|
||||
negative_prompt: str = "",
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
|
||||
|
||||
@ -544,19 +510,11 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/upscale/creative",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityUpscaleCreativeRequest,
|
||||
response_model=StabilityAsyncResponse,
|
||||
),
|
||||
request=StabilityUpscaleCreativeRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/creative", method="POST"),
|
||||
response_model=StabilityAsyncResponse,
|
||||
data=StabilityUpscaleCreativeRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
creativity=round(creativity,2),
|
||||
@ -565,25 +523,15 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/stability/v2beta/results/{response_api.id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=StabilityResultsGetResponse,
|
||||
),
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/stability/v2beta/results/{response_api.id}"),
|
||||
response_model=StabilityResultsGetResponse,
|
||||
poll_interval=3,
|
||||
completed_statuses=[StabilityPollStatus.finished],
|
||||
failed_statuses=[StabilityPollStatus.failed],
|
||||
status_extractor=lambda x: get_async_dummy_status(x),
|
||||
auth_kwargs=auth,
|
||||
node_id=cls.hidden.unique_id,
|
||||
)
|
||||
response_poll: StabilityResultsGetResponse = await operation.execute()
|
||||
|
||||
if response_poll.finish_reason != "SUCCESS":
|
||||
raise Exception(f"Stability Upscale Creative generation failed: {response_poll.finish_reason}.")
|
||||
@ -591,61 +539,50 @@ class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
image_data = base64.b64decode(response_poll.result)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
return IO.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityUpscaleFastNode(comfy_io.ComfyNode):
|
||||
class StabilityUpscaleFastNode(IO.ComfyNode):
|
||||
"""
|
||||
Quickly upscales an image via Stability API call to 4x its original size; intended for upscaling low-quality/compressed images.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityUpscaleFastNode",
|
||||
display_name="Stability AI Upscale Fast",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Image.Input("image"),
|
||||
IO.Image.Input("image"),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(cls, image: torch.Tensor) -> comfy_io.NodeOutput:
|
||||
async def execute(cls, image: torch.Tensor) -> IO.NodeOutput:
|
||||
image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read()
|
||||
|
||||
files = {
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/upscale/fast",
|
||||
method=HttpMethod.POST,
|
||||
request_model=EmptyRequest,
|
||||
response_model=StabilityStableUltraResponse,
|
||||
),
|
||||
request=EmptyRequest(),
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/fast", method="POST"),
|
||||
response_model=StabilityStableUltraResponse,
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
if response_api.finish_reason != "SUCCESS":
|
||||
raise Exception(f"Stability Upscale Fast failed: {response_api.finish_reason}.")
|
||||
@ -653,26 +590,26 @@ class StabilityUpscaleFastNode(comfy_io.ComfyNode):
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
return IO.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityTextToAudio(comfy_io.ComfyNode):
|
||||
class StabilityTextToAudio(IO.ComfyNode):
|
||||
"""Generates high-quality music and sound effects from text descriptions."""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityTextToAudio",
|
||||
display_name="Stability AI Text To Audio",
|
||||
category="api node/audio/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["stable-audio-2.5"],
|
||||
),
|
||||
comfy_io.String.Input("prompt", multiline=True, default=""),
|
||||
comfy_io.Int.Input(
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=190,
|
||||
min=1,
|
||||
@ -681,18 +618,18 @@ class StabilityTextToAudio(comfy_io.ComfyNode):
|
||||
tooltip="Controls the duration in seconds of the generated audio.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for generation.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"steps",
|
||||
default=8,
|
||||
min=4,
|
||||
@ -703,58 +640,50 @@ class StabilityTextToAudio(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Audio.Output(),
|
||||
IO.Audio.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(cls, model: str, prompt: str, duration: int, seed: int, steps: int) -> comfy_io.NodeOutput:
|
||||
async def execute(cls, model: str, prompt: str, duration: int, seed: int, steps: int) -> IO.NodeOutput:
|
||||
validate_string(prompt, max_length=10000)
|
||||
payload = StabilityTextToAudioRequest(prompt=prompt, model=model, duration=duration, seed=seed, steps=steps)
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/audio/stable-audio-2/text-to-audio",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityTextToAudioRequest,
|
||||
response_model=StabilityAudioResponse,
|
||||
),
|
||||
request=payload,
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/text-to-audio", method="POST"),
|
||||
response_model=StabilityAudioResponse,
|
||||
data=payload,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs= {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
if not response_api.audio:
|
||||
raise ValueError("No audio file was received in response.")
|
||||
return comfy_io.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
|
||||
return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
|
||||
|
||||
|
||||
class StabilityAudioToAudio(comfy_io.ComfyNode):
|
||||
class StabilityAudioToAudio(IO.ComfyNode):
|
||||
"""Transforms existing audio samples into new high-quality compositions using text instructions."""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityAudioToAudio",
|
||||
display_name="Stability AI Audio To Audio",
|
||||
category="api node/audio/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["stable-audio-2.5"],
|
||||
),
|
||||
comfy_io.String.Input("prompt", multiline=True, default=""),
|
||||
comfy_io.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."),
|
||||
comfy_io.Int.Input(
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."),
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=190,
|
||||
min=1,
|
||||
@ -763,18 +692,18 @@ class StabilityAudioToAudio(comfy_io.ComfyNode):
|
||||
tooltip="Controls the duration in seconds of the generated audio.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for generation.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"steps",
|
||||
default=8,
|
||||
min=4,
|
||||
@ -783,24 +712,24 @@ class StabilityAudioToAudio(comfy_io.ComfyNode):
|
||||
tooltip="Controls the number of sampling steps.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
IO.Float.Input(
|
||||
"strength",
|
||||
default=1,
|
||||
min=0.01,
|
||||
max=1.0,
|
||||
step=0.01,
|
||||
display_mode=comfy_io.NumberDisplay.slider,
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
tooltip="Parameter controls how much influence the audio parameter has on the generated audio.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Audio.Output(),
|
||||
IO.Audio.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -808,51 +737,43 @@ class StabilityAudioToAudio(comfy_io.ComfyNode):
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls, model: str, prompt: str, audio: Input.Audio, duration: int, seed: int, steps: int, strength: float
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, max_length=10000)
|
||||
validate_audio_duration(audio, 6, 190)
|
||||
payload = StabilityAudioToAudioRequest(
|
||||
prompt=prompt, model=model, duration=duration, seed=seed, steps=steps, strength=strength
|
||||
)
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/audio/stable-audio-2/audio-to-audio",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityAudioToAudioRequest,
|
||||
response_model=StabilityAudioResponse,
|
||||
),
|
||||
request=payload,
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/audio-to-audio", method="POST"),
|
||||
response_model=StabilityAudioResponse,
|
||||
data=payload,
|
||||
content_type="multipart/form-data",
|
||||
files={"audio": audio_input_to_mp3(audio)},
|
||||
auth_kwargs= {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
if not response_api.audio:
|
||||
raise ValueError("No audio file was received in response.")
|
||||
return comfy_io.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
|
||||
return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
|
||||
|
||||
|
||||
class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
class StabilityAudioInpaint(IO.ComfyNode):
|
||||
"""Transforms part of existing audio sample using text instructions."""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="StabilityAudioInpaint",
|
||||
display_name="Stability AI Audio Inpaint",
|
||||
category="api node/audio/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["stable-audio-2.5"],
|
||||
),
|
||||
comfy_io.String.Input("prompt", multiline=True, default=""),
|
||||
comfy_io.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."),
|
||||
comfy_io.Int.Input(
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Audio.Input("audio", tooltip="Audio must be between 6 and 190 seconds long."),
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=190,
|
||||
min=1,
|
||||
@ -861,18 +782,18 @@ class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
tooltip="Controls the duration in seconds of the generated audio.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for generation.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"steps",
|
||||
default=8,
|
||||
min=4,
|
||||
@ -881,7 +802,7 @@ class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
tooltip="Controls the number of sampling steps.",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"mask_start",
|
||||
default=30,
|
||||
min=0,
|
||||
@ -889,7 +810,7 @@ class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
step=1,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"mask_end",
|
||||
default=190,
|
||||
min=0,
|
||||
@ -899,12 +820,12 @@ class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Audio.Output(),
|
||||
IO.Audio.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -920,7 +841,7 @@ class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
steps: int,
|
||||
mask_start: int,
|
||||
mask_end: int,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, max_length=10000)
|
||||
if mask_end <= mask_start:
|
||||
raise ValueError(f"Value of mask_end({mask_end}) should be greater then mask_start({mask_start})")
|
||||
@ -935,30 +856,22 @@ class StabilityAudioInpaint(comfy_io.ComfyNode):
|
||||
mask_start=mask_start,
|
||||
mask_end=mask_end,
|
||||
)
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/audio/stable-audio-2/inpaint",
|
||||
method=HttpMethod.POST,
|
||||
request_model=StabilityAudioInpaintRequest,
|
||||
response_model=StabilityAudioResponse,
|
||||
),
|
||||
request=payload,
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/inpaint", method="POST"),
|
||||
response_model=StabilityAudioResponse,
|
||||
data=payload,
|
||||
content_type="multipart/form-data",
|
||||
files={"audio": audio_input_to_mp3(audio)},
|
||||
auth_kwargs={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
if not response_api.audio:
|
||||
raise ValueError("No audio file was received in response.")
|
||||
return comfy_io.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
|
||||
return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
|
||||
|
||||
|
||||
class StabilityExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
StabilityStableImageUltraNode,
|
||||
StabilityStableImageSD_3_5Node,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,57 +1,35 @@
|
||||
import logging
|
||||
import base64
|
||||
import aiohttp
|
||||
import torch
|
||||
from io import BytesIO
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io as comfy_io
|
||||
from comfy_api.input_impl.video_types import VideoFromFile
|
||||
from comfy_api_nodes.apis import (
|
||||
VeoGenVidRequest,
|
||||
VeoGenVidResponse,
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis.veo_api import (
|
||||
VeoGenVidPollRequest,
|
||||
VeoGenVidPollResponse,
|
||||
VeoGenVidRequest,
|
||||
VeoGenVidResponse,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
)
|
||||
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
downscale_image_tensor,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
tensor_to_base64_string,
|
||||
)
|
||||
|
||||
AVERAGE_DURATION_VIDEO_GEN = 32
|
||||
|
||||
def convert_image_to_base64(image: torch.Tensor):
|
||||
if image is None:
|
||||
return None
|
||||
|
||||
scaled_image = downscale_image_tensor(image, total_pixels=2048*2048)
|
||||
return tensor_to_base64_string(scaled_image)
|
||||
MODELS_MAP = {
|
||||
"veo-2.0-generate-001": "veo-2.0-generate-001",
|
||||
"veo-3.1-generate": "veo-3.1-generate-preview",
|
||||
"veo-3.1-fast-generate": "veo-3.1-fast-generate-preview",
|
||||
"veo-3.0-generate-001": "veo-3.0-generate-001",
|
||||
"veo-3.0-fast-generate-001": "veo-3.0-fast-generate-001",
|
||||
}
|
||||
|
||||
|
||||
def get_video_url_from_response(poll_response: VeoGenVidPollResponse) -> Optional[str]:
|
||||
if (
|
||||
poll_response.response
|
||||
and hasattr(poll_response.response, "videos")
|
||||
and poll_response.response.videos
|
||||
and len(poll_response.response.videos) > 0
|
||||
):
|
||||
video = poll_response.response.videos[0]
|
||||
else:
|
||||
return None
|
||||
if hasattr(video, "gcsUri") and video.gcsUri:
|
||||
return str(video.gcsUri)
|
||||
return None
|
||||
|
||||
|
||||
class VeoVideoGenerationNode(comfy_io.ComfyNode):
|
||||
class VeoVideoGenerationNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates videos from text prompts using Google's Veo API.
|
||||
|
||||
@ -61,71 +39,71 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="VeoVideoGenerationNode",
|
||||
display_name="Google Veo 2 Video Generation",
|
||||
category="api node/video/Veo",
|
||||
description="Generates videos from text prompts using Google's Veo 2 API",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text description of the video",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=["16:9", "9:16"],
|
||||
default="16:9",
|
||||
tooltip="Aspect ratio of the output video",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Negative text prompt to guide what to avoid in the video",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"duration_seconds",
|
||||
default=5,
|
||||
min=5,
|
||||
max=8,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Duration of the output video in seconds",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Boolean.Input(
|
||||
IO.Boolean.Input(
|
||||
"enhance_prompt",
|
||||
default=True,
|
||||
tooltip="Whether to enhance the prompt with AI assistance",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"person_generation",
|
||||
options=["ALLOW", "BLOCK"],
|
||||
default="ALLOW",
|
||||
tooltip="Whether to allow generating people in the video",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=0xFFFFFFFF,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation (0 for random)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="Optional reference image to guide video generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["veo-2.0-generate-001"],
|
||||
default="veo-2.0-generate-001",
|
||||
@ -134,12 +112,12 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -158,21 +136,17 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode):
|
||||
model="veo-2.0-generate-001",
|
||||
generate_audio=False,
|
||||
):
|
||||
model = MODELS_MAP[model]
|
||||
# Prepare the instances for the request
|
||||
instances = []
|
||||
|
||||
instance = {
|
||||
"prompt": prompt
|
||||
}
|
||||
instance = {"prompt": prompt}
|
||||
|
||||
# Add image if provided
|
||||
if image is not None:
|
||||
image_base64 = convert_image_to_base64(image)
|
||||
image_base64 = tensor_to_base64_string(image)
|
||||
if image_base64:
|
||||
instance["image"] = {
|
||||
"bytesBase64Encoded": image_base64,
|
||||
"mimeType": "image/png"
|
||||
}
|
||||
instance["image"] = {"bytesBase64Encoded": image_base64, "mimeType": "image/png"}
|
||||
|
||||
instances.append(instance)
|
||||
|
||||
@ -190,119 +164,77 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode):
|
||||
if seed > 0:
|
||||
parameters["seed"] = seed
|
||||
# Only add generateAudio for Veo 3 models
|
||||
if "veo-3.0" in model:
|
||||
if model.find("veo-2.0") == -1:
|
||||
parameters["generateAudio"] = generate_audio
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
# Initial request to start video generation
|
||||
initial_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=f"/proxy/veo/{model}/generate",
|
||||
method=HttpMethod.POST,
|
||||
request_model=VeoGenVidRequest,
|
||||
response_model=VeoGenVidResponse
|
||||
),
|
||||
request=VeoGenVidRequest(
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/veo/{model}/generate", method="POST"),
|
||||
response_model=VeoGenVidResponse,
|
||||
data=VeoGenVidRequest(
|
||||
instances=instances,
|
||||
parameters=parameters
|
||||
parameters=parameters,
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
|
||||
initial_response = await initial_operation.execute()
|
||||
operation_name = initial_response.name
|
||||
|
||||
logging.info(f"Veo generation started with operation name: {operation_name}")
|
||||
|
||||
# Define status extractor function
|
||||
def status_extractor(response):
|
||||
# Only return "completed" if the operation is done, regardless of success or failure
|
||||
# We'll check for errors after polling completes
|
||||
return "completed" if response.done else "pending"
|
||||
|
||||
# Define progress extractor function
|
||||
def progress_extractor(response):
|
||||
# Could be enhanced if the API provides progress information
|
||||
return None
|
||||
|
||||
# Define the polling operation
|
||||
poll_operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/veo/{model}/poll",
|
||||
method=HttpMethod.POST,
|
||||
request_model=VeoGenVidPollRequest,
|
||||
response_model=VeoGenVidPollResponse
|
||||
),
|
||||
completed_statuses=["completed"],
|
||||
failed_statuses=[], # No failed statuses, we'll handle errors after polling
|
||||
poll_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/veo/{model}/poll", method="POST"),
|
||||
response_model=VeoGenVidPollResponse,
|
||||
status_extractor=status_extractor,
|
||||
progress_extractor=progress_extractor,
|
||||
request=VeoGenVidPollRequest(
|
||||
operationName=operation_name
|
||||
data=VeoGenVidPollRequest(
|
||||
operationName=initial_response.name,
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
poll_interval=5.0,
|
||||
result_url_extractor=get_video_url_from_response,
|
||||
node_id=cls.hidden.unique_id,
|
||||
estimated_duration=AVERAGE_DURATION_VIDEO_GEN,
|
||||
)
|
||||
|
||||
# Execute the polling operation
|
||||
poll_response = await poll_operation.execute()
|
||||
|
||||
# Now check for errors in the final response
|
||||
# Check for error in poll response
|
||||
if hasattr(poll_response, 'error') and poll_response.error:
|
||||
error_message = f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})"
|
||||
logging.error(error_message)
|
||||
raise Exception(error_message)
|
||||
if poll_response.error:
|
||||
raise Exception(f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})")
|
||||
|
||||
# Check for RAI filtered content
|
||||
if (hasattr(poll_response.response, 'raiMediaFilteredCount') and
|
||||
poll_response.response.raiMediaFilteredCount > 0):
|
||||
if (
|
||||
hasattr(poll_response.response, "raiMediaFilteredCount")
|
||||
and poll_response.response.raiMediaFilteredCount > 0
|
||||
):
|
||||
|
||||
# Extract reason message if available
|
||||
if (hasattr(poll_response.response, 'raiMediaFilteredReasons') and
|
||||
poll_response.response.raiMediaFilteredReasons):
|
||||
if (
|
||||
hasattr(poll_response.response, "raiMediaFilteredReasons")
|
||||
and poll_response.response.raiMediaFilteredReasons
|
||||
):
|
||||
reason = poll_response.response.raiMediaFilteredReasons[0]
|
||||
error_message = f"Content filtered by Google's Responsible AI practices: {reason} ({poll_response.response.raiMediaFilteredCount} videos filtered.)"
|
||||
else:
|
||||
error_message = f"Content filtered by Google's Responsible AI practices ({poll_response.response.raiMediaFilteredCount} videos filtered.)"
|
||||
|
||||
logging.error(error_message)
|
||||
raise Exception(error_message)
|
||||
|
||||
# Extract video data
|
||||
if poll_response.response and hasattr(poll_response.response, 'videos') and poll_response.response.videos and len(poll_response.response.videos) > 0:
|
||||
if (
|
||||
poll_response.response
|
||||
and hasattr(poll_response.response, "videos")
|
||||
and poll_response.response.videos
|
||||
and len(poll_response.response.videos) > 0
|
||||
):
|
||||
video = poll_response.response.videos[0]
|
||||
|
||||
# Check if video is provided as base64 or URL
|
||||
if hasattr(video, 'bytesBase64Encoded') and video.bytesBase64Encoded:
|
||||
# Decode base64 string to bytes
|
||||
video_data = base64.b64decode(video.bytesBase64Encoded)
|
||||
elif hasattr(video, 'gcsUri') and video.gcsUri:
|
||||
# Download from URL
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(video.gcsUri) as video_response:
|
||||
video_data = await video_response.content.read()
|
||||
else:
|
||||
raise Exception("Video returned but no data or URL was provided")
|
||||
else:
|
||||
raise Exception("Video generation completed but no video was returned")
|
||||
if hasattr(video, "bytesBase64Encoded") and video.bytesBase64Encoded:
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded))))
|
||||
|
||||
if not video_data:
|
||||
raise Exception("No video data was returned")
|
||||
if hasattr(video, "gcsUri") and video.gcsUri:
|
||||
return IO.NodeOutput(await download_url_to_video_output(video.gcsUri))
|
||||
|
||||
logging.info("Video generation completed successfully")
|
||||
|
||||
# Convert video data to BytesIO object
|
||||
video_io = BytesIO(video_data)
|
||||
|
||||
# Return VideoFromFile object
|
||||
return comfy_io.NodeOutput(VideoFromFile(video_io))
|
||||
raise Exception("Video returned but no data or URL was provided")
|
||||
raise Exception("Video generation completed but no video was returned")
|
||||
|
||||
|
||||
class Veo3VideoGenerationNode(VeoVideoGenerationNode):
|
||||
@ -319,78 +251,83 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="Veo3VideoGenerationNode",
|
||||
display_name="Google Veo 3 Video Generation",
|
||||
category="api node/video/Veo",
|
||||
description="Generates videos from text prompts using Google's Veo 3 API",
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Text description of the video",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=["16:9", "9:16"],
|
||||
default="16:9",
|
||||
tooltip="Aspect ratio of the output video",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Negative text prompt to guide what to avoid in the video",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"duration_seconds",
|
||||
default=8,
|
||||
min=8,
|
||||
max=8,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Duration of the output video in seconds (Veo 3 only supports 8 seconds)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Boolean.Input(
|
||||
IO.Boolean.Input(
|
||||
"enhance_prompt",
|
||||
default=True,
|
||||
tooltip="Whether to enhance the prompt with AI assistance",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"person_generation",
|
||||
options=["ALLOW", "BLOCK"],
|
||||
default="ALLOW",
|
||||
tooltip="Whether to allow generating people in the video",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=0xFFFFFFFF,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation (0 for random)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="Optional reference image to guide video generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["veo-3.0-generate-001", "veo-3.0-fast-generate-001"],
|
||||
options=[
|
||||
"veo-3.1-generate",
|
||||
"veo-3.1-fast-generate",
|
||||
"veo-3.0-generate-001",
|
||||
"veo-3.0-fast-generate-001",
|
||||
],
|
||||
default="veo-3.0-generate-001",
|
||||
tooltip="Veo 3 model to use for video generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Boolean.Input(
|
||||
IO.Boolean.Input(
|
||||
"generate_audio",
|
||||
default=False,
|
||||
tooltip="Generate audio for the video. Supported by all Veo 3 models.",
|
||||
@ -398,12 +335,12 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -411,11 +348,12 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
|
||||
|
||||
class VeoExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
VeoVideoGenerationNode,
|
||||
Veo3VideoGenerationNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> VeoExtension:
|
||||
return VeoExtension()
|
||||
|
||||
@ -1,27 +1,23 @@
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Optional, Literal, TypeVar
|
||||
from typing_extensions import override
|
||||
from typing import Literal, Optional, TypeVar
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io as comfy_io
|
||||
from comfy_api_nodes.util.validation_utils import (
|
||||
validate_aspect_ratio_closeness,
|
||||
validate_image_dimensions,
|
||||
validate_image_aspect_ratio_range,
|
||||
get_number_of_images,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
download_url_to_video_output,
|
||||
get_number_of_images,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_image_aspect_ratio,
|
||||
validate_image_dimensions,
|
||||
validate_images_aspect_ratio_closeness,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import download_url_to_video_output, upload_images_to_comfyapi
|
||||
|
||||
|
||||
VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video"
|
||||
VIDU_IMAGE_TO_VIDEO = "/proxy/vidu/img2video"
|
||||
@ -31,8 +27,9 @@ VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations"
|
||||
|
||||
R = TypeVar("R")
|
||||
|
||||
|
||||
class VideoModelName(str, Enum):
|
||||
vidu_q1 = 'viduq1'
|
||||
vidu_q1 = "viduq1"
|
||||
|
||||
|
||||
class AspectRatio(str, Enum):
|
||||
@ -63,17 +60,9 @@ class TaskCreationRequest(BaseModel):
|
||||
images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL")
|
||||
|
||||
|
||||
class TaskStatus(str, Enum):
|
||||
created = "created"
|
||||
queueing = "queueing"
|
||||
processing = "processing"
|
||||
success = "success"
|
||||
failed = "failed"
|
||||
|
||||
|
||||
class TaskCreationResponse(BaseModel):
|
||||
task_id: str = Field(...)
|
||||
state: TaskStatus = Field(...)
|
||||
state: str = Field(...)
|
||||
created_at: str = Field(...)
|
||||
code: Optional[int] = Field(None, description="Error code")
|
||||
|
||||
@ -85,32 +74,11 @@ class TaskResult(BaseModel):
|
||||
|
||||
|
||||
class TaskStatusResponse(BaseModel):
|
||||
state: TaskStatus = Field(...)
|
||||
state: str = Field(...)
|
||||
err_code: Optional[str] = Field(None)
|
||||
creations: list[TaskResult] = Field(..., description="Generated results")
|
||||
|
||||
|
||||
async def poll_until_finished(
|
||||
auth_kwargs: dict[str, str],
|
||||
api_endpoint: ApiEndpoint[Any, R],
|
||||
result_url_extractor: Optional[Callable[[R], str]] = None,
|
||||
estimated_duration: Optional[int] = None,
|
||||
node_id: Optional[str] = None,
|
||||
) -> R:
|
||||
return await PollingOperation(
|
||||
poll_endpoint=api_endpoint,
|
||||
completed_statuses=[TaskStatus.success.value],
|
||||
failed_statuses=[TaskStatus.failed.value],
|
||||
status_extractor=lambda response: response.state.value,
|
||||
auth_kwargs=auth_kwargs,
|
||||
result_url_extractor=result_url_extractor,
|
||||
estimated_duration=estimated_duration,
|
||||
node_id=node_id,
|
||||
poll_interval=16.0,
|
||||
max_poll_attempts=256,
|
||||
).execute()
|
||||
|
||||
|
||||
def get_video_url_from_response(response) -> Optional[str]:
|
||||
if response.creations:
|
||||
return response.creations[0].url
|
||||
@ -127,111 +95,101 @@ def get_video_from_response(response) -> TaskResult:
|
||||
|
||||
|
||||
async def execute_task(
|
||||
cls: type[IO.ComfyNode],
|
||||
vidu_endpoint: str,
|
||||
auth_kwargs: Optional[dict[str, str]],
|
||||
payload: TaskCreationRequest,
|
||||
estimated_duration: int,
|
||||
node_id: str,
|
||||
) -> R:
|
||||
response = await SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=vidu_endpoint,
|
||||
method=HttpMethod.POST,
|
||||
request_model=TaskCreationRequest,
|
||||
response_model=TaskCreationResponse,
|
||||
),
|
||||
request=payload,
|
||||
auth_kwargs=auth_kwargs,
|
||||
).execute()
|
||||
if response.state == TaskStatus.failed:
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=vidu_endpoint, method="POST"),
|
||||
response_model=TaskCreationResponse,
|
||||
data=payload,
|
||||
)
|
||||
if response.state == "failed":
|
||||
error_msg = f"Vidu request failed. Code: {response.code}"
|
||||
logging.error(error_msg)
|
||||
raise RuntimeError(error_msg)
|
||||
return await poll_until_finished(
|
||||
auth_kwargs,
|
||||
ApiEndpoint(
|
||||
path=VIDU_GET_GENERATION_STATUS % response.task_id,
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=TaskStatusResponse,
|
||||
),
|
||||
result_url_extractor=get_video_url_from_response,
|
||||
return await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % response.task_id),
|
||||
response_model=TaskStatusResponse,
|
||||
status_extractor=lambda r: r.state,
|
||||
estimated_duration=estimated_duration,
|
||||
node_id=node_id,
|
||||
)
|
||||
|
||||
|
||||
class ViduTextToVideoNode(comfy_io.ComfyNode):
|
||||
class ViduTextToVideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="ViduTextToVideoNode",
|
||||
display_name="Vidu Text To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from text prompt",
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[model.value for model in VideoModelName],
|
||||
default=VideoModelName.vidu_q1.value,
|
||||
options=VideoModelName,
|
||||
default=VideoModelName.vidu_q1,
|
||||
tooltip="Model name",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="A textual description for video generation",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=5,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Duration of the output video in seconds",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation (0 for random)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=[model.value for model in AspectRatio],
|
||||
default=AspectRatio.r_16_9.value,
|
||||
options=AspectRatio,
|
||||
default=AspectRatio.r_16_9,
|
||||
tooltip="The aspect ratio of the output video",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[model.value for model in Resolution],
|
||||
default=Resolution.r_1080p.value,
|
||||
options=Resolution,
|
||||
default=Resolution.r_1080p,
|
||||
tooltip="Supported values may vary by model & duration",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"movement_amplitude",
|
||||
options=[model.value for model in MovementAmplitude],
|
||||
default=MovementAmplitude.auto.value,
|
||||
options=MovementAmplitude,
|
||||
default=MovementAmplitude.auto,
|
||||
tooltip="The movement amplitude of objects in the frame",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -246,7 +204,7 @@ class ViduTextToVideoNode(comfy_io.ComfyNode):
|
||||
aspect_ratio: str,
|
||||
resolution: str,
|
||||
movement_amplitude: str,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
if not prompt:
|
||||
raise ValueError("The prompt field is required and cannot be empty.")
|
||||
payload = TaskCreationRequest(
|
||||
@ -258,84 +216,80 @@ class ViduTextToVideoNode(comfy_io.ComfyNode):
|
||||
resolution=resolution,
|
||||
movement_amplitude=movement_amplitude,
|
||||
)
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
results = await execute_task(VIDU_TEXT_TO_VIDEO, auth, payload, 320, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload, 320)
|
||||
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
|
||||
|
||||
class ViduImageToVideoNode(comfy_io.ComfyNode):
|
||||
class ViduImageToVideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="ViduImageToVideoNode",
|
||||
display_name="Vidu Image To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from image and optional prompt",
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[model.value for model in VideoModelName],
|
||||
default=VideoModelName.vidu_q1.value,
|
||||
options=VideoModelName,
|
||||
default=VideoModelName.vidu_q1,
|
||||
tooltip="Model name",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="An image to be used as the start frame of the generated video",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="A textual description for video generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=5,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Duration of the output video in seconds",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation (0 for random)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[model.value for model in Resolution],
|
||||
default=Resolution.r_1080p.value,
|
||||
options=Resolution,
|
||||
default=Resolution.r_1080p,
|
||||
tooltip="Supported values may vary by model & duration",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"movement_amplitude",
|
||||
options=[model.value for model in MovementAmplitude],
|
||||
options=MovementAmplitude,
|
||||
default=MovementAmplitude.auto.value,
|
||||
tooltip="The movement amplitude of objects in the frame",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -350,10 +304,10 @@ class ViduImageToVideoNode(comfy_io.ComfyNode):
|
||||
seed: int,
|
||||
resolution: str,
|
||||
movement_amplitude: str,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) > 1:
|
||||
raise ValueError("Only one input image is allowed.")
|
||||
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
|
||||
validate_image_aspect_ratio(image, (1, 4), (4, 1))
|
||||
payload = TaskCreationRequest(
|
||||
model_name=model,
|
||||
prompt=prompt,
|
||||
@ -362,81 +316,77 @@ class ViduImageToVideoNode(comfy_io.ComfyNode):
|
||||
resolution=resolution,
|
||||
movement_amplitude=movement_amplitude,
|
||||
)
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
payload.images = await upload_images_to_comfyapi(
|
||||
cls,
|
||||
image,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
results = await execute_task(VIDU_IMAGE_TO_VIDEO, auth, payload, 120, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload, 120)
|
||||
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
|
||||
|
||||
class ViduReferenceVideoNode(comfy_io.ComfyNode):
|
||||
class ViduReferenceVideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="ViduReferenceVideoNode",
|
||||
display_name="Vidu Reference To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from multiple images and prompt",
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[model.value for model in VideoModelName],
|
||||
default=VideoModelName.vidu_q1.value,
|
||||
options=VideoModelName,
|
||||
default=VideoModelName.vidu_q1,
|
||||
tooltip="Model name",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"images",
|
||||
tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="A textual description for video generation",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=5,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Duration of the output video in seconds",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation (0 for random)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=[model.value for model in AspectRatio],
|
||||
default=AspectRatio.r_16_9.value,
|
||||
options=AspectRatio,
|
||||
default=AspectRatio.r_16_9,
|
||||
tooltip="The aspect ratio of the output video",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[model.value for model in Resolution],
|
||||
default=Resolution.r_1080p.value,
|
||||
tooltip="Supported values may vary by model & duration",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"movement_amplitude",
|
||||
options=[model.value for model in MovementAmplitude],
|
||||
default=MovementAmplitude.auto.value,
|
||||
@ -445,12 +395,12 @@ class ViduReferenceVideoNode(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -466,14 +416,14 @@ class ViduReferenceVideoNode(comfy_io.ComfyNode):
|
||||
aspect_ratio: str,
|
||||
resolution: str,
|
||||
movement_amplitude: str,
|
||||
) -> comfy_io.NodeOutput:
|
||||
) -> IO.NodeOutput:
|
||||
if not prompt:
|
||||
raise ValueError("The prompt field is required and cannot be empty.")
|
||||
a = get_number_of_images(images)
|
||||
if a > 7:
|
||||
raise ValueError("Too many images, maximum allowed is 7.")
|
||||
for image in images:
|
||||
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
|
||||
validate_image_aspect_ratio(image, (1, 4), (4, 1))
|
||||
validate_image_dimensions(image, min_width=128, min_height=128)
|
||||
payload = TaskCreationRequest(
|
||||
model_name=model,
|
||||
@ -484,79 +434,75 @@ class ViduReferenceVideoNode(comfy_io.ComfyNode):
|
||||
resolution=resolution,
|
||||
movement_amplitude=movement_amplitude,
|
||||
)
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
payload.images = await upload_images_to_comfyapi(
|
||||
cls,
|
||||
images,
|
||||
max_images=7,
|
||||
mime_type="image/png",
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
results = await execute_task(VIDU_REFERENCE_VIDEO, auth, payload, 120, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload, 120)
|
||||
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
|
||||
|
||||
class ViduStartEndToVideoNode(comfy_io.ComfyNode):
|
||||
class ViduStartEndToVideoNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
return IO.Schema(
|
||||
node_id="ViduStartEndToVideoNode",
|
||||
display_name="Vidu Start End To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video from start and end frames and a prompt",
|
||||
inputs=[
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[model.value for model in VideoModelName],
|
||||
default=VideoModelName.vidu_q1.value,
|
||||
tooltip="Model name",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"first_frame",
|
||||
tooltip="Start frame",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
IO.Image.Input(
|
||||
"end_frame",
|
||||
tooltip="End frame",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="A textual description for video generation",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=5,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Duration of the output video in seconds",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed for video generation (0 for random)",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"resolution",
|
||||
options=[model.value for model in Resolution],
|
||||
default=Resolution.r_1080p.value,
|
||||
tooltip="Supported values may vary by model & duration",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
IO.Combo.Input(
|
||||
"movement_amplitude",
|
||||
options=[model.value for model in MovementAmplitude],
|
||||
default=MovementAmplitude.auto.value,
|
||||
@ -565,12 +511,12 @@ class ViduStartEndToVideoNode(comfy_io.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Video.Output(),
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
@ -586,8 +532,8 @@ class ViduStartEndToVideoNode(comfy_io.ComfyNode):
|
||||
seed: int,
|
||||
resolution: str,
|
||||
movement_amplitude: str,
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
|
||||
) -> IO.NodeOutput:
|
||||
validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
|
||||
payload = TaskCreationRequest(
|
||||
model_name=model,
|
||||
prompt=prompt,
|
||||
@ -596,21 +542,17 @@ class ViduStartEndToVideoNode(comfy_io.ComfyNode):
|
||||
resolution=resolution,
|
||||
movement_amplitude=movement_amplitude,
|
||||
)
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
payload.images = [
|
||||
(await upload_images_to_comfyapi(frame, max_images=1, mime_type="image/png", auth_kwargs=auth))[0]
|
||||
(await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0]
|
||||
for frame in (first_frame, end_frame)
|
||||
]
|
||||
results = await execute_task(VIDU_START_END_VIDEO, auth, payload, 96, cls.hidden.unique_id)
|
||||
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
results = await execute_task(cls, VIDU_START_END_VIDEO, payload, 96)
|
||||
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
|
||||
|
||||
|
||||
class ViduExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
ViduTextToVideoNode,
|
||||
ViduImageToVideoNode,
|
||||
@ -618,5 +560,6 @@ class ViduExtension(ComfyExtension):
|
||||
ViduStartEndToVideoNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> ViduExtension:
|
||||
return ViduExtension()
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user