mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-18 02:23:06 +08:00
Merge branch 'master' into dr-support-pip-cm
This commit is contained in:
commit
5c8f724c9a
@ -4,7 +4,7 @@ import math
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from einops import repeat
|
from einops import rearrange
|
||||||
|
|
||||||
from comfy.ldm.modules.attention import optimized_attention
|
from comfy.ldm.modules.attention import optimized_attention
|
||||||
from comfy.ldm.flux.layers import EmbedND
|
from comfy.ldm.flux.layers import EmbedND
|
||||||
@ -153,7 +153,10 @@ def repeat_e(e, x):
|
|||||||
repeats = x.size(1) // e.size(1)
|
repeats = x.size(1) // e.size(1)
|
||||||
if repeats == 1:
|
if repeats == 1:
|
||||||
return e
|
return e
|
||||||
return torch.repeat_interleave(e, repeats, dim=1)
|
if repeats * e.size(1) == x.size(1):
|
||||||
|
return torch.repeat_interleave(e, repeats, dim=1)
|
||||||
|
else:
|
||||||
|
return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)]
|
||||||
|
|
||||||
|
|
||||||
class WanAttentionBlock(nn.Module):
|
class WanAttentionBlock(nn.Module):
|
||||||
@ -573,6 +576,28 @@ class WanModel(torch.nn.Module):
|
|||||||
x = self.unpatchify(x, grid_sizes)
|
x = self.unpatchify(x, grid_sizes)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
|
||||||
|
patch_size = self.patch_size
|
||||||
|
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||||
|
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||||
|
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||||
|
|
||||||
|
if steps_t is None:
|
||||||
|
steps_t = t_len
|
||||||
|
if steps_h is None:
|
||||||
|
steps_h = h_len
|
||||||
|
if steps_w is None:
|
||||||
|
steps_w = w_len
|
||||||
|
|
||||||
|
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
||||||
|
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
||||||
|
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||||
|
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||||
|
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
||||||
|
|
||||||
|
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||||
|
return freqs
|
||||||
|
|
||||||
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
|
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
|
||||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||||
self._forward,
|
self._forward,
|
||||||
@ -584,26 +609,16 @@ class WanModel(torch.nn.Module):
|
|||||||
bs, c, t, h, w = x.shape
|
bs, c, t, h, w = x.shape
|
||||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
||||||
|
|
||||||
patch_size = self.patch_size
|
t_len = t
|
||||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
|
||||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
|
||||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
|
||||||
|
|
||||||
if time_dim_concat is not None:
|
if time_dim_concat is not None:
|
||||||
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
|
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
|
||||||
x = torch.cat([x, time_dim_concat], dim=2)
|
x = torch.cat([x, time_dim_concat], dim=2)
|
||||||
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
|
t_len = x.shape[2]
|
||||||
|
|
||||||
if self.ref_conv is not None and "reference_latent" in kwargs:
|
if self.ref_conv is not None and "reference_latent" in kwargs:
|
||||||
t_len += 1
|
t_len += 1
|
||||||
|
|
||||||
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
|
||||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
|
||||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
|
||||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
|
||||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
|
||||||
|
|
||||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
|
||||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
||||||
|
|
||||||
def unpatchify(self, x, grid_sizes):
|
def unpatchify(self, x, grid_sizes):
|
||||||
@ -839,3 +854,466 @@ class CameraWanModel(WanModel):
|
|||||||
# unpatchify
|
# unpatchify
|
||||||
x = self.unpatchify(x, grid_sizes)
|
x = self.unpatchify(x, grid_sizes)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConv1d(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
chan_in,
|
||||||
|
chan_out,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
dilation=1,
|
||||||
|
pad_mode='replicate',
|
||||||
|
operations=None,
|
||||||
|
**kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.pad_mode = pad_mode
|
||||||
|
padding = (kernel_size - 1, 0) # T
|
||||||
|
self.time_causal_padding = padding
|
||||||
|
|
||||||
|
self.conv = operations.Conv1d(
|
||||||
|
chan_in,
|
||||||
|
chan_out,
|
||||||
|
kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
dilation=dilation,
|
||||||
|
**kwargs)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
|
||||||
|
class MotionEncoder_tc(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_dim: int,
|
||||||
|
hidden_dim: int,
|
||||||
|
num_heads=int,
|
||||||
|
need_global=True,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None,):
|
||||||
|
factory_kwargs = {"dtype": dtype, "device": device}
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.need_global = need_global
|
||||||
|
self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
|
||||||
|
if need_global:
|
||||||
|
self.conv1_global = CausalConv1d(
|
||||||
|
in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs)
|
||||||
|
self.norm1 = operations.LayerNorm(
|
||||||
|
hidden_dim // 4,
|
||||||
|
elementwise_affine=False,
|
||||||
|
eps=1e-6,
|
||||||
|
**factory_kwargs)
|
||||||
|
self.act = nn.SiLU()
|
||||||
|
self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs)
|
||||||
|
self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs)
|
||||||
|
|
||||||
|
if need_global:
|
||||||
|
self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs)
|
||||||
|
|
||||||
|
self.norm1 = operations.LayerNorm(
|
||||||
|
hidden_dim // 4,
|
||||||
|
elementwise_affine=False,
|
||||||
|
eps=1e-6,
|
||||||
|
**factory_kwargs)
|
||||||
|
|
||||||
|
self.norm2 = operations.LayerNorm(
|
||||||
|
hidden_dim // 2,
|
||||||
|
elementwise_affine=False,
|
||||||
|
eps=1e-6,
|
||||||
|
**factory_kwargs)
|
||||||
|
|
||||||
|
self.norm3 = operations.LayerNorm(
|
||||||
|
hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||||
|
|
||||||
|
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = rearrange(x, 'b t c -> b c t')
|
||||||
|
x_ori = x.clone()
|
||||||
|
b, c, t = x.shape
|
||||||
|
x = self.conv1_local(x)
|
||||||
|
x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads)
|
||||||
|
x = self.norm1(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = rearrange(x, 'b t c -> b c t')
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = rearrange(x, 'b c t -> b t c')
|
||||||
|
x = self.norm2(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = rearrange(x, 'b t c -> b c t')
|
||||||
|
x = self.conv3(x)
|
||||||
|
x = rearrange(x, 'b c t -> b t c')
|
||||||
|
x = self.norm3(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = rearrange(x, '(b n) t c -> b t n c', b=b)
|
||||||
|
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
|
||||||
|
x = torch.cat([x, padding], dim=-2)
|
||||||
|
x_local = x.clone()
|
||||||
|
|
||||||
|
if not self.need_global:
|
||||||
|
return x_local
|
||||||
|
|
||||||
|
x = self.conv1_global(x_ori)
|
||||||
|
x = rearrange(x, 'b c t -> b t c')
|
||||||
|
x = self.norm1(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = rearrange(x, 'b t c -> b c t')
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = rearrange(x, 'b c t -> b t c')
|
||||||
|
x = self.norm2(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = rearrange(x, 'b t c -> b c t')
|
||||||
|
x = self.conv3(x)
|
||||||
|
x = rearrange(x, 'b c t -> b t c')
|
||||||
|
x = self.norm3(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = self.final_linear(x)
|
||||||
|
x = rearrange(x, '(b n) t c -> b t n c', b=b)
|
||||||
|
|
||||||
|
return x, x_local
|
||||||
|
|
||||||
|
|
||||||
|
class CausalAudioEncoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
dim=5120,
|
||||||
|
num_layers=25,
|
||||||
|
out_dim=2048,
|
||||||
|
video_rate=8,
|
||||||
|
num_token=4,
|
||||||
|
need_global=False,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = MotionEncoder_tc(
|
||||||
|
in_dim=dim,
|
||||||
|
hidden_dim=out_dim,
|
||||||
|
num_heads=num_token,
|
||||||
|
need_global=need_global, dtype=dtype, device=device, operations=operations)
|
||||||
|
weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device)
|
||||||
|
|
||||||
|
self.weights = torch.nn.Parameter(weight)
|
||||||
|
self.act = torch.nn.SiLU()
|
||||||
|
|
||||||
|
def forward(self, features):
|
||||||
|
# features B * num_layers * dim * video_length
|
||||||
|
weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device))
|
||||||
|
weights_sum = weights.sum(dim=1, keepdims=True)
|
||||||
|
weighted_feat = ((features * weights) / weights_sum).sum(
|
||||||
|
dim=1) # b dim f
|
||||||
|
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
|
||||||
|
res = self.encoder(weighted_feat) # b f n dim
|
||||||
|
return res # b f n dim
|
||||||
|
|
||||||
|
|
||||||
|
class AdaLayerNorm(nn.Module):
|
||||||
|
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
output_dim = output_dim or embedding_dim * 2
|
||||||
|
|
||||||
|
self.silu = nn.SiLU()
|
||||||
|
self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device)
|
||||||
|
self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
def forward(self, x, temb):
|
||||||
|
temb = self.linear(self.silu(temb))
|
||||||
|
shift, scale = temb.chunk(2, dim=1)
|
||||||
|
shift = shift[:, None, :]
|
||||||
|
scale = scale[:, None, :]
|
||||||
|
x = self.norm(x) * (1 + scale) + shift
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class AudioInjector_WAN(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
dim=2048,
|
||||||
|
num_heads=32,
|
||||||
|
inject_layer=[0, 27],
|
||||||
|
root_net=None,
|
||||||
|
enable_adain=False,
|
||||||
|
adain_dim=2048,
|
||||||
|
adain_mode=None,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.enable_adain = enable_adain
|
||||||
|
self.adain_mode = adain_mode
|
||||||
|
self.injected_block_id = {}
|
||||||
|
audio_injector_id = 0
|
||||||
|
for inject_id in inject_layer:
|
||||||
|
self.injected_block_id[inject_id] = audio_injector_id
|
||||||
|
audio_injector_id += 1
|
||||||
|
|
||||||
|
self.injector = nn.ModuleList([
|
||||||
|
WanT2VCrossAttention(
|
||||||
|
dim=dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype}
|
||||||
|
) for _ in range(audio_injector_id)
|
||||||
|
])
|
||||||
|
self.injector_pre_norm_feat = nn.ModuleList([
|
||||||
|
operations.LayerNorm(
|
||||||
|
dim,
|
||||||
|
elementwise_affine=False,
|
||||||
|
eps=1e-6, dtype=dtype, device=device
|
||||||
|
) for _ in range(audio_injector_id)
|
||||||
|
])
|
||||||
|
self.injector_pre_norm_vec = nn.ModuleList([
|
||||||
|
operations.LayerNorm(
|
||||||
|
dim,
|
||||||
|
elementwise_affine=False,
|
||||||
|
eps=1e-6, dtype=dtype, device=device
|
||||||
|
) for _ in range(audio_injector_id)
|
||||||
|
])
|
||||||
|
if enable_adain:
|
||||||
|
self.injector_adain_layers = nn.ModuleList([
|
||||||
|
AdaLayerNorm(
|
||||||
|
output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations)
|
||||||
|
for _ in range(audio_injector_id)
|
||||||
|
])
|
||||||
|
if adain_mode != "attn_norm":
|
||||||
|
self.injector_adain_output_layers = nn.ModuleList(
|
||||||
|
[operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)])
|
||||||
|
|
||||||
|
def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len):
|
||||||
|
audio_attn_id = self.injected_block_id.get(block_id, None)
|
||||||
|
if audio_attn_id is None:
|
||||||
|
return x
|
||||||
|
|
||||||
|
num_frames = audio_emb.shape[1]
|
||||||
|
input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames)
|
||||||
|
if self.enable_adain and self.adain_mode == "attn_norm":
|
||||||
|
audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c")
|
||||||
|
adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0])
|
||||||
|
attn_hidden_states = adain_hidden_states
|
||||||
|
else:
|
||||||
|
attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states)
|
||||||
|
audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
|
||||||
|
attn_audio_emb = audio_emb
|
||||||
|
residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb)
|
||||||
|
residual_out = rearrange(
|
||||||
|
residual_out, "(b t) n c -> b (t n) c", t=num_frames)
|
||||||
|
x[:, :seq_len] = x[:, :seq_len] + residual_out
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class FramePackMotioner(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
inner_dim=1024,
|
||||||
|
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
|
||||||
|
zip_frame_buckets=[
|
||||||
|
1, 2, 16
|
||||||
|
], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
|
||||||
|
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device)
|
||||||
|
self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device)
|
||||||
|
self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device)
|
||||||
|
self.zip_frame_buckets = zip_frame_buckets
|
||||||
|
|
||||||
|
self.inner_dim = inner_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
|
||||||
|
self.drop_mode = drop_mode
|
||||||
|
|
||||||
|
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
|
||||||
|
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
|
||||||
|
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
|
||||||
|
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
|
||||||
|
if overlap_frame > 0:
|
||||||
|
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
|
||||||
|
|
||||||
|
if add_last_motion < 2 and self.drop_mode != "drop":
|
||||||
|
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
|
||||||
|
padd_lat[:, :, -zero_end_frame:] = 0
|
||||||
|
|
||||||
|
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
|
||||||
|
|
||||||
|
# patchfy
|
||||||
|
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
|
||||||
|
clean_latents_2x = self.proj_2x(clean_latents_2x)
|
||||||
|
l_2x_shape = clean_latents_2x.shape
|
||||||
|
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
||||||
|
clean_latents_4x = self.proj_4x(clean_latents_4x)
|
||||||
|
l_4x_shape = clean_latents_4x.shape
|
||||||
|
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
||||||
|
|
||||||
|
if add_last_motion < 2 and self.drop_mode == "drop":
|
||||||
|
clean_latents_post = clean_latents_post[:, :
|
||||||
|
0] if add_last_motion < 2 else clean_latents_post
|
||||||
|
clean_latents_2x = clean_latents_2x[:, :
|
||||||
|
0] if add_last_motion < 1 else clean_latents_2x
|
||||||
|
|
||||||
|
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
|
||||||
|
|
||||||
|
rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
|
||||||
|
rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
||||||
|
rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
||||||
|
|
||||||
|
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
|
||||||
|
return motion_lat, rope
|
||||||
|
|
||||||
|
|
||||||
|
class WanModel_S2V(WanModel):
|
||||||
|
def __init__(self,
|
||||||
|
model_type='s2v',
|
||||||
|
patch_size=(1, 2, 2),
|
||||||
|
text_len=512,
|
||||||
|
in_dim=16,
|
||||||
|
dim=2048,
|
||||||
|
ffn_dim=8192,
|
||||||
|
freq_dim=256,
|
||||||
|
text_dim=4096,
|
||||||
|
out_dim=16,
|
||||||
|
num_heads=16,
|
||||||
|
num_layers=32,
|
||||||
|
window_size=(-1, -1),
|
||||||
|
qk_norm=True,
|
||||||
|
cross_attn_norm=True,
|
||||||
|
eps=1e-6,
|
||||||
|
audio_dim=1024,
|
||||||
|
num_audio_token=4,
|
||||||
|
enable_adain=True,
|
||||||
|
cond_dim=16,
|
||||||
|
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
|
||||||
|
adain_mode="attn_norm",
|
||||||
|
framepack_drop_mode="padd",
|
||||||
|
image_model=None,
|
||||||
|
device=None,
|
||||||
|
dtype=None,
|
||||||
|
operations=None,
|
||||||
|
):
|
||||||
|
|
||||||
|
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||||
|
|
||||||
|
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.casual_audio_encoder = CausalAudioEncoder(
|
||||||
|
dim=audio_dim,
|
||||||
|
out_dim=self.dim,
|
||||||
|
num_token=num_audio_token,
|
||||||
|
need_global=enable_adain, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
if cond_dim > 0:
|
||||||
|
self.cond_encoder = operations.Conv3d(
|
||||||
|
cond_dim,
|
||||||
|
self.dim,
|
||||||
|
kernel_size=self.patch_size,
|
||||||
|
stride=self.patch_size, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.audio_injector = AudioInjector_WAN(
|
||||||
|
dim=self.dim,
|
||||||
|
num_heads=self.num_heads,
|
||||||
|
inject_layer=audio_inject_layers,
|
||||||
|
root_net=self,
|
||||||
|
enable_adain=enable_adain,
|
||||||
|
adain_dim=self.dim,
|
||||||
|
adain_mode=adain_mode,
|
||||||
|
dtype=dtype, device=device, operations=operations
|
||||||
|
)
|
||||||
|
|
||||||
|
self.frame_packer = FramePackMotioner(
|
||||||
|
inner_dim=self.dim,
|
||||||
|
num_heads=self.num_heads,
|
||||||
|
zip_frame_buckets=[1, 2, 16],
|
||||||
|
drop_mode=framepack_drop_mode,
|
||||||
|
dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
def forward_orig(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
t,
|
||||||
|
context,
|
||||||
|
audio_embed=None,
|
||||||
|
reference_latent=None,
|
||||||
|
control_video=None,
|
||||||
|
reference_motion=None,
|
||||||
|
clip_fea=None,
|
||||||
|
freqs=None,
|
||||||
|
transformer_options={},
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
if audio_embed is not None:
|
||||||
|
num_embeds = x.shape[-3] * 4
|
||||||
|
audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds])
|
||||||
|
else:
|
||||||
|
audio_emb = None
|
||||||
|
|
||||||
|
# embeddings
|
||||||
|
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||||
|
if control_video is not None:
|
||||||
|
x = x + self.cond_encoder(control_video)
|
||||||
|
|
||||||
|
if t.ndim == 1:
|
||||||
|
t = t.unsqueeze(1).repeat(1, x.shape[2])
|
||||||
|
|
||||||
|
grid_sizes = x.shape[2:]
|
||||||
|
x = x.flatten(2).transpose(1, 2)
|
||||||
|
seq_len = x.size(1)
|
||||||
|
|
||||||
|
cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1)
|
||||||
|
x = x + cond_mask_weight[0]
|
||||||
|
|
||||||
|
if reference_latent is not None:
|
||||||
|
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
|
||||||
|
ref = ref.flatten(2).transpose(1, 2)
|
||||||
|
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=30, device=x.device, dtype=x.dtype)
|
||||||
|
ref = ref + cond_mask_weight[1]
|
||||||
|
x = torch.cat([x, ref], dim=1)
|
||||||
|
freqs = torch.cat([freqs, freqs_ref], dim=1)
|
||||||
|
t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1)
|
||||||
|
|
||||||
|
if reference_motion is not None:
|
||||||
|
motion_encoded, freqs_motion = self.frame_packer(reference_motion, self)
|
||||||
|
motion_encoded = motion_encoded + cond_mask_weight[2]
|
||||||
|
x = torch.cat([x, motion_encoded], dim=1)
|
||||||
|
freqs = torch.cat([freqs, freqs_motion], dim=1)
|
||||||
|
|
||||||
|
t = torch.repeat_interleave(t, 2, dim=1)
|
||||||
|
t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1)
|
||||||
|
|
||||||
|
# time embeddings
|
||||||
|
e = self.time_embedding(
|
||||||
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
||||||
|
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
||||||
|
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
||||||
|
|
||||||
|
# context
|
||||||
|
context = self.text_embedding(context)
|
||||||
|
|
||||||
|
|
||||||
|
patches_replace = transformer_options.get("patches_replace", {})
|
||||||
|
blocks_replace = patches_replace.get("dit", {})
|
||||||
|
for i, block in enumerate(self.blocks):
|
||||||
|
if ("double_block", i) in blocks_replace:
|
||||||
|
def block_wrap(args):
|
||||||
|
out = {}
|
||||||
|
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
||||||
|
return out
|
||||||
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||||
|
x = out["img"]
|
||||||
|
else:
|
||||||
|
x = block(x, e=e0, freqs=freqs, context=context)
|
||||||
|
if audio_emb is not None:
|
||||||
|
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
|
||||||
|
# head
|
||||||
|
x = self.head(x, e)
|
||||||
|
|
||||||
|
# unpatchify
|
||||||
|
x = self.unpatchify(x, grid_sizes)
|
||||||
|
return x
|
||||||
|
|||||||
@ -1201,6 +1201,29 @@ class WAN21_Camera(WAN21):
|
|||||||
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
|
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
class WAN22_S2V(WAN21):
|
||||||
|
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||||
|
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
|
||||||
|
|
||||||
|
def extra_conds(self, **kwargs):
|
||||||
|
out = super().extra_conds(**kwargs)
|
||||||
|
audio_embed = kwargs.get("audio_embed", None)
|
||||||
|
if audio_embed is not None:
|
||||||
|
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
|
||||||
|
|
||||||
|
reference_latents = kwargs.get("reference_latents", None)
|
||||||
|
if reference_latents is not None:
|
||||||
|
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
|
||||||
|
|
||||||
|
reference_motion = kwargs.get("reference_motion", None)
|
||||||
|
if reference_motion is not None:
|
||||||
|
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
|
||||||
|
|
||||||
|
control_video = kwargs.get("control_video", None)
|
||||||
|
if control_video is not None:
|
||||||
|
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
|
||||||
|
return out
|
||||||
|
|
||||||
class WAN22(BaseModel):
|
class WAN22(BaseModel):
|
||||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
|
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
|
||||||
|
|||||||
@ -368,6 +368,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
|||||||
dit_config["model_type"] = "camera"
|
dit_config["model_type"] = "camera"
|
||||||
else:
|
else:
|
||||||
dit_config["model_type"] = "camera_2.2"
|
dit_config["model_type"] = "camera_2.2"
|
||||||
|
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
|
||||||
|
dit_config["model_type"] = "s2v"
|
||||||
else:
|
else:
|
||||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||||
dit_config["model_type"] = "i2v"
|
dit_config["model_type"] = "i2v"
|
||||||
|
|||||||
@ -1072,6 +1072,19 @@ class WAN21_Vace(WAN21_T2V):
|
|||||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
class WAN22_S2V(WAN21_T2V):
|
||||||
|
unet_config = {
|
||||||
|
"image_model": "wan2.1",
|
||||||
|
"model_type": "s2v",
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(self, unet_config):
|
||||||
|
super().__init__(unet_config)
|
||||||
|
|
||||||
|
def get_model(self, state_dict, prefix="", device=None):
|
||||||
|
out = model_base.WAN22_S2V(self, device=device)
|
||||||
|
return out
|
||||||
|
|
||||||
class WAN22_T2V(WAN21_T2V):
|
class WAN22_T2V(WAN21_T2V):
|
||||||
unet_config = {
|
unet_config = {
|
||||||
"image_model": "wan2.1",
|
"image_model": "wan2.1",
|
||||||
@ -1272,6 +1285,6 @@ class QwenImage(supported_models_base.BASE):
|
|||||||
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
|
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
|
||||||
|
|
||||||
|
|
||||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
|
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
|
||||||
|
|
||||||
models += [SVD_img2vid]
|
models += [SVD_img2vid]
|
||||||
|
|||||||
@ -731,11 +731,11 @@ class MODEL_PATCH(ComfyTypeIO):
|
|||||||
Type = Any
|
Type = Any
|
||||||
|
|
||||||
@comfytype(io_type="AUDIO_ENCODER")
|
@comfytype(io_type="AUDIO_ENCODER")
|
||||||
class AUDIO_ENCODER(ComfyTypeIO):
|
class AudioEncoder(ComfyTypeIO):
|
||||||
Type = Any
|
Type = Any
|
||||||
|
|
||||||
@comfytype(io_type="AUDIO_ENCODER_OUTPUT")
|
@comfytype(io_type="AUDIO_ENCODER_OUTPUT")
|
||||||
class AUDIO_ENCODER_OUTPUT(ComfyTypeIO):
|
class AudioEncoderOutput(ComfyTypeIO):
|
||||||
Type = Any
|
Type = Any
|
||||||
|
|
||||||
@comfytype(io_type="COMFY_MULTITYPED_V3")
|
@comfytype(io_type="COMFY_MULTITYPED_V3")
|
||||||
@ -1592,6 +1592,7 @@ class _IO:
|
|||||||
Model = Model
|
Model = Model
|
||||||
ClipVision = ClipVision
|
ClipVision = ClipVision
|
||||||
ClipVisionOutput = ClipVisionOutput
|
ClipVisionOutput = ClipVisionOutput
|
||||||
|
AudioEncoderOutput = AudioEncoderOutput
|
||||||
StyleModel = StyleModel
|
StyleModel = StyleModel
|
||||||
Gligen = Gligen
|
Gligen = Gligen
|
||||||
UpscaleModel = UpscaleModel
|
UpscaleModel = UpscaleModel
|
||||||
|
|||||||
19
comfy_api_nodes/apis/gemini_api.py
Normal file
19
comfy_api_nodes/apis/gemini_api.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
|
class GeminiImageGenerationConfig(GeminiGenerationConfig):
|
||||||
|
responseModalities: Optional[List[str]] = None
|
||||||
|
|
||||||
|
|
||||||
|
class GeminiImageGenerateContentRequest(BaseModel):
|
||||||
|
contents: List[GeminiContent]
|
||||||
|
generationConfig: Optional[GeminiImageGenerationConfig] = None
|
||||||
|
safetySettings: Optional[List[GeminiSafetySetting]] = None
|
||||||
|
systemInstruction: Optional[GeminiSystemInstructionContent] = None
|
||||||
|
tools: Optional[List[GeminiTool]] = None
|
||||||
|
videoMetadata: Optional[GeminiVideoMetadata] = None
|
||||||
@ -4,11 +4,12 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer
|
|||||||
"""
|
"""
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
|
||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
import uuid
|
import uuid
|
||||||
|
import base64
|
||||||
|
from io import BytesIO
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Optional, Literal
|
from typing import Optional, Literal
|
||||||
|
|
||||||
@ -25,6 +26,7 @@ from comfy_api_nodes.apis import (
|
|||||||
GeminiPart,
|
GeminiPart,
|
||||||
GeminiMimeType,
|
GeminiMimeType,
|
||||||
)
|
)
|
||||||
|
from comfy_api_nodes.apis.gemini_api import GeminiImageGenerationConfig, GeminiImageGenerateContentRequest
|
||||||
from comfy_api_nodes.apis.client import (
|
from comfy_api_nodes.apis.client import (
|
||||||
ApiEndpoint,
|
ApiEndpoint,
|
||||||
HttpMethod,
|
HttpMethod,
|
||||||
@ -35,6 +37,7 @@ from comfy_api_nodes.apinode_utils import (
|
|||||||
audio_to_base64_string,
|
audio_to_base64_string,
|
||||||
video_to_base64_string,
|
video_to_base64_string,
|
||||||
tensor_to_base64_string,
|
tensor_to_base64_string,
|
||||||
|
bytesio_to_image_tensor,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -53,6 +56,14 @@ class GeminiModel(str, Enum):
|
|||||||
gemini_2_5_flash = "gemini-2.5-flash"
|
gemini_2_5_flash = "gemini-2.5-flash"
|
||||||
|
|
||||||
|
|
||||||
|
class GeminiImageModel(str, Enum):
|
||||||
|
"""
|
||||||
|
Gemini Image Model Names allowed by comfy-api
|
||||||
|
"""
|
||||||
|
|
||||||
|
gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview"
|
||||||
|
|
||||||
|
|
||||||
def get_gemini_endpoint(
|
def get_gemini_endpoint(
|
||||||
model: GeminiModel,
|
model: GeminiModel,
|
||||||
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
||||||
@ -75,6 +86,135 @@ def get_gemini_endpoint(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_gemini_image_endpoint(
|
||||||
|
model: GeminiImageModel,
|
||||||
|
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
||||||
|
"""
|
||||||
|
Get the API endpoint for a given Gemini model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model: The Gemini model to use, either as enum or string value.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
ApiEndpoint configured for the specific Gemini model.
|
||||||
|
"""
|
||||||
|
if isinstance(model, str):
|
||||||
|
model = GeminiImageModel(model)
|
||||||
|
return ApiEndpoint(
|
||||||
|
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
|
||||||
|
method=HttpMethod.POST,
|
||||||
|
request_model=GeminiImageGenerateContentRequest,
|
||||||
|
response_model=GeminiGenerateContentResponse,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
|
||||||
|
"""
|
||||||
|
Convert image tensor input to Gemini API compatible parts.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image_input: Batch of image tensors from ComfyUI.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of GeminiPart objects containing the encoded images.
|
||||||
|
"""
|
||||||
|
image_parts: list[GeminiPart] = []
|
||||||
|
for image_index in range(image_input.shape[0]):
|
||||||
|
image_as_b64 = tensor_to_base64_string(
|
||||||
|
image_input[image_index].unsqueeze(0)
|
||||||
|
)
|
||||||
|
image_parts.append(
|
||||||
|
GeminiPart(
|
||||||
|
inlineData=GeminiInlineData(
|
||||||
|
mimeType=GeminiMimeType.image_png,
|
||||||
|
data=image_as_b64,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return image_parts
|
||||||
|
|
||||||
|
|
||||||
|
def create_text_part(text: str) -> GeminiPart:
|
||||||
|
"""
|
||||||
|
Create a text part for the Gemini API request.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text content to include in the request.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A GeminiPart object with the text content.
|
||||||
|
"""
|
||||||
|
return GeminiPart(text=text)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parts_from_response(
|
||||||
|
response: GeminiGenerateContentResponse
|
||||||
|
) -> list[GeminiPart]:
|
||||||
|
"""
|
||||||
|
Extract all parts from the Gemini API response.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
response: The API response from Gemini.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of response parts from the first candidate.
|
||||||
|
"""
|
||||||
|
return response.candidates[0].content.parts
|
||||||
|
|
||||||
|
|
||||||
|
def get_parts_by_type(
|
||||||
|
response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
|
||||||
|
) -> list[GeminiPart]:
|
||||||
|
"""
|
||||||
|
Filter response parts by their type.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
response: The API response from Gemini.
|
||||||
|
part_type: Type of parts to extract ("text" or a MIME type).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of response parts matching the requested type.
|
||||||
|
"""
|
||||||
|
parts = []
|
||||||
|
for part in get_parts_from_response(response):
|
||||||
|
if part_type == "text" and hasattr(part, "text") and part.text:
|
||||||
|
parts.append(part)
|
||||||
|
elif (
|
||||||
|
hasattr(part, "inlineData")
|
||||||
|
and part.inlineData
|
||||||
|
and part.inlineData.mimeType == part_type
|
||||||
|
):
|
||||||
|
parts.append(part)
|
||||||
|
# Skip parts that don't match the requested type
|
||||||
|
return parts
|
||||||
|
|
||||||
|
|
||||||
|
def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
|
||||||
|
"""
|
||||||
|
Extract and concatenate all text parts from the response.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
response: The API response from Gemini.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Combined text from all text parts in the response.
|
||||||
|
"""
|
||||||
|
parts = get_parts_by_type(response, "text")
|
||||||
|
return "\n".join([part.text for part in parts])
|
||||||
|
|
||||||
|
|
||||||
|
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
|
||||||
|
image_tensors: list[torch.Tensor] = []
|
||||||
|
parts = get_parts_by_type(response, "image/png")
|
||||||
|
for part in parts:
|
||||||
|
image_data = base64.b64decode(part.inlineData.data)
|
||||||
|
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||||
|
image_tensors.append(returned_image)
|
||||||
|
if len(image_tensors) == 0:
|
||||||
|
return torch.zeros((1,1024,1024,4))
|
||||||
|
return torch.cat(image_tensors, dim=0)
|
||||||
|
|
||||||
|
|
||||||
class GeminiNode(ComfyNodeABC):
|
class GeminiNode(ComfyNodeABC):
|
||||||
"""
|
"""
|
||||||
Node to generate text responses from a Gemini model.
|
Node to generate text responses from a Gemini model.
|
||||||
@ -159,59 +299,6 @@ class GeminiNode(ComfyNodeABC):
|
|||||||
CATEGORY = "api node/text/Gemini"
|
CATEGORY = "api node/text/Gemini"
|
||||||
API_NODE = True
|
API_NODE = True
|
||||||
|
|
||||||
def get_parts_from_response(
|
|
||||||
self, response: GeminiGenerateContentResponse
|
|
||||||
) -> list[GeminiPart]:
|
|
||||||
"""
|
|
||||||
Extract all parts from the Gemini API response.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
response: The API response from Gemini.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List of response parts from the first candidate.
|
|
||||||
"""
|
|
||||||
return response.candidates[0].content.parts
|
|
||||||
|
|
||||||
def get_parts_by_type(
|
|
||||||
self, response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
|
|
||||||
) -> list[GeminiPart]:
|
|
||||||
"""
|
|
||||||
Filter response parts by their type.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
response: The API response from Gemini.
|
|
||||||
part_type: Type of parts to extract ("text" or a MIME type).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List of response parts matching the requested type.
|
|
||||||
"""
|
|
||||||
parts = []
|
|
||||||
for part in self.get_parts_from_response(response):
|
|
||||||
if part_type == "text" and hasattr(part, "text") and part.text:
|
|
||||||
parts.append(part)
|
|
||||||
elif (
|
|
||||||
hasattr(part, "inlineData")
|
|
||||||
and part.inlineData
|
|
||||||
and part.inlineData.mimeType == part_type
|
|
||||||
):
|
|
||||||
parts.append(part)
|
|
||||||
# Skip parts that don't match the requested type
|
|
||||||
return parts
|
|
||||||
|
|
||||||
def get_text_from_response(self, response: GeminiGenerateContentResponse) -> str:
|
|
||||||
"""
|
|
||||||
Extract and concatenate all text parts from the response.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
response: The API response from Gemini.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Combined text from all text parts in the response.
|
|
||||||
"""
|
|
||||||
parts = self.get_parts_by_type(response, "text")
|
|
||||||
return "\n".join([part.text for part in parts])
|
|
||||||
|
|
||||||
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
|
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
|
||||||
"""
|
"""
|
||||||
Convert video input to Gemini API compatible parts.
|
Convert video input to Gemini API compatible parts.
|
||||||
@ -271,43 +358,6 @@ class GeminiNode(ComfyNodeABC):
|
|||||||
)
|
)
|
||||||
return audio_parts
|
return audio_parts
|
||||||
|
|
||||||
def create_image_parts(self, image_input: torch.Tensor) -> list[GeminiPart]:
|
|
||||||
"""
|
|
||||||
Convert image tensor input to Gemini API compatible parts.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
image_input: Batch of image tensors from ComfyUI.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List of GeminiPart objects containing the encoded images.
|
|
||||||
"""
|
|
||||||
image_parts: list[GeminiPart] = []
|
|
||||||
for image_index in range(image_input.shape[0]):
|
|
||||||
image_as_b64 = tensor_to_base64_string(
|
|
||||||
image_input[image_index].unsqueeze(0)
|
|
||||||
)
|
|
||||||
image_parts.append(
|
|
||||||
GeminiPart(
|
|
||||||
inlineData=GeminiInlineData(
|
|
||||||
mimeType=GeminiMimeType.image_png,
|
|
||||||
data=image_as_b64,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return image_parts
|
|
||||||
|
|
||||||
def create_text_part(self, text: str) -> GeminiPart:
|
|
||||||
"""
|
|
||||||
Create a text part for the Gemini API request.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
text: The text content to include in the request.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A GeminiPart object with the text content.
|
|
||||||
"""
|
|
||||||
return GeminiPart(text=text)
|
|
||||||
|
|
||||||
async def api_call(
|
async def api_call(
|
||||||
self,
|
self,
|
||||||
prompt: str,
|
prompt: str,
|
||||||
@ -323,11 +373,11 @@ class GeminiNode(ComfyNodeABC):
|
|||||||
validate_string(prompt, strip_whitespace=False)
|
validate_string(prompt, strip_whitespace=False)
|
||||||
|
|
||||||
# Create parts list with text prompt as the first part
|
# Create parts list with text prompt as the first part
|
||||||
parts: list[GeminiPart] = [self.create_text_part(prompt)]
|
parts: list[GeminiPart] = [create_text_part(prompt)]
|
||||||
|
|
||||||
# Add other modal parts
|
# Add other modal parts
|
||||||
if images is not None:
|
if images is not None:
|
||||||
image_parts = self.create_image_parts(images)
|
image_parts = create_image_parts(images)
|
||||||
parts.extend(image_parts)
|
parts.extend(image_parts)
|
||||||
if audio is not None:
|
if audio is not None:
|
||||||
parts.extend(self.create_audio_parts(audio))
|
parts.extend(self.create_audio_parts(audio))
|
||||||
@ -351,7 +401,7 @@ class GeminiNode(ComfyNodeABC):
|
|||||||
).execute()
|
).execute()
|
||||||
|
|
||||||
# Get result output
|
# Get result output
|
||||||
output_text = self.get_text_from_response(response)
|
output_text = get_text_from_response(response)
|
||||||
if unique_id and output_text:
|
if unique_id and output_text:
|
||||||
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
||||||
render_spec = {
|
render_spec = {
|
||||||
@ -462,12 +512,162 @@ class GeminiInputFiles(ComfyNodeABC):
|
|||||||
return (files,)
|
return (files,)
|
||||||
|
|
||||||
|
|
||||||
|
class GeminiImage(ComfyNodeABC):
|
||||||
|
"""
|
||||||
|
Node to generate text and image responses from a Gemini model.
|
||||||
|
|
||||||
|
This node allows users to interact with Google's Gemini AI models, providing
|
||||||
|
multimodal inputs (text, images, files) to generate coherent
|
||||||
|
text and image responses. The node works with the latest Gemini models, handling the
|
||||||
|
API communication and response parsing.
|
||||||
|
"""
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||||
|
return {
|
||||||
|
"required": {
|
||||||
|
"prompt": (
|
||||||
|
IO.STRING,
|
||||||
|
{
|
||||||
|
"multiline": True,
|
||||||
|
"default": "",
|
||||||
|
"tooltip": "Text prompt for generation",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
"model": (
|
||||||
|
IO.COMBO,
|
||||||
|
{
|
||||||
|
"tooltip": "The Gemini model to use for generating responses.",
|
||||||
|
"options": [model.value for model in GeminiImageModel],
|
||||||
|
"default": GeminiImageModel.gemini_2_5_flash_image_preview.value,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
"seed": (
|
||||||
|
IO.INT,
|
||||||
|
{
|
||||||
|
"default": 42,
|
||||||
|
"min": 0,
|
||||||
|
"max": 0xFFFFFFFFFFFFFFFF,
|
||||||
|
"control_after_generate": True,
|
||||||
|
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
},
|
||||||
|
"optional": {
|
||||||
|
"images": (
|
||||||
|
IO.IMAGE,
|
||||||
|
{
|
||||||
|
"default": None,
|
||||||
|
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
"files": (
|
||||||
|
"GEMINI_INPUT_FILES",
|
||||||
|
{
|
||||||
|
"default": None,
|
||||||
|
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
# TODO: later we can add this parameter later
|
||||||
|
# "n": (
|
||||||
|
# IO.INT,
|
||||||
|
# {
|
||||||
|
# "default": 1,
|
||||||
|
# "min": 1,
|
||||||
|
# "max": 8,
|
||||||
|
# "step": 1,
|
||||||
|
# "display": "number",
|
||||||
|
# "tooltip": "How many images to generate",
|
||||||
|
# },
|
||||||
|
# ),
|
||||||
|
},
|
||||||
|
"hidden": {
|
||||||
|
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||||
|
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||||
|
"unique_id": "UNIQUE_ID",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
RETURN_TYPES = (IO.IMAGE, IO.STRING)
|
||||||
|
FUNCTION = "api_call"
|
||||||
|
CATEGORY = "api node/image/Gemini"
|
||||||
|
DESCRIPTION = "Edit images synchronously via Google API."
|
||||||
|
API_NODE = True
|
||||||
|
|
||||||
|
async def api_call(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
model: GeminiImageModel,
|
||||||
|
images: Optional[IO.IMAGE] = None,
|
||||||
|
files: Optional[list[GeminiPart]] = None,
|
||||||
|
n=1,
|
||||||
|
unique_id: Optional[str] = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
# Validate inputs
|
||||||
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
||||||
|
# Create parts list with text prompt as the first part
|
||||||
|
parts: list[GeminiPart] = [create_text_part(prompt)]
|
||||||
|
|
||||||
|
# Add other modal parts
|
||||||
|
if images is not None:
|
||||||
|
image_parts = create_image_parts(images)
|
||||||
|
parts.extend(image_parts)
|
||||||
|
if files is not None:
|
||||||
|
parts.extend(files)
|
||||||
|
|
||||||
|
response = await SynchronousOperation(
|
||||||
|
endpoint=get_gemini_image_endpoint(model),
|
||||||
|
request=GeminiImageGenerateContentRequest(
|
||||||
|
contents=[
|
||||||
|
GeminiContent(
|
||||||
|
role="user",
|
||||||
|
parts=parts,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
generationConfig=GeminiImageGenerationConfig(
|
||||||
|
responseModalities=["TEXT","IMAGE"]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
auth_kwargs=kwargs,
|
||||||
|
).execute()
|
||||||
|
|
||||||
|
output_image = get_image_from_response(response)
|
||||||
|
output_text = get_text_from_response(response)
|
||||||
|
if unique_id and output_text:
|
||||||
|
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
||||||
|
render_spec = {
|
||||||
|
"node_id": unique_id,
|
||||||
|
"component": "ChatHistoryWidget",
|
||||||
|
"props": {
|
||||||
|
"history": json.dumps(
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"prompt": prompt,
|
||||||
|
"response": output_text,
|
||||||
|
"response_id": str(uuid.uuid4()),
|
||||||
|
"timestamp": time.time(),
|
||||||
|
}
|
||||||
|
]
|
||||||
|
),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
PromptServer.instance.send_sync(
|
||||||
|
"display_component",
|
||||||
|
render_spec,
|
||||||
|
)
|
||||||
|
|
||||||
|
output_text = output_text or "Empty response from Gemini model..."
|
||||||
|
return (output_image, output_text,)
|
||||||
|
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
NODE_CLASS_MAPPINGS = {
|
||||||
"GeminiNode": GeminiNode,
|
"GeminiNode": GeminiNode,
|
||||||
|
"GeminiImageNode": GeminiImage,
|
||||||
"GeminiInputFiles": GeminiInputFiles,
|
"GeminiInputFiles": GeminiInputFiles,
|
||||||
}
|
}
|
||||||
|
|
||||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||||
"GeminiNode": "Google Gemini",
|
"GeminiNode": "Google Gemini",
|
||||||
|
"GeminiImageNode": "Google Gemini Image",
|
||||||
"GeminiInputFiles": "Gemini Input Files",
|
"GeminiInputFiles": "Gemini Input Files",
|
||||||
}
|
}
|
||||||
|
|||||||
@ -786,6 +786,180 @@ class WanTrackToVideo(io.ComfyNode):
|
|||||||
return io.NodeOutput(positive, negative, out_latent)
|
return io.NodeOutput(positive, negative, out_latent)
|
||||||
|
|
||||||
|
|
||||||
|
def linear_interpolation(features, input_fps, output_fps, output_len=None):
|
||||||
|
"""
|
||||||
|
features: shape=[1, T, 512]
|
||||||
|
input_fps: fps for audio, f_a
|
||||||
|
output_fps: fps for video, f_m
|
||||||
|
output_len: video length
|
||||||
|
"""
|
||||||
|
features = features.transpose(1, 2) # [1, 512, T]
|
||||||
|
seq_len = features.shape[2] / float(input_fps) # T/f_a
|
||||||
|
if output_len is None:
|
||||||
|
output_len = int(seq_len * output_fps) # f_m*T/f_a
|
||||||
|
output_features = torch.nn.functional.interpolate(
|
||||||
|
features, size=output_len, align_corners=True,
|
||||||
|
mode='linear') # [1, 512, output_len]
|
||||||
|
return output_features.transpose(1, 2) # [1, output_len, 512]
|
||||||
|
|
||||||
|
|
||||||
|
def get_sample_indices(original_fps,
|
||||||
|
total_frames,
|
||||||
|
target_fps,
|
||||||
|
num_sample,
|
||||||
|
fixed_start=None):
|
||||||
|
required_duration = num_sample / target_fps
|
||||||
|
required_origin_frames = int(np.ceil(required_duration * original_fps))
|
||||||
|
if required_duration > total_frames / original_fps:
|
||||||
|
raise ValueError("required_duration must be less than video length")
|
||||||
|
|
||||||
|
if not fixed_start is None and fixed_start >= 0:
|
||||||
|
start_frame = fixed_start
|
||||||
|
else:
|
||||||
|
max_start = total_frames - required_origin_frames
|
||||||
|
if max_start < 0:
|
||||||
|
raise ValueError("video length is too short")
|
||||||
|
start_frame = np.random.randint(0, max_start + 1)
|
||||||
|
start_time = start_frame / original_fps
|
||||||
|
|
||||||
|
end_time = start_time + required_duration
|
||||||
|
time_points = np.linspace(start_time, end_time, num_sample, endpoint=False)
|
||||||
|
|
||||||
|
frame_indices = np.round(np.array(time_points) * original_fps).astype(int)
|
||||||
|
frame_indices = np.clip(frame_indices, 0, total_frames - 1)
|
||||||
|
return frame_indices
|
||||||
|
|
||||||
|
|
||||||
|
def get_audio_embed_bucket_fps(audio_embed, fps=16, batch_frames=81, m=0, video_rate=30):
|
||||||
|
num_layers, audio_frame_num, audio_dim = audio_embed.shape
|
||||||
|
|
||||||
|
if num_layers > 1:
|
||||||
|
return_all_layers = True
|
||||||
|
else:
|
||||||
|
return_all_layers = False
|
||||||
|
|
||||||
|
scale = video_rate / fps
|
||||||
|
|
||||||
|
min_batch_num = int(audio_frame_num / (batch_frames * scale)) + 1
|
||||||
|
|
||||||
|
bucket_num = min_batch_num * batch_frames
|
||||||
|
padd_audio_num = math.ceil(min_batch_num * batch_frames / fps * video_rate) - audio_frame_num
|
||||||
|
batch_idx = get_sample_indices(
|
||||||
|
original_fps=video_rate,
|
||||||
|
total_frames=audio_frame_num + padd_audio_num,
|
||||||
|
target_fps=fps,
|
||||||
|
num_sample=bucket_num,
|
||||||
|
fixed_start=0)
|
||||||
|
batch_audio_eb = []
|
||||||
|
audio_sample_stride = int(video_rate / fps)
|
||||||
|
for bi in batch_idx:
|
||||||
|
if bi < audio_frame_num:
|
||||||
|
|
||||||
|
chosen_idx = list(
|
||||||
|
range(bi - m * audio_sample_stride, bi + (m + 1) * audio_sample_stride, audio_sample_stride))
|
||||||
|
chosen_idx = [0 if c < 0 else c for c in chosen_idx]
|
||||||
|
chosen_idx = [
|
||||||
|
audio_frame_num - 1 if c >= audio_frame_num else c
|
||||||
|
for c in chosen_idx
|
||||||
|
]
|
||||||
|
|
||||||
|
if return_all_layers:
|
||||||
|
frame_audio_embed = audio_embed[:, chosen_idx].flatten(
|
||||||
|
start_dim=-2, end_dim=-1)
|
||||||
|
else:
|
||||||
|
frame_audio_embed = audio_embed[0][chosen_idx].flatten()
|
||||||
|
else:
|
||||||
|
frame_audio_embed = torch.zeros([audio_dim * (2 * m + 1)], device=audio_embed.device) if not return_all_layers \
|
||||||
|
else torch.zeros([num_layers, audio_dim * (2 * m + 1)], device=audio_embed.device)
|
||||||
|
batch_audio_eb.append(frame_audio_embed)
|
||||||
|
batch_audio_eb = torch.cat([c.unsqueeze(0) for c in batch_audio_eb], dim=0)
|
||||||
|
|
||||||
|
return batch_audio_eb, min_batch_num
|
||||||
|
|
||||||
|
|
||||||
|
class WanSoundImageToVideo(io.ComfyNode):
|
||||||
|
@classmethod
|
||||||
|
def define_schema(cls):
|
||||||
|
return io.Schema(
|
||||||
|
node_id="WanSoundImageToVideo",
|
||||||
|
category="conditioning/video_models",
|
||||||
|
inputs=[
|
||||||
|
io.Conditioning.Input("positive"),
|
||||||
|
io.Conditioning.Input("negative"),
|
||||||
|
io.Vae.Input("vae"),
|
||||||
|
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||||
|
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||||
|
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||||
|
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||||
|
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
|
||||||
|
io.Image.Input("ref_image", optional=True),
|
||||||
|
io.Image.Input("control_video", optional=True),
|
||||||
|
io.Image.Input("ref_motion", optional=True),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Conditioning.Output(display_name="positive"),
|
||||||
|
io.Conditioning.Output(display_name="negative"),
|
||||||
|
io.Latent.Output(display_name="latent"),
|
||||||
|
],
|
||||||
|
is_experimental=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None) -> io.NodeOutput:
|
||||||
|
latent_t = ((length - 1) // 4) + 1
|
||||||
|
if audio_encoder_output is not None:
|
||||||
|
feat = torch.cat(audio_encoder_output["encoded_audio_all_layers"])
|
||||||
|
video_rate = 30
|
||||||
|
fps = 16
|
||||||
|
feat = linear_interpolation(feat, input_fps=50, output_fps=video_rate)
|
||||||
|
audio_embed_bucket, num_repeat = get_audio_embed_bucket_fps(feat, fps=fps, batch_frames=latent_t * 4, m=0, video_rate=video_rate)
|
||||||
|
audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
|
||||||
|
if len(audio_embed_bucket.shape) == 3:
|
||||||
|
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
|
||||||
|
elif len(audio_embed_bucket.shape) == 4:
|
||||||
|
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)
|
||||||
|
|
||||||
|
positive = node_helpers.conditioning_set_values(positive, {"audio_embed": audio_embed_bucket})
|
||||||
|
negative = node_helpers.conditioning_set_values(negative, {"audio_embed": audio_embed_bucket})
|
||||||
|
|
||||||
|
if ref_image is not None:
|
||||||
|
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||||
|
ref_latent = vae.encode(ref_image[:, :, :, :3])
|
||||||
|
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
|
||||||
|
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)
|
||||||
|
|
||||||
|
if ref_motion is not None:
|
||||||
|
if ref_motion.shape[0] > 73:
|
||||||
|
ref_motion = ref_motion[-73:]
|
||||||
|
|
||||||
|
ref_motion = comfy.utils.common_upscale(ref_motion.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||||
|
|
||||||
|
if ref_motion.shape[0] < 73:
|
||||||
|
r = torch.ones([73, height, width, 3]) * 0.5
|
||||||
|
r[-ref_motion.shape[0]:] = ref_motion
|
||||||
|
ref_motion = r
|
||||||
|
|
||||||
|
ref_motion = vae.encode(ref_motion[:, :, :, :3])
|
||||||
|
positive = node_helpers.conditioning_set_values(positive, {"reference_motion": ref_motion})
|
||||||
|
negative = node_helpers.conditioning_set_values(negative, {"reference_motion": ref_motion})
|
||||||
|
|
||||||
|
latent = torch.zeros([batch_size, 16, latent_t, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||||
|
|
||||||
|
control_video_out = comfy.latent_formats.Wan21().process_out(torch.zeros_like(latent))
|
||||||
|
if control_video is not None:
|
||||||
|
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||||
|
control_video = vae.encode(control_video[:, :, :, :3])
|
||||||
|
control_video_out[:, :, :control_video.shape[2]] = control_video
|
||||||
|
|
||||||
|
# TODO: check if zero is better than none if none provided
|
||||||
|
positive = node_helpers.conditioning_set_values(positive, {"control_video": control_video_out})
|
||||||
|
negative = node_helpers.conditioning_set_values(negative, {"control_video": control_video_out})
|
||||||
|
|
||||||
|
out_latent = {}
|
||||||
|
out_latent["samples"] = latent
|
||||||
|
return io.NodeOutput(positive, negative, out_latent)
|
||||||
|
|
||||||
|
|
||||||
class Wan22ImageToVideoLatent(io.ComfyNode):
|
class Wan22ImageToVideoLatent(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def define_schema(cls):
|
def define_schema(cls):
|
||||||
@ -844,6 +1018,7 @@ class WanExtension(ComfyExtension):
|
|||||||
TrimVideoLatent,
|
TrimVideoLatent,
|
||||||
WanCameraImageToVideo,
|
WanCameraImageToVideo,
|
||||||
WanPhantomSubjectToVideo,
|
WanPhantomSubjectToVideo,
|
||||||
|
WanSoundImageToVideo,
|
||||||
Wan22ImageToVideoLatent,
|
Wan22ImageToVideoLatent,
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
comfyui-frontend-package==1.25.10
|
comfyui-frontend-package==1.25.11
|
||||||
comfyui-workflow-templates==0.1.65
|
comfyui-workflow-templates==0.1.68
|
||||||
comfyui-embedded-docs==0.2.6
|
comfyui-embedded-docs==0.2.6
|
||||||
comfyui_manager==4.0.0b13
|
comfyui_manager==4.0.0b13
|
||||||
torch
|
torch
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user