mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
5e79de6a73
9
.github/workflows/stable-release.yml
vendored
9
.github/workflows/stable-release.yml
vendored
@ -112,10 +112,9 @@ jobs:
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_${{ inputs.rel_name }}.7z
|
||||
tag: ${{ inputs.git_tag }}
|
||||
overwrite: true
|
||||
files: ComfyUI_windows_portable_${{ inputs.rel_name }}.7z
|
||||
tag_name: ${{ inputs.git_tag }}
|
||||
draft: true
|
||||
overwrite_files: true
|
||||
|
||||
@ -1,9 +1,11 @@
|
||||
#Taken from: https://github.com/tfernd/HyperTile/
|
||||
|
||||
import math
|
||||
from typing_extensions import override
|
||||
from einops import rearrange
|
||||
# Use torch rng for consistency across generations
|
||||
from torch import randint
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
|
||||
min_value = min(min_value, value)
|
||||
@ -20,25 +22,31 @@ def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
|
||||
|
||||
return ns[idx]
|
||||
|
||||
class HyperTile:
|
||||
class HyperTile(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}),
|
||||
"swap_size": ("INT", {"default": 2, "min": 1, "max": 128}),
|
||||
"max_depth": ("INT", {"default": 0, "min": 0, "max": 10}),
|
||||
"scale_depth": ("BOOLEAN", {"default": False}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="HyperTile",
|
||||
category="model_patches/unet",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Int.Input("tile_size", default=256, min=1, max=2048),
|
||||
io.Int.Input("swap_size", default=2, min=1, max=128),
|
||||
io.Int.Input("max_depth", default=0, min=0, max=10),
|
||||
io.Boolean.Input("scale_depth", default=False),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "model_patches/unet"
|
||||
|
||||
def patch(self, model, tile_size, swap_size, max_depth, scale_depth):
|
||||
@classmethod
|
||||
def execute(cls, model, tile_size, swap_size, max_depth, scale_depth) -> io.NodeOutput:
|
||||
latent_tile_size = max(32, tile_size) // 8
|
||||
self.temp = None
|
||||
temp = None
|
||||
|
||||
def hypertile_in(q, k, v, extra_options):
|
||||
nonlocal temp
|
||||
model_chans = q.shape[-2]
|
||||
orig_shape = extra_options['original_shape']
|
||||
apply_to = []
|
||||
@ -58,14 +66,15 @@ class HyperTile:
|
||||
|
||||
if nh * nw > 1:
|
||||
q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
|
||||
self.temp = (nh, nw, h, w)
|
||||
temp = (nh, nw, h, w)
|
||||
return q, k, v
|
||||
|
||||
return q, k, v
|
||||
def hypertile_out(out, extra_options):
|
||||
if self.temp is not None:
|
||||
nh, nw, h, w = self.temp
|
||||
self.temp = None
|
||||
nonlocal temp
|
||||
if temp is not None:
|
||||
nh, nw, h, w = temp
|
||||
temp = None
|
||||
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
|
||||
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
|
||||
return out
|
||||
@ -76,6 +85,14 @@ class HyperTile:
|
||||
m.set_model_attn1_output_patch(hypertile_out)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"HyperTile": HyperTile,
|
||||
}
|
||||
|
||||
class HyperTileExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
HyperTile,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> HyperTileExtension:
|
||||
return HyperTileExtension()
|
||||
|
||||
@ -1,20 +1,22 @@
|
||||
from typing_extensions import override
|
||||
|
||||
import torch
|
||||
import comfy.model_management as mm
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
class LotusConditioning:
|
||||
|
||||
class LotusConditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
},
|
||||
}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LotusConditioning",
|
||||
category="conditioning/lotus",
|
||||
inputs=[],
|
||||
outputs=[io.Conditioning.Output(display_name="conditioning")],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
RETURN_NAMES = ("conditioning",)
|
||||
FUNCTION = "conditioning"
|
||||
CATEGORY = "conditioning/lotus"
|
||||
|
||||
def conditioning(self):
|
||||
@classmethod
|
||||
def execute(cls) -> io.NodeOutput:
|
||||
device = mm.get_torch_device()
|
||||
#lotus uses a frozen encoder and null conditioning, i'm just inlining the results of that operation since it doesn't change
|
||||
#and getting parity with the reference implementation would otherwise require inference and 800mb of tensors
|
||||
@ -22,8 +24,16 @@ class LotusConditioning:
|
||||
|
||||
cond = [[prompt_embeds, {}]]
|
||||
|
||||
return (cond,)
|
||||
return io.NodeOutput(cond)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LotusConditioning" : LotusConditioning,
|
||||
}
|
||||
|
||||
class LotusExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
LotusConditioning,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> LotusExtension:
|
||||
return LotusExtension()
|
||||
|
||||
@ -1,20 +1,27 @@
|
||||
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
|
||||
from typing_extensions import override
|
||||
import torch
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
class RenormCFG:
|
||||
|
||||
class RenormCFG(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"cfg_trunc": ("FLOAT", {"default": 100, "min": 0.0, "max": 100.0, "step": 0.01}),
|
||||
"renorm_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="RenormCFG",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("cfg_trunc", default=100, min=0.0, max=100.0, step=0.01),
|
||||
io.Float.Input("renorm_cfg", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model"
|
||||
|
||||
def patch(self, model, cfg_trunc, renorm_cfg):
|
||||
@classmethod
|
||||
def execute(cls, model, cfg_trunc, renorm_cfg) -> io.NodeOutput:
|
||||
def renorm_cfg_func(args):
|
||||
cond_denoised = args["cond_denoised"]
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
@ -53,10 +60,10 @@ class RenormCFG:
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(renorm_cfg_func)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CLIPTextEncodeLumina2(ComfyNodeABC):
|
||||
class CLIPTextEncodeLumina2(io.ComfyNode):
|
||||
SYSTEM_PROMPT = {
|
||||
"superior": "You are an assistant designed to generate superior images with the superior "\
|
||||
"degree of image-text alignment based on textual prompts or user prompts.",
|
||||
@ -69,36 +76,52 @@ class CLIPTextEncodeLumina2(ComfyNodeABC):
|
||||
"Alignment: You are an assistant designed to generate high-quality images with the highest "\
|
||||
"degree of image-text alignment based on textual prompts."
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"system_prompt": (list(CLIPTextEncodeLumina2.SYSTEM_PROMPT.keys()), {"tooltip": CLIPTextEncodeLumina2.SYSTEM_PROMPT_TIP}),
|
||||
"user_prompt": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
|
||||
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = (IO.CONDITIONING,)
|
||||
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
|
||||
FUNCTION = "encode"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeLumina2",
|
||||
display_name="CLIP Text Encode for Lumina2",
|
||||
category="conditioning",
|
||||
description="Encodes a system prompt and a user prompt using a CLIP model into an embedding "
|
||||
"that can be used to guide the diffusion model towards generating specific images.",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"system_prompt",
|
||||
options=list(cls.SYSTEM_PROMPT.keys()),
|
||||
tooltip=cls.SYSTEM_PROMPT_TIP,
|
||||
),
|
||||
io.String.Input(
|
||||
"user_prompt",
|
||||
multiline=True,
|
||||
dynamic_prompts=True,
|
||||
tooltip="The text to be encoded.",
|
||||
),
|
||||
io.Clip.Input("clip", tooltip="The CLIP model used for encoding the text."),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(
|
||||
tooltip="A conditioning containing the embedded text used to guide the diffusion model.",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "conditioning"
|
||||
DESCRIPTION = "Encodes a system prompt and a user prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
|
||||
|
||||
def encode(self, clip, user_prompt, system_prompt):
|
||||
@classmethod
|
||||
def execute(cls, clip, user_prompt, system_prompt) -> io.NodeOutput:
|
||||
if clip is None:
|
||||
raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.")
|
||||
system_prompt = CLIPTextEncodeLumina2.SYSTEM_PROMPT[system_prompt]
|
||||
system_prompt = cls.SYSTEM_PROMPT[system_prompt]
|
||||
prompt = f'{system_prompt} <Prompt Start> {user_prompt}'
|
||||
tokens = clip.tokenize(prompt)
|
||||
return (clip.encode_from_tokens_scheduled(tokens), )
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"CLIPTextEncodeLumina2": CLIPTextEncodeLumina2,
|
||||
"RenormCFG": RenormCFG
|
||||
}
|
||||
class Lumina2Extension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
CLIPTextEncodeLumina2,
|
||||
RenormCFG,
|
||||
]
|
||||
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"CLIPTextEncodeLumina2": "CLIP Text Encode for Lumina2",
|
||||
}
|
||||
async def comfy_entrypoint() -> Lumina2Extension:
|
||||
return Lumina2Extension()
|
||||
|
||||
1
main.py
1
main.py
@ -127,6 +127,7 @@ if __name__ == "__main__":
|
||||
if args.cuda_device is not None:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
|
||||
os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device)
|
||||
os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device)
|
||||
logging.info("Set cuda device to: {}".format(args.cuda_device))
|
||||
|
||||
if args.oneapi_device_selector is not None:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user