mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-10 13:32:36 +08:00
Merge branch 'comfyanonymous:master' into feat/is_change_object_storage
This commit is contained in:
commit
60a0df0ac8
483
comfy/controlnet.py
Normal file
483
comfy/controlnet.py
Normal file
@ -0,0 +1,483 @@
|
||||
import torch
|
||||
import math
|
||||
import comfy.utils
|
||||
import comfy.sd
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
per_batch = target_batch_size // batched_number
|
||||
tensor = tensor[:per_batch]
|
||||
|
||||
if per_batch > tensor.shape[0]:
|
||||
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
||||
|
||||
current_batch_size = tensor.shape[0]
|
||||
if current_batch_size == target_batch_size:
|
||||
return tensor
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (1.0, 0.0)
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.global_average_pooling = False
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
if self.previous_controlnet is not None:
|
||||
return self.previous_controlnet.inference_memory_requirements(dtype)
|
||||
return 0
|
||||
|
||||
def control_merge(self, control_input, control_output, control_prev, output_dtype):
|
||||
out = {'input':[], 'middle':[], 'output': []}
|
||||
|
||||
if control_input is not None:
|
||||
for i in range(len(control_input)):
|
||||
key = 'input'
|
||||
x = control_input[i]
|
||||
if x is not None:
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
out[key].insert(0, x)
|
||||
|
||||
if control_output is not None:
|
||||
for i in range(len(control_output)):
|
||||
if i == (len(control_output) - 1):
|
||||
key = 'middle'
|
||||
index = 0
|
||||
else:
|
||||
key = 'output'
|
||||
index = i
|
||||
x = control_output[i]
|
||||
if x is not None:
|
||||
if self.global_average_pooling:
|
||||
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
||||
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
if control_prev is not None:
|
||||
for x in ['input', 'middle', 'output']:
|
||||
o = out[x]
|
||||
for i in range(len(control_prev[x])):
|
||||
prev_val = control_prev[x][i]
|
||||
if i >= len(o):
|
||||
o.append(prev_val)
|
||||
elif prev_val is not None:
|
||||
if o[i] is None:
|
||||
o[i] = prev_val
|
||||
else:
|
||||
o[i] += prev_val
|
||||
return out
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.control_model_wrapped = comfy.sd.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
|
||||
context = torch.cat(cond['c_crossattn'], 1)
|
||||
y = cond.get('c_adm', None)
|
||||
if y is not None:
|
||||
y = y.to(self.control_model.dtype)
|
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
|
||||
return self.control_merge(None, control, control_prev, output_dtype)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = super().get_models()
|
||||
out.append(self.control_model_wrapped)
|
||||
return out
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.weight = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
self.bias = None
|
||||
|
||||
def forward(self, input):
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
|
||||
|
||||
class Conv2d(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
padding_mode='zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.transposed = False
|
||||
self.output_padding = 0
|
||||
self.groups = groups
|
||||
self.padding_mode = padding_mode
|
||||
|
||||
self.weight = None
|
||||
self.bias = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
else:
|
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
def conv_nd(self, dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return self.Conv2d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
||||
ControlBase.__init__(self, device)
|
||||
self.control_weights = control_weights
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
controlnet_config = model.model_config.unet_config.copy()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
||||
controlnet_config["operations"] = ControlLoraOps()
|
||||
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
dtype = model.get_dtype()
|
||||
self.control_model.to(dtype)
|
||||
self.control_model.to(comfy.model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = sd[k]
|
||||
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
|
||||
key_split = k.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
|
||||
op = comfy.utils.get_attr(diffusion_model, '.'.join(key_split[:-1]))
|
||||
weight = op._hf_hook.weights_map[key_split[-1]]
|
||||
|
||||
try:
|
||||
comfy.utils.set_attr(self.control_model, k, weight)
|
||||
except:
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
del self.control_model
|
||||
self.control_model = None
|
||||
super().cleanup()
|
||||
|
||||
def get_models(self):
|
||||
out = ControlBase.get_models(self)
|
||||
return out
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
|
||||
controlnet_config = None
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
use_fp16 = comfy.model_management.should_use_fp16()
|
||||
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
||||
k_out = "zero_convs.{}.0{}".format(count, s)
|
||||
if k_in not in controlnet_data:
|
||||
loop = False
|
||||
break
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
if count == 0:
|
||||
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
||||
else:
|
||||
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
||||
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
||||
if k_in not in controlnet_data:
|
||||
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
||||
loop = False
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in controlnet_data:
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
leftover_keys = controlnet_data.keys()
|
||||
if len(leftover_keys) > 0:
|
||||
print("leftover keys:", leftover_keys)
|
||||
controlnet_data = new_sd
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
key = 'zero_convs.0.0.weight'
|
||||
if pth_key in controlnet_data:
|
||||
pth = True
|
||||
key = pth_key
|
||||
prefix = "control_model."
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
if net is None:
|
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
use_fp16 = comfy.model_management.should_use_fp16()
|
||||
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
model_sd = model.model_state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
if x.startswith(c_m):
|
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
||||
if sd_key in model_sd:
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
else:
|
||||
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
w = WeightsLoader()
|
||||
w.control_model = control_model
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
print(missing, unexpected)
|
||||
|
||||
if use_fp16:
|
||||
control_model = control_model.half()
|
||||
|
||||
global_average_pooling = False
|
||||
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
|
||||
global_average_pooling = True
|
||||
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
||||
return control
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, device=None):
|
||||
super().__init__(device)
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.control_input = None
|
||||
|
||||
def scale_image_to(self, width, height):
|
||||
unshuffle_amount = self.t2i_model.unshuffle_amount
|
||||
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
||||
return width, height
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
if self.control_input is None:
|
||||
self.t2i_model.to(x_noisy.dtype)
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
||||
self.t2i_model.cpu()
|
||||
|
||||
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
|
||||
mid = None
|
||||
if self.t2i_model.xl == True:
|
||||
mid = control_input[-1:]
|
||||
control_input = control_input[:-1]
|
||||
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
keys = t2i_data.keys()
|
||||
if 'adapter' in keys:
|
||||
t2i_data = t2i_data['adapter']
|
||||
keys = t2i_data.keys()
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
||||
use_conv = False
|
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
||||
if len(down_opts) > 0:
|
||||
use_conv = True
|
||||
xl = False
|
||||
if cin == 256:
|
||||
xl = True
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
else:
|
||||
return None
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
||||
if len(missing) > 0:
|
||||
print("t2i missing", missing)
|
||||
|
||||
if len(unexpected) > 0:
|
||||
print("t2i unexpected", unexpected)
|
||||
|
||||
return T2IAdapter(model_ad, model_ad.input_channels)
|
||||
186
comfy/lora.py
Normal file
186
comfy/lora.py
Normal file
@ -0,0 +1,186 @@
|
||||
import comfy.utils
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
"mlp.fc2": "mlp_fc2",
|
||||
"self_attn.k_proj": "self_attn_k_proj",
|
||||
"self_attn.q_proj": "self_attn_q_proj",
|
||||
"self_attn.v_proj": "self_attn_v_proj",
|
||||
"self_attn.out_proj": "self_attn_out_proj",
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load):
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
alpha_name = "{}.alpha".format(x)
|
||||
alpha = None
|
||||
if alpha_name in lora.keys():
|
||||
alpha = lora[alpha_name].item()
|
||||
loaded_keys.add(alpha_name)
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
print("lora key not loaded", x)
|
||||
return patch_dict
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
for b in range(32):
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
return key_map
|
||||
|
||||
def model_lora_keys_unet(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
return key_map
|
||||
@ -111,9 +111,6 @@ if not args.normalvram and not args.cpu:
|
||||
if lowvram_available and total_vram <= 4096:
|
||||
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
||||
set_vram_to = VRAMState.LOW_VRAM
|
||||
elif total_vram > total_ram * 1.1 and total_vram > 14336:
|
||||
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
|
||||
vram_state = VRAMState.HIGH_VRAM
|
||||
|
||||
try:
|
||||
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
||||
@ -302,16 +299,15 @@ def unload_model_clones(model):
|
||||
def free_memory(memory_required, device, keep_loaded=[]):
|
||||
unloaded_model = False
|
||||
for i in range(len(current_loaded_models) -1, -1, -1):
|
||||
if DISABLE_SMART_MEMORY:
|
||||
current_free_mem = 0
|
||||
else:
|
||||
current_free_mem = get_free_memory(device)
|
||||
if current_free_mem > memory_required:
|
||||
break
|
||||
if not DISABLE_SMART_MEMORY:
|
||||
if get_free_memory(device) > memory_required:
|
||||
break
|
||||
shift_model = current_loaded_models[i]
|
||||
if shift_model.device == device:
|
||||
if shift_model not in keep_loaded:
|
||||
current_loaded_models.pop(i).model_unload()
|
||||
m = current_loaded_models.pop(i)
|
||||
m.model_unload()
|
||||
del m
|
||||
unloaded_model = True
|
||||
|
||||
if unloaded_model:
|
||||
@ -394,6 +390,12 @@ def cleanup_models():
|
||||
x.model_unload()
|
||||
del x
|
||||
|
||||
def dtype_size(dtype):
|
||||
dtype_size = 4
|
||||
if dtype == torch.float16 or dtype == torch.bfloat16:
|
||||
dtype_size = 2
|
||||
return dtype_size
|
||||
|
||||
def unet_offload_device():
|
||||
if vram_state == VRAMState.HIGH_VRAM:
|
||||
return get_torch_device()
|
||||
@ -409,11 +411,7 @@ def unet_inital_load_device(parameters, dtype):
|
||||
if DISABLE_SMART_MEMORY:
|
||||
return cpu_dev
|
||||
|
||||
dtype_size = 4
|
||||
if dtype == torch.float16 or dtype == torch.bfloat16:
|
||||
dtype_size = 2
|
||||
|
||||
model_size = dtype_size * parameters
|
||||
model_size = dtype_size(dtype) * parameters
|
||||
|
||||
mem_dev = get_free_memory(torch_dev)
|
||||
mem_cpu = get_free_memory(cpu_dev)
|
||||
|
||||
@ -51,18 +51,20 @@ def get_models_from_cond(cond, model_type):
|
||||
models += [c[1][model_type]]
|
||||
return models
|
||||
|
||||
def get_additional_models(positive, negative):
|
||||
def get_additional_models(positive, negative, dtype):
|
||||
"""loads additional models in positive and negative conditioning"""
|
||||
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
|
||||
|
||||
inference_memory = 0
|
||||
control_models = []
|
||||
for m in control_nets:
|
||||
control_models += m.get_models()
|
||||
inference_memory += m.inference_memory_requirements(dtype)
|
||||
|
||||
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
|
||||
gligen = [x[1] for x in gligen]
|
||||
models = control_models + gligen
|
||||
return models
|
||||
return models, inference_memory
|
||||
|
||||
def cleanup_additional_models(models):
|
||||
"""cleanup additional models that were loaded"""
|
||||
@ -77,8 +79,8 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
||||
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
||||
|
||||
real_model = None
|
||||
models = get_additional_models(positive, negative)
|
||||
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]))
|
||||
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
|
||||
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)
|
||||
real_model = model.model
|
||||
|
||||
noise = noise.to(device)
|
||||
|
||||
751
comfy/sd.py
751
comfy/sd.py
@ -8,10 +8,9 @@ from comfy import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
import yaml
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
from . import utils
|
||||
import comfy.utils
|
||||
|
||||
from . import clip_vision
|
||||
from . import gligen
|
||||
from . import diffusers_convert
|
||||
@ -22,6 +21,9 @@ from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
|
||||
def load_model_weights(model, sd):
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
m = set(m)
|
||||
@ -48,209 +50,9 @@ def load_clip_weights(model, sd):
|
||||
if ids.dtype == torch.float32:
|
||||
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
return load_model_weights(model, sd)
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
"mlp.fc2": "mlp_fc2",
|
||||
"self_attn.k_proj": "self_attn_k_proj",
|
||||
"self_attn.q_proj": "self_attn_q_proj",
|
||||
"self_attn.v_proj": "self_attn_v_proj",
|
||||
"self_attn.out_proj": "self_attn_out_proj",
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load):
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
alpha_name = "{}.alpha".format(x)
|
||||
alpha = None
|
||||
if alpha_name in lora.keys():
|
||||
alpha = lora[alpha_name].item()
|
||||
loaded_keys.add(alpha_name)
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
print("lora key not loaded", x)
|
||||
return patch_dict
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
for b in range(32):
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
return key_map
|
||||
|
||||
def model_lora_keys_unet(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
return key_map
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], torch.nn.Parameter(value))
|
||||
del prev
|
||||
|
||||
def get_attr(obj, attr):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs:
|
||||
obj = getattr(obj, name)
|
||||
return obj
|
||||
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
|
||||
self.size = size
|
||||
@ -405,7 +207,7 @@ class ModelPatcher:
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
||||
set_attr(self.model, key, out_weight)
|
||||
comfy.utils.set_attr(self.model, key, out_weight)
|
||||
del temp_weight
|
||||
|
||||
if device_to is not None:
|
||||
@ -508,7 +310,7 @@ class ModelPatcher:
|
||||
keys = list(self.backup.keys())
|
||||
|
||||
for k in keys:
|
||||
set_attr(self.model, k, self.backup[k])
|
||||
comfy.utils.set_attr(self.model, k, self.backup[k])
|
||||
|
||||
self.backup = {}
|
||||
|
||||
@ -518,9 +320,9 @@ class ModelPatcher:
|
||||
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
key_map = model_lora_keys_unet(model.model)
|
||||
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = load_lora(lora, key_map)
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model)
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = comfy.lora.load_lora(lora, key_map)
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_patches(loaded, strength_model)
|
||||
new_clip = clip.clone()
|
||||
@ -564,9 +366,6 @@ class CLIP:
|
||||
n.layer_idx = self.layer_idx
|
||||
return n
|
||||
|
||||
def load_from_state_dict(self, sd):
|
||||
self.cond_stage_model.load_sd(sd)
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
@ -615,7 +414,7 @@ class VAE:
|
||||
self.first_stage_model = AutoencoderKL(**(config['params']))
|
||||
self.first_stage_model = self.first_stage_model.eval()
|
||||
if ckpt_path is not None:
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
self.first_stage_model.load_state_dict(sd, strict=False)
|
||||
@ -628,29 +427,29 @@ class VAE:
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
||||
output = torch.clamp((
|
||||
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||
return output
|
||||
|
||||
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
|
||||
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
@ -712,473 +511,6 @@ class VAE:
|
||||
def get_sd(self):
|
||||
return self.first_stage_model.state_dict()
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
per_batch = target_batch_size // batched_number
|
||||
tensor = tensor[:per_batch]
|
||||
|
||||
if per_batch > tensor.shape[0]:
|
||||
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
||||
|
||||
current_batch_size = tensor.shape[0]
|
||||
if current_batch_size == target_batch_size:
|
||||
return tensor
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (1.0, 0.0)
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.global_average_pooling = False
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
|
||||
def control_merge(self, control_input, control_output, control_prev, output_dtype):
|
||||
out = {'input':[], 'middle':[], 'output': []}
|
||||
|
||||
if control_input is not None:
|
||||
for i in range(len(control_input)):
|
||||
key = 'input'
|
||||
x = control_input[i]
|
||||
if x is not None:
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
out[key].insert(0, x)
|
||||
|
||||
if control_output is not None:
|
||||
for i in range(len(control_output)):
|
||||
if i == (len(control_output) - 1):
|
||||
key = 'middle'
|
||||
index = 0
|
||||
else:
|
||||
key = 'output'
|
||||
index = i
|
||||
x = control_output[i]
|
||||
if x is not None:
|
||||
if self.global_average_pooling:
|
||||
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
||||
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
if control_prev is not None:
|
||||
for x in ['input', 'middle', 'output']:
|
||||
o = out[x]
|
||||
for i in range(len(control_prev[x])):
|
||||
prev_val = control_prev[x][i]
|
||||
if i >= len(o):
|
||||
o.append(prev_val)
|
||||
elif prev_val is not None:
|
||||
if o[i] is None:
|
||||
o[i] = prev_val
|
||||
else:
|
||||
o[i] += prev_val
|
||||
return out
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.control_model_wrapped = ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
|
||||
context = torch.cat(cond['c_crossattn'], 1)
|
||||
y = cond.get('c_adm', None)
|
||||
if y is not None:
|
||||
y = y.to(self.control_model.dtype)
|
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
|
||||
return self.control_merge(None, control, control_prev, output_dtype)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = super().get_models()
|
||||
out.append(self.control_model_wrapped)
|
||||
return out
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.weight = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
self.bias = None
|
||||
|
||||
def forward(self, input):
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
|
||||
|
||||
class Conv2d(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
padding_mode='zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.transposed = False
|
||||
self.output_padding = 0
|
||||
self.groups = groups
|
||||
self.padding_mode = padding_mode
|
||||
|
||||
self.weight = None
|
||||
self.bias = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
else:
|
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
def conv_nd(self, dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return self.Conv2d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
||||
ControlBase.__init__(self, device)
|
||||
self.control_weights = control_weights
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
controlnet_config = model.model_config.unet_config.copy()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
||||
controlnet_config["operations"] = ControlLoraOps()
|
||||
self.control_model = cldm.ControlNet(**controlnet_config)
|
||||
dtype = model.get_dtype()
|
||||
self.control_model.to(dtype)
|
||||
self.control_model.to(model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = sd[k]
|
||||
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
|
||||
key_split = k.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
|
||||
op = get_attr(diffusion_model, '.'.join(key_split[:-1]))
|
||||
weight = op._hf_hook.weights_map[key_split[-1]]
|
||||
|
||||
try:
|
||||
set_attr(self.control_model, k, weight)
|
||||
except:
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
del self.control_model
|
||||
self.control_model = None
|
||||
super().cleanup()
|
||||
|
||||
def get_models(self):
|
||||
out = ControlBase.get_models(self)
|
||||
return out
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
|
||||
controlnet_config = None
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
use_fp16 = model_management.should_use_fp16()
|
||||
controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
|
||||
diffusers_keys = utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
||||
k_out = "zero_convs.{}.0{}".format(count, s)
|
||||
if k_in not in controlnet_data:
|
||||
loop = False
|
||||
break
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
if count == 0:
|
||||
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
||||
else:
|
||||
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
||||
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
||||
if k_in not in controlnet_data:
|
||||
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
||||
loop = False
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in controlnet_data:
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
leftover_keys = controlnet_data.keys()
|
||||
if len(leftover_keys) > 0:
|
||||
print("leftover keys:", leftover_keys)
|
||||
controlnet_data = new_sd
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
key = 'zero_convs.0.0.weight'
|
||||
if pth_key in controlnet_data:
|
||||
pth = True
|
||||
key = pth_key
|
||||
prefix = "control_model."
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
if net is None:
|
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
use_fp16 = model_management.should_use_fp16()
|
||||
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
model_management.load_models_gpu([model])
|
||||
model_sd = model.model_state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
if x.startswith(c_m):
|
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
||||
if sd_key in model_sd:
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
else:
|
||||
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
w = WeightsLoader()
|
||||
w.control_model = control_model
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
print(missing, unexpected)
|
||||
|
||||
if use_fp16:
|
||||
control_model = control_model.half()
|
||||
|
||||
global_average_pooling = False
|
||||
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
|
||||
global_average_pooling = True
|
||||
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
||||
return control
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, device=None):
|
||||
super().__init__(device)
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.control_input = None
|
||||
|
||||
def scale_image_to(self, width, height):
|
||||
unshuffle_amount = self.t2i_model.unshuffle_amount
|
||||
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
||||
return width, height
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
if self.control_input is None:
|
||||
self.t2i_model.to(x_noisy.dtype)
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
||||
self.t2i_model.cpu()
|
||||
|
||||
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
|
||||
mid = None
|
||||
if self.t2i_model.xl == True:
|
||||
mid = control_input[-1:]
|
||||
control_input = control_input[:-1]
|
||||
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
keys = t2i_data.keys()
|
||||
if 'adapter' in keys:
|
||||
t2i_data = t2i_data['adapter']
|
||||
keys = t2i_data.keys()
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
||||
use_conv = False
|
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
||||
if len(down_opts) > 0:
|
||||
use_conv = True
|
||||
xl = False
|
||||
if cin == 256:
|
||||
xl = True
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
else:
|
||||
return None
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
||||
if len(missing) > 0:
|
||||
print("t2i missing", missing)
|
||||
|
||||
if len(unexpected) > 0:
|
||||
print("t2i unexpected", unexpected)
|
||||
|
||||
return T2IAdapter(model_ad, model_ad.input_channels)
|
||||
|
||||
|
||||
class StyleModel:
|
||||
def __init__(self, model, device="cpu"):
|
||||
self.model = model
|
||||
@ -1188,10 +520,10 @@ class StyleModel:
|
||||
|
||||
|
||||
def load_style_model(ckpt_path):
|
||||
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
keys = model_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
else:
|
||||
raise Exception("invalid style model {}".format(ckpt_path))
|
||||
model.load_state_dict(model_data)
|
||||
@ -1201,14 +533,14 @@ def load_style_model(ckpt_path):
|
||||
def load_clip(ckpt_paths, embedding_directory=None):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(utils.load_torch_file(p, safe_load=True))
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
for i in range(len(clip_data)):
|
||||
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
||||
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
@ -1237,7 +569,7 @@ def load_clip(ckpt_paths, embedding_directory=None):
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model = gligen.load_gligen(data)
|
||||
if model_management.should_use_fp16():
|
||||
model = model.half()
|
||||
@ -1277,7 +609,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
pass
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = utils.load_torch_file(ckpt_path)
|
||||
state_dict = comfy.utils.load_torch_file(ckpt_path)
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
@ -1323,15 +655,8 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
|
||||
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
|
||||
def calculate_parameters(sd, prefix):
|
||||
params = 0
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
params += sd[k].nelement()
|
||||
return params
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
clip = None
|
||||
clipvision = None
|
||||
@ -1339,7 +664,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
model = None
|
||||
clip_target = None
|
||||
|
||||
parameters = calculate_parameters(sd, "model.diffusion_model.")
|
||||
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
|
||||
fp16 = model_management.should_use_fp16(model_params=parameters)
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
@ -1389,8 +714,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
|
||||
|
||||
def load_unet(unet_path): #load unet in diffusers format
|
||||
sd = utils.load_torch_file(unet_path)
|
||||
parameters = calculate_parameters(sd, "")
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
fp16 = model_management.should_use_fp16(model_params=parameters)
|
||||
|
||||
model_config = model_detection.model_config_from_diffusers_unet(sd, fp16)
|
||||
@ -1398,7 +723,7 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
print("ERROR UNSUPPORTED UNET", unet_path)
|
||||
return None
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
@ -1415,4 +740,4 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
||||
model_management.load_models_gpu([model, clip.load_model()])
|
||||
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
||||
utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
|
||||
@ -66,7 +66,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.empty_tokens = [[49406] + [49407] * 76]
|
||||
self.text_projection = None
|
||||
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
|
||||
self.layer_norm_hidden_state = True
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
@ -163,6 +165,10 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
return self(tokens)
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_projection" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection")
|
||||
if "text_projection.weight" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
||||
return self.transformer.load_state_dict(sd, strict=False)
|
||||
|
||||
def parse_parentheses(string):
|
||||
|
||||
@ -17,7 +17,7 @@
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 512,
|
||||
"projection_dim": 1024,
|
||||
"torch_dtype": "float32",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
|
||||
@ -11,15 +11,9 @@ class SDXLClipG(sd1_clip.SD1ClipModel):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
|
||||
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
||||
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
self.layer_norm_hidden_state = False
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_projection" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection")
|
||||
if "text_projection.weight" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
||||
return super().load_sd(sd)
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
@ -32,6 +32,13 @@ def save_torch_file(sd, ckpt, metadata=None):
|
||||
else:
|
||||
safetensors.torch.save_file(sd, ckpt)
|
||||
|
||||
def calculate_parameters(sd, prefix=""):
|
||||
params = 0
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
params += sd[k].nelement()
|
||||
return params
|
||||
|
||||
def transformers_convert(sd, prefix_from, prefix_to, number):
|
||||
keys_to_replace = {
|
||||
"{}positional_embedding": "{}embeddings.position_embedding.weight",
|
||||
@ -230,6 +237,20 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024):
|
||||
return None
|
||||
return f.read(length_of_header)
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], torch.nn.Parameter(value))
|
||||
del prev
|
||||
|
||||
def get_attr(obj, attr):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs:
|
||||
obj = getattr(obj, name)
|
||||
return obj
|
||||
|
||||
def bislerp(samples, width, height):
|
||||
def slerp(b1, b2, r):
|
||||
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
|
||||
|
||||
5
nodes.py
5
nodes.py
@ -22,6 +22,7 @@ import comfy.samplers
|
||||
import comfy.sample
|
||||
import comfy.sd
|
||||
import comfy.utils
|
||||
import comfy.controlnet
|
||||
|
||||
import comfy.clip_vision
|
||||
|
||||
@ -569,7 +570,7 @@ class ControlNetLoader:
|
||||
|
||||
def load_controlnet(self, control_net_name):
|
||||
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
||||
controlnet = comfy.sd.load_controlnet(controlnet_path)
|
||||
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
|
||||
return (controlnet,)
|
||||
|
||||
class DiffControlNetLoader:
|
||||
@ -585,7 +586,7 @@ class DiffControlNetLoader:
|
||||
|
||||
def load_controlnet(self, model, control_net_name):
|
||||
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
||||
controlnet = comfy.sd.load_controlnet(controlnet_path, model)
|
||||
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
|
||||
return (controlnet,)
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user