mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
merge with upstream
This commit is contained in:
commit
625134b6a1
@ -2,6 +2,13 @@ name: "Windows Release cu118 dependencies 2"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
xformers:
|
||||
description: 'xformers version'
|
||||
required: true
|
||||
type: string
|
||||
default: "xformers"
|
||||
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@ -17,7 +24,7 @@ jobs:
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
|
||||
1
CODEOWNERS
Normal file
1
CODEOWNERS
Normal file
@ -0,0 +1 @@
|
||||
* @comfyanonymous
|
||||
@ -47,6 +47,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
| Ctrl + O | Load workflow |
|
||||
| Ctrl + A | Select all nodes |
|
||||
| Ctrl + M | Mute/unmute selected nodes |
|
||||
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
|
||||
| Delete/Backspace | Delete selected nodes |
|
||||
| Ctrl + Delete/Backspace | Delete the current graph |
|
||||
| Space | Move the canvas around when held and moving the cursor |
|
||||
|
||||
@ -24,8 +24,8 @@ class ClipVisionModel():
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def encode_image(self, image):
|
||||
img = torch.clip((255. * image[0]), 0, 255).round().int()
|
||||
inputs = self.processor(images=[img], return_tensors="pt")
|
||||
img = torch.clip((255. * image), 0, 255).round().int()
|
||||
inputs = self.processor(images=img, return_tensors="pt")
|
||||
outputs = self.model(**inputs)
|
||||
return outputs
|
||||
|
||||
|
||||
@ -36,13 +36,15 @@ def get_gpu_names():
|
||||
else:
|
||||
return set()
|
||||
|
||||
def cuda_malloc_supported():
|
||||
blacklist = {"GeForce GTX TITAN X", "GeForce GTX 980", "GeForce GTX 970", "GeForce GTX 960", "GeForce GTX 950", "GeForce 945M",
|
||||
"GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M", "GeForce GTX 750", "GeForce GTX 745", "Quadro K620",
|
||||
"Quadro K1200", "Quadro K2200", "Quadro M500", "Quadro M520", "Quadro M600", "Quadro M620", "Quadro M1000",
|
||||
"Quadro M1200", "Quadro M2000", "Quadro M2200", "Quadro M3000", "Quadro M4000", "Quadro M5000", "Quadro M5500", "Quadro M6000",
|
||||
"GeForce MX110", "GeForce MX130", "GeForce 830M", "GeForce 840M", "GeForce GTX 850M", "GeForce GTX 860M"}
|
||||
blacklist = {"GeForce GTX TITAN X", "GeForce GTX 980", "GeForce GTX 970", "GeForce GTX 960", "GeForce GTX 950", "GeForce 945M",
|
||||
"GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M", "GeForce GTX 750", "GeForce GTX 745", "Quadro K620",
|
||||
"Quadro K1200", "Quadro K2200", "Quadro M500", "Quadro M520", "Quadro M600", "Quadro M620", "Quadro M1000",
|
||||
"Quadro M1200", "Quadro M2000", "Quadro M2200", "Quadro M3000", "Quadro M4000", "Quadro M5000", "Quadro M5500", "Quadro M6000",
|
||||
"GeForce MX110", "GeForce MX130", "GeForce 830M", "GeForce 840M", "GeForce GTX 850M", "GeForce GTX 860M",
|
||||
"GeForce GTX 1650", "GeForce GTX 1630"
|
||||
}
|
||||
|
||||
def cuda_malloc_supported():
|
||||
try:
|
||||
names = get_gpu_names()
|
||||
except:
|
||||
|
||||
@ -1,5 +1,7 @@
|
||||
import os
|
||||
import importlib.util
|
||||
|
||||
from comfy.cmd import cuda_malloc
|
||||
from ..cmd import folder_paths
|
||||
import time
|
||||
|
||||
@ -124,6 +126,18 @@ def load_extra_path_config(yaml_path):
|
||||
folder_paths.add_model_folder_path(x, full_path)
|
||||
|
||||
|
||||
def cuda_malloc_warning():
|
||||
device = comfy.model_management.get_torch_device()
|
||||
device_name = comfy.model_management.get_torch_device_name(device)
|
||||
cuda_malloc_warning = False
|
||||
if "cudaMallocAsync" in device_name:
|
||||
for b in cuda_malloc.blacklist:
|
||||
if b in device_name:
|
||||
cuda_malloc_warning = True
|
||||
if cuda_malloc_warning:
|
||||
print("\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
|
||||
|
||||
|
||||
def main():
|
||||
if args.temp_directory:
|
||||
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
|
||||
@ -146,6 +160,7 @@ def main():
|
||||
|
||||
server.add_routes()
|
||||
hijack_progress(server)
|
||||
cuda_malloc_warning()
|
||||
|
||||
threading.Thread(target=prompt_worker, daemon=True, args=(q, server,)).start()
|
||||
|
||||
|
||||
@ -631,23 +631,78 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
elif solver_type == 'midpoint':
|
||||
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
||||
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
||||
if eta:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
||||
|
||||
old_denoised = denoised
|
||||
h_last = h
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""DPM-Solver++(3M) SDE."""
|
||||
|
||||
seed = extra_args.get("seed", None)
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
denoised_1, denoised_2 = None, None
|
||||
h_1, h_2 = None, None
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = s - t
|
||||
h_eta = h * (eta + 1)
|
||||
|
||||
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
||||
|
||||
if h_2 is not None:
|
||||
r0 = h_1 / h
|
||||
r1 = h_2 / h
|
||||
d1_0 = (denoised - denoised_1) / r0
|
||||
d1_1 = (denoised_1 - denoised_2) / r1
|
||||
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
|
||||
d2 = (d1_0 - d1_1) / (r0 + r1)
|
||||
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
||||
phi_3 = phi_2 / h_eta - 0.5
|
||||
x = x + phi_2 * d1 - phi_3 * d2
|
||||
elif h_1 is not None:
|
||||
r = h_1 / h
|
||||
d = (denoised - denoised_1) / r
|
||||
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
||||
x = x + phi_2 * d
|
||||
|
||||
if eta:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
||||
|
||||
denoised_1, denoised_2 = denoised, denoised_1
|
||||
h_1, h_2 = h, h_1
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
||||
|
||||
|
||||
|
||||
@ -105,6 +105,29 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
noise_augment = noise_augment_merge
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
|
||||
return adm_out
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
@ -114,33 +137,11 @@ class SD21UNCLIP(BaseModel):
|
||||
def encode_adm(self, **kwargs):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if unclip_conditioning is not None:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
adm_cond = unclip_cond["clip_vision_output"].image_embeds
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: add a way to control this
|
||||
noise_augment = 0.05
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
if unclip_conditioning is None:
|
||||
return torch.zeros((1, self.adm_channels))
|
||||
else:
|
||||
adm_out = torch.zeros((1, self.adm_channels))
|
||||
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
|
||||
|
||||
return adm_out
|
||||
|
||||
class SDInpaint(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
|
||||
@ -113,6 +113,7 @@ def model_config_from_unet_config(unet_config):
|
||||
if model_config.matches(unet_config):
|
||||
return model_config(unet_config)
|
||||
|
||||
print("no match", unet_config)
|
||||
return None
|
||||
|
||||
def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
|
||||
|
||||
@ -757,7 +757,7 @@ class StyleModelApply:
|
||||
CATEGORY = "conditioning/style_model"
|
||||
|
||||
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
|
||||
cond = style_model.get_cond(clip_vision_output)
|
||||
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
||||
c = []
|
||||
for t in conditioning:
|
||||
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
||||
@ -1436,6 +1436,44 @@ class ImageInvert:
|
||||
s = 1.0 - image
|
||||
return (s,)
|
||||
|
||||
class ImageBatch:
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "batch"
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def batch(self, image1, image2):
|
||||
if image1.shape[1:] != image2.shape[1:]:
|
||||
image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
|
||||
s = torch.cat((image1, image2), dim=0)
|
||||
return (s,)
|
||||
|
||||
class EmptyImage:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
|
||||
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "generate"
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def generate(self, width, height, batch_size=1, color=0):
|
||||
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
|
||||
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
|
||||
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
|
||||
return (torch.cat((r, g, b), dim=-1), )
|
||||
|
||||
class ImagePadForOutpaint:
|
||||
|
||||
@ -1521,7 +1559,9 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ImageScale": ImageScale,
|
||||
"ImageScaleBy": ImageScaleBy,
|
||||
"ImageInvert": ImageInvert,
|
||||
"ImageBatch": ImageBatch,
|
||||
"ImagePadForOutpaint": ImagePadForOutpaint,
|
||||
"EmptyImage": EmptyImage,
|
||||
"ConditioningAverage ": ConditioningAverage ,
|
||||
"ConditioningCombine": ConditioningCombine,
|
||||
"ConditioningConcat": ConditioningConcat,
|
||||
@ -1615,6 +1655,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
||||
"ImageInvert": "Invert Image",
|
||||
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
||||
"ImageBatch": "Batch Images",
|
||||
# _for_testing
|
||||
"VAEDecodeTiled": "VAE Decode (Tiled)",
|
||||
"VAEEncodeTiled": "VAE Encode (Tiled)",
|
||||
|
||||
@ -347,6 +347,17 @@ def ddim_scheduler(model, steps):
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def sgm_scheduler(model, steps):
|
||||
sigs = []
|
||||
timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
|
||||
for x in range(len(timesteps)):
|
||||
ts = timesteps[x]
|
||||
if ts > 999:
|
||||
ts = 999
|
||||
sigs.append(model.t_to_sigma(torch.tensor(ts)))
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
@ -525,10 +536,10 @@ def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
|
||||
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
||||
SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
||||
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||
self.model = model
|
||||
@ -570,6 +581,8 @@ class KSampler:
|
||||
sigmas = simple_scheduler(self.model_wrap, steps)
|
||||
elif self.scheduler == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(self.model_wrap, steps)
|
||||
elif self.scheduler == "sgm_uniform":
|
||||
sigmas = sgm_scheduler(self.model_wrap, steps)
|
||||
else:
|
||||
print("error invalid scheduler", self.scheduler)
|
||||
|
||||
|
||||
13
comfy/sd.py
13
comfy/sd.py
@ -223,13 +223,16 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
|
||||
diffusers_lora_key = "unet.{}".format(k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
return key_map
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
|
||||
@ -3,6 +3,37 @@ import torch
|
||||
from comfy.nodes.common import MAX_RESOLUTION
|
||||
|
||||
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
||||
if resize_source:
|
||||
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
|
||||
|
||||
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
|
||||
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
|
||||
|
||||
left, top = (x // multiplier, y // multiplier)
|
||||
right, bottom = (left + source.shape[3], top + source.shape[2],)
|
||||
|
||||
if mask is None:
|
||||
mask = torch.ones_like(source)
|
||||
else:
|
||||
mask = mask.clone()
|
||||
mask = torch.nn.functional.interpolate(mask[None, None], size=(source.shape[2], source.shape[3]), mode="bilinear")
|
||||
mask = mask.repeat((source.shape[0], source.shape[1], 1, 1))
|
||||
|
||||
# calculate the bounds of the source that will be overlapping the destination
|
||||
# this prevents the source trying to overwrite latent pixels that are out of bounds
|
||||
# of the destination
|
||||
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
|
||||
|
||||
mask = mask[:, :, :visible_height, :visible_width]
|
||||
inverse_mask = torch.ones_like(mask) - mask
|
||||
|
||||
source_portion = mask * source[:, :, :visible_height, :visible_width]
|
||||
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
|
||||
|
||||
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
|
||||
return destination
|
||||
|
||||
class LatentCompositeMasked:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -12,6 +43,7 @@ class LatentCompositeMasked:
|
||||
"source": ("LATENT",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
@ -22,40 +54,36 @@ class LatentCompositeMasked:
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def composite(self, destination, source, x, y, mask = None):
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
output = destination.copy()
|
||||
destination = destination["samples"].clone()
|
||||
source = source["samples"]
|
||||
output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
|
||||
return (output,)
|
||||
|
||||
x = max(-source.shape[3] * 8, min(x, destination.shape[3] * 8))
|
||||
y = max(-source.shape[2] * 8, min(y, destination.shape[2] * 8))
|
||||
class ImageCompositeMasked:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("IMAGE",),
|
||||
"source": ("IMAGE",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "composite"
|
||||
|
||||
left, top = (x // 8, y // 8)
|
||||
right, bottom = (left + source.shape[3], top + source.shape[2],)
|
||||
|
||||
|
||||
if mask is None:
|
||||
mask = torch.ones_like(source)
|
||||
else:
|
||||
mask = mask.clone()
|
||||
mask = torch.nn.functional.interpolate(mask[None, None], size=(source.shape[2], source.shape[3]), mode="bilinear")
|
||||
mask = mask.repeat((source.shape[0], source.shape[1], 1, 1))
|
||||
|
||||
# calculate the bounds of the source that will be overlapping the destination
|
||||
# this prevents the source trying to overwrite latent pixels that are out of bounds
|
||||
# of the destination
|
||||
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
|
||||
|
||||
mask = mask[:, :, :visible_height, :visible_width]
|
||||
inverse_mask = torch.ones_like(mask) - mask
|
||||
|
||||
source_portion = mask * source[:, :, :visible_height, :visible_width]
|
||||
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
|
||||
|
||||
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
|
||||
|
||||
output["samples"] = destination
|
||||
CATEGORY = "image"
|
||||
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return (output,)
|
||||
|
||||
class MaskToImage:
|
||||
@ -254,6 +282,7 @@ class FeatherMask:
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentCompositeMasked": LatentCompositeMasked,
|
||||
"ImageCompositeMasked": ImageCompositeMasked,
|
||||
"MaskToImage": MaskToImage,
|
||||
"ImageToMask": ImageToMask,
|
||||
"SolidMask": SolidMask,
|
||||
|
||||
@ -59,8 +59,8 @@ class Blend:
|
||||
def g(self, x):
|
||||
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
||||
|
||||
def gaussian_kernel(kernel_size: int, sigma: float):
|
||||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
|
||||
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
||||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
||||
d = torch.sqrt(x * x + y * y)
|
||||
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
||||
return g / g.sum()
|
||||
@ -101,7 +101,7 @@ class Blur:
|
||||
batch_size, height, width, channels = image.shape
|
||||
|
||||
kernel_size = blur_radius * 2 + 1
|
||||
kernel = gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
|
||||
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
|
||||
|
||||
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
||||
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
|
||||
|
||||
@ -284,6 +284,11 @@ export class ComfyApp {
|
||||
}
|
||||
}
|
||||
|
||||
options.push({
|
||||
content: "Bypass",
|
||||
callback: (obj) => { if (this.mode === 4) this.mode = 0; else this.mode = 4; this.graph.change(); }
|
||||
});
|
||||
|
||||
// prevent conflict of clipspace content
|
||||
if(!ComfyApp.clipspace_return_node) {
|
||||
options.push({
|
||||
|
||||
Loading…
Reference in New Issue
Block a user