Merge branch 'comfyanonymous:master' into feat/is_change_object_storage

This commit is contained in:
Dr.Lt.Data 2023-07-20 12:48:57 +09:00 committed by GitHub
commit 6654b91073
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 118 additions and 53 deletions

77
cuda_malloc.py Normal file
View File

@ -0,0 +1,77 @@
import os
import importlib.util
from comfy.cli_args import args
#Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import.
def get_gpu_names():
if os.name == 'nt':
import ctypes
# Define necessary C structures and types
class DISPLAY_DEVICEA(ctypes.Structure):
_fields_ = [
('cb', ctypes.c_ulong),
('DeviceName', ctypes.c_char * 32),
('DeviceString', ctypes.c_char * 128),
('StateFlags', ctypes.c_ulong),
('DeviceID', ctypes.c_char * 128),
('DeviceKey', ctypes.c_char * 128)
]
# Load user32.dll
user32 = ctypes.windll.user32
# Call EnumDisplayDevicesA
def enum_display_devices():
device_info = DISPLAY_DEVICEA()
device_info.cb = ctypes.sizeof(device_info)
device_index = 0
gpu_names = set()
while user32.EnumDisplayDevicesA(None, device_index, ctypes.byref(device_info), 0):
device_index += 1
gpu_names.add(device_info.DeviceString.decode('utf-8'))
return gpu_names
return enum_display_devices()
else:
return set()
def cuda_malloc_supported():
blacklist = {"GeForce GTX 960M", "GeForce GTX 950M", "GeForce 945M", "GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M", "GeForce GTX 750", "GeForce GTX 745"}
try:
names = get_gpu_names()
except:
names = set()
for x in names:
if "NVIDIA" in x:
for b in blacklist:
if b in x:
return False
return True
if not args.cuda_malloc:
try:
version = ""
torch_spec = importlib.util.find_spec("torch")
for folder in torch_spec.submodule_search_locations:
ver_file = os.path.join(folder, "version.py")
if os.path.isfile(ver_file):
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
version = module.__version__
if int(version[0]) >= 2: #enable by default for torch version 2.0 and up
args.cuda_malloc = cuda_malloc_supported()
except:
pass
if args.cuda_malloc and not args.disable_cuda_malloc:
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None)
if env_var is None:
env_var = "backend:cudaMallocAsync"
else:
env_var += ",backend:cudaMallocAsync"
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var

View File

@ -1,6 +1,5 @@
import torch
from PIL import Image, ImageOps
from io import BytesIO
from PIL import Image
import struct
import numpy as np
from comfy.cli_args import args, LatentPreviewMethod
@ -15,26 +14,7 @@ class LatentPreviewer:
def decode_latent_to_preview_image(self, preview_format, x0):
preview_image = self.decode_latent_to_preview(x0)
if hasattr(Image, 'Resampling'):
resampling = Image.Resampling.BILINEAR
else:
resampling = Image.ANTIALIAS
preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), resampling)
preview_type = 1
if preview_format == "JPEG":
preview_type = 1
elif preview_format == "PNG":
preview_type = 2
bytesIO = BytesIO()
header = struct.pack(">I", preview_type)
bytesIO.write(header)
preview_image.save(bytesIO, format=preview_format, quality=95)
preview_bytes = bytesIO.getvalue()
return preview_bytes
return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION)
class TAESDPreviewerImpl(LatentPreviewer):
def __init__(self, taesd):

31
main.py
View File

@ -61,30 +61,7 @@ if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
print("Set cuda device to:", args.cuda_device)
if not args.cuda_malloc:
try: #if there's a better way to check the torch version without importing it let me know
version = ""
torch_spec = importlib.util.find_spec("torch")
for folder in torch_spec.submodule_search_locations:
ver_file = os.path.join(folder, "version.py")
if os.path.isfile(ver_file):
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
version = module.__version__
if int(version[0]) >= 2: #enable by default for torch version 2.0 and up
args.cuda_malloc = True
except:
pass
if args.cuda_malloc and not args.disable_cuda_malloc:
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None)
if env_var is None:
env_var = "backend:cudaMallocAsync"
else:
env_var += ",backend:cudaMallocAsync"
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var
import cuda_malloc
import comfy.utils
import yaml
@ -115,10 +92,10 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
def hijack_progress(server):
def hook(value, total, preview_image_bytes):
def hook(value, total, preview_image):
server.send_sync("progress", {"value": value, "max": total}, server.client_id)
if preview_image_bytes is not None:
server.send_sync(BinaryEventTypes.PREVIEW_IMAGE, preview_image_bytes, server.client_id)
if preview_image is not None:
server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
comfy.utils.set_progress_bar_global_hook(hook)

View File

@ -2,8 +2,12 @@ import json
from urllib import request, parse
import random
#this is the ComfyUI api prompt format. If you want it for a specific workflow you can copy it from the prompt section
#of the image metadata of images generated with ComfyUI
#This is the ComfyUI api prompt format.
#If you want it for a specific workflow you can "enable dev mode options"
#in the settings of the UI (gear beside the "Queue Size: ") this will enable
#a button on the UI to save workflows in api format.
#keep in mind ComfyUI is pre alpha software so this format will change a bit.
#this is the one for the default workflow

View File

@ -8,7 +8,7 @@ import uuid
import json
import glob
import struct
from PIL import Image
from PIL import Image, ImageOps
from io import BytesIO
try:
@ -29,6 +29,7 @@ import comfy.model_management
class BinaryEventTypes:
PREVIEW_IMAGE = 1
UNENCODED_PREVIEW_IMAGE = 2
async def send_socket_catch_exception(function, message):
try:
@ -498,7 +499,9 @@ class PromptServer():
return prompt_info
async def send(self, event, data, sid=None):
if isinstance(data, (bytes, bytearray)):
if event == BinaryEventTypes.UNENCODED_PREVIEW_IMAGE:
await self.send_image(data, sid=sid)
elif isinstance(data, (bytes, bytearray)):
await self.send_bytes(event, data, sid)
else:
await self.send_json(event, data, sid)
@ -512,6 +515,30 @@ class PromptServer():
message.extend(data)
return message
async def send_image(self, image_data, sid=None):
image_type = image_data[0]
image = image_data[1]
max_size = image_data[2]
if max_size is not None:
if hasattr(Image, 'Resampling'):
resampling = Image.Resampling.BILINEAR
else:
resampling = Image.ANTIALIAS
image = ImageOps.contain(image, (max_size, max_size), resampling)
type_num = 1
if image_type == "JPEG":
type_num = 1
elif image_type == "PNG":
type_num = 2
bytesIO = BytesIO()
header = struct.pack(">I", type_num)
bytesIO.write(header)
image.save(bytesIO, format=image_type, quality=95, compress_level=4)
preview_bytes = bytesIO.getvalue()
await self.send_bytes(BinaryEventTypes.PREVIEW_IMAGE, preview_bytes, sid=sid)
async def send_bytes(self, event, data, sid=None):
message = self.encode_bytes(event, data)