This commit is contained in:
Jedrzej Kosinski 2025-10-28 22:08:34 +00:00 committed by GitHub
commit 6adb226dba
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 530 additions and 126 deletions

View File

@ -132,6 +132,8 @@ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the am
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.") parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--flipflop-offload", action="store_true", help="Use async flipflop weight offloading for supported DiT models.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.") parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.") parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")

View File

@ -0,0 +1,200 @@
from __future__ import annotations
import torch
import copy
import comfy.model_management
class FlipFlopModule(torch.nn.Module):
def __init__(self, block_types: tuple[str, ...], enable_flipflop: bool = True):
super().__init__()
self.block_types = block_types
self.enable_flipflop = enable_flipflop
self.flipflop: dict[str, FlipFlopHolder] = {}
self.block_info: dict[str, tuple[int, int]] = {}
self.flipflop_prefixes: list[str] = []
def setup_flipflop_holders(self, block_info: dict[str, tuple[int, int]], flipflop_prefixes: list[str], load_device: torch.device, offload_device: torch.device):
for block_type, (flipflop_blocks, total_blocks) in block_info.items():
if block_type in self.flipflop:
continue
self.flipflop[block_type] = FlipFlopHolder(getattr(self, block_type)[total_blocks-flipflop_blocks:], flipflop_blocks, total_blocks, load_device, offload_device)
self.block_info[block_type] = (flipflop_blocks, total_blocks)
self.flipflop_prefixes = flipflop_prefixes.copy()
def init_flipflop_block_copies(self, device: torch.device) -> int:
memory_freed = 0
for holder in self.flipflop.values():
memory_freed += holder.init_flipflop_block_copies(device)
return memory_freed
def clean_flipflop_holders(self):
memory_freed = 0
for block_type in list(self.flipflop.keys()):
memory_freed += self.flipflop[block_type].clean_flipflop_blocks()
del self.flipflop[block_type]
self.block_info = {}
self.flipflop_prefixes = []
return memory_freed
def get_all_blocks(self, block_type: str) -> list[torch.nn.Module]:
return getattr(self, block_type)
def get_blocks(self, block_type: str) -> torch.nn.ModuleList:
if block_type not in self.block_types:
raise ValueError(f"Block type {block_type} not found in {self.block_types}")
if block_type in self.flipflop:
return getattr(self, block_type)[:self.flipflop[block_type].i_offset]
return getattr(self, block_type)
def get_all_block_module_sizes(self, reverse_sort_by_size: bool = False) -> list[tuple[str, int]]:
'''
Returns a list of (block_type, size) sorted by size.
If reverse_sort_by_size is True, the list is sorted by size in reverse order.
'''
sizes = [(block_type, self.get_block_module_size(block_type)) for block_type in self.block_types]
sizes.sort(key=lambda x: x[1], reverse=reverse_sort_by_size)
return sizes
def get_block_module_size(self, block_type: str) -> int:
return comfy.model_management.module_size(getattr(self, block_type)[0])
def execute_blocks(self, block_type: str, func, out: torch.Tensor | tuple[torch.Tensor,...], *args, **kwargs):
# execute blocks, supporting both single and double (or higher) block types
if isinstance(out, torch.Tensor):
out = (out,)
for i, block in enumerate(self.get_blocks(block_type)):
out = func(i, block, *out, *args, **kwargs)
if isinstance(out, torch.Tensor):
out = (out,)
if block_type in self.flipflop:
holder = self.flipflop[block_type]
with holder.context() as ctx:
for i, block in enumerate(holder.blocks):
out = ctx(func, i, block, *out, *args, **kwargs)
if isinstance(out, torch.Tensor):
out = (out,)
if len(out) == 1:
out = out[0]
return out
class FlipFlopContext:
def __init__(self, holder: FlipFlopHolder):
# NOTE: there is a bug when there are an odd number of blocks to flipflop.
# Worked around right now by always making sure it will be even, but need to resolve.
self.holder = holder
self.reset()
def reset(self):
self.num_blocks = len(self.holder.blocks)
self.first_flip = True
self.first_flop = True
self.last_flip = False
self.last_flop = False
def __enter__(self):
self.reset()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.holder.compute_stream.record_event(self.holder.cpy_end_event)
def do_flip(self, func, i: int, _, *args, **kwargs):
# flip
self.holder.compute_stream.wait_event(self.holder.cpy_end_event)
with torch.cuda.stream(self.holder.compute_stream):
out = func(i+self.holder.i_offset, self.holder.flip, *args, **kwargs)
self.holder.event_flip.record(self.holder.compute_stream)
# while flip executes, queue flop to copy to its next block
next_flop_i = i + 1
if next_flop_i >= self.num_blocks:
next_flop_i = next_flop_i - self.num_blocks
self.last_flip = True
if not self.first_flip:
self.holder._copy_state_dict(self.holder.flop.state_dict(), self.holder.blocks[next_flop_i].state_dict(), self.holder.event_flop, self.holder.cpy_end_event)
if self.last_flip:
self.holder._copy_state_dict(self.holder.flip.state_dict(), self.holder.blocks[0].state_dict(), cpy_start_event=self.holder.event_flip)
self.first_flip = False
return out
def do_flop(self, func, i: int, _, *args, **kwargs):
# flop
if not self.first_flop:
self.holder.compute_stream.wait_event(self.holder.cpy_end_event)
with torch.cuda.stream(self.holder.compute_stream):
out = func(i+self.holder.i_offset, self.holder.flop, *args, **kwargs)
self.holder.event_flop.record(self.holder.compute_stream)
# while flop executes, queue flip to copy to its next block
next_flip_i = i + 1
if next_flip_i >= self.num_blocks:
next_flip_i = next_flip_i - self.num_blocks
self.last_flop = True
self.holder._copy_state_dict(self.holder.flip.state_dict(), self.holder.blocks[next_flip_i].state_dict(), self.holder.event_flip, self.holder.cpy_end_event)
if self.last_flop:
self.holder._copy_state_dict(self.holder.flop.state_dict(), self.holder.blocks[1].state_dict(), cpy_start_event=self.holder.event_flop)
self.first_flop = False
return out
@torch.no_grad()
def __call__(self, func, i: int, block: torch.nn.Module, *args, **kwargs):
# flips are even indexes, flops are odd indexes
if i % 2 == 0:
return self.do_flip(func, i, block, *args, **kwargs)
else:
return self.do_flop(func, i, block, *args, **kwargs)
class FlipFlopHolder:
def __init__(self, blocks: list[torch.nn.Module], flip_amount: int, total_amount: int, load_device: torch.device, offload_device: torch.device):
self.load_device = load_device
self.offload_device = offload_device
self.blocks = blocks
self.flip_amount = flip_amount
self.total_amount = total_amount
# NOTE: used to make sure block indexes passed into block functions match expected patch indexes
self.i_offset = total_amount - flip_amount
self.block_module_size = 0
if len(self.blocks) > 0:
self.block_module_size = comfy.model_management.module_size(self.blocks[0])
self.flip: torch.nn.Module = None
self.flop: torch.nn.Module = None
self.compute_stream = torch.cuda.default_stream(self.load_device)
self.cpy_stream = torch.cuda.Stream(self.load_device)
self.event_flip = torch.cuda.Event(enable_timing=False)
self.event_flop = torch.cuda.Event(enable_timing=False)
self.cpy_end_event = torch.cuda.Event(enable_timing=False)
# INIT - is this actually needed?
self.compute_stream.record_event(self.cpy_end_event)
def _copy_state_dict(self, dst, src, cpy_start_event: torch.cuda.Event=None, cpy_end_event: torch.cuda.Event=None):
if cpy_start_event:
self.cpy_stream.wait_event(cpy_start_event)
with torch.cuda.stream(self.cpy_stream):
for k, v in src.items():
dst[k].copy_(v, non_blocking=True)
if cpy_end_event:
cpy_end_event.record(self.cpy_stream)
def context(self):
return FlipFlopContext(self)
def init_flipflop_block_copies(self, load_device: torch.device) -> int:
self.flip = copy.deepcopy(self.blocks[0]).to(device=load_device)
self.flop = copy.deepcopy(self.blocks[1]).to(device=load_device)
return comfy.model_management.module_size(self.flip) + comfy.model_management.module_size(self.flop)
def clean_flipflop_blocks(self) -> int:
memory_freed = 0
memory_freed += comfy.model_management.module_size(self.flip)
memory_freed += comfy.model_management.module_size(self.flop)
del self.flip
del self.flop
self.flip = None
self.flop = None
return memory_freed

View File

@ -7,6 +7,7 @@ from torch import Tensor, nn
from einops import rearrange, repeat from einops import rearrange, repeat
import comfy.ldm.common_dit import comfy.ldm.common_dit
import comfy.patcher_extension import comfy.patcher_extension
from comfy.ldm.flipflop_transformer import FlipFlopModule
from .layers import ( from .layers import (
DoubleStreamBlock, DoubleStreamBlock,
@ -35,13 +36,13 @@ class FluxParams:
guidance_embed: bool guidance_embed: bool
class Flux(nn.Module): class Flux(FlipFlopModule):
""" """
Transformer model for flow matching on sequences. Transformer model for flow matching on sequences.
""" """
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__() super().__init__(("double_blocks", "single_blocks"))
self.dtype = dtype self.dtype = dtype
params = FluxParams(**kwargs) params = FluxParams(**kwargs)
self.params = params self.params = params
@ -89,6 +90,72 @@ class Flux(nn.Module):
if final_layer: if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
def indiv_double_block_fwd(self, i, block, img, txt, vec, pe, attn_mask, control, blocks_replace, transformer_options):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img[:, :add.shape[1]] += add
return img, txt
def indiv_single_block_fwd(self, i, block, img, txt, vec, pe, attn_mask, control, blocks_replace, transformer_options):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] : txt.shape[1] + add.shape[1], ...] += add
return img
def forward_orig( def forward_orig(
self, self,
img: Tensor, img: Tensor,
@ -136,74 +203,16 @@ class Flux(nn.Module):
pe = None pe = None
blocks_replace = patches_replace.get("dit", {}) blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks): # execute double blocks
if ("double_block", i) in blocks_replace: img, txt = self.execute_blocks("double_blocks", self.indiv_double_block_fwd, (img, txt), vec, pe, attn_mask, control, blocks_replace, transformer_options)
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img[:, :add.shape[1]] += add
if img.dtype == torch.float16: if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504) img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
img = torch.cat((txt, img), 1) img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks): # execute single blocks
if ("single_block", i) in blocks_replace: img = self.execute_blocks("single_blocks", self.indiv_single_block_fwd, img, txt, vec, pe, attn_mask, control, blocks_replace, transformer_options)
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] : txt.shape[1] + add.shape[1], ...] += add
img = img[:, txt.shape[1] :, ...] img = img[:, txt.shape[1] :, ...]

View File

@ -5,11 +5,13 @@ import torch.nn.functional as F
from typing import Optional, Tuple from typing import Optional, Tuple
from einops import repeat from einops import repeat
from comfy.ldm.flipflop_transformer import FlipFlopModule
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from comfy.ldm.modules.attention import optimized_attention_masked from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit import comfy.ldm.common_dit
import comfy.patcher_extension import comfy.patcher_extension
import comfy.ops
class GELU(nn.Module): class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None): def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
@ -283,7 +285,7 @@ class LastLayer(nn.Module):
return x return x
class QwenImageTransformer2DModel(nn.Module): class QwenImageTransformer2DModel(FlipFlopModule):
def __init__( def __init__(
self, self,
patch_size: int = 2, patch_size: int = 2,
@ -300,9 +302,9 @@ class QwenImageTransformer2DModel(nn.Module):
final_layer=True, final_layer=True,
dtype=None, dtype=None,
device=None, device=None,
operations=None, operations: comfy.ops.disable_weight_init=None,
): ):
super().__init__() super().__init__(block_types=("transformer_blocks",))
self.dtype = dtype self.dtype = dtype
self.patch_size = patch_size self.patch_size = patch_size
self.in_channels = in_channels self.in_channels = in_channels
@ -366,6 +368,40 @@ class QwenImageTransformer2DModel(nn.Module):
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs) ).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
def indiv_block_fwd(self, i, block, hidden_states, encoder_hidden_states, encoder_hidden_states_mask, temb, image_rotary_emb, patches, control, blocks_replace, x, transformer_options):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states[:, :add.shape[1]] += add
return hidden_states, encoder_hidden_states
def _forward( def _forward(
self, self,
x, x,
@ -433,37 +469,8 @@ class QwenImageTransformer2DModel(nn.Module):
patches = transformer_options.get("patches", {}) patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {}) blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks): out = (hidden_states, encoder_hidden_states)
if ("double_block", i) in blocks_replace: hidden_states, encoder_hidden_states = self.execute_blocks("transformer_blocks", self.indiv_block_fwd, out, encoder_hidden_states_mask, temb, image_rotary_emb, patches, control, blocks_replace, x, transformer_options)
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states[:, :add.shape[1]] += add
hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states) hidden_states = self.proj_out(hidden_states)

View File

@ -7,6 +7,7 @@ import torch.nn as nn
from einops import rearrange from einops import rearrange
from comfy.ldm.modules.attention import optimized_attention from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flipflop_transformer import FlipFlopModule
from comfy.ldm.flux.layers import EmbedND from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope1 from comfy.ldm.flux.math import apply_rope1
import comfy.ldm.common_dit import comfy.ldm.common_dit
@ -384,7 +385,7 @@ class MLPProj(torch.nn.Module):
return clip_extra_context_tokens return clip_extra_context_tokens
class WanModel(torch.nn.Module): class WanModel(FlipFlopModule):
r""" r"""
Wan diffusion backbone supporting both text-to-video and image-to-video. Wan diffusion backbone supporting both text-to-video and image-to-video.
""" """
@ -412,6 +413,7 @@ class WanModel(torch.nn.Module):
device=None, device=None,
dtype=None, dtype=None,
operations=None, operations=None,
enable_flipflop=True,
): ):
r""" r"""
Initialize the diffusion model backbone. Initialize the diffusion model backbone.
@ -449,7 +451,7 @@ class WanModel(torch.nn.Module):
Epsilon value for normalization layers Epsilon value for normalization layers
""" """
super().__init__() super().__init__(block_types=("blocks",), enable_flipflop=enable_flipflop)
self.dtype = dtype self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype} operation_settings = {"operations": operations, "device": device, "dtype": dtype}
@ -506,6 +508,18 @@ class WanModel(torch.nn.Module):
else: else:
self.ref_conv = None self.ref_conv = None
def indiv_block_fwd(self, i, block, x, e0, freqs, context, context_img_len, blocks_replace, transformer_options):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
return x
def forward_orig( def forward_orig(
self, self,
x, x,
@ -567,16 +581,8 @@ class WanModel(torch.nn.Module):
patches_replace = transformer_options.get("patches_replace", {}) patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {}) blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks): # execute blocks
if ("double_block", i) in blocks_replace: x = self.execute_blocks("blocks", self.indiv_block_fwd, x, e0, freqs, context, context_img_len, blocks_replace, transformer_options)
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head # head
x = self.head(x, e) x = self.head(x, e)
@ -688,7 +694,7 @@ class VaceWanModel(WanModel):
operations=None, operations=None,
): ):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations, enable_flipflop=False)
operation_settings = {"operations": operations, "device": device, "dtype": dtype} operation_settings = {"operations": operations, "device": device, "dtype": dtype}
# Vace # Vace
@ -808,7 +814,7 @@ class CameraWanModel(WanModel):
else: else:
model_type = 't2v' model_type = 't2v'
super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations, enable_flipflop=False)
operation_settings = {"operations": operations, "device": device, "dtype": dtype} operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings) self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
@ -1211,7 +1217,7 @@ class WanModel_S2V(WanModel):
operations=None, operations=None,
): ):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations) super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations, enable_flipflop=False)
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype) self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
@ -1511,7 +1517,7 @@ class HumoWanModel(WanModel):
operations=None, operations=None,
): ):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, wan_attn_block_class=WanAttentionBlockAudio, image_model=image_model, device=device, dtype=dtype, operations=operations) super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, wan_attn_block_class=WanAttentionBlockAudio, image_model=image_model, device=device, dtype=dtype, operations=operations, enable_flipflop=False)
self.audio_proj = AudioProjModel(seq_len=8, blocks=5, channels=1280, intermediate_dim=512, output_dim=1536, context_tokens=audio_token_num, dtype=dtype, device=device, operations=operations) self.audio_proj = AudioProjModel(seq_len=8, blocks=5, channels=1280, intermediate_dim=512, output_dim=1536, context_tokens=audio_token_num, dtype=dtype, device=device, operations=operations)

View File

@ -426,7 +426,7 @@ class AnimateWanModel(WanModel):
operations=None, operations=None,
): ):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations, enable_flipflop=False)
self.pose_patch_embedding = operations.Conv3d( self.pose_patch_embedding = operations.Conv3d(
16, dim, kernel_size=patch_size, stride=patch_size, device=device, dtype=dtype 16, dim, kernel_size=patch_size, stride=patch_size, device=device, dtype=dtype

View File

@ -1006,6 +1006,8 @@ def force_channels_last():
#TODO #TODO
return False return False
def flipflop_enabled():
return args.flipflop_offload
STREAMS = {} STREAMS = {}
NUM_STREAMS = 1 NUM_STREAMS = 1

View File

@ -25,7 +25,7 @@ import logging
import math import math
import uuid import uuid
from typing import Callable, Optional from typing import Callable, Optional
import time # TODO remove
import torch import torch
import comfy.float import comfy.float
@ -591,7 +591,7 @@ class ModelPatcher:
sd.pop(k) sd.pop(k)
return sd return sd
def patch_weight_to_device(self, key, device_to=None, inplace_update=False): def patch_weight_to_device(self, key, device_to=None, inplace_update=False, device_final=None):
if key not in self.patches: if key not in self.patches:
return return
@ -611,15 +611,103 @@ class ModelPatcher:
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key) out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
if set_func is None: if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if device_final is not None:
out_weight = out_weight.to(device_final)
if inplace_update: if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight) comfy.utils.copy_to_param(self.model, key, out_weight)
else: else:
comfy.utils.set_attr_param(self.model, key, out_weight) comfy.utils.set_attr_param(self.model, key, out_weight)
else: else:
if device_final is not None:
out_weight = out_weight.to(device_final)
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key)) set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def _load_list(self): def supports_flipflop(self):
# flipflop requires diffusion_model, explicit flipflop support, NVIDIA CUDA streams, and loading/offloading VRAM
if not comfy.model_management.flipflop_enabled():
return False
if not hasattr(self.model, "diffusion_model"):
return False
if not getattr(self.model.diffusion_model, "enable_flipflop", False):
return False
if not comfy.model_management.is_nvidia():
return False
if comfy.model_management.vram_state in (comfy.model_management.VRAMState.HIGH_VRAM, comfy.model_management.VRAMState.SHARED):
return False
return True
def setup_flipflop(self, flipflop_blocks_per_type: dict[str, tuple[int, int]], flipflop_prefixes: list[str]):
if not self.supports_flipflop():
return
logging.info(f"setting up flipflop with {flipflop_blocks_per_type}")
self.model.diffusion_model.setup_flipflop_holders(flipflop_blocks_per_type, flipflop_prefixes, self.load_device, self.offload_device)
def init_flipflop_block_copies(self) -> int:
if not self.supports_flipflop():
return 0
return self.model.diffusion_model.init_flipflop_block_copies(self.load_device)
def clean_flipflop(self) -> int:
if not self.supports_flipflop():
return 0
return self.model.diffusion_model.clean_flipflop_holders()
def _get_existing_flipflop_prefixes(self):
if self.supports_flipflop():
return self.model.diffusion_model.flipflop_prefixes
return []
def _calc_flipflop_prefixes(self, lowvram_model_memory=0, prepare_flipflop=False):
flipflop_prefixes = []
flipflop_blocks_per_type: dict[str, tuple[int, int]] = {}
if lowvram_model_memory > 0 and self.supports_flipflop():
block_buffer = 3
valid_block_types = []
# for each block type, check if have enough room to flipflop
for block_info in self.model.diffusion_model.get_all_block_module_sizes(reverse_sort_by_size=True):
block_size: int = block_info[1]
if block_size * block_buffer < lowvram_model_memory:
valid_block_types.append(block_info)
# if have candidates for flipping, see how many of each type we have can flipflop
if len(valid_block_types) > 0:
leftover_memory = lowvram_model_memory
for block_info in valid_block_types:
block_type: str = block_info[0]
block_size: int = block_info[1]
total_blocks = len(self.model.diffusion_model.get_all_blocks(block_type))
n_fit_in_memory = int(leftover_memory // block_size)
# if all (or more) of this block type would fit in memory, no need to flipflop with it
if n_fit_in_memory >= total_blocks:
leftover_memory -= total_blocks * block_size
continue
# if the amount of this block that would fit in memory is less than buffer, skip this block type
if n_fit_in_memory < block_buffer:
continue
# 2 blocks worth of VRAM may be needed for flipflop, so make sure to account for them.
flipflop_blocks = min((total_blocks - n_fit_in_memory) + 2, total_blocks)
# for now, work around odd number issue by making it even
if flipflop_blocks % 2 != 0:
if flipflop_blocks == total_blocks:
flipflop_blocks -= 1
else:
flipflop_blocks += 1
flipflop_blocks_per_type[block_type] = (flipflop_blocks, total_blocks)
leftover_memory -= (total_blocks - flipflop_blocks + 2) * block_size
# if there are blocks to flipflop, need to mark their keys
for block_type, (flipflop_blocks, total_blocks) in flipflop_blocks_per_type.items():
# blocks to flipflop are at the end
for i in range(total_blocks-flipflop_blocks, total_blocks):
flipflop_prefixes.append(f"diffusion_model.{block_type}.{i}")
if prepare_flipflop and len(flipflop_blocks_per_type) > 0:
self.setup_flipflop(flipflop_blocks_per_type, flipflop_prefixes)
return flipflop_prefixes
def _load_list(self, lowvram_model_memory=0, prepare_flipflop=False, get_existing_flipflop=False):
loading = [] loading = []
if get_existing_flipflop:
flipflop_prefixes = self._get_existing_flipflop_prefixes()
else:
flipflop_prefixes = self._calc_flipflop_prefixes(lowvram_model_memory, prepare_flipflop)
for n, m in self.model.named_modules(): for n, m in self.model.named_modules():
params = [] params = []
skip = False skip = False
@ -630,7 +718,12 @@ class ModelPatcher:
skip = True # skip random weights in non leaf modules skip = True # skip random weights in non leaf modules
break break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0): if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
loading.append((comfy.model_management.module_size(m), n, m, params)) flipflop = False
for prefix in flipflop_prefixes:
if n.startswith(prefix):
flipflop = True
break
loading.append((comfy.model_management.module_size(m), n, m, params, flipflop))
return loading return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
@ -639,14 +732,19 @@ class ModelPatcher:
mem_counter = 0 mem_counter = 0
patch_counter = 0 patch_counter = 0
lowvram_counter = 0 lowvram_counter = 0
loading = self._load_list() lowvram_mem_counter = 0
flipflop_counter = 0
flipflop_mem_counter = 0
loading = self._load_list(lowvram_model_memory, prepare_flipflop=True)
load_completely = [] load_completely = []
load_flipflop = []
loading.sort(reverse=True) loading.sort(reverse=True)
for x in loading: for x in loading:
n = x[1] n = x[1]
m = x[2] m = x[2]
params = x[3] params = x[3]
flipflop: bool = x[4]
module_mem = x[0] module_mem = x[0]
lowvram_weight = False lowvram_weight = False
@ -654,10 +752,11 @@ class ModelPatcher:
weight_key = "{}.weight".format(n) weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n) bias_key = "{}.bias".format(n)
if not full_load and hasattr(m, "comfy_cast_weights"): if not full_load and hasattr(m, "comfy_cast_weights") and not flipflop:
if mem_counter + module_mem >= lowvram_model_memory: if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True lowvram_weight = True
lowvram_counter += 1 lowvram_counter += 1
lowvram_mem_counter += module_mem
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
continue continue
@ -687,7 +786,11 @@ class ModelPatcher:
if hasattr(m, "comfy_cast_weights"): if hasattr(m, "comfy_cast_weights"):
wipe_lowvram_weight(m) wipe_lowvram_weight(m)
if full_load or mem_counter + module_mem < lowvram_model_memory: if flipflop:
flipflop_counter += 1
flipflop_mem_counter += module_mem
load_flipflop.append((module_mem, n, m, params))
elif full_load or mem_counter + module_mem < lowvram_model_memory:
mem_counter += module_mem mem_counter += module_mem
load_completely.append((module_mem, n, m, params)) load_completely.append((module_mem, n, m, params))
@ -703,6 +806,7 @@ class ModelPatcher:
mem_counter += move_weight_functions(m, device_to) mem_counter += move_weight_functions(m, device_to)
# handle load completely
load_completely.sort(reverse=True) load_completely.sort(reverse=True)
for x in load_completely: for x in load_completely:
n = x[1] n = x[1]
@ -721,11 +825,36 @@ class ModelPatcher:
for x in load_completely: for x in load_completely:
x[2].to(device_to) x[2].to(device_to)
if lowvram_counter > 0: # handle flipflop
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter)) if len(load_flipflop) > 0:
start_time = time.perf_counter()
load_flipflop.sort(reverse=True)
for x in load_flipflop:
n = x[1]
m = x[2]
params = x[3]
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True:
continue
for param in params:
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to, device_final=self.offload_device)
logging.debug("lowvram: loaded module for flipflop {} {}".format(n, m))
end_time = time.perf_counter()
logging.info(f"flipflop load time: {end_time - start_time:.2f} seconds")
start_time = time.perf_counter()
mem_counter += self.init_flipflop_block_copies()
end_time = time.perf_counter()
logging.info(f"flipflop block init time: {end_time - start_time:.2f} seconds")
if lowvram_counter > 0 or flipflop_counter > 0:
if flipflop_counter > 0:
logging.info(f"loaded partially; {lowvram_model_memory / (1024 * 1024):.2f} MB usable, {mem_counter / (1024 * 1024):.2f} MB loaded, {flipflop_mem_counter / (1024 * 1024):.2f} MB flipflop, {lowvram_mem_counter / (1024 * 1024):.2f} MB offloaded, lowvram patches: {patch_counter}")
else:
logging.info(f"loaded partially; {lowvram_model_memory / (1024 * 1024):.2f} MB usable, {mem_counter / (1024 * 1024):.2f} MB loaded, {lowvram_mem_counter / (1024 * 1024):.2f} MB offloaded, lowvram patches: {patch_counter}")
self.model.model_lowvram = True self.model.model_lowvram = True
else: else:
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) logging.info(f"loaded completely; {lowvram_model_memory / (1024 * 1024):.2f} MB usable, {mem_counter / (1024 * 1024):.2f} MB loaded, full load: {full_load}")
self.model.model_lowvram = False self.model.model_lowvram = False
if full_load: if full_load:
self.model.to(device_to) self.model.to(device_to)
@ -762,6 +891,7 @@ class ModelPatcher:
self.eject_model() self.eject_model()
if unpatch_weights: if unpatch_weights:
self.unpatch_hooks() self.unpatch_hooks()
self.clean_flipflop()
if self.model.model_lowvram: if self.model.model_lowvram:
for m in self.model.modules(): for m in self.model.modules():
move_weight_functions(m, device_to) move_weight_functions(m, device_to)
@ -801,8 +931,9 @@ class ModelPatcher:
with self.use_ejected(): with self.use_ejected():
hooks_unpatched = False hooks_unpatched = False
memory_freed = 0 memory_freed = 0
memory_freed += self.clean_flipflop()
patch_counter = 0 patch_counter = 0
unload_list = self._load_list() unload_list = self._load_list(get_existing_flipflop=True)
unload_list.sort() unload_list.sort()
for unload in unload_list: for unload in unload_list:
if memory_to_free < memory_freed: if memory_to_free < memory_freed:
@ -811,7 +942,10 @@ class ModelPatcher:
n = unload[1] n = unload[1]
m = unload[2] m = unload[2]
params = unload[3] params = unload[3]
flipflop: bool = unload[4]
if flipflop:
continue
lowvram_possible = hasattr(m, "comfy_cast_weights") lowvram_possible = hasattr(m, "comfy_cast_weights")
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
move_weight = True move_weight = True

View File

@ -0,0 +1,43 @@
from __future__ import annotations
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
class FlipFlop(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="FlipFlopNew",
display_name="FlipFlop (New)",
category="_for_testing",
inputs=[
io.Model.Input(id="model"),
io.Float.Input(id="block_percentage", default=1.0, min=0.0, max=1.0, step=0.01),
],
outputs=[
io.Model.Output()
],
description="Apply FlipFlop transformation to model using setup_flipflop_holders method"
)
@classmethod
def execute(cls, model: io.Model.Type, block_percentage: float) -> io.NodeOutput:
# NOTE: this is just a hacky prototype still, this would not be exposed as a node.
# At the moment, this modifies the underlying model with no way to 'unpatch' it.
model = model.clone()
if not hasattr(model.model.diffusion_model, "setup_flipflop_holders"):
raise ValueError("Model does not have flipflop holders; FlipFlop not supported")
model.model.diffusion_model.setup_flipflop_holders(block_percentage)
return io.NodeOutput(model)
class FlipFlopExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
FlipFlop,
]
async def comfy_entrypoint() -> FlipFlopExtension:
return FlipFlopExtension()

View File

@ -2329,6 +2329,7 @@ async def init_builtin_extra_nodes():
"nodes_model_patch.py", "nodes_model_patch.py",
"nodes_easycache.py", "nodes_easycache.py",
"nodes_audio_encoder.py", "nodes_audio_encoder.py",
"nodes_flipflop.py",
] ]
import_failed = [] import_failed = []