mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-19 19:13:02 +08:00
Refactored old flip flop into a new implementation that allows for controlling the percentage of blocks getting flip flopped, converted nodes to v3 schema
This commit is contained in:
parent
f9fbf902d5
commit
6b240b0bce
@ -1,3 +1,4 @@
|
||||
from __future__ import annotations
|
||||
import torch
|
||||
import torch.cuda as cuda
|
||||
import copy
|
||||
@ -37,6 +38,102 @@ def patch_model_from_config(model, config: FlipFlopConfig):
|
||||
setattr(model, config.overwrite_forward, flip_flop_transformer.__call__)
|
||||
|
||||
|
||||
class FlipFlopContext:
|
||||
def __init__(self, holder: FlipFlopHolder):
|
||||
self.holder = holder
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.num_blocks = len(self.holder.transformer_blocks)
|
||||
self.first_flip = True
|
||||
self.first_flop = True
|
||||
self.last_flip = False
|
||||
self.last_flop = False
|
||||
|
||||
def __enter__(self):
|
||||
self.reset()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.holder.compute_stream.record_event(self.holder.cpy_end_event)
|
||||
|
||||
def do_flip(self, func, i: int, _, *args, **kwargs):
|
||||
# flip
|
||||
self.holder.compute_stream.wait_event(self.holder.cpy_end_event)
|
||||
with torch.cuda.stream(self.holder.compute_stream):
|
||||
out = func(i, self.holder.flip, *args, **kwargs)
|
||||
self.holder.event_flip.record(self.holder.compute_stream)
|
||||
# while flip executes, queue flop to copy to its next block
|
||||
next_flop_i = i + 1
|
||||
if next_flop_i >= self.num_blocks:
|
||||
next_flop_i = next_flop_i - self.num_blocks
|
||||
self.last_flip = True
|
||||
if not self.first_flip:
|
||||
self.holder._copy_state_dict(self.holder.flop.state_dict(), self.holder.transformer_blocks[next_flop_i].state_dict(), self.holder.event_flop, self.holder.cpy_end_event)
|
||||
if self.last_flip:
|
||||
self.holder._copy_state_dict(self.holder.flip.state_dict(), self.holder.transformer_blocks[0].state_dict(), cpy_start_event=self.holder.event_flip)
|
||||
self.first_flip = False
|
||||
return out
|
||||
|
||||
def do_flop(self, func, i: int, _, *args, **kwargs):
|
||||
# flop
|
||||
if not self.first_flop:
|
||||
self.holder.compute_stream.wait_event(self.holder.cpy_end_event)
|
||||
with torch.cuda.stream(self.holder.compute_stream):
|
||||
out = func(i, self.holder.flop, *args, **kwargs)
|
||||
self.holder.event_flop.record(self.holder.compute_stream)
|
||||
# while flop executes, queue flip to copy to its next block
|
||||
next_flip_i = i + 1
|
||||
if next_flip_i >= self.num_blocks:
|
||||
next_flip_i = next_flip_i - self.num_blocks
|
||||
self.last_flop = True
|
||||
self.holder._copy_state_dict(self.holder.flip.state_dict(), self.holder.transformer_blocks[next_flip_i].state_dict(), self.holder.event_flip, self.holder.cpy_end_event)
|
||||
if self.last_flop:
|
||||
self.holder._copy_state_dict(self.holder.flop.state_dict(), self.holder.transformer_blocks[1].state_dict(), cpy_start_event=self.holder.event_flop)
|
||||
self.first_flop = False
|
||||
return out
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, func, i: int, block: torch.nn.Module, *args, **kwargs):
|
||||
# flips are even indexes, flops are odd indexes
|
||||
if i % 2 == 0:
|
||||
return self.do_flip(func, i, block, *args, **kwargs)
|
||||
else:
|
||||
return self.do_flop(func, i, block, *args, **kwargs)
|
||||
|
||||
|
||||
|
||||
class FlipFlopHolder:
|
||||
def __init__(self, transformer_blocks: List[torch.nn.Module], inference_device="cuda", offloading_device="cpu"):
|
||||
self.inference_device = torch.device(inference_device)
|
||||
self.offloading_device = torch.device(offloading_device)
|
||||
self.transformer_blocks = transformer_blocks
|
||||
|
||||
self.flip = copy.deepcopy(self.transformer_blocks[0]).to(device=self.inference_device)
|
||||
self.flop = copy.deepcopy(self.transformer_blocks[1]).to(device=self.inference_device)
|
||||
|
||||
self.compute_stream = cuda.default_stream(self.inference_device)
|
||||
self.cpy_stream = cuda.Stream(self.inference_device)
|
||||
|
||||
self.event_flip = torch.cuda.Event(enable_timing=False)
|
||||
self.event_flop = torch.cuda.Event(enable_timing=False)
|
||||
self.cpy_end_event = torch.cuda.Event(enable_timing=False)
|
||||
# INIT - is this actually needed?
|
||||
self.compute_stream.record_event(self.cpy_end_event)
|
||||
|
||||
def _copy_state_dict(self, dst, src, cpy_start_event: torch.cuda.Event=None, cpy_end_event: torch.cuda.Event=None):
|
||||
if cpy_start_event:
|
||||
self.cpy_stream.wait_event(cpy_start_event)
|
||||
|
||||
with torch.cuda.stream(self.cpy_stream):
|
||||
for k, v in src.items():
|
||||
dst[k].copy_(v, non_blocking=True)
|
||||
if cpy_end_event:
|
||||
cpy_end_event.record(self.cpy_stream)
|
||||
|
||||
def context(self):
|
||||
return FlipFlopContext(self)
|
||||
|
||||
class FlipFlopTransformer:
|
||||
def __init__(self, transformer_blocks: List[torch.nn.Module], block_wrap_fn, out_names: Tuple[str], pinned_staging: bool = False, inference_device="cuda", offloading_device="cpu"):
|
||||
self.transformer_blocks = transformer_blocks
|
||||
@ -114,6 +211,7 @@ class FlipFlopTransformer:
|
||||
Flip accounts for even blocks (0 is first block), flop accounts for odd blocks.
|
||||
'''
|
||||
# separated flip flop refactor
|
||||
num_blocks = len(self.transformer_blocks)
|
||||
first_flip = True
|
||||
first_flop = True
|
||||
last_flip = False
|
||||
@ -128,8 +226,8 @@ class FlipFlopTransformer:
|
||||
self.event_flip.record(self.compute_stream)
|
||||
# while flip executes, queue flop to copy to its next block
|
||||
next_flop_i = i + 1
|
||||
if next_flop_i >= self.num_blocks:
|
||||
next_flop_i = next_flop_i - self.num_blocks
|
||||
if next_flop_i >= num_blocks:
|
||||
next_flop_i = next_flop_i - num_blocks
|
||||
last_flip = True
|
||||
if not first_flip:
|
||||
self._copy_state_dict(self.flop.state_dict(), self.transformer_blocks[next_flop_i].state_dict(), self.event_flop, self.cpy_end_event)
|
||||
@ -145,8 +243,8 @@ class FlipFlopTransformer:
|
||||
self.event_flop.record(self.compute_stream)
|
||||
# while flop executes, queue flip to copy to its next block
|
||||
next_flip_i = i + 1
|
||||
if next_flip_i >= self.num_blocks:
|
||||
next_flip_i = next_flip_i - self.num_blocks
|
||||
if next_flip_i >= num_blocks:
|
||||
next_flip_i = next_flip_i - num_blocks
|
||||
last_flop = True
|
||||
self._copy_state_dict(self.flip.state_dict(), self.transformer_blocks[next_flip_i].state_dict(), self.event_flip, self.cpy_end_event)
|
||||
if last_flop:
|
||||
|
||||
@ -5,6 +5,7 @@ import torch.nn.functional as F
|
||||
from typing import Optional, Tuple
|
||||
from einops import repeat
|
||||
|
||||
from comfy.ldm.flipflop_transformer import FlipFlopHolder
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
@ -335,10 +336,18 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
self.flipflop_holders: dict[str, FlipFlopHolder] = {}
|
||||
|
||||
if final_layer:
|
||||
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def setup_flipflop_holders(self, block_percentage: float):
|
||||
# We hackily move any flipflopped blocks into holder so that our model management system does not see them.
|
||||
num_blocks = int(len(self.transformer_blocks) * block_percentage)
|
||||
self.flipflop_holders["blocks_fwd"] = FlipFlopHolder(self.transformer_blocks[num_blocks:])
|
||||
self.transformer_blocks = nn.ModuleList(self.transformer_blocks[:num_blocks])
|
||||
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
@ -403,6 +412,12 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
def blocks_fwd(self, hidden_states, encoder_hidden_states, encoder_hidden_states_mask, temb, image_rotary_emb, patches, control, blocks_replace, x, transformer_options):
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
encoder_hidden_states, hidden_states = self.indiv_block_fwd(i, block, hidden_states, encoder_hidden_states, encoder_hidden_states_mask, temb, image_rotary_emb, patches, control, blocks_replace, x, transformer_options)
|
||||
if "blocks_fwd" in self.flipflop_holders:
|
||||
holder = self.flipflop_holders["blocks_fwd"]
|
||||
with holder.context() as ctx:
|
||||
for i, block in enumerate(holder.transformer_blocks):
|
||||
encoder_hidden_states, hidden_states = ctx(self.indiv_block_fwd, i, block, hidden_states, encoder_hidden_states, encoder_hidden_states_mask, temb, image_rotary_emb, patches, control, blocks_replace, x, transformer_options)
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
def _forward(
|
||||
|
||||
@ -1,28 +1,71 @@
|
||||
from __future__ import annotations
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
from comfy.ldm.flipflop_transformer import FLIPFLOP_REGISTRY
|
||||
|
||||
class FlipFlop:
|
||||
class FlipFlopOld(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"model": ("MODEL",), },
|
||||
}
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="FlipFlop",
|
||||
display_name="FlipFlop (Old)",
|
||||
category="_for_testing",
|
||||
inputs=[
|
||||
io.Model.Input(id="model")
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output()
|
||||
],
|
||||
description="Apply FlipFlop transformation to model using registry-based patching"
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
OUTPUT_NODE = False
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def patch(self, model):
|
||||
@classmethod
|
||||
def execute(cls, model) -> io.NodeOutput:
|
||||
patch_cls = FLIPFLOP_REGISTRY.get(model.model.diffusion_model.__class__.__name__, None)
|
||||
if patch_cls is None:
|
||||
raise ValueError(f"Model {model.model.diffusion_model.__class__.__name__} not supported")
|
||||
|
||||
model.model.diffusion_model = patch_cls.patch(model.model.diffusion_model)
|
||||
|
||||
return (model,)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"FlipFlop": FlipFlop
|
||||
}
|
||||
class FlipFlop(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="FlipFlopNew",
|
||||
display_name="FlipFlop (New)",
|
||||
category="_for_testing",
|
||||
inputs=[
|
||||
io.Model.Input(id="model"),
|
||||
io.Float.Input(id="block_percentage", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output()
|
||||
],
|
||||
description="Apply FlipFlop transformation to model using setup_flipflop_holders method"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model: io.Model.Type, block_percentage: float) -> io.NodeOutput:
|
||||
# NOTE: this is just a hacky prototype still, this would not be exposed as a node.
|
||||
# At the moment, this modifies the underlying model with no way to 'unpatch' it.
|
||||
model = model.clone()
|
||||
if not hasattr(model.model.diffusion_model, "setup_flipflop_holders"):
|
||||
raise ValueError("Model does not have flipflop holders; FlipFlop not supported")
|
||||
model.model.diffusion_model.setup_flipflop_holders(block_percentage)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
class FlipFlopExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
FlipFlopOld,
|
||||
FlipFlop,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> FlipFlopExtension:
|
||||
return FlipFlopExtension()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user