Changes for Runpod

This commit is contained in:
root 2023-07-27 07:57:52 +00:00
parent 782a9e29f9
commit 6d83ea7f18
4 changed files with 184 additions and 5 deletions

View File

@ -21,14 +21,15 @@ COPY ./ /app
# Install Python dependencies
RUN pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 xformers
RUN pip3 install -r requirements.txt
RUN pip3 install runpod
RUN pip3 install websocket-client
# Expose the port the application will be running on
EXPOSE 8188
#Give permission to script
RUN chmod +x ./entrypoint.sh
# Set the environment variable for GPU support
ENV NVIDIA_VISIBLE_DEVICES all
# Run the Python program when the container starts
CMD ["python3", "main.py", "--listen","0.0.0.0"]
ENTRYPOINT ["./entrypoint.sh"]
# [ "python3", "-u", "comfy_runpod.py" ]

73
comfy_runpod.py Normal file
View File

@ -0,0 +1,73 @@
#This is an example that uses the websockets api to know when a prompt execution is done
#Once the prompt execution is done it downloads the images using the /history endpoint
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
import runpod
server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())
def queue_prompt(prompt):
p = {"prompt": prompt, "client_id": client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
return response.read()
def get_history(prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(ws, prompt):
prompt_id = queue_prompt(prompt)['prompt_id']
output_images = {}
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
break #Execution is done
else:
continue #previews are binary data
history = get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
if 'images' in node_output:
images_output = []
for image in node_output['images']:
image_data = get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
def run_prompt(job):
prompt_text = job["input"]["prompt"]
print(".................Type..............",type(prompt_text))
prompt = prompt_text
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, prompt)
return True
runpod.serverless.start({"handler":run_prompt})

10
entrypoint.sh Executable file
View File

@ -0,0 +1,10 @@
#!/bin/bash
# Run the first Python script
python3 main.py &
# Wait for 20 seconds
sleep 20
# Run the second Python script
python3 comfy_runpod.py

95
websocket_comfy.py Normal file
View File

@ -0,0 +1,95 @@
#This is an example that uses the websockets api to know when a prompt execution is done
#Once the prompt execution is done it downloads the images using the /history endpoint
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())
def queue_prompt(prompt):
p = {"prompt": prompt, "client_id": client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
return response.read()
def get_history(prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(ws, prompt):
prompt_id = queue_prompt(prompt)['prompt_id']
output_images = {}
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
break #Execution is done
else:
continue #previews are binary data
history = get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
if 'images' in node_output:
images_output = []
for image in node_output['images']:
image_data = get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
# prompt_text = """
# {"3": {"inputs": {"seed": 160913364876129, "steps": 16, "cfg": 6.0, "sampler_name": "uni_pc", "scheduler": "normal", "denoise": 1.0, "model": ["14", 0], "positive": ["10", 0], "negative": ["7", 0], "latent_image": ["5", 0]}, "class_type": "KSampler"}, "5": {"inputs": {"width": 512, "height": 512, "batch_size": 1}, "class_type": "EmptyLatentImage"}, "6": {"inputs": {"text": "(solo) girl (flat chest:0.9), (fennec ears:1.1)\u00a0 (fox ears:1.1), (blonde hair:1.0), messy hair, sky clouds, standing in a grass field, (chibi), blue eyes", "clip": ["14", 1]}, "class_type": "CLIPTextEncode"}, "7": {"inputs": {"text": "(hands), text, error, cropped, (worst quality:1.2), (low quality:1.2), normal quality, (jpeg artifacts:1.3), signature, watermark, username, blurry, artist name, monochrome, sketch, censorship, censor, (copyright:1.2), extra legs, (forehead mark) (depth of field) (emotionless) (penis)", "clip": ["14", 1]}, "class_type": "CLIPTextEncode"}, "8": {"inputs": {"samples": ["3", 0], "vae": ["13", 0]}, "class_type": "VAEDecode"}, "9": {"inputs": {"filename_prefix": "ComfyUI", "images": ["8", 0]}, "class_type": "SaveImage"}, "10": {"inputs": {"strength": 0.8999999999999999, "conditioning": ["6", 0], "control_net": ["12", 0], "image": ["11", 0]}, "class_type": "ControlNetApply"}, "11": {"inputs": {"image": "ComfyUI_00005_ (1).png", "choose file to upload": "image"}, "class_type": "LoadImage", "is_changed": ["7657ee164339745ea7b5300e55a7655f0404fbb5a0a61d990748027a19e2f178"]}, "12": {"inputs": {"control_net_name": "control_v11p_sd15_canny_fp16.safetensors"}, "class_type": "ControlNetLoader"}, "13": {"inputs": {"vae_name": "vae-ft-mse-840000-ema-pruned.safetensors"}, "class_type": "VAELoader"}, "14": {"inputs": {"ckpt_name": "sd-v1-4.ckpt"}, "class_type": "CheckpointLoaderSimple"}}
# """
prompt_text = """
{"3": {"inputs": {"seed": 156680208700286, "steps": 20, "cfg": 8.0, "sampler_name": "euler", "scheduler": "normal", "denoise": 1.0, "model": ["4", 0], "positive": ["6", 0], "negative": ["7", 0], "latent_image": ["5", 0]}, "class_type": "KSampler"}, "4": {"inputs": {"ckpt_name": "sd-v1-4.ckpt"}, "class_type": "CheckpointLoaderSimple"}, "5": {"inputs": {"width": 512, "height": 512, "batch_size": 1}, "class_type": "EmptyLatentImage"}, "6": {"inputs": {"text": "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,", "clip": ["4", 1]}, "class_type": "CLIPTextEncode"}, "7": {"inputs": {"text": "text, watermark", "clip": ["4", 1]}, "class_type": "CLIPTextEncode"}, "8": {"inputs": {"samples": ["3", 0], "vae": ["4", 2]}, "class_type": "VAEDecode"}, "9": {"inputs": {"filename_prefix": "ComfyUI", "images": ["8", 0]}, "class_type": "SaveImage"}}
"""
prompt = json.loads(prompt_text)
#set the text prompt for our positive CLIPTextEncode
# prompt["6"]["inputs"]["text"] = "a girl in anime style, cute"
# prompt["11"]["inputs"]["image"] = "D:/Downloads/IMG_7150.jpeg"
# #for sd 2.1
# prompt["12"]["inputs"]["control_net_name"] = "controlnetFurususSD21_21Canny.safetensors"
# prompt["14"]["inputs"]["ckpt_name"] = "v2-1_512-ema-pruned.ckpt"
# #set the seed for our KSampler node
# prompt["3"]["inputs"]["seed"] = 5
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, prompt)
#Commented out code to display the output images:
#for node_id in images:
# for image_data in images[node_id]:
# from PIL import Image
# import io
# image = Image.open(io.BytesIO(image_data))
# image.show()