Merge branch 'comfyanonymous:master' into date-sorted-saving

This commit is contained in:
Silver 2025-09-08 12:17:47 +02:00 committed by GitHub
commit 6fd406fb14
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
242 changed files with 180347 additions and 5263 deletions

View File

@ -4,6 +4,9 @@ if you have a NVIDIA gpu:
run_nvidia_gpu.bat
if you want to enable the fast fp16 accumulation (faster for fp16 models with slightly less quality):
run_nvidia_gpu_fast_fp16_accumulation.bat
To run it in slow CPU mode:

1
.gitattributes vendored
View File

@ -1,2 +1,3 @@
/web/assets/** linguist-generated
/web/** linguist-vendored
comfy_api_nodes/apis/__init__.py linguist-generated

View File

@ -15,6 +15,14 @@ body:
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: false
- type: textarea
attributes:
label: Expected Behavior

View File

@ -11,6 +11,14 @@ body:
**2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: false
- type: textarea
attributes:
label: Your question

View File

@ -0,0 +1,40 @@
name: Check for Windows Line Endings
on:
pull_request:
branches: ['*'] # Trigger on all pull requests to any branch
jobs:
check-line-endings:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0 # Fetch all history to compare changes
- name: Check for Windows line endings (CRLF)
run: |
# Get the list of changed files in the PR
CHANGED_FILES=$(git diff --name-only ${{ github.event.pull_request.base.sha }}..${{ github.event.pull_request.head.sha }})
# Flag to track if CRLF is found
CRLF_FOUND=false
# Loop through each changed file
for FILE in $CHANGED_FILES; do
# Check if the file exists and is a text file
if [ -f "$FILE" ] && file "$FILE" | grep -q "text"; then
# Check for CRLF line endings
if grep -UP '\r$' "$FILE"; then
echo "Error: Windows line endings (CRLF) detected in $FILE"
CRLF_FOUND=true
fi
fi
done
# Exit with error if CRLF was found
if [ "$CRLF_FOUND" = true ]; then
exit 1
fi

108
.github/workflows/release-webhook.yml vendored Normal file
View File

@ -0,0 +1,108 @@
name: Release Webhook
on:
release:
types: [published]
jobs:
send-webhook:
runs-on: ubuntu-latest
steps:
- name: Send release webhook
env:
WEBHOOK_URL: ${{ secrets.RELEASE_GITHUB_WEBHOOK_URL }}
WEBHOOK_SECRET: ${{ secrets.RELEASE_GITHUB_WEBHOOK_SECRET }}
run: |
# Generate UUID for delivery ID
DELIVERY_ID=$(uuidgen)
HOOK_ID="release-webhook-$(date +%s)"
# Create webhook payload matching GitHub release webhook format
PAYLOAD=$(cat <<EOF
{
"action": "published",
"release": {
"id": ${{ github.event.release.id }},
"node_id": "${{ github.event.release.node_id }}",
"url": "${{ github.event.release.url }}",
"html_url": "${{ github.event.release.html_url }}",
"assets_url": "${{ github.event.release.assets_url }}",
"upload_url": "${{ github.event.release.upload_url }}",
"tag_name": "${{ github.event.release.tag_name }}",
"target_commitish": "${{ github.event.release.target_commitish }}",
"name": ${{ toJSON(github.event.release.name) }},
"body": ${{ toJSON(github.event.release.body) }},
"draft": ${{ github.event.release.draft }},
"prerelease": ${{ github.event.release.prerelease }},
"created_at": "${{ github.event.release.created_at }}",
"published_at": "${{ github.event.release.published_at }}",
"author": {
"login": "${{ github.event.release.author.login }}",
"id": ${{ github.event.release.author.id }},
"node_id": "${{ github.event.release.author.node_id }}",
"avatar_url": "${{ github.event.release.author.avatar_url }}",
"url": "${{ github.event.release.author.url }}",
"html_url": "${{ github.event.release.author.html_url }}",
"type": "${{ github.event.release.author.type }}",
"site_admin": ${{ github.event.release.author.site_admin }}
},
"tarball_url": "${{ github.event.release.tarball_url }}",
"zipball_url": "${{ github.event.release.zipball_url }}",
"assets": ${{ toJSON(github.event.release.assets) }}
},
"repository": {
"id": ${{ github.event.repository.id }},
"node_id": "${{ github.event.repository.node_id }}",
"name": "${{ github.event.repository.name }}",
"full_name": "${{ github.event.repository.full_name }}",
"private": ${{ github.event.repository.private }},
"owner": {
"login": "${{ github.event.repository.owner.login }}",
"id": ${{ github.event.repository.owner.id }},
"node_id": "${{ github.event.repository.owner.node_id }}",
"avatar_url": "${{ github.event.repository.owner.avatar_url }}",
"url": "${{ github.event.repository.owner.url }}",
"html_url": "${{ github.event.repository.owner.html_url }}",
"type": "${{ github.event.repository.owner.type }}",
"site_admin": ${{ github.event.repository.owner.site_admin }}
},
"html_url": "${{ github.event.repository.html_url }}",
"clone_url": "${{ github.event.repository.clone_url }}",
"git_url": "${{ github.event.repository.git_url }}",
"ssh_url": "${{ github.event.repository.ssh_url }}",
"url": "${{ github.event.repository.url }}",
"created_at": "${{ github.event.repository.created_at }}",
"updated_at": "${{ github.event.repository.updated_at }}",
"pushed_at": "${{ github.event.repository.pushed_at }}",
"default_branch": "${{ github.event.repository.default_branch }}",
"fork": ${{ github.event.repository.fork }}
},
"sender": {
"login": "${{ github.event.sender.login }}",
"id": ${{ github.event.sender.id }},
"node_id": "${{ github.event.sender.node_id }}",
"avatar_url": "${{ github.event.sender.avatar_url }}",
"url": "${{ github.event.sender.url }}",
"html_url": "${{ github.event.sender.html_url }}",
"type": "${{ github.event.sender.type }}",
"site_admin": ${{ github.event.sender.site_admin }}
}
}
EOF
)
# Generate HMAC-SHA256 signature
SIGNATURE=$(echo -n "$PAYLOAD" | openssl dgst -sha256 -hmac "$WEBHOOK_SECRET" -hex | cut -d' ' -f2)
# Send webhook with required headers
curl -X POST "$WEBHOOK_URL" \
-H "Content-Type: application/json" \
-H "X-GitHub-Event: release" \
-H "X-GitHub-Delivery: $DELIVERY_ID" \
-H "X-GitHub-Hook-ID: $HOOK_ID" \
-H "X-Hub-Signature-256: sha256=$SIGNATURE" \
-H "User-Agent: GitHub-Actions-Webhook/1.0" \
-d "$PAYLOAD" \
--fail --silent --show-error
echo "✅ Release webhook sent successfully"

View File

@ -12,17 +12,17 @@ on:
description: 'CUDA version'
required: true
type: string
default: "128"
default: "129"
python_minor:
description: 'Python minor version'
required: true
type: string
default: "12"
default: "13"
python_patch:
description: 'Python patch version'
required: true
type: string
default: "10"
default: "6"
jobs:
@ -66,8 +66,13 @@ jobs:
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
cd ..
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
rm ./Lib/site-packages/torch/lib/libprotoc.lib
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
@ -85,7 +90,7 @@ jobs:
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
cd ComfyUI_windows_portable
@ -102,5 +107,4 @@ jobs:
file: ComfyUI_windows_portable_nvidia.7z
tag: ${{ inputs.git_tag }}
overwrite: true
prerelease: true
make_latest: false
draft: true

30
.github/workflows/test-execution.yml vendored Normal file
View File

@ -0,0 +1,30 @@
name: Execution Tests
on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install -r tests-unit/requirements.txt
- name: Run Execution Tests
run: |
python -m pytest tests/execution -v --skip-timing-checks

View File

@ -17,19 +17,19 @@ on:
description: 'cuda version'
required: true
type: string
default: "128"
default: "129"
python_minor:
description: 'python minor version'
required: true
type: string
default: "12"
default: "13"
python_patch:
description: 'python patch version'
required: true
type: string
default: "10"
default: "6"
# push:
# branches:
# - master

View File

@ -7,7 +7,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "128"
default: "129"
python_minor:
description: 'python minor version'
@ -19,7 +19,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "2"
default: "5"
# push:
# branches:
# - master
@ -53,6 +53,8 @@ jobs:
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd

View File

@ -7,19 +7,19 @@ on:
description: 'cuda version'
required: true
type: string
default: "128"
default: "129"
python_minor:
description: 'python minor version'
required: true
type: string
default: "12"
default: "13"
python_patch:
description: 'python patch version'
required: true
type: string
default: "10"
default: "6"
# push:
# branches:
# - master
@ -64,6 +64,10 @@ jobs:
./python.exe get-pip.py
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
rm ./Lib/site-packages/torch/lib/libprotoc.lib
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
@ -82,7 +86,7 @@ jobs:
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
cd ComfyUI_windows_portable

View File

@ -5,20 +5,21 @@
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
# Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy_api_nodes/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill

View File

@ -6,6 +6,7 @@
[![Website][website-shield]][website-url]
[![Dynamic JSON Badge][discord-shield]][discord-url]
[![Twitter][twitter-shield]][twitter-url]
[![Matrix][matrix-shield]][matrix-url]
<br>
[![][github-release-shield]][github-release-link]
@ -20,6 +21,8 @@
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
[discord-url]: https://www.comfy.org/discord
[twitter-shield]: https://img.shields.io/twitter/follow/ComfyUI
[twitter-url]: https://x.com/ComfyUI
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
@ -36,7 +39,7 @@ ComfyUI lets you design and execute advanced stable diffusion pipelines using a
## Get Started
#### [Desktop Application](https://www.comfy.org/download)
- The easiest way to get started.
- The easiest way to get started.
- Available on Windows & macOS.
#### [Windows Portable Package](#installing)
@ -52,7 +55,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Image Models
- SD1.x, SD2.x,
- SD1.x, SD2.x ([unCLIP](https://comfyanonymous.github.io/ComfyUI_examples/unclip/))
- [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
- [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/)
- [SD3 and SD3.5](https://comfyanonymous.github.io/ComfyUI_examples/sd3/)
@ -62,13 +65,19 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
- [HiDream E1.1](https://comfyanonymous.github.io/ComfyUI_examples/hidream/#hidream-e11)
- [Qwen Image Edit](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/#edit-model)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
@ -76,9 +85,10 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
- Smart memory management: can automatically run large models on GPUs with as low as 1GB vram with smart offloading.
- Works even if you don't have a GPU with: ```--cpu``` (slow)
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
- Can load ckpt and safetensors: All in one checkpoints or standalone diffusion models, VAEs and CLIP models.
- Safe loading of ckpt, pt, pth, etc.. files.
- Embeddings/Textual inversion
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
- [Hypernetworks](https://comfyanonymous.github.io/ComfyUI_examples/hypernetworks/)
@ -89,20 +99,19 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Inpainting](https://comfyanonymous.github.io/ComfyUI_examples/inpaint/) with both regular and inpainting models.
- [ControlNet and T2I-Adapter](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/)
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast.
- Works fully offline: will never download anything.
- Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
@ -170,10 +179,6 @@ If you have trouble extracting it, right click the file -> properties -> unblock
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
## Jupyter Notebook
To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb)
## [comfy-cli](https://docs.comfy.org/comfy-cli/getting-started)
@ -185,7 +190,7 @@ comfy install
## Manual Install (Windows, Linux)
python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
Git clone this repo.
@ -197,7 +202,7 @@ Put your VAE in: models/vae
### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
@ -205,37 +210,29 @@ This is the command to install the nightly with ROCm 6.4 which might have some p
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip (currently available in PyTorch nightly builds). More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch nightly, use the following command:
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu```
This is the command to install the Pytorch xpu nightly which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
2. Launch ComfyUI by running `python main.py`
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. For Intel® Arc™ A-Series Graphics utilizing IPEX, create a conda environment and use the commands below:
```
conda install libuv
pip install torch==2.3.1.post0+cxx11.abi torchvision==0.18.1.post0+cxx11.abi torchaudio==2.3.1.post0+cxx11.abi intel-extension-for-pytorch==2.3.110.post0+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
```
For other supported Intel GPUs with IPEX, visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
This is the command to install pytorch nightly instead which might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129```
#### Troubleshooting
@ -268,6 +265,8 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
#### DirectML (AMD Cards on Windows)
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
#### Ascend NPUs
@ -287,6 +286,13 @@ For models compatible with Cambricon Extension for PyTorch (torch_mlu). Here's a
2. Next, install the PyTorch(torch_mlu) following the instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cambricon_pytorch_1.17.0/user_guide_1.9/index.html)
3. Launch ComfyUI by running `python main.py`
#### Iluvatar Corex
For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step guide tailored to your platform and installation method:
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
2. Launch ComfyUI by running `python main.py`
# Running
```python main.py```
@ -337,7 +343,7 @@ Generate a self-signed certificate (not appropriate for shared/production use) a
Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app will now be accessible with `https://...` instead of `http://...`.
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
<br/><br/>If you use a container, note that the volume mount `-v` can be a relative path so `... -v ".\:/openssl-certs" ...` would create the key & cert files in the current directory of your command prompt or powershell terminal.
## Support and dev channel

84
alembic.ini Normal file
View File

@ -0,0 +1,84 @@
# A generic, single database configuration.
[alembic]
# path to migration scripts
# Use forward slashes (/) also on windows to provide an os agnostic path
script_location = alembic_db
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
# for all available tokens
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
# sys.path path, will be prepended to sys.path if present.
# defaults to the current working directory.
prepend_sys_path = .
# timezone to use when rendering the date within the migration file
# as well as the filename.
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
# string value is passed to ZoneInfo()
# leave blank for localtime
# timezone =
# max length of characters to apply to the "slug" field
# truncate_slug_length = 40
# set to 'true' to run the environment during
# the 'revision' command, regardless of autogenerate
# revision_environment = false
# set to 'true' to allow .pyc and .pyo files without
# a source .py file to be detected as revisions in the
# versions/ directory
# sourceless = false
# version location specification; This defaults
# to alembic_db/versions. When using multiple version
# directories, initial revisions must be specified with --version-path.
# The path separator used here should be the separator specified by "version_path_separator" below.
# version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
# version path separator; As mentioned above, this is the character used to split
# version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
# If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
# Valid values for version_path_separator are:
#
# version_path_separator = :
# version_path_separator = ;
# version_path_separator = space
# version_path_separator = newline
#
# Use os.pathsep. Default configuration used for new projects.
version_path_separator = os
# set to 'true' to search source files recursively
# in each "version_locations" directory
# new in Alembic version 1.10
# recursive_version_locations = false
# the output encoding used when revision files
# are written from script.py.mako
# output_encoding = utf-8
sqlalchemy.url = sqlite:///user/comfyui.db
[post_write_hooks]
# post_write_hooks defines scripts or Python functions that are run
# on newly generated revision scripts. See the documentation for further
# detail and examples
# format using "black" - use the console_scripts runner, against the "black" entrypoint
# hooks = black
# black.type = console_scripts
# black.entrypoint = black
# black.options = -l 79 REVISION_SCRIPT_FILENAME
# lint with attempts to fix using "ruff" - use the exec runner, execute a binary
# hooks = ruff
# ruff.type = exec
# ruff.executable = %(here)s/.venv/bin/ruff
# ruff.options = check --fix REVISION_SCRIPT_FILENAME

4
alembic_db/README.md Normal file
View File

@ -0,0 +1,4 @@
## Generate new revision
1. Update models in `/app/database/models.py`
2. Run `alembic revision --autogenerate -m "{your message}"`

64
alembic_db/env.py Normal file
View File

@ -0,0 +1,64 @@
from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
from app.database.models import Base
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = engine_from_config(
config.get_section(config.config_ini_section, {}),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(
connection=connection, target_metadata=target_metadata
)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()

28
alembic_db/script.py.mako Normal file
View File

@ -0,0 +1,28 @@
"""${message}
Revision ID: ${up_revision}
Revises: ${down_revision | comma,n}
Create Date: ${create_date}
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
${imports if imports else ""}
# revision identifiers, used by Alembic.
revision: str = ${repr(up_revision)}
down_revision: Union[str, None] = ${repr(down_revision)}
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
def upgrade() -> None:
"""Upgrade schema."""
${upgrades if upgrades else "pass"}
def downgrade() -> None:
"""Downgrade schema."""
${downgrades if downgrades else "pass"}

112
app/database/db.py Normal file
View File

@ -0,0 +1,112 @@
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()

14
app/database/models.py Normal file
View File

@ -0,0 +1,14 @@
from sqlalchemy.orm import declarative_base
Base = declarative_base()
def to_dict(obj):
fields = obj.__table__.columns.keys()
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

View File

@ -16,40 +16,61 @@ from importlib.metadata import version
import requests
from typing_extensions import NotRequired
from utils.install_util import get_missing_requirements_message, requirements_path
from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message():
"""The warning message to display when the frontend version is not up to date."""
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"""
Please install the updated requirements.txt file by running:
{sys.executable} {extra}-m pip install -r {req_path}
{get_missing_requirements_message()}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
""".strip()
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
def is_valid_version(version: str) -> bool:
"""Validate if a string is a valid semantic version (X.Y.Z format)."""
pattern = r"^(\d+)\.(\d+)\.(\d+)$"
return bool(re.match(pattern, version))
def get_installed_frontend_version():
"""Get the currently installed frontend package version."""
frontend_version_str = version("comfyui-frontend-package")
return frontend_version_str
def get_required_frontend_version():
"""Get the required frontend version from requirements.txt."""
try:
with open(requirements_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line.startswith("comfyui-frontend-package=="):
version_str = line.split("==")[-1]
if not is_valid_version(version_str):
logging.error(f"Invalid version format in requirements.txt: {version_str}")
return None
return version_str
logging.error("comfyui-frontend-package not found in requirements.txt")
return None
except FileNotFoundError:
logging.error("requirements.txt not found. Cannot determine required frontend version.")
return None
except Exception as e:
logging.error(f"Error reading requirements.txt: {e}")
return None
def check_frontend_version():
"""Check if the frontend version is up to date."""
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version_str = get_installed_frontend_version()
frontend_version = parse_version(frontend_version_str)
with open(req_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
required_frontend_str = get_required_frontend_version()
required_frontend = parse_version(required_frontend_str)
if frontend_version < required_frontend:
app.logger.log_startup_warning(
f"""
@ -121,9 +142,22 @@ class FrontEndProvider:
response.raise_for_status() # Raises an HTTPError if the response was an error
return response.json()
@cached_property
def latest_prerelease(self) -> Release:
"""Get the latest pre-release version - even if it's older than the latest release"""
release = [release for release in self.all_releases if release["prerelease"]]
if not release:
raise ValueError("No pre-releases found")
# GitHub returns releases in reverse chronological order, so first is latest
return release[0]
def get_release(self, version: str) -> Release:
if version == "latest":
return self.latest_release
elif version == "prerelease":
return self.latest_prerelease
else:
for release in self.all_releases:
if release["tag_name"] in [version, f"v{version}"]:
@ -164,6 +198,11 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
class FrontendManager:
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
def get_required_frontend_version(cls) -> str:
"""Get the required frontend package version."""
return get_required_frontend_version()
@classmethod
def default_frontend_path(cls) -> str:
try:
@ -230,7 +269,7 @@ comfyui-workflow-templates is not installed.
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
"""
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
match_result = re.match(VERSION_PATTERN, value)
if match_result is None:
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")

View File

@ -130,10 +130,21 @@ class ModelFileManager:
for file_name in filenames:
try:
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
except:
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
full_path = os.path.join(dirpath, file_name)
relative_path = os.path.relpath(full_path, directory)
# Get file metadata
file_info = {
"name": relative_path,
"pathIndex": pathIndex,
"modified": os.path.getmtime(full_path), # Add modification time
"created": os.path.getctime(full_path), # Add creation time
"size": os.path.getsize(full_path) # Add file size
}
result.append(file_info)
except Exception as e:
logging.warning(f"Warning: Unable to access {file_name}. Error: {e}. Skipping this file.")
continue
for d in subdirs:
@ -144,7 +155,7 @@ class ModelFileManager:
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
continue
return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
return result, dirs, time.perf_counter()
def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
dirname = os.path.dirname(filepath)

View File

@ -20,13 +20,15 @@ class FileInfo(TypedDict):
path: str
size: int
modified: int
created: int
def get_file_info(path: str, relative_to: str) -> FileInfo:
return {
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
"size": os.path.getsize(path),
"modified": os.path.getmtime(path)
"modified": os.path.getmtime(path),
"created": os.path.getctime(path)
}
@ -361,10 +363,17 @@ class UserManager():
if not overwrite and os.path.exists(path):
return web.Response(status=409, text="File already exists")
body = await request.read()
try:
body = await request.read()
with open(path, "wb") as f:
f.write(body)
with open(path, "wb") as f:
f.write(body)
except OSError as e:
logging.warning(f"Error saving file '{path}': {e}")
return web.Response(
status=400,
reason="Invalid filename. Please avoid special characters like :\\/*?\"<>|"
)
user_path = self.get_request_user_filepath(request, None)
if full_info:

View File

@ -0,0 +1,42 @@
from .wav2vec2 import Wav2Vec2Model
import comfy.model_management
import comfy.ops
import comfy.utils
import logging
import torchaudio
class AudioEncoderModel():
def __init__(self, config):
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = Wav2Vec2Model(dtype=self.dtype, device=offload_device, operations=comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
def get_sd(self):
return self.model.state_dict()
def encode_audio(self, audio, sample_rate):
comfy.model_management.load_model_gpu(self.patcher)
audio = torchaudio.functional.resample(audio, sample_rate, self.model_sample_rate)
out, all_layers = self.model(audio.to(self.load_device))
outputs = {}
outputs["encoded_audio"] = out
outputs["encoded_audio_all_layers"] = all_layers
return outputs
def load_audio_encoder_from_sd(sd, prefix=""):
audio_encoder = AudioEncoderModel(None)
sd = comfy.utils.state_dict_prefix_replace(sd, {"wav2vec2.": ""})
m, u = audio_encoder.load_sd(sd)
if len(m) > 0:
logging.warning("missing audio encoder: {}".format(m))
return audio_encoder

View File

@ -0,0 +1,207 @@
import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention_masked
class LayerNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1))
class ConvFeatureEncoder(nn.Module):
def __init__(self, conv_dim, dtype=None, device=None, operations=None):
super().__init__()
self.conv_layers = nn.ModuleList([
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
])
def forward(self, x):
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x.transpose(1, 2)
class FeatureProjection(nn.Module):
def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None):
super().__init__()
self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype)
self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.layer_norm(x)
x = self.projection(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self, embed_dim=768, kernel_size=128, groups=16):
super().__init__()
self.conv = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
)
self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
self.activation = nn.GELU()
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv(x)[:, :, :-1]
x = self.activation(x)
x = x.transpose(1, 2)
return x
class TransformerEncoder(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
num_layers=12,
mlp_ratio=4.0,
dtype=None, device=None, operations=None
):
super().__init__()
self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim)
self.layers = nn.ModuleList([
TransformerEncoderLayer(
embed_dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
device=device, dtype=dtype, operations=operations
)
for _ in range(num_layers)
])
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype)
def forward(self, x, mask=None):
x = x + self.pos_conv_embed(x)
all_x = ()
for layer in self.layers:
all_x += (x,)
x = layer(x, mask)
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class Attention(nn.Module):
def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
def forward(self, x, mask=None):
assert (mask is None) # TODO?
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = optimized_attention_masked(q, k, v, self.num_heads)
return self.out_proj(out)
class FeedForward(nn.Module):
def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype)
self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.intermediate_dense(x)
x = torch.nn.functional.gelu(x)
x = self.output_dense(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
mlp_ratio=4.0,
dtype=None, device=None, operations=None
):
super().__init__()
self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
def forward(self, x, mask=None):
residual = x
x = self.layer_norm(x)
x = self.attention(x, mask=mask)
x = residual + x
x = x + self.feed_forward(self.final_layer_norm(x))
return x
class Wav2Vec2Model(nn.Module):
"""Complete Wav2Vec 2.0 model."""
def __init__(
self,
embed_dim=1024,
final_dim=256,
num_heads=16,
num_layers=24,
dtype=None, device=None, operations=None
):
super().__init__()
conv_dim = 512
self.feature_extractor = ConvFeatureEncoder(conv_dim, device=device, dtype=dtype, operations=operations)
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations)
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype))
self.encoder = TransformerEncoder(
embed_dim=embed_dim,
num_heads=num_heads,
num_layers=num_layers,
device=device, dtype=dtype, operations=operations
)
def forward(self, x, mask_time_indices=None, return_dict=False):
x = torch.mean(x, dim=1)
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
features = self.feature_extractor(x)
features = self.feature_projection(features)
batch_size, seq_len, _ = features.shape
x, all_x = self.encoder(features)
return x, all_x

View File

@ -49,7 +49,8 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use. All other devices will not be visible.")
parser.add_argument("--default-device", type=int, default=None, metavar="DEFAULT_DEVICE_ID", help="Set the id of the default device, all other devices will stay visible.")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
@ -131,6 +132,8 @@ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the am
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
@ -140,10 +143,12 @@ class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
@ -151,6 +156,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
@ -203,6 +209,11 @@ parser.add_argument(
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
)
database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
if comfy.options.args_parsing:
args = parser.parse_args()
else:

View File

@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
@ -97,7 +107,7 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32, embeds_info=[]):
if embeds is not None:
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:

View File

@ -50,7 +50,13 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
@ -68,12 +74,18 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
if self.return_all_hidden_states:
all_hs = out[1].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
outputs["all_hidden_states"] = all_hs
else:
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs
@ -124,8 +136,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
# Dinov2
elif 'encoder.layer.39.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
elif 'encoder.layer.23.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_large.json")
else:
return None

View File

@ -37,6 +37,8 @@ class IO(StrEnum):
CONTROL_NET = "CONTROL_NET"
VAE = "VAE"
MODEL = "MODEL"
LORA_MODEL = "LORA_MODEL"
LOSS_MAP = "LOSS_MAP"
CLIP_VISION = "CLIP_VISION"
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
STYLE_MODEL = "STYLE_MODEL"

View File

@ -1,6 +1,7 @@
import torch
import math
import comfy.utils
import logging
class CONDRegular:
@ -10,12 +11,15 @@ class CONDRegular:
def _copy_with(self, cond):
return self.__class__(cond)
def process_cond(self, batch_size, device, **kwargs):
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
def process_cond(self, batch_size, **kwargs):
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size))
def can_concat(self, other):
if self.cond.shape != other.cond.shape:
return False
if self.cond.device != other.cond.device:
logging.warning("WARNING: conds not on same device, skipping concat.")
return False
return True
def concat(self, others):
@ -29,14 +33,14 @@ class CONDRegular:
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs):
def process_cond(self, batch_size, area, **kwargs):
data = self.cond
if area is not None:
dims = len(area) // 2
for i in range(dims):
data = data.narrow(i + 2, area[i + dims], area[i])
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size))
class CONDCrossAttn(CONDRegular):
@ -51,6 +55,9 @@ class CONDCrossAttn(CONDRegular):
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
if self.cond.device != other.cond.device:
logging.warning("WARNING: conds not on same device: skipping concat.")
return False
return True
def concat(self, others):
@ -73,7 +80,7 @@ class CONDConstant(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
def process_cond(self, batch_size, **kwargs):
return self._copy_with(self.cond)
def can_concat(self, other):
@ -92,10 +99,10 @@ class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
def process_cond(self, batch_size, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
out.append(comfy.utils.repeat_to_batch_size(c, batch_size))
return self._copy_with(out)

540
comfy/context_windows.py Normal file
View File

@ -0,0 +1,540 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import torch
import numpy as np
import collections
from dataclasses import dataclass
from abc import ABC, abstractmethod
import logging
import comfy.model_management
import comfy.patcher_extension
if TYPE_CHECKING:
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from comfy.controlnet import ControlBase
class ContextWindowABC(ABC):
def __init__(self):
...
@abstractmethod
def get_tensor(self, full: torch.Tensor) -> torch.Tensor:
"""
Get torch.Tensor applicable to current window.
"""
raise NotImplementedError("Not implemented.")
@abstractmethod
def add_window(self, full: torch.Tensor, to_add: torch.Tensor) -> torch.Tensor:
"""
Apply torch.Tensor of window to the full tensor, in place. Returns reference to updated full tensor, not a copy.
"""
raise NotImplementedError("Not implemented.")
class ContextHandlerABC(ABC):
def __init__(self):
...
@abstractmethod
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
raise NotImplementedError("Not implemented.")
@abstractmethod
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: ContextWindowABC, device=None) -> list:
raise NotImplementedError("Not implemented.")
@abstractmethod
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
raise NotImplementedError("Not implemented.")
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = [slice(None)] * dim + [self.index_list]
full[idx] += to_add
return full
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
EXECUTE_START = "execute_start"
EXECUTE_CLEANUP = "execute_cleanup"
def init_callbacks(self):
return {}
@dataclass
class ContextSchedule:
name: str
func: Callable
@dataclass
class ContextFuseMethod:
name: str
func: Callable
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
self.context_overlap = context_overlap
self.context_stride = context_stride
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
return True
return False
def prepare_control_objects(self, control: ControlBase, device=None) -> ControlBase:
if control.previous_controlnet is not None:
self.prepare_control_objects(control.previous_controlnet, device)
return control
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: IndexListContextWindow, device=None) -> list:
if cond_in is None:
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
for key in actual_cond:
try:
cond_item = actual_cond[key]
if isinstance(cond_item, torch.Tensor):
# check that tensor is the expected length - x.size(0)
if self.dim < cond_item.ndim and cond_item.size(self.dim) == x_in.size(self.dim):
# if so, it's subsetting time - tell controls the expected indeces so they can handle them
actual_cond_item = window.get_tensor(cond_item)
resized_actual_cond[key] = actual_cond_item.to(device)
else:
resized_actual_cond[key] = cond_item.to(device)
# look for control
elif key == "control":
resized_actual_cond[key] = self.prepare_control_objects(cond_item, device)
elif isinstance(cond_item, dict):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
resized_actual_cond[key] = new_cond_item
else:
resized_actual_cond[key] = cond_item
finally:
del cond_item # just in case to prevent VRAM issues
resized_cond.append(resized_actual_cond)
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
self._step = int(matches[0].item())
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
self.set_step(timestep, model_options)
context_windows = self.get_context_windows(model, x_in, model_options)
enumerated_context_windows = list(enumerate(context_windows))
conds_final = [torch.zeros_like(x_in) for _ in conds]
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
counts_final = [torch.ones(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
else:
counts_final = [torch.zeros(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
biases_final = [([0.0] * x_in.shape[self.dim]) for _ in conds]
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_START, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options)
for enum_window in enumerated_context_windows:
results = self.evaluate_context_windows(calc_cond_batch, model, x_in, conds, timestep, [enum_window], model_options)
for result in results:
self.combine_context_window_results(x_in, result.sub_conds_out, result.sub_conds, result.window, result.window_idx, len(enumerated_context_windows), timestep,
conds_final, counts_final, biases_final)
try:
# finalize conds
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
# relative is already normalized, so return as is
del counts_final
return conds_final
else:
# normalize conds via division by context usage counts
for i in range(len(conds_final)):
conds_final[i] /= counts_final[i]
del counts_final
return conds_final
finally:
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_CLEANUP, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options)
def evaluate_context_windows(self, calc_cond_batch: Callable, model: BaseModel, x_in: torch.Tensor, conds, timestep: torch.Tensor, enumerated_context_windows: list[tuple[int, IndexListContextWindow]],
model_options, device=None, first_device=None):
results: list[ContextResults] = []
for window_idx, window in enumerated_context_windows:
# allow processing to end between context window executions for faster Cancel
comfy.model_management.throw_exception_if_processing_interrupted()
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EVALUATE_CONTEXT_WINDOWS, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options, window_idx, window, model_options, device, first_device)
# update exposed params
model_options["transformer_options"]["context_window"] = window
# get subsections of x, timestep, conds
sub_x = window.get_tensor(x_in, device)
sub_timestep = window.get_tensor(timestep, device, dim=0)
sub_conds = [self.get_resized_cond(cond, x_in, window, device) for cond in conds]
sub_conds_out = calc_cond_batch(model, sub_conds, sub_x, sub_timestep, model_options)
if device is not None:
for i in range(len(sub_conds_out)):
sub_conds_out[i] = sub_conds_out[i].to(x_in.device)
results.append(ContextResults(window_idx, sub_conds_out, sub_conds, window))
return results
def combine_context_window_results(self, x_in: torch.Tensor, sub_conds_out, sub_conds, window: IndexListContextWindow, window_idx: int, total_windows: int, timestep: torch.Tensor,
conds_final: list[torch.Tensor], counts_final: list[torch.Tensor], biases_final: list[torch.Tensor]):
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
for pos, idx in enumerate(window.index_list):
# bias is the influence of a specific index in relation to the whole context window
bias = 1 - abs(idx - (window.index_list[0] + window.index_list[-1]) / 2) / ((window.index_list[-1] - window.index_list[0] + 1e-2) / 2)
bias = max(1e-2, bias)
# take weighted average relative to total bias of current idx
for i in range(len(sub_conds_out)):
bias_total = biases_final[i][idx]
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
else:
# add conds and counts based on weights of fuse method
weights = get_context_weights(window.context_length, x_in.shape[self.dim], window.index_list, self, sigma=timestep)
weights_tensor = match_weights_to_dim(weights, x_in, self.dim, device=x_in.device)
for i in range(len(sub_conds_out)):
window.add_window(conds_final[i], sub_conds_out[i] * weights_tensor)
window.add_window(counts_final[i], weights_tensor)
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.COMBINE_CONTEXT_WINDOW_RESULTS, self.callbacks):
callback(self, x_in, sub_conds_out, sub_conds, window, window_idx, total_windows, timestep, conds_final, counts_final, biases_final)
def _prepare_sampling_wrapper(executor, model, noise_shape: torch.Tensor, *args, **kwargs):
# limit noise_shape length to context_length for more accurate vram use estimation
model_options = kwargs.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in prepare_sampling_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is not None:
noise_shape = list(noise_shape)
noise_shape[handler.dim] = min(noise_shape[handler.dim], handler.context_length)
return executor(model, noise_shape, *args, **kwargs)
def create_prepare_sampling_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING,
"ContextWindows_prepare_sampling",
_prepare_sampling_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
for _ in range(dim):
weights_tensor = weights_tensor.unsqueeze(0)
for _ in range(total_dims - dim - 1):
weights_tensor = weights_tensor.unsqueeze(-1)
return weights_tensor
def get_shape_for_dim(x_in: torch.Tensor, dim: int) -> list[int]:
total_dims = len(x_in.shape)
shape = []
for _ in range(dim):
shape.append(1)
shape.append(x_in.shape[dim])
for _ in range(total_dims - dim - 1):
shape.append(1)
return shape
class ContextSchedules:
UNIFORM_LOOPED = "looped_uniform"
UNIFORM_STANDARD = "standard_uniform"
STATIC_STANDARD = "standard_static"
BATCHED = "batched"
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
def create_windows_uniform_looped(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames < handler.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
# obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(handler._step)))
for j in range(
int(ordered_halving(handler._step) * context_step) + pad,
num_frames + pad + (0 if handler.closed_loop else -handler.context_overlap),
(handler.context_length * context_step - handler.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
return windows
def create_windows_uniform_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
# instead, they get shifted to the corresponding end of the frames.
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
# first, obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(handler._step)))
for j in range(
int(ordered_halving(handler._step) * context_step) + pad,
num_frames + pad + (-handler.context_overlap),
(handler.context_length * context_step - handler.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
# now that windows are created, shift any windows that loop, and delete duplicate windows
delete_idxs = []
win_i = 0
while win_i < len(windows):
# if window is rolls over itself, need to shift it
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
if is_roll:
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
shift_window_to_end(windows[win_i], num_frames=num_frames)
# check if next window (cyclical) is missing roll_val
if roll_val not in windows[(win_i+1) % len(windows)]:
# need to insert new window here - just insert window starting at roll_val
windows.insert(win_i+1, list(range(roll_val, roll_val + handler.context_length)))
# delete window if it's not unique
for pre_i in range(0, win_i):
if windows[win_i] == windows[pre_i]:
delete_idxs.append(win_i)
break
win_i += 1
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
delete_idxs.reverse()
for i in delete_idxs:
windows.pop(i)
return windows
def create_windows_static_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows
delta = handler.context_length - handler.context_overlap
for start_idx in range(0, num_frames, delta):
# if past the end of frames, move start_idx back to allow same context_length
ending = start_idx + handler.context_length
if ending >= num_frames:
final_delta = ending - num_frames
final_start_idx = start_idx - final_delta
windows.append(list(range(final_start_idx, final_start_idx + handler.context_length)))
break
windows.append(list(range(start_idx, start_idx + handler.context_length)))
return windows
def create_windows_batched(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows;
# no overlap, just cut up based on context_length;
# last window size will be different if num_frames % opts.context_length != 0
for start_idx in range(0, num_frames, handler.context_length):
windows.append(list(range(start_idx, min(start_idx + handler.context_length, num_frames))))
return windows
def create_windows_default(num_frames: int, handler: IndexListContextHandler):
return [list(range(num_frames))]
CONTEXT_MAPPING = {
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
ContextSchedules.BATCHED: create_windows_batched,
}
def get_matching_context_schedule(context_schedule: str) -> ContextSchedule:
func = CONTEXT_MAPPING.get(context_schedule, None)
if func is None:
raise ValueError(f"Unknown context_schedule '{context_schedule}'.")
return ContextSchedule(context_schedule, func)
def get_context_weights(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, sigma: torch.Tensor=None):
return handler.fuse_method.func(length, sigma=sigma, handler=handler, full_length=full_length, idxs=idxs)
def create_weights_flat(length: int, **kwargs) -> list[float]:
# weight is the same for all
return [1.0] * length
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
# weight is based on the distance away from the edge of the context window;
# based on weighted average concept in FreeNoise paper
if length % 2 == 0:
max_weight = length // 2
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
return weight_sequence
def create_weights_overlap_linear(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, **kwargs):
# based on code in Kijai's WanVideoWrapper: https://github.com/kijai/ComfyUI-WanVideoWrapper/blob/dbb2523b37e4ccdf45127e5ae33e31362f755c8e/nodes.py#L1302
# only expected overlap is given different weights
weights_torch = torch.ones((length))
# blend left-side on all except first window
if min(idxs) > 0:
ramp_up = torch.linspace(1e-37, 1, handler.context_overlap)
weights_torch[:handler.context_overlap] = ramp_up
# blend right-side on all except last window
if max(idxs) < full_length-1:
ramp_down = torch.linspace(1, 1e-37, handler.context_overlap)
weights_torch[-handler.context_overlap:] = ramp_down
return weights_torch
class ContextFuseMethods:
FLAT = "flat"
PYRAMID = "pyramid"
RELATIVE = "relative"
OVERLAP_LINEAR = "overlap-linear"
LIST = [PYRAMID, FLAT, OVERLAP_LINEAR]
LIST_STATIC = [PYRAMID, RELATIVE, FLAT, OVERLAP_LINEAR]
FUSE_MAPPING = {
ContextFuseMethods.FLAT: create_weights_flat,
ContextFuseMethods.PYRAMID: create_weights_pyramid,
ContextFuseMethods.RELATIVE: create_weights_pyramid,
ContextFuseMethods.OVERLAP_LINEAR: create_weights_overlap_linear,
}
def get_matching_fuse_method(fuse_method: str) -> ContextFuseMethod:
func = FUSE_MAPPING.get(fuse_method, None)
if func is None:
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
return ContextFuseMethod(fuse_method, func)
# Returns fraction that has denominator that is a power of 2
def ordered_halving(val):
# get binary value, padded with 0s for 64 bits
bin_str = f"{val:064b}"
# flip binary value, padding included
bin_flip = bin_str[::-1]
# convert binary to int
as_int = int(bin_flip, 2)
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
return as_int / (1 << 64)
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
all_indexes = list(range(num_frames))
for w in windows:
for val in w:
try:
all_indexes.remove(val)
except ValueError:
pass
return all_indexes
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
prev_val = -1
for i, val in enumerate(window):
val = val % num_frames
if val < prev_val:
return True, i
prev_val = val
return False, -1
def shift_window_to_start(window: list[int], num_frames: int):
start_val = window[0]
for i in range(len(window)):
# 1) subtract each element by start_val to move vals relative to the start of all frames
# 2) add num_frames and take modulus to get adjusted vals
window[i] = ((window[i] - start_val) + num_frames) % num_frames
def shift_window_to_end(window: list[int], num_frames: int):
# 1) shift window to start
shift_window_to_start(window, num_frames)
end_val = window[-1]
end_delta = num_frames - end_val - 1
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta

View File

@ -28,6 +28,7 @@ import comfy.model_detection
import comfy.model_patcher
import comfy.ops
import comfy.latent_formats
import comfy.model_base
import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
@ -35,6 +36,7 @@ import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.ldm.qwen_image.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING
if TYPE_CHECKING:
@ -43,7 +45,6 @@ if TYPE_CHECKING:
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
@ -236,11 +237,11 @@ class ControlNet(ControlBase):
self.cond_hint = None
compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.downscale_ratio
compression_ratio *= self.vae.spacial_compression_encode()
else:
if self.latent_format is not None:
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[-1] * compression_ratio, x_noisy.shape[-2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = self.preprocess_image(self.cond_hint)
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
@ -265,12 +266,12 @@ class ControlNet(ControlBase):
for c in self.extra_conds:
temp = cond.get(c, None)
if temp is not None:
extra[c] = temp.to(dtype)
extra[c] = comfy.model_base.convert_tensor(temp, dtype, x_noisy.device)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=comfy.model_management.cast_to_device(context, x_noisy.device, dtype), **extra)
return self.control_merge(control, control_prev, output_dtype=None)
def copy(self):
@ -390,8 +391,9 @@ class ControlLora(ControlNet):
pass
for k in self.control_weights:
if k not in {"lora_controlnet"}:
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
if (k not in {"lora_controlnet"}):
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
@ -581,6 +583,15 @@ def load_controlnet_flux_instantx(sd, model_options={}):
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def load_controlnet_qwen_instantx(sd, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.Wan21()
extra_conds = []
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
@ -654,8 +665,11 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
else:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
elif "transformer_blocks.0.img_mlp.net.0.proj.weight" in controlnet_data:
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)

View File

@ -1,55 +1,10 @@
import math
import torch
from torch import nn
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
from .ldm.modules.attention import CrossAttention, FeedForward
import comfy.ops
ops = comfy.ops.manual_cast
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = ops.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * torch.nn.functional.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
ops.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
ops.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class GatedCrossAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):

View File

@ -31,6 +31,20 @@ class LayerScale(torch.nn.Module):
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class Dinov2MLP(torch.nn.Module):
def __init__(self, hidden_size: int, dtype, device, operations):
super().__init__()
mlp_ratio = 4
hidden_features = int(hidden_size * mlp_ratio)
self.fc1 = operations.Linear(hidden_size, hidden_features, bias = True, device=device, dtype=dtype)
self.fc2 = operations.Linear(hidden_features, hidden_size, bias = True, device=device, dtype=dtype)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = torch.nn.functional.gelu(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
@ -50,12 +64,15 @@ class SwiGLUFFN(torch.nn.Module):
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
if use_swiglu_ffn:
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
else:
self.mlp = Dinov2MLP(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
@ -66,9 +83,10 @@ class Dino2Block(torch.nn.Module):
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
@ -78,8 +96,8 @@ class Dino2Encoder(torch.nn.Module):
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
for i, layer in enumerate(self.layer):
x = layer(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
@ -128,9 +146,10 @@ class Dinov2Model(torch.nn.Module):
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
use_swiglu_ffn = config_dict["use_swiglu_ffn"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):

View File

@ -0,0 +1,22 @@
{
"hidden_size": 1024,
"use_mask_token": true,
"patch_size": 14,
"image_size": 518,
"num_channels": 3,
"num_attention_heads": 16,
"initializer_range": 0.02,
"attention_probs_dropout_prob": 0.0,
"hidden_dropout_prob": 0.0,
"hidden_act": "gelu",
"mlp_ratio": 4,
"model_type": "dinov2",
"num_hidden_layers": 24,
"layer_norm_eps": 1e-6,
"qkv_bias": true,
"use_swiglu_ffn": false,
"layerscale_value": 1.0,
"drop_path_rate": 0.0,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@ -0,0 +1,121 @@
# SA-Solver: Stochastic Adams Solver (NeurIPS 2023, arXiv:2309.05019)
# Conference: https://proceedings.neurips.cc/paper_files/paper/2023/file/f4a6806490d31216a3ba667eb240c897-Paper-Conference.pdf
# Codebase ref: https://github.com/scxue/SA-Solver
import math
from typing import Union, Callable
import torch
def compute_exponential_coeffs(s: torch.Tensor, t: torch.Tensor, solver_order: int, tau_t: float) -> torch.Tensor:
"""Compute (1 + tau^2) * integral of exp((1 + tau^2) * x) * x^p dx from s to t with exp((1 + tau^2) * t) factored out, using integration by parts.
Integral of exp((1 + tau^2) * x) * x^p dx
= product_terms[p] - (p / (1 + tau^2)) * integral of exp((1 + tau^2) * x) * x^(p-1) dx,
with base case p=0 where integral equals product_terms[0].
where
product_terms[p] = x^p * exp((1 + tau^2) * x) / (1 + tau^2).
Construct a recursive coefficient matrix following the above recursive relation to compute all integral terms up to p = (solver_order - 1).
Return coefficients used by the SA-Solver in data prediction mode.
Args:
s: Start time s.
t: End time t.
solver_order: Current order of the solver.
tau_t: Stochastic strength parameter in the SDE.
Returns:
Exponential coefficients used in data prediction, with exp((1 + tau^2) * t) factored out, ordered from p=0 to p=solver_order1, shape (solver_order,).
"""
tau_mul = 1 + tau_t ** 2
h = t - s
p = torch.arange(solver_order, dtype=s.dtype, device=s.device)
# product_terms after factoring out exp((1 + tau^2) * t)
# Includes (1 + tau^2) factor from outside the integral
product_terms_factored = (t ** p - s ** p * (-tau_mul * h).exp())
# Lower triangular recursive coefficient matrix
# Accumulates recursive coefficients based on p / (1 + tau^2)
recursive_depth_mat = p.unsqueeze(1) - p.unsqueeze(0)
log_factorial = (p + 1).lgamma()
recursive_coeff_mat = log_factorial.unsqueeze(1) - log_factorial.unsqueeze(0)
if tau_t > 0:
recursive_coeff_mat = recursive_coeff_mat - (recursive_depth_mat * math.log(tau_mul))
signs = torch.where(recursive_depth_mat % 2 == 0, 1.0, -1.0)
recursive_coeff_mat = (recursive_coeff_mat.exp() * signs).tril()
return recursive_coeff_mat @ product_terms_factored
def compute_simple_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, is_corrector_step: bool = False) -> torch.Tensor:
"""Compute simple order-2 b coefficients from SA-Solver paper (Appendix D. Implementation Details)."""
tau_mul = 1 + tau_t ** 2
h = lambda_t - lambda_s
alpha_t = sigma_next * lambda_t.exp()
if is_corrector_step:
# Simplified 1-step (order-2) corrector
b_1 = alpha_t * (0.5 * tau_mul * h)
b_2 = alpha_t * (-h * tau_mul).expm1().neg() - b_1
else:
# Simplified 2-step predictor
b_2 = alpha_t * (0.5 * tau_mul * h ** 2) / (curr_lambdas[-2] - lambda_s)
b_1 = alpha_t * (-h * tau_mul).expm1().neg() - b_2
return torch.stack([b_2, b_1])
def compute_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, simple_order_2: bool = False, is_corrector_step: bool = False) -> torch.Tensor:
"""Compute b_i coefficients for the SA-Solver (see eqs. 15 and 18).
The solver order corresponds to the number of input lambdas (half-logSNR points).
Args:
sigma_next: Sigma at end time t.
curr_lambdas: Lambda time points used to construct the Lagrange basis, shape (N,).
lambda_s: Lambda at start time s.
lambda_t: Lambda at end time t.
tau_t: Stochastic strength parameter in the SDE.
simple_order_2: Whether to enable the simple order-2 scheme.
is_corrector_step: Flag for corrector step in simple order-2 mode.
Returns:
b_i coefficients for the SA-Solver, shape (N,), where N is the solver order.
"""
num_timesteps = curr_lambdas.shape[0]
if simple_order_2 and num_timesteps == 2:
return compute_simple_stochastic_adams_b_coeffs(sigma_next, curr_lambdas, lambda_s, lambda_t, tau_t, is_corrector_step)
# Compute coefficients by solving a linear system from Lagrange basis interpolation
exp_integral_coeffs = compute_exponential_coeffs(lambda_s, lambda_t, num_timesteps, tau_t)
vandermonde_matrix_T = torch.vander(curr_lambdas, num_timesteps, increasing=True).T
lagrange_integrals = torch.linalg.solve(vandermonde_matrix_T, exp_integral_coeffs)
# (sigma_t * exp(-tau^2 * lambda_t)) * exp((1 + tau^2) * lambda_t)
# = sigma_t * exp(lambda_t) = alpha_t
# exp((1 + tau^2) * lambda_t) is extracted from the integral
alpha_t = sigma_next * lambda_t.exp()
return alpha_t * lagrange_integrals
def get_tau_interval_func(start_sigma: float, end_sigma: float, eta: float = 1.0) -> Callable[[Union[torch.Tensor, float]], float]:
"""Return a function that controls the stochasticity of SA-Solver.
When eta = 0, SA-Solver runs as ODE. The official approach uses
time t to determine the SDE interval, while here we use sigma instead.
See:
https://github.com/scxue/SA-Solver/blob/main/README.md
"""
def tau_func(sigma: Union[torch.Tensor, float]) -> float:
if eta <= 0:
return 0.0 # ODE
if isinstance(sigma, torch.Tensor):
sigma = sigma.item()
return eta if start_sigma >= sigma >= end_sigma else 0.0
return tau_func

View File

@ -1,4 +1,5 @@
import math
from functools import partial
from scipy import integrate
import torch
@ -8,6 +9,7 @@ from tqdm.auto import trange, tqdm
from . import utils
from . import deis
from . import sa_solver
import comfy.model_patcher
import comfy.model_sampling
@ -142,6 +144,43 @@ class BrownianTreeNoiseSampler:
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def sigma_to_half_log_snr(sigma, model_sampling):
"""Convert sigma to half-logSNR log(alpha_t / sigma_t)."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# log((1 - t) / t) = log((1 - sigma) / sigma)
return sigma.logit().neg()
return sigma.log().neg()
def half_log_snr_to_sigma(half_log_snr, model_sampling):
"""Convert half-logSNR log(alpha_t / sigma_t) to sigma."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# 1 / (1 + exp(half_log_snr))
return half_log_snr.neg().sigmoid()
return half_log_snr.neg().exp()
def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
"""Adjust the first sigma to avoid invalid logSNR."""
if len(sigmas) <= 1:
return sigmas
if isinstance(model_sampling, comfy.model_sampling.CONST):
if sigmas[0] >= 1:
sigmas = sigmas.clone()
sigmas[0] = model_sampling.percent_to_sigma(percent_offset)
return sigmas
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
return torch.expm1(h)
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
return (torch.expm1(h) - h) / h
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@ -384,9 +423,13 @@ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, o
ds.pop(0)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
return x
@ -682,6 +725,7 @@ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=Non
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
return x
@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
"""DPM-Solver++ (stochastic)."""
@ -693,38 +737,49 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigmas[i + 1] - sigmas[i]
x = x + d * dt
# Denoising step
x = denoised
else:
# DPM-Solver++
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
s = t + h * r
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
alpha_s = sigmas[i] * lambda_s.exp()
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_s_1.neg().exp(), eta)
lambda_s_1_ = sd.log().neg()
h_ = lambda_s_1_ - lambda_s
x_2 = (alpha_s_1 / alpha_s) * (-h_).exp() * x - alpha_s_1 * (-h_).expm1() * denoised
if eta > 0 and s_noise > 0:
x_2 = x_2 + alpha_s_1 * noise_sampler(sigmas[i], sigma_s_1) * s_noise * su
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
t_next_ = t_fn(sd)
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_t.neg().exp(), eta)
lambda_t_ = sd.log().neg()
h_ = lambda_t_ - lambda_s
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
x = (alpha_t / alpha_s) * (-h_).exp() * x - alpha_t * (-h_).expm1() * denoised_d
if eta > 0 and s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * su
return x
@ -753,6 +808,7 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
old_denoised = denoised
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
"""DPM-Solver++(2M) SDE."""
@ -768,9 +824,12 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
old_denoised = None
h_last = None
h = None
h, h_last = None, None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
@ -781,26 +840,34 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
x = x + alpha_t * ((-h_eta).expm1().neg() / (-h_eta) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
x = x + 0.5 * alpha_t * (-h_eta).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
@torch.no_grad()
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
@ -814,6 +881,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
denoised_1, denoised_2 = None, None
h, h_1, h_2 = None, None, None
@ -825,13 +896,16 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
# Denoising step
x = denoised
else:
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
if h_2 is not None:
# DPM-Solver++(3M) SDE
r0 = h_1 / h
r1 = h_2 / h
d1_0 = (denoised - denoised_1) / r0
@ -840,20 +914,22 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
d2 = (d1_0 - d1_1) / (r0 + r1)
phi_2 = h_eta.neg().expm1() / h_eta + 1
phi_3 = phi_2 / h_eta - 0.5
x = x + phi_2 * d1 - phi_3 * d2
x = x + (alpha_t * phi_2) * d1 - (alpha_t * phi_3) * d2
elif h_1 is not None:
# DPM-Solver++(2M) SDE
r = h_1 / h
d = (denoised - denoised_1) / r
phi_2 = h_eta.neg().expm1() / h_eta + 1
x = x + phi_2 * d
x = x + (alpha_t * phi_2) * d
if eta:
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
denoised_1, denoised_2 = denoised, denoised_1
h_1, h_2 = h, h_1
return x
@torch.no_grad()
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1:
@ -863,6 +939,17 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
@ -872,6 +959,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1:
@ -1009,7 +1097,9 @@ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None,
d_cur = (x_cur - denoised) / t_cur
order = min(max_order, i+1)
if order == 1: # First Euler step.
if t_next == 0: # Denoising step
x_next = denoised
elif order == 1: # First Euler step.
x_next = x_cur + (t_next - t_cur) * d_cur
elif order == 2: # Use one history point.
x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
@ -1027,6 +1117,7 @@ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None,
return x_next
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
#under Apache 2 license
def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
@ -1050,7 +1141,9 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
d_cur = (x_cur - denoised) / t_cur
order = min(max_order, i+1)
if order == 1: # First Euler step.
if t_next == 0: # Denoising step
x_next = denoised
elif order == 1: # First Euler step.
x_next = x_cur + (t_next - t_cur) * d_cur
elif order == 2: # Use one history point.
h_n = (t_next - t_cur)
@ -1090,6 +1183,7 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
return x_next
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
#under Apache 2 license
@torch.no_grad()
@ -1140,39 +1234,22 @@ def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None,
return x_next
@torch.no_grad()
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
extra_args = {} if extra_args is None else extra_args
temp = [0]
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
sigma_hat = sigmas[i]
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, temp[0])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
# Euler method
x = denoised + d * sigmas[i + 1]
return x
@torch.no_grad()
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps."""
"""Ancestral sampling with Euler method steps (CFG++)."""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
temp = [0]
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
uncond_denoised = None
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
@ -1181,15 +1258,33 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x, sigmas[i], temp[0])
# Euler method
x = denoised + d * sigma_down
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
alpha_s = sigmas[i] * lambda_fn(sigmas[i]).exp()
alpha_t = sigmas[i + 1] * lambda_fn(sigmas[i + 1]).exp()
d = to_d(x, sigmas[i], alpha_s * uncond_denoised) # to noise
# DDIM stochastic sampling
sigma_down, sigma_up = get_ancestral_step(sigmas[i] / alpha_s, sigmas[i + 1] / alpha_t, eta=eta)
sigma_down = alpha_t * sigma_down
# Euler method
x = alpha_t * denoised + sigma_down * d
if eta > 0 and s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""Euler method steps (CFG++)."""
return sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None)
@torch.no_grad()
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
@ -1346,6 +1441,7 @@ def sample_res_multistep_ancestral(model, x, sigmas, extra_args=None, callback=N
def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
@torch.no_grad()
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
@ -1372,31 +1468,32 @@ def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None,
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
dt = sigmas[i + 1] - sigmas[i]
if i == 0:
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# Euler method
if cfg_pp:
x = denoised + d * sigmas[i + 1]
else:
x = x + d * dt
else:
# Gradient estimation
if cfg_pp:
if i >= 1:
# Gradient estimation
d_bar = (ge_gamma - 1) * (d - old_d)
x = denoised + d * sigmas[i + 1] + d_bar * dt
else:
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
x = x + d_bar * dt
old_d = d
return x
@torch.no_grad()
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
@torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
"""
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.0, noise_sampler=None, noise_scaler=None, max_stage=3):
"""Extended Reverse-Time SDE solver (VP ER-SDE-Solver-3). arXiv: https://arxiv.org/abs/2309.06169.
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
"""
extra_args = {} if extra_args is None else extra_args
@ -1404,12 +1501,18 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
def default_noise_scaler(sigma):
return sigma * ((sigma ** 0.3).exp() + 10.0)
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
def default_er_sde_noise_scaler(x):
return x * ((x ** 0.3).exp() + 10.0)
noise_scaler = default_er_sde_noise_scaler if noise_scaler is None else noise_scaler
num_integration_points = 200.0
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
half_log_snrs = sigma_to_half_log_snr(sigmas, model_sampling)
er_lambdas = half_log_snrs.neg().exp() # er_lambda_t = sigma_t / alpha_t
old_denoised = None
old_denoised_d = None
@ -1420,129 +1523,265 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
stage_used = min(max_stage, i + 1)
if sigmas[i + 1] == 0:
x = denoised
elif stage_used == 1:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
else:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
er_lambda_s, er_lambda_t = er_lambdas[i], er_lambdas[i + 1]
alpha_s = sigmas[i] / er_lambda_s
alpha_t = sigmas[i + 1] / er_lambda_t
r_alpha = alpha_t / alpha_s
r = noise_scaler(er_lambda_t) / noise_scaler(er_lambda_s)
dt = sigmas[i + 1] - sigmas[i]
sigma_step_size = -dt / num_integration_points
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
scaled_pos = noise_scaler(sigma_pos)
# Stage 1 Euler
x = r_alpha * r * x + alpha_t * (1 - r) * denoised
# Stage 2
s = torch.sum(1 / scaled_pos) * sigma_step_size
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
if stage_used >= 2:
dt = er_lambda_t - er_lambda_s
lambda_step_size = -dt / num_integration_points
lambda_pos = er_lambda_t + point_indice * lambda_step_size
scaled_pos = noise_scaler(lambda_pos)
if stage_used >= 3:
# Stage 3
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
old_denoised_d = denoised_d
# Stage 2
s = torch.sum(1 / scaled_pos) * lambda_step_size
denoised_d = (denoised - old_denoised) / (er_lambda_s - er_lambdas[i - 1])
x = x + alpha_t * (dt + s * noise_scaler(er_lambda_t)) * denoised_d
if s_noise != 0 and sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
if stage_used >= 3:
# Stage 3
s_u = torch.sum((lambda_pos - er_lambda_s) / scaled_pos) * lambda_step_size
denoised_u = (denoised_d - old_denoised_d) / ((er_lambda_s - er_lambdas[i - 2]) / 2)
x = x + alpha_t * ((dt ** 2) / 2 + s_u * noise_scaler(er_lambda_t)) * denoised_u
old_denoised_d = denoised_d
if s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (er_lambda_t ** 2 - er_lambda_s ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
'''
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
Arxiv: https://arxiv.org/abs/2305.14267
'''
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
fac = 1 / (2 * r)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s = t + r * h
fac = 1 / (2 * r)
sigma_s = s.neg().exp()
continue
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
sigma_s_1 = sigma_fn(lambda_s_1)
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
'''
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
Arxiv: https://arxiv.org/abs/2305.14267
'''
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s_1 = t + r_1 * h
s_2 = t + r_2 * h
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
continue
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 2
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 3
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
# Step 2
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
if inject_noise:
segment_factor = (r_1 - r_2) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
b3 = ei_h_phi_2(-h_eta) / r_2
b1 = ei_h_phi_1(-h_eta) - b3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
if inject_noise:
segment_factor = (r_2 - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, use_pece=False, simple_order_2=False):
"""Stochastic Adams Solver with predictor-corrector method (NeurIPS 2023)."""
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
lambdas = sigma_to_half_log_snr(sigmas, model_sampling=model_sampling)
if tau_func is None:
# Use default interval for stochastic sampling
start_sigma = model_sampling.percent_to_sigma(0.2)
end_sigma = model_sampling.percent_to_sigma(0.8)
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=1.0)
max_used_order = max(predictor_order, corrector_order)
x_pred = x # x: current state, x_pred: predicted next state
h = 0.0
tau_t = 0.0
noise = 0.0
pred_list = []
# Lower order near the end to improve stability
lower_order_to_end = sigmas[-1].item() == 0
for i in trange(len(sigmas) - 1, disable=disable):
# Evaluation
denoised = model(x_pred, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({"x": x_pred, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
pred_list.append(denoised)
pred_list = pred_list[-max_used_order:]
predictor_order_used = min(predictor_order, len(pred_list))
if i == 0 or (sigmas[i + 1] == 0 and not use_pece):
corrector_order_used = 0
else:
corrector_order_used = min(corrector_order, len(pred_list))
if lower_order_to_end:
predictor_order_used = min(predictor_order_used, len(sigmas) - 2 - i)
corrector_order_used = min(corrector_order_used, len(sigmas) - 1 - i)
# Corrector
if corrector_order_used == 0:
# Update by the predicted state
x = x_pred
else:
curr_lambdas = lambdas[i - corrector_order_used + 1:i + 1]
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
sigmas[i],
curr_lambdas,
lambdas[i - 1],
lambdas[i],
tau_t,
simple_order_2,
is_corrector_step=True,
)
pred_mat = torch.stack(pred_list[-corrector_order_used:], dim=1) # (B, K, ...)
corr_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
x = sigmas[i] / sigmas[i - 1] * (-(tau_t ** 2) * h).exp() * x + corr_res
if tau_t > 0 and s_noise > 0:
# The noise from the previous predictor step
x = x + noise
if use_pece:
# Evaluate the corrected state
denoised = model(x, sigmas[i] * s_in, **extra_args)
pred_list[-1] = denoised
# Predictor
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
tau_t = tau_func(sigmas[i + 1])
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
sigmas[i + 1],
curr_lambdas,
lambdas[i],
lambdas[i + 1],
tau_t,
simple_order_2,
is_corrector_step=False,
)
pred_mat = torch.stack(pred_list[-predictor_order_used:], dim=1) # (B, K, ...)
pred_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
h = lambdas[i + 1] - lambdas[i]
x_pred = sigmas[i + 1] / sigmas[i] * (-(tau_t ** 2) * h).exp() * x + pred_res
if tau_t > 0 and s_noise > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
x_pred = x_pred + noise
return x
@torch.no_grad()
def sample_sa_solver_pece(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, simple_order_2=False):
"""Stochastic Adams Solver with PECE (PredictEvaluateCorrectEvaluate) mode (NeurIPS 2023)."""
return sample_sa_solver(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, tau_func=tau_func, s_noise=s_noise, noise_sampler=noise_sampler, predictor_order=predictor_order, corrector_order=corrector_order, use_pece=True, simple_order_2=simple_order_2)

View File

@ -457,11 +457,92 @@ class Wan21(LatentFormat):
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class Wan22(Wan21):
latent_channels = 48
latent_dimensions = 3
latent_rgb_factors = [
[ 0.0119, 0.0103, 0.0046],
[-0.1062, -0.0504, 0.0165],
[ 0.0140, 0.0409, 0.0491],
[-0.0813, -0.0677, 0.0607],
[ 0.0656, 0.0851, 0.0808],
[ 0.0264, 0.0463, 0.0912],
[ 0.0295, 0.0326, 0.0590],
[-0.0244, -0.0270, 0.0025],
[ 0.0443, -0.0102, 0.0288],
[-0.0465, -0.0090, -0.0205],
[ 0.0359, 0.0236, 0.0082],
[-0.0776, 0.0854, 0.1048],
[ 0.0564, 0.0264, 0.0561],
[ 0.0006, 0.0594, 0.0418],
[-0.0319, -0.0542, -0.0637],
[-0.0268, 0.0024, 0.0260],
[ 0.0539, 0.0265, 0.0358],
[-0.0359, -0.0312, -0.0287],
[-0.0285, -0.1032, -0.1237],
[ 0.1041, 0.0537, 0.0622],
[-0.0086, -0.0374, -0.0051],
[ 0.0390, 0.0670, 0.2863],
[ 0.0069, 0.0144, 0.0082],
[ 0.0006, -0.0167, 0.0079],
[ 0.0313, -0.0574, -0.0232],
[-0.1454, -0.0902, -0.0481],
[ 0.0714, 0.0827, 0.0447],
[-0.0304, -0.0574, -0.0196],
[ 0.0401, 0.0384, 0.0204],
[-0.0758, -0.0297, -0.0014],
[ 0.0568, 0.1307, 0.1372],
[-0.0055, -0.0310, -0.0380],
[ 0.0239, -0.0305, 0.0325],
[-0.0663, -0.0673, -0.0140],
[-0.0416, -0.0047, -0.0023],
[ 0.0166, 0.0112, -0.0093],
[-0.0211, 0.0011, 0.0331],
[ 0.1833, 0.1466, 0.2250],
[-0.0368, 0.0370, 0.0295],
[-0.3441, -0.3543, -0.2008],
[-0.0479, -0.0489, -0.0420],
[-0.0660, -0.0153, 0.0800],
[-0.0101, 0.0068, 0.0156],
[-0.0690, -0.0452, -0.0927],
[-0.0145, 0.0041, 0.0015],
[ 0.0421, 0.0451, 0.0373],
[ 0.0504, -0.0483, -0.0356],
[-0.0837, 0.0168, 0.0055]
]
latent_rgb_factors_bias = [0.0317, -0.0878, -0.1388]
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667,
]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]).view(1, self.latent_channels, 1, 1, 1)
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2_1(LatentFormat):
scale_factor = 1.0039506158752403
latent_channels = 64
latent_dimensions = 1
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1

View File

@ -19,6 +19,7 @@ import torch
from torch import nn
import comfy.model_management
import comfy.patcher_extension
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
@ -343,7 +344,28 @@ class ACEStepTransformer2DModel(nn.Module):
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(
def forward(self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timestep, attention_mask, context, text_attention_mask, speaker_embeds, lyric_token_idx, lyric_mask, block_controlnet_hidden_states,
controlnet_scale, lyrics_strength, **kwargs)
def _forward(
self,
x,
timestep,

View File

@ -632,7 +632,7 @@ class ContinuousTransformer(nn.Module):
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=torch.float, device=x.device)
else:
rotary_pos_emb = None

View File

@ -9,6 +9,7 @@ import torch.nn.functional as F
from comfy.ldm.modules.attention import optimized_attention
import comfy.ops
import comfy.patcher_extension
import comfy.ldm.common_dit
def modulate(x, shift, scale):
@ -436,6 +437,13 @@ class MMDiT(nn.Module):
return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
def forward(self, x, timestep, context, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, transformer_options, **kwargs)
def _forward(self, x, timestep, context, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
# patchify x, add PE
b, c, h, w = x.shape

View File

@ -5,6 +5,7 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.patcher_extension
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
@ -253,14 +254,20 @@ class Chroma(nn.Module):
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, guidance, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
patch_size = 2
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
@ -268,4 +275,4 @@ class Chroma(nn.Module):
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h,:w]

View File

@ -26,16 +26,6 @@ from torch import nn
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
def get_normalization(name: str, channels: int, weight_args={}, operations=None):
if name == "I":
return nn.Identity()

View File

@ -58,7 +58,8 @@ def is_odd(n: int) -> bool:
def nonlinearity(x):
return x * torch.sigmoid(x)
# x * sigmoid(x)
return torch.nn.functional.silu(x)
def Normalize(in_channels, num_groups=32):

View File

@ -27,6 +27,8 @@ from torchvision import transforms
from enum import Enum
import logging
import comfy.patcher_extension
from .blocks import (
FinalLayer,
GeneralDITTransformerBlock,
@ -435,6 +437,42 @@ class GeneralDIT(nn.Module):
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x,
timesteps,
context,
attention_mask,
fps,
image_size,
padding_mask,
scalar_feature,
data_type,
latent_condition,
latent_condition_sigma,
condition_video_augment_sigma,
**kwargs)
def _forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
# crossattn_emb: torch.Tensor,
# crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Args:

View File

@ -66,15 +66,16 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
enable_fps_modulation: bool = True,
device=None,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device))
self.base_fps = base_fps
self.max_h = len_h
self.max_w = len_w
self.enable_fps_modulation = enable_fps_modulation
dim = head_dim
dim_h = dim // 6 * 2
@ -132,21 +133,19 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device))
B, T, H, W, _ = B_T_H_W_C
seq = torch.arange(max(H, W, T), dtype=torch.float, device=device)
uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max())
assert (
uniform_fps or B == 1 or T == 1
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
assert (
H <= self.max_h and W <= self.max_w
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs)
half_emb_h = torch.outer(seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(seq[:W].to(device=device), w_spatial_freqs)
# apply sequence scaling in temporal dimension
if fps is None: # image case
half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs)
if fps is None or self.enable_fps_modulation is False: # image case
half_emb_t = torch.outer(seq[:T].to(device=device), temporal_freqs)
else:
half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_t = torch.outer(seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1)
half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1)

View File

@ -0,0 +1,879 @@
# original code from: https://github.com/nvidia-cosmos/cosmos-predict2
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
import logging
from typing import Callable, Optional, Tuple
import math
from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis
from torchvision import transforms
import comfy.patcher_extension
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
# ---------------------- Feed Forward Network -----------------------
class GPT2FeedForward(nn.Module):
def __init__(self, d_model: int, d_ff: int, device=None, dtype=None, operations=None) -> None:
super().__init__()
self.activation = nn.GELU()
self.layer1 = operations.Linear(d_model, d_ff, bias=False, device=device, dtype=dtype)
self.layer2 = operations.Linear(d_ff, d_model, bias=False, device=device, dtype=dtype)
self._layer_id = None
self._dim = d_model
self._hidden_dim = d_ff
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer1(x)
x = self.activation(x)
x = self.layer2(x)
return x
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
"""Computes multi-head attention using PyTorch's native implementation.
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
It rearranges the input tensors to match PyTorch's expected format, computes scaled dot-product
attention, and rearranges the output back to the original format.
The input tensor names use the following dimension conventions:
- B: batch size
- S: sequence length
- H: number of attention heads
- D: head dimension
Args:
q_B_S_H_D: Query tensor with shape (batch, seq_len, n_heads, head_dim)
k_B_S_H_D: Key tensor with shape (batch, seq_len, n_heads, head_dim)
v_B_S_H_D: Value tensor with shape (batch, seq_len, n_heads, head_dim)
Returns:
Attention output tensor with shape (batch, seq_len, n_heads * head_dim)
"""
in_q_shape = q_B_S_H_D.shape
in_k_shape = k_B_S_H_D.shape
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
class Attention(nn.Module):
"""
A flexible attention module supporting both self-attention and cross-attention mechanisms.
This module implements a multi-head attention layer that can operate in either self-attention
or cross-attention mode. The mode is determined by whether a context dimension is provided.
The implementation uses scaled dot-product attention and supports optional bias terms and
dropout regularization.
Args:
query_dim (int): The dimensionality of the query vectors.
context_dim (int, optional): The dimensionality of the context (key/value) vectors.
If None, the module operates in self-attention mode using query_dim. Default: None
n_heads (int, optional): Number of attention heads for multi-head attention. Default: 8
head_dim (int, optional): The dimension of each attention head. Default: 64
dropout (float, optional): Dropout probability applied to the output. Default: 0.0
qkv_format (str, optional): Format specification for QKV tensors. Default: "bshd"
backend (str, optional): Backend to use for the attention operation. Default: "transformer_engine"
Examples:
>>> # Self-attention with 512 dimensions and 8 heads
>>> self_attn = Attention(query_dim=512)
>>> x = torch.randn(32, 16, 512) # (batch_size, seq_len, dim)
>>> out = self_attn(x) # (32, 16, 512)
>>> # Cross-attention
>>> cross_attn = Attention(query_dim=512, context_dim=256)
>>> query = torch.randn(32, 16, 512)
>>> context = torch.randn(32, 8, 256)
>>> out = cross_attn(query, context) # (32, 16, 512)
"""
def __init__(
self,
query_dim: int,
context_dim: Optional[int] = None,
n_heads: int = 8,
head_dim: int = 64,
dropout: float = 0.0,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
logging.debug(
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{n_heads} heads with a dimension of {head_dim}."
)
self.is_selfattn = context_dim is None # self attention
context_dim = query_dim if context_dim is None else context_dim
inner_dim = head_dim * n_heads
self.n_heads = n_heads
self.head_dim = head_dim
self.query_dim = query_dim
self.context_dim = context_dim
self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.v_norm = nn.Identity()
self.output_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype)
self.output_dropout = nn.Dropout(dropout) if dropout > 1e-4 else nn.Identity()
self.attn_op = torch_attention_op
self._query_dim = query_dim
self._context_dim = context_dim
self._inner_dim = inner_dim
def compute_qkv(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q = self.q_proj(x)
context = x if context is None else context
k = self.k_proj(context)
v = self.v_proj(context)
q, k, v = map(
lambda t: rearrange(t, "b ... (h d) -> b ... h d", h=self.n_heads, d=self.head_dim),
(q, k, v),
)
def apply_norm_and_rotary_pos_emb(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, rope_emb: Optional[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q = self.q_norm(q)
k = self.k_norm(k)
v = self.v_norm(v)
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
q = apply_rotary_pos_emb(q, rope_emb)
k = apply_rotary_pos_emb(k, rope_emb)
return q, k, v
q, k, v = apply_norm_and_rotary_pos_emb(q, k, v, rope_emb)
return q, k, v
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
result = self.attn_op(q, k, v) # [B, S, H, D]
return self.output_dropout(self.output_proj(result))
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
x (Tensor): The query tensor of shape [B, Mq, K]
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
return self.compute_attention(q, k, v)
class Timesteps(nn.Module):
def __init__(self, num_channels: int):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps_B_T: torch.Tensor) -> torch.Tensor:
assert timesteps_B_T.ndim == 2, f"Expected 2D input, got {timesteps_B_T.ndim}"
timesteps = timesteps_B_T.flatten().float()
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return rearrange(emb, "(b t) d -> b t d", b=timesteps_B_T.shape[0], t=timesteps_B_T.shape[1])
class TimestepEmbedding(nn.Module):
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, device=None, dtype=None, operations=None):
super().__init__()
logging.debug(
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
)
self.in_dim = in_features
self.out_dim = out_features
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, device=device, dtype=dtype)
self.activation = nn.SiLU()
self.use_adaln_lora = use_adaln_lora
if use_adaln_lora:
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, device=device, dtype=dtype)
else:
self.linear_2 = operations.Linear(out_features, out_features, bias=False, device=device, dtype=dtype)
def forward(self, sample: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
emb = self.linear_1(sample)
emb = self.activation(emb)
emb = self.linear_2(emb)
if self.use_adaln_lora:
adaln_lora_B_T_3D = emb
emb_B_T_D = sample
else:
adaln_lora_B_T_3D = None
emb_B_T_D = emb
return emb_B_T_D, adaln_lora_B_T_3D
class PatchEmbed(nn.Module):
"""
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
making it suitable for video and image processing tasks. It supports dividing the input into patches
and embedding each patch into a vector of size `out_channels`.
Parameters:
- spatial_patch_size (int): The size of each spatial patch.
- temporal_patch_size (int): The size of each temporal patch.
- in_channels (int): Number of input channels. Default: 3.
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
"""
def __init__(
self,
spatial_patch_size: int,
temporal_patch_size: int,
in_channels: int = 3,
out_channels: int = 768,
device=None, dtype=None, operations=None
):
super().__init__()
self.spatial_patch_size = spatial_patch_size
self.temporal_patch_size = temporal_patch_size
self.proj = nn.Sequential(
Rearrange(
"b c (t r) (h m) (w n) -> b t h w (c r m n)",
r=temporal_patch_size,
m=spatial_patch_size,
n=spatial_patch_size,
),
operations.Linear(
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=False, device=device, dtype=dtype
),
)
self.dim = in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the PatchEmbed module.
Parameters:
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
B is the batch size,
C is the number of channels,
T is the temporal dimension,
H is the height, and
W is the width of the input.
Returns:
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
"""
assert x.dim() == 5
_, _, T, H, W = x.shape
assert (
H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
), f"H,W {(H, W)} should be divisible by spatial_patch_size {self.spatial_patch_size}"
assert T % self.temporal_patch_size == 0
x = self.proj(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of video DiT.
"""
def __init__(
self,
hidden_size: int,
spatial_patch_size: int,
temporal_patch_size: int,
out_channels: int,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
device=None, dtype=None, operations=None
):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = operations.Linear(
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype
)
self.hidden_size = hidden_size
self.n_adaln_chunks = 2
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
if use_adaln_lora:
self.adaln_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype),
)
else:
self.adaln_modulation = nn.Sequential(
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype)
)
def forward(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_T_D: torch.Tensor,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
):
if self.use_adaln_lora:
assert adaln_lora_B_T_3D is not None
shift_B_T_D, scale_B_T_D = (
self.adaln_modulation(emb_B_T_D) + adaln_lora_B_T_3D[:, :, : 2 * self.hidden_size]
).chunk(2, dim=-1)
else:
shift_B_T_D, scale_B_T_D = self.adaln_modulation(emb_B_T_D).chunk(2, dim=-1)
shift_B_T_1_1_D, scale_B_T_1_1_D = rearrange(shift_B_T_D, "b t d -> b t 1 1 d"), rearrange(
scale_B_T_D, "b t d -> b t 1 1 d"
)
def _fn(
_x_B_T_H_W_D: torch.Tensor,
_norm_layer: nn.Module,
_scale_B_T_1_1_D: torch.Tensor,
_shift_B_T_1_1_D: torch.Tensor,
) -> torch.Tensor:
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
x_B_T_H_W_D = _fn(x_B_T_H_W_D, self.layer_norm, scale_B_T_1_1_D, shift_B_T_1_1_D)
x_B_T_H_W_O = self.linear(x_B_T_H_W_D)
return x_B_T_H_W_O
class Block(nn.Module):
"""
A transformer block that combines self-attention, cross-attention and MLP layers with AdaLN modulation.
Each component (self-attention, cross-attention, MLP) has its own layer normalization and AdaLN modulation.
Parameters:
x_dim (int): Dimension of input features
context_dim (int): Dimension of context features for cross-attention
num_heads (int): Number of attention heads
mlp_ratio (float): Multiplier for MLP hidden dimension. Default: 4.0
use_adaln_lora (bool): Whether to use AdaLN-LoRA modulation. Default: False
adaln_lora_dim (int): Hidden dimension for AdaLN-LoRA layers. Default: 256
The block applies the following sequence:
1. Self-attention with AdaLN modulation
2. Cross-attention with AdaLN modulation
3. MLP with AdaLN modulation
Each component uses skip connections and layer normalization.
"""
def __init__(
self,
x_dim: int,
context_dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.x_dim = x_dim
self.layer_norm_self_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.self_attn = Attention(x_dim, None, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm_cross_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.cross_attn = Attention(
x_dim, context_dim, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations
)
self.layer_norm_mlp = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.mlp = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), device=device, dtype=dtype, operations=operations)
self.use_adaln_lora = use_adaln_lora
if self.use_adaln_lora:
self.adaln_modulation_self_attn = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
self.adaln_modulation_cross_attn = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
self.adaln_modulation_mlp = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
else:
self.adaln_modulation_self_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
self.adaln_modulation_cross_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
self.adaln_modulation_mlp = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
def forward(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_T_D: torch.Tensor,
crossattn_emb: torch.Tensor,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
if self.use_adaln_lora:
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = (
self.adaln_modulation_self_attn(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = (
self.adaln_modulation_cross_attn(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = (
self.adaln_modulation_mlp(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
else:
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = self.adaln_modulation_self_attn(
emb_B_T_D
).chunk(3, dim=-1)
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = self.adaln_modulation_cross_attn(
emb_B_T_D
).chunk(3, dim=-1)
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = self.adaln_modulation_mlp(emb_B_T_D).chunk(3, dim=-1)
# Reshape tensors from (B, T, D) to (B, T, 1, 1, D) for broadcasting
shift_self_attn_B_T_1_1_D = rearrange(shift_self_attn_B_T_D, "b t d -> b t 1 1 d")
scale_self_attn_B_T_1_1_D = rearrange(scale_self_attn_B_T_D, "b t d -> b t 1 1 d")
gate_self_attn_B_T_1_1_D = rearrange(gate_self_attn_B_T_D, "b t d -> b t 1 1 d")
shift_cross_attn_B_T_1_1_D = rearrange(shift_cross_attn_B_T_D, "b t d -> b t 1 1 d")
scale_cross_attn_B_T_1_1_D = rearrange(scale_cross_attn_B_T_D, "b t d -> b t 1 1 d")
gate_cross_attn_B_T_1_1_D = rearrange(gate_cross_attn_B_T_D, "b t d -> b t 1 1 d")
shift_mlp_B_T_1_1_D = rearrange(shift_mlp_B_T_D, "b t d -> b t 1 1 d")
scale_mlp_B_T_1_1_D = rearrange(scale_mlp_B_T_D, "b t d -> b t 1 1 d")
gate_mlp_B_T_1_1_D = rearrange(gate_mlp_B_T_D, "b t d -> b t 1 1 d")
B, T, H, W, D = x_B_T_H_W_D.shape
def _fn(_x_B_T_H_W_D, _norm_layer, _scale_B_T_1_1_D, _shift_B_T_1_1_D):
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
self.layer_norm_self_attn,
scale_self_attn_B_T_1_1_D,
shift_self_attn_B_T_1_1_D,
)
result_B_T_H_W_D = rearrange(
self.self_attn(
# normalized_x_B_T_HW_D,
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
),
"b (t h w) d -> b t h w d",
t=T,
h=H,
w=W,
)
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D
def _x_fn(
_x_B_T_H_W_D: torch.Tensor,
layer_norm_cross_attn: Callable,
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
) -> torch.Tensor:
_normalized_x_B_T_H_W_D = _fn(
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
)
_result_B_T_H_W_D = rearrange(
self.cross_attn(
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
),
"b (t h w) d -> b t h w d",
t=T,
h=H,
w=W,
)
return _result_B_T_H_W_D
result_B_T_H_W_D = _x_fn(
x_B_T_H_W_D,
self.layer_norm_cross_attn,
scale_cross_attn_B_T_1_1_D,
shift_cross_attn_B_T_1_1_D,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
self.layer_norm_mlp,
scale_mlp_B_T_1_1_D,
shift_mlp_B_T_1_1_D,
)
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D)
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D
return x_B_T_H_W_D
class MiniTrainDIT(nn.Module):
"""
A clean impl of DIT that can load and reproduce the training results of the original DIT model in~(cosmos 1)
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
Args:
max_img_h (int): Maximum height of the input images.
max_img_w (int): Maximum width of the input images.
max_frames (int): Maximum number of frames in the video sequence.
in_channels (int): Number of input channels (e.g., RGB channels for color images).
out_channels (int): Number of output channels.
patch_spatial (tuple): Spatial resolution of patches for input processing.
patch_temporal (int): Temporal resolution of patches for input processing.
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
model_channels (int): Base number of channels used throughout the model.
num_blocks (int): Number of transformer blocks.
num_heads (int): Number of heads in the multi-head attention layers.
mlp_ratio (float): Expansion ratio for MLP blocks.
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
pos_emb_cls (str): Type of positional embeddings.
pos_emb_learnable (bool): Whether positional embeddings are learnable.
pos_emb_interpolation (str): Method for interpolating positional embeddings.
min_fps (int): Minimum frames per second.
max_fps (int): Maximum frames per second.
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
"""
def __init__(
self,
max_img_h: int,
max_img_w: int,
max_frames: int,
in_channels: int,
out_channels: int,
patch_spatial: int, # tuple,
patch_temporal: int,
concat_padding_mask: bool = True,
# attention settings
model_channels: int = 768,
num_blocks: int = 10,
num_heads: int = 16,
mlp_ratio: float = 4.0,
# cross attention settings
crossattn_emb_channels: int = 1024,
# positional embedding settings
pos_emb_cls: str = "sincos",
pos_emb_learnable: bool = False,
pos_emb_interpolation: str = "crop",
min_fps: int = 1,
max_fps: int = 30,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
rope_h_extrapolation_ratio: float = 1.0,
rope_w_extrapolation_ratio: float = 1.0,
rope_t_extrapolation_ratio: float = 1.0,
extra_per_block_abs_pos_emb: bool = False,
extra_h_extrapolation_ratio: float = 1.0,
extra_w_extrapolation_ratio: float = 1.0,
extra_t_extrapolation_ratio: float = 1.0,
rope_enable_fps_modulation: bool = True,
image_model=None,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
self.dtype = dtype
self.max_img_h = max_img_h
self.max_img_w = max_img_w
self.max_frames = max_frames
self.in_channels = in_channels
self.out_channels = out_channels
self.patch_spatial = patch_spatial
self.patch_temporal = patch_temporal
self.num_heads = num_heads
self.num_blocks = num_blocks
self.model_channels = model_channels
self.concat_padding_mask = concat_padding_mask
# positional embedding settings
self.pos_emb_cls = pos_emb_cls
self.pos_emb_learnable = pos_emb_learnable
self.pos_emb_interpolation = pos_emb_interpolation
self.min_fps = min_fps
self.max_fps = max_fps
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
self.rope_enable_fps_modulation = rope_enable_fps_modulation
self.build_pos_embed(device=device, dtype=dtype)
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
self.t_embedder = nn.Sequential(
Timesteps(model_channels),
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, device=device, dtype=dtype, operations=operations,),
)
in_channels = in_channels + 1 if concat_padding_mask else in_channels
self.x_embedder = PatchEmbed(
spatial_patch_size=patch_spatial,
temporal_patch_size=patch_temporal,
in_channels=in_channels,
out_channels=model_channels,
device=device, dtype=dtype, operations=operations,
)
self.blocks = nn.ModuleList(
[
Block(
x_dim=model_channels,
context_dim=crossattn_emb_channels,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
use_adaln_lora=use_adaln_lora,
adaln_lora_dim=adaln_lora_dim,
device=device, dtype=dtype, operations=operations,
)
for _ in range(num_blocks)
]
)
self.final_layer = FinalLayer(
hidden_size=self.model_channels,
spatial_patch_size=self.patch_spatial,
temporal_patch_size=self.patch_temporal,
out_channels=self.out_channels,
use_adaln_lora=self.use_adaln_lora,
adaln_lora_dim=self.adaln_lora_dim,
device=device, dtype=dtype, operations=operations,
)
self.t_embedding_norm = operations.RMSNorm(model_channels, eps=1e-6, device=device, dtype=dtype)
def build_pos_embed(self, device=None, dtype=None) -> None:
if self.pos_emb_cls == "rope3d":
cls_type = VideoRopePosition3DEmb
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,
len_w=self.max_img_w // self.patch_spatial,
len_t=self.max_frames // self.patch_temporal,
max_fps=self.max_fps,
min_fps=self.min_fps,
is_learnable=self.pos_emb_learnable,
interpolation=self.pos_emb_interpolation,
head_dim=self.model_channels // self.num_heads,
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
enable_fps_modulation=self.rope_enable_fps_modulation,
device=device,
)
self.pos_embedder = cls_type(
**kwargs, # type: ignore
)
if self.extra_per_block_abs_pos_emb:
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
kwargs["device"] = device
kwargs["dtype"] = dtype
self.extra_pos_embedder = LearnablePosEmbAxis(
**kwargs, # type: ignore
)
def prepare_embedded_sequence(
self,
x_B_C_T_H_W: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
Args:
x_B_C_T_H_W (torch.Tensor): video
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
If None, a default value (`self.base_fps`) will be used.
padding_mask (Optional[torch.Tensor]): current it is not used
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor]]:
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
- An optional positional embedding tensor, returned only if the positional embedding class
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
Notes:
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
the `self.pos_embedder` with the shape [T, H, W].
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
`self.pos_embedder` with the fps tensor.
- Otherwise, the positional embeddings are generated without considering fps.
"""
if self.concat_padding_mask:
if padding_mask is None:
padding_mask = torch.zeros(x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[3], x_B_C_T_H_W.shape[4], dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device)
else:
padding_mask = transforms.functional.resize(
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
)
x_B_C_T_H_W = torch.cat(
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
)
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
if self.extra_per_block_abs_pos_emb:
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device, dtype=x_B_C_T_H_W.dtype)
else:
extra_pos_emb = None
if "rope" in self.pos_emb_cls.lower():
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
return x_B_T_H_W_D, None, extra_pos_emb
def unpatchify(self, x_B_T_H_W_M: torch.Tensor) -> torch.Tensor:
x_B_C_Tt_Hp_Wp = rearrange(
x_B_T_H_W_M,
"B T H W (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
p1=self.patch_spatial,
p2=self.patch_spatial,
t=self.patch_temporal,
)
return x_B_C_Tt_Hp_Wp
def forward(self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timesteps, context, fps, padding_mask, **kwargs)
def _forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
x_B_C_T_H_W = x
timesteps_B_T = timesteps
crossattn_emb = context
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
"""
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x_B_C_T_H_W,
fps=fps,
padding_mask=padding_mask,
)
if timesteps_B_T.ndim == 1:
timesteps_B_T = timesteps_B_T.unsqueeze(1)
t_embedding_B_T_D, adaln_lora_B_T_3D = self.t_embedder[1](self.t_embedder[0](timesteps_B_T).to(x_B_T_H_W_D.dtype))
t_embedding_B_T_D = self.t_embedding_norm(t_embedding_B_T_D)
# for logging purpose
affline_scale_log_info = {}
affline_scale_log_info["t_embedding_B_T_D"] = t_embedding_B_T_D.detach()
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = t_embedding_B_T_D
self.crossattn_emb = crossattn_emb
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x_B_T_H_W_D.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x_B_T_H_W_D.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape}"
block_kwargs = {
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
for block in self.blocks:
x_B_T_H_W_D = block(
x_B_T_H_W_D,
t_embedding_B_T_D,
crossattn_emb,
**block_kwargs,
)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
return x_B_C_Tt_Hp_Wp

View File

@ -121,6 +121,11 @@ class ControlNetFlux(Flux):
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
else:
y = y[:, :self.params.vec_in_dim]
# running on sequences img
img = self.img_in(img)
@ -174,7 +179,7 @@ class ControlNetFlux(Flux):
out["output"] = out_output[:self.main_model_single]
return out
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
def forward(self, x, timesteps, context, y=None, guidance=None, hint=None, **kwargs):
patch_size = 2
if self.latent_input:
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))

View File

@ -118,7 +118,7 @@ class Modulation(nn.Module):
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return tensor * m_mult + m_add
return torch.addcmul(m_add, tensor, m_mult)
else:
return tensor * m_mult
else:

View File

@ -6,6 +6,7 @@ import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.ldm.common_dit
import comfy.patcher_extension
from .layers import (
DoubleStreamBlock,
@ -101,6 +102,11 @@ class Flux(nn.Module):
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@ -112,9 +118,17 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
img = out["img"]
txt = out["txt"]
img_ids = out["img_ids"]
txt_ids = out["txt_ids"]
if img_ids is not None:
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
@ -153,7 +167,10 @@ class Flux(nn.Module):
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img[:, :add.shape[1]] += add
if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
img = torch.cat((txt, img), 1)
@ -181,27 +198,78 @@ class Flux(nn.Module):
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img[:, txt.shape[1] : txt.shape[1] + add.shape[1], ...] += add
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, y, guidance=None, control=None, transformer_options={}, **kwargs):
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, guidance, ref_latents, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
bs, c, h_orig, w_orig = x.shape
patch_size = self.patch_size
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
ref_latents_method = kwargs.get("ref_latents_method", "offset")
for ref in ref_latents:
if ref_latents_method == "index":
index += 1
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
index = 0
h_offset = h_len * patch_size + h
w_offset = w_len * patch_size + w
h += ref.shape[-2]
w += ref.shape[-1]
else:
index = 1
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
kontext, kontext_ids = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]

View File

@ -13,6 +13,7 @@ from comfy.ldm.flux.layers import LastLayer
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import comfy.patcher_extension
import comfy.ldm.common_dit
@ -692,7 +693,23 @@ class HiDreamImageTransformer2DModel(nn.Module):
raise NotImplementedError
return x, x_masks, img_sizes
def forward(
def forward(self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
encoder_hidden_states_llama3=None,
image_cond=None,
control = None,
transformer_options = {},
):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, t, y, context, encoder_hidden_states_llama3, image_cond, control, transformer_options)
def _forward(
self,
x: torch.Tensor,
t: torch.Tensor,

View File

@ -7,6 +7,7 @@ from comfy.ldm.flux.layers import (
SingleStreamBlock,
timestep_embedding,
)
import comfy.patcher_extension
class Hunyuan3Dv2(nn.Module):
@ -67,6 +68,13 @@ class Hunyuan3Dv2(nn.Module):
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations)
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, guidance, transformer_options, **kwargs)
def _forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
x = x.movedim(-1, -2)
timestep = 1.0 - timestep
txt = context

View File

@ -4,81 +4,458 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, Tuple, List, Callable, Optional
import numpy as np
from einops import repeat, rearrange
import math
from tqdm import tqdm
from typing import Optional
import logging
import comfy.ops
ops = comfy.ops.disable_weight_init
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
def fps(src: torch.Tensor, batch: torch.Tensor, sampling_ratio: float, start_random: bool = True):
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
# manually create the pointer vector
assert src.size(0) == batch.numel()
return xyz, grid_size, length
batch_size = int(batch.max()) + 1
deg = src.new_zeros(batch_size, dtype = torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))
ptr_vec = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_vec[1:])
#return fps_sampling(src, ptr_vec, ratio)
sampled_indicies = []
for b in range(batch_size):
# start and the end of each batch
start, end = ptr_vec[b].item(), ptr_vec[b + 1].item()
# points from the point cloud
points = src[start:end]
num_points = points.size(0)
num_samples = max(1, math.ceil(num_points * sampling_ratio))
selected = torch.zeros(num_samples, device = src.device, dtype = torch.long)
distances = torch.full((num_points,), float("inf"), device = src.device)
# select a random start point
if start_random:
farthest = torch.randint(0, num_points, (1,), device = src.device)
else:
farthest = torch.tensor([0], device = src.device, dtype = torch.long)
for i in range(num_samples):
selected[i] = farthest
centroid = points[farthest].squeeze(0)
dist = torch.norm(points - centroid, dim = 1) # compute euclidean distance
distances = torch.minimum(distances, dist)
farthest = torch.argmax(distances)
sampled_indicies.append(torch.arange(start, end)[selected])
return torch.cat(sampled_indicies, dim = 0)
class PointCrossAttention(nn.Module):
def __init__(self,
num_latents: int,
downsample_ratio: float,
pc_size: int,
pc_sharpedge_size: int,
point_feats: int,
width: int,
heads: int,
layers: int,
fourier_embedder,
normal_pe: bool = False,
qkv_bias: bool = False,
use_ln_post: bool = True,
qk_norm: bool = True):
super().__init__()
self.fourier_embedder = fourier_embedder
self.pc_size = pc_size
self.normal_pe = normal_pe
self.downsample_ratio = downsample_ratio
self.pc_sharpedge_size = pc_sharpedge_size
self.num_latents = num_latents
self.point_feats = point_feats
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm
)
self.self_attn = None
if layers > 0:
self.self_attn = Transformer(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm,
layers = layers
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def sample_points_and_latents(self, point_cloud: torch.Tensor, features: torch.Tensor):
"""
Subsample points randomly from the point cloud (input_pc)
Further sample the subsampled points to get query_pc
take the fourier embeddings for both input and query pc
Mental Note: FPS-sampled points (query_pc) act as latent tokens that attend to and learn from the broader context in input_pc.
Goal: get a smaller represenation (query_pc) to represent the entire scence structure by learning from a broader subset (input_pc).
More computationally efficient.
Features are additional information for each point in the cloud
"""
B, _, D = point_cloud.shape
num_latents = int(self.num_latents)
num_random_query = self.pc_size / (self.pc_size + self.pc_sharpedge_size) * num_latents
num_sharpedge_query = num_latents - num_random_query
# Split random and sharpedge surface points
random_pc, sharpedge_pc = torch.split(point_cloud, [self.pc_size, self.pc_sharpedge_size], dim=1)
# assert statements
assert random_pc.shape[1] <= self.pc_size, "Random surface points size must be less than or equal to pc_size"
assert sharpedge_pc.shape[1] <= self.pc_sharpedge_size, "Sharpedge surface points size must be less than or equal to pc_sharpedge_size"
input_random_pc_size = int(num_random_query * self.downsample_ratio)
random_query_pc, random_input_pc, random_idx_pc, random_idx_query = \
self.subsample(pc = random_pc, num_query = num_random_query, input_pc_size = input_random_pc_size)
input_sharpedge_pc_size = int(num_sharpedge_query * self.downsample_ratio)
if input_sharpedge_pc_size == 0:
sharpedge_input_pc = torch.zeros(B, 0, D, dtype = random_input_pc.dtype).to(point_cloud.device)
sharpedge_query_pc = torch.zeros(B, 0, D, dtype= random_query_pc.dtype).to(point_cloud.device)
else:
sharpedge_query_pc, sharpedge_input_pc, sharpedge_idx_pc, sharpedge_idx_query = \
self.subsample(pc = sharpedge_pc, num_query = num_sharpedge_query, input_pc_size = input_sharpedge_pc_size)
# concat the random and sharpedges
query_pc = torch.cat([random_query_pc, sharpedge_query_pc], dim = 1)
input_pc = torch.cat([random_input_pc, sharpedge_input_pc], dim = 1)
query = self.fourier_embedder(query_pc)
data = self.fourier_embedder(input_pc)
if self.point_feats > 0:
random_surface_features, sharpedge_surface_features = torch.split(features, [self.pc_size, self.pc_sharpedge_size], dim = 1)
input_random_surface_features, query_random_features = \
self.handle_features(features = random_surface_features, idx_pc = random_idx_pc, batch_size = B,
input_pc_size = input_random_pc_size, idx_query = random_idx_query)
if input_sharpedge_pc_size == 0:
input_sharpedge_surface_features = torch.zeros(B, 0, self.point_feats,
dtype = input_random_surface_features.dtype, device = point_cloud.device)
query_sharpedge_features = torch.zeros(B, 0, self.point_feats,
dtype = query_random_features.dtype, device = point_cloud.device)
else:
input_sharpedge_surface_features, query_sharpedge_features = \
self.handle_features(idx_pc = sharpedge_idx_pc, features = sharpedge_surface_features,
batch_size = B, idx_query = sharpedge_idx_query, input_pc_size = input_sharpedge_pc_size)
query_features = torch.cat([query_random_features, query_sharpedge_features], dim = 1)
input_features = torch.cat([input_random_surface_features, input_sharpedge_surface_features], dim = 1)
if self.normal_pe:
# apply the fourier embeddings on the first 3 dims (xyz)
input_features_pe = self.fourier_embedder(input_features[..., :3])
query_features_pe = self.fourier_embedder(query_features[..., :3])
# replace the first 3 dims with the new PE ones
input_features = torch.cat([input_features_pe, input_features[..., :3]], dim = -1)
query_features = torch.cat([query_features_pe, query_features[..., :3]], dim = -1)
# concat at the channels dim
query = torch.cat([query, query_features], dim = -1)
data = torch.cat([data, input_features], dim = -1)
# don't return pc_info to avoid unnecessary memory usuage
return query.view(B, -1, query.shape[-1]), data.view(B, -1, data.shape[-1])
def forward(self, point_cloud: torch.Tensor, features: torch.Tensor):
query, data = self.sample_points_and_latents(point_cloud = point_cloud, features = features)
# apply projections
query = self.input_proj(query)
data = self.input_proj(data)
# apply cross attention between query and data
latents = self.cross_attn(query, data)
if self.self_attn is not None:
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
class VanillaVolumeDecoder:
def subsample(self, pc, num_query, input_pc_size: int):
"""
num_query: number of points to keep after FPS
input_pc_size: number of points to select before FPS
"""
B, _, D = pc.shape
query_ratio = num_query / input_pc_size
# random subsampling of points inside the point cloud
idx_pc = torch.randperm(pc.shape[1], device = pc.device)[:input_pc_size]
input_pc = pc[:, idx_pc, :]
# flatten to allow applying fps across the whole batch
flattent_input_pc = input_pc.view(B * input_pc_size, D)
# construct a batch_down tensor to tell fps
# which points belong to which batch
N_down = int(flattent_input_pc.shape[0] / B)
batch_down = torch.arange(B).to(pc.device)
batch_down = torch.repeat_interleave(batch_down, N_down)
idx_query = fps(flattent_input_pc, batch_down, sampling_ratio = query_ratio)
query_pc = flattent_input_pc[idx_query].view(B, -1, D)
return query_pc, input_pc, idx_pc, idx_query
def handle_features(self, features, idx_pc, input_pc_size, batch_size: int, idx_query):
B = batch_size
input_surface_features = features[:, idx_pc, :]
flattent_input_features = input_surface_features.view(B * input_pc_size, -1)
query_features = flattent_input_features[idx_query].view(B, -1,
flattent_input_features.shape[-1])
return input_surface_features, query_features
def normalize_mesh(mesh, scale = 0.9999):
"""Normalize mesh to fit in [-scale, scale]. Translate mesh so its center is [0,0,0]"""
bbox = mesh.bounds
center = (bbox[1] + bbox[0]) / 2
max_extent = (bbox[1] - bbox[0]).max()
mesh.apply_translation(-center)
mesh.apply_scale((2 * scale) / max_extent)
return mesh
def sample_pointcloud(mesh, num = 200000):
""" Uniformly sample points from the surface of the mesh """
points, face_idx = mesh.sample(num, return_index = True)
normals = mesh.face_normals[face_idx]
return torch.from_numpy(points.astype(np.float32)), torch.from_numpy(normals.astype(np.float32))
def detect_sharp_edges(mesh, threshold=0.985):
"""Return edge indices (a, b) that lie on sharp boundaries of the mesh."""
V, F = mesh.vertices, mesh.faces
VN, FN = mesh.vertex_normals, mesh.face_normals
sharp_mask = np.ones(V.shape[0])
for i in range(3):
indices = F[:, i]
alignment = np.einsum('ij,ij->i', VN[indices], FN)
dot_stack = np.stack((sharp_mask[indices], alignment), axis=-1)
sharp_mask[indices] = np.min(dot_stack, axis=-1)
edge_a = np.concatenate([F[:, 0], F[:, 1], F[:, 2]])
edge_b = np.concatenate([F[:, 1], F[:, 2], F[:, 0]])
sharp_edges = (sharp_mask[edge_a] < threshold) & (sharp_mask[edge_b] < threshold)
return edge_a[sharp_edges], edge_b[sharp_edges]
def sharp_sample_pointcloud(mesh, num = 16384):
""" Sample points preferentially from sharp edges in the mesh. """
edge_a, edge_b = detect_sharp_edges(mesh)
V, VN = mesh.vertices, mesh.vertex_normals
va, vb = V[edge_a], V[edge_b]
na, nb = VN[edge_a], VN[edge_b]
edge_lengths = np.linalg.norm(vb - va, axis=-1)
weights = edge_lengths / edge_lengths.sum()
indices = np.searchsorted(np.cumsum(weights), np.random.rand(num))
t = np.random.rand(num, 1)
samples = t * va[indices] + (1 - t) * vb[indices]
normals = t * na[indices] + (1 - t) * nb[indices]
return samples.astype(np.float32), normals.astype(np.float32)
def load_surface_sharpedge(mesh, num_points=4096, num_sharp_points=4096, sharpedge_flag = True, device = "cuda"):
"""Load a surface with optional sharp-edge annotations from a trimesh mesh."""
import trimesh
try:
mesh_full = trimesh.util.concatenate(mesh.dump())
except Exception:
mesh_full = trimesh.util.concatenate(mesh)
mesh_full = normalize_mesh(mesh_full)
faces = mesh_full.faces
vertices = mesh_full.vertices
origin_face_count = faces.shape[0]
mesh_surface = trimesh.Trimesh(vertices=vertices, faces=faces[:origin_face_count])
mesh_fill = trimesh.Trimesh(vertices=vertices, faces=faces[origin_face_count:])
area_surface = mesh_surface.area
area_fill = mesh_fill.area
total_area = area_surface + area_fill
sample_num = 499712 // 2
fill_ratio = area_fill / total_area if total_area > 0 else 0
num_fill = int(sample_num * fill_ratio)
num_surface = sample_num - num_fill
surf_pts, surf_normals = sample_pointcloud(mesh_surface, num_surface)
fill_pts, fill_normals = (torch.zeros(0, 3), torch.zeros(0, 3)) if num_fill == 0 else sample_pointcloud(mesh_fill, num_fill)
sharp_pts, sharp_normals = sharp_sample_pointcloud(mesh_surface, sample_num)
def assemble_tensor(points, normals, label=None):
data = torch.cat([points, normals], dim=1).half().to(device)
if label is not None:
label_tensor = torch.full((data.shape[0], 1), float(label), dtype=torch.float16).to(device)
data = torch.cat([data, label_tensor], dim=1)
return data
surface = assemble_tensor(torch.cat([surf_pts.to(device), fill_pts.to(device)], dim=0),
torch.cat([surf_normals.to(device), fill_normals.to(device)], dim=0),
label = 0 if sharpedge_flag else None)
sharp_surface = assemble_tensor(torch.from_numpy(sharp_pts), torch.from_numpy(sharp_normals),
label = 1 if sharpedge_flag else None)
rng = np.random.default_rng()
surface = surface[rng.choice(surface.shape[0], num_points, replace = False)]
sharp_surface = sharp_surface[rng.choice(sharp_surface.shape[0], num_sharp_points, replace = False)]
full = torch.cat([surface, sharp_surface], dim = 0).unsqueeze(0)
return full
class SharpEdgeSurfaceLoader:
""" Load mesh surface and sharp edge samples. """
def __init__(self, num_uniform_points = 8192, num_sharp_points = 8192):
self.num_uniform_points = num_uniform_points
self.num_sharp_points = num_sharp_points
self.total_points = num_uniform_points + num_sharp_points
def __call__(self, mesh_input, device = "cuda"):
mesh = self._load_mesh(mesh_input)
return load_surface_sharpedge(mesh, self.num_uniform_points, self.num_sharp_points, device = device)
@staticmethod
def _load_mesh(mesh_input):
import trimesh
if isinstance(mesh_input, str):
mesh = trimesh.load(mesh_input, force="mesh", merge_primitives = True)
else:
mesh = mesh_input
if isinstance(mesh, trimesh.Scene):
combined = None
for obj in mesh.geometry.values():
combined = obj if combined is None else combined + obj
return combined
return mesh
class DiagonalGaussianDistribution:
def __init__(self, params: torch.Tensor, feature_dim: int = -1):
# divide quant channels (8) into mean and log variance
self.mean, self.logvar = torch.chunk(params, 2, dim = feature_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.std = torch.exp(0.5 * self.logvar)
def sample(self):
eps = torch.randn_like(self.std)
z = self.mean + eps * self.std
return z
################################################
# Volume Decoder
################################################
class VanillaVolumeDecoder():
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
def __call__(self, latents: torch.Tensor, geo_decoder: callable, octree_resolution: int, bounds = 1.01,
num_chunks: int = 10_000, enable_pbar: bool = True, **kwargs):
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
bbox_min, bbox_max = torch.tensor(bounds[:3]), torch.tensor(bounds[3:])
x = torch.linspace(bbox_min[0], bbox_max[0], int(octree_resolution) + 1, dtype = torch.float32)
y = torch.linspace(bbox_min[1], bbox_max[1], int(octree_resolution) + 1, dtype = torch.float32)
z = torch.linspace(bbox_min[2], bbox_max[2], int(octree_resolution) + 1, dtype = torch.float32)
[xs, ys, zs] = torch.meshgrid(x, y, z, indexing = "ij")
xyz = torch.stack((xs, ys, zs), axis=-1).to(latents.device, dtype = latents.dtype).contiguous().reshape(-1, 3)
grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
for start in tqdm(range(0, xyz.shape[0], num_chunks), desc="Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
chunk_queries = xyz[start: start + num_chunks, :]
chunk_queries = chunk_queries.unsqueeze(0).repeat(latents.shape[0], 1, 1)
logits = geo_decoder(queries = chunk_queries, latents = latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
grid_logits = torch.cat(batch_logits, dim = 1)
grid_logits = grid_logits.view((latents.shape[0], *grid_size)).float()
return grid_logits
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
@ -175,13 +552,11 @@ class FourierEmbedder(nn.Module):
else:
return x
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = F.scaled_dot_product_attention(q, k, v)
out = comfy.ops.scaled_dot_product_attention(q, k, v)
return out
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
@ -232,38 +607,41 @@ class MLP(nn.Module):
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
n_data = None,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.n_data = n_data
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
@ -306,7 +684,6 @@ class MultiheadCrossAttention(nn.Module):
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
@ -366,7 +743,7 @@ class QKVMultiheadAttention(nn.Module):
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
@ -383,8 +760,7 @@ class MultiheadAttention(nn.Module):
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadAttention(
@ -491,7 +867,7 @@ class CrossAttentionDecoder(nn.Module):
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = ops.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
if not self.enable_ln_post:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
width=width,
@ -522,28 +898,44 @@ class CrossAttentionDecoder(nn.Module):
class ShapeVAE(nn.Module):
def __init__(
self,
*,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
self,
*,
num_latents: int = 4096,
embed_dim: int = 64,
width: int = 1024,
heads: int = 16,
num_decoder_layers: int = 16,
num_encoder_layers: int = 8,
pc_size: int = 81920,
pc_sharpedge_size: int = 0,
point_feats: int = 4,
downsample_ratio: int = 20,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
qkv_bias: bool = False,
qk_norm: bool = True,
drop_path_rate: float = 0.0,
include_pi: bool = False,
scale_factor: float = 1.0039506158752403,
label_type: str = "binary",
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.encoder = PointCrossAttention(layers = num_encoder_layers,
num_latents = num_latents,
downsample_ratio = downsample_ratio,
heads = heads,
pc_size = pc_size,
width = width,
point_feats = point_feats,
fourier_embedder = self.fourier_embedder,
pc_sharpedge_size = pc_sharpedge_size)
self.post_kl = ops.Linear(embed_dim, width)
self.transformer = Transformer(
@ -583,5 +975,14 @@ class ShapeVAE(nn.Module):
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
return grid_logits.movedim(-2, -1)
def encode(self, x):
return None
def encode(self, surface):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents = self.encoder(pc, feats)
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feature_dim = -1)
latents = posterior.sample()
return latents

View File

@ -0,0 +1,659 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, operations, device, dtype):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, device = device, dtype = dtype)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type == "mps":
return F.gelu(gate.to(dtype = torch.float32)).to(dtype = gate.dtype)
return F.gelu(gate)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class FeedForward(nn.Module):
def __init__(self, dim: int, dim_out = None, mult: int = 4,
dropout: float = 0.0, inner_dim = None, operations = None, device = None, dtype = None):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
act_fn = GELU(dim, inner_dim, operations = operations, device = device, dtype = dtype)
self.net = nn.ModuleList([])
self.net.append(act_fn)
self.net.append(nn.Dropout(dropout))
self.net.append(operations.Linear(inner_dim, dim_out, device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class AddAuxLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x, loss):
# do nothing in forward (no computation)
ctx.requires_aux_loss = loss.requires_grad
ctx.dtype = loss.dtype
return x
@staticmethod
def backward(ctx, grad_output):
# add the aux loss gradients
grad_loss = None
# put the aux grad the same as the main grad loss
# aux grad contributes equally
if ctx.requires_aux_loss:
grad_loss = torch.ones(1, dtype = ctx.dtype, device = grad_output.device)
return grad_output, grad_loss
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01, device = None, dtype = None):
super().__init__()
self.top_k = num_experts_per_tok
self.n_routed_experts = num_experts
self.alpha = aux_loss_alpha
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# flatten hidden states
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# get logits and pass it to softmax
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), bias = None)
scores = logits.softmax(dim = -1)
topk_weight, topk_idx = torch.topk(scores, k = self.top_k, dim = -1, sorted = False)
if self.training and self.alpha > 0.0:
scores_for_aux = scores
# used bincount instead of one hot encoding
counts = torch.bincount(topk_idx.view(-1), minlength = self.n_routed_experts).float()
ce = counts / topk_idx.numel() # normalized expert usage
# mean expert score
Pi = scores_for_aux.mean(0)
# expert balance loss
aux_loss = (Pi * ce * self.n_routed_experts).sum() * self.alpha
else:
aux_loss = None
return topk_idx, topk_weight, aux_loss
class MoEBlock(nn.Module):
def __init__(self, dim, num_experts: int = 6, moe_top_k: int = 2, dropout: float = 0.0,
ff_inner_dim: int = None, operations = None, device = None, dtype = None):
super().__init__()
self.moe_top_k = moe_top_k
self.num_experts = num_experts
self.experts = nn.ModuleList([
FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
for _ in range(num_experts)
])
self.gate = MoEGate(dim, num_experts = num_experts, num_experts_per_tok = moe_top_k, device = device, dtype = dtype)
self.shared_experts = FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
def forward(self, hidden_states) -> torch.Tensor:
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim = 0)
y = torch.empty_like(hidden_states, dtype = hidden_states.dtype)
for i, expert in enumerate(self.experts):
tmp = expert(hidden_states[flat_topk_idx == i])
y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim = 1)
y = y.view(*orig_shape)
y = AddAuxLoss.apply(y, aux_loss)
else:
y = self.moe_infer(hidden_states, flat_expert_indices = flat_topk_idx,flat_expert_weights = topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
# no need for .numpy().cpu() here
tokens_per_expert = flat_expert_indices.bincount().cumsum(0)
token_idxs = idxs // self.moe_top_k
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# use index_add_ with a 1-D index tensor directly avoids building a large [N, D] index map and extra memcopy required by scatter_reduce_
# + avoid dtype conversion
expert_cache.index_add_(0, exp_token_idx, expert_out)
return expert_cache
class Timesteps(nn.Module):
def __init__(self, num_channels: int, downscale_freq_shift: float = 0.0,
scale: float = 1.0, max_period: int = 10000):
super().__init__()
self.num_channels = num_channels
half_dim = num_channels // 2
# precompute the “inv_freq” vector once
exponent = -math.log(max_period) * torch.arange(
half_dim, dtype=torch.float32
) / (half_dim - downscale_freq_shift)
inv_freq = torch.exp(exponent)
# pad
if num_channels % 2 == 1:
# well pad a zero at the end of the cos-half
inv_freq = torch.cat([inv_freq, inv_freq.new_zeros(1)])
# register to buffer so it moves with the device
self.register_buffer("inv_freq", inv_freq, persistent = False)
self.scale = scale
def forward(self, timesteps: torch.Tensor):
x = timesteps.float().unsqueeze(1) * self.inv_freq.to(timesteps.device).unsqueeze(0)
# fused CUDA kernels for sin and cos
sin_emb = x.sin()
cos_emb = x.cos()
emb = torch.cat([sin_emb, cos_emb], dim = 1)
# scale factor
if self.scale != 1.0:
emb = emb * self.scale
# If we padded inv_freq for odd, emb is already wide enough; otherwise:
if emb.shape[1] > self.num_channels:
emb = emb[:, :self.num_channels]
return emb
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size = 256, cond_proj_dim = None, operations = None, device = None, dtype = None):
super().__init__()
self.mlp = nn.Sequential(
operations.Linear(hidden_size, frequency_embedding_size, bias=True, device = device, dtype = dtype),
nn.GELU(),
operations.Linear(frequency_embedding_size, hidden_size, bias=True, device = device, dtype = dtype),
)
self.frequency_embedding_size = frequency_embedding_size
if cond_proj_dim is not None:
self.cond_proj = operations.Linear(cond_proj_dim, frequency_embedding_size, bias=False, device = device, dtype = dtype)
self.time_embed = Timesteps(hidden_size)
def forward(self, timesteps, condition):
timestep_embed = self.time_embed(timesteps).type(self.mlp[0].weight.dtype)
if condition is not None:
cond_embed = self.cond_proj(condition)
timestep_embed = timestep_embed + cond_embed
time_conditioned = self.mlp(timestep_embed)
# for broadcasting with image tokens
return time_conditioned.unsqueeze(1)
class MLP(nn.Module):
def __init__(self, *, width: int, operations = None, device = None, dtype = None):
super().__init__()
self.width = width
self.fc1 = operations.Linear(width, width * 4, device = device, dtype = dtype)
self.fc2 = operations.Linear(width * 4, width, device = device, dtype = dtype)
self.gelu = nn.GELU()
def forward(self, x):
return self.fc2(self.gelu(self.fc1(x)))
class CrossAttention(nn.Module):
def __init__(
self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=False,
norm_layer=nn.LayerNorm,
use_fp16: bool = False,
operations = None,
dtype = None,
device = None,
**kwargs,
):
super().__init__()
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
self.head_dim = self.qdim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(qdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(qdim, qdim, bias=True, device = device, dtype = dtype)
def forward(self, x, y):
b, s1, _ = x.shape
_, s2, _ = y.shape
y = y.to(next(self.to_k.parameters()).dtype)
q = self.to_q(x)
k = self.to_k(y)
v = self.to_v(y)
kv = torch.cat((k, v), dim=-1)
split_size = kv.shape[-1] // self.num_heads // 2
kv = kv.view(1, -1, self.num_heads, split_size * 2)
k, v = torch.split(kv, split_size, dim=-1)
q = q.view(b, s1, self.num_heads, self.head_dim)
k = k.view(b, s2, self.num_heads, self.head_dim)
v = v.reshape(b, s2, self.num_heads * self.head_dim)
q = self.q_norm(q)
k = self.k_norm(k)
x = optimized_attention(
q.reshape(b, s1, self.num_heads * self.head_dim),
k.reshape(b, s2, self.num_heads * self.head_dim),
v,
heads=self.num_heads,
)
out = self.out_proj(x)
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias = True,
qk_norm = False,
norm_layer = nn.LayerNorm,
use_fp16: bool = False,
operations = None,
device = None,
dtype = None
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = self.dim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(dim, dim, device = device, dtype = dtype)
def forward(self, x):
B, N, _ = x.shape
query = self.to_q(x)
key = self.to_k(x)
value = self.to_v(x)
qkv_combined = torch.cat((query, key, value), dim=-1)
split_size = qkv_combined.shape[-1] // self.num_heads // 3
qkv = qkv_combined.view(1, -1, self.num_heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
query = query.reshape(B, N, self.num_heads, self.head_dim)
key = key.reshape(B, N, self.num_heads, self.head_dim)
value = value.reshape(B, N, self.num_heads * self.head_dim)
query = self.q_norm(query)
key = self.k_norm(key)
x = optimized_attention(
query.reshape(B, N, self.num_heads * self.head_dim),
key.reshape(B, N, self.num_heads * self.head_dim),
value,
heads=self.num_heads,
)
x = self.out_proj(x)
return x
class HunYuanDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
c_emb_size,
num_heads,
text_states_dim=1024,
qk_norm=False,
norm_layer=nn.LayerNorm,
qk_norm_layer=nn.RMSNorm,
qkv_bias=True,
skip_connection=True,
timested_modulate=False,
use_moe: bool = False,
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
operations = None,
device = None, dtype = None
):
super().__init__()
# eps can't be 1e-6 in fp16 mode because of numerical stability issues
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm1 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm,
norm_layer=qk_norm_layer, use_fp16 = use_fp16, device = device, dtype = dtype, operations = operations)
self.norm2 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.timested_modulate = timested_modulate
if self.timested_modulate:
self.default_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, hidden_size, bias=True, device = device, dtype = dtype)
)
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=qkv_bias,
qk_norm=qk_norm, norm_layer=qk_norm_layer, use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
self.norm3 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
if skip_connection:
self.skip_norm = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, device = device, dtype = dtype)
else:
self.skip_linear = None
self.use_moe = use_moe
if self.use_moe:
self.moe = MoEBlock(
hidden_size,
num_experts = num_experts,
moe_top_k = moe_top_k,
dropout = 0.0,
ff_inner_dim = int(hidden_size * 4.0),
device = device, dtype = dtype,
operations = operations
)
else:
self.mlp = MLP(width=hidden_size, operations=operations, device = device, dtype = dtype)
def forward(self, hidden_states, conditioning=None, text_states=None, skip_tensor=None):
if self.skip_linear is not None:
combined = torch.cat([skip_tensor, hidden_states], dim=-1)
hidden_states = self.skip_linear(combined)
hidden_states = self.skip_norm(hidden_states)
# self attention
if self.timested_modulate:
modulation_shift = self.default_modulation(conditioning).unsqueeze(dim=1)
hidden_states = hidden_states + modulation_shift
self_attn_out = self.attn1(self.norm1(hidden_states))
hidden_states = hidden_states + self_attn_out
# cross attention
hidden_states = hidden_states + self.attn2(self.norm2(hidden_states), text_states)
# MLP Layer
mlp_input = self.norm3(hidden_states)
if self.use_moe:
hidden_states = hidden_states + self.moe(mlp_input)
else:
hidden_states = hidden_states + self.mlp(mlp_input)
return hidden_states
class FinalLayer(nn.Module):
def __init__(self, final_hidden_size, out_channels, operations, use_fp16: bool = False, device = None, dtype = None):
super().__init__()
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.linear = operations.Linear(final_hidden_size, out_channels, bias = True, device = device, dtype = dtype)
def forward(self, x):
x = self.norm_final(x)
x = x[:, 1:]
x = self.linear(x)
return x
class HunYuanDiTPlain(nn.Module):
# init with the defaults values from https://huggingface.co/tencent/Hunyuan3D-2.1/blob/main/hunyuan3d-dit-v2-1/config.yaml
def __init__(
self,
in_channels: int = 64,
hidden_size: int = 2048,
context_dim: int = 1024,
depth: int = 21,
num_heads: int = 16,
qk_norm: bool = True,
qkv_bias: bool = False,
num_moe_layers: int = 6,
guidance_cond_proj_dim = 2048,
norm_type = 'layer',
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
dtype = None,
device = None,
operations = None,
**kwargs
):
self.dtype = dtype
super().__init__()
self.depth = depth
self.in_channels = in_channels
self.out_channels = in_channels
self.num_heads = num_heads
self.hidden_size = hidden_size
norm = operations.LayerNorm if norm_type == 'layer' else operations.RMSNorm
qk_norm = operations.RMSNorm
self.context_dim = context_dim
self.guidance_cond_proj_dim = guidance_cond_proj_dim
self.x_embedder = operations.Linear(in_channels, hidden_size, bias = True, device = device, dtype = dtype)
self.t_embedder = TimestepEmbedder(hidden_size, hidden_size * 4, cond_proj_dim = guidance_cond_proj_dim, device = device, dtype = dtype, operations = operations)
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
text_states_dim=context_dim,
qk_norm=qk_norm,
norm_layer = norm,
qk_norm_layer = qk_norm,
skip_connection=layer > depth // 2,
qkv_bias=qkv_bias,
use_moe=True if depth - layer <= num_moe_layers else False,
num_experts=num_experts,
moe_top_k=moe_top_k,
use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
for layer in range(depth)
])
self.depth = depth
self.final_layer = FinalLayer(hidden_size, self.out_channels, use_fp16 = use_fp16, operations = operations, device = device, dtype = dtype)
def forward(self, x, t, context, transformer_options = {}, **kwargs):
x = x.movedim(-1, -2)
uncond_emb, cond_emb = context.chunk(2, dim = 0)
context = torch.cat([cond_emb, uncond_emb], dim = 0)
main_condition = context
t = 1.0 - t
time_embedded = self.t_embedder(t, condition = kwargs.get('guidance_cond'))
x = x.to(dtype = next(self.x_embedder.parameters()).dtype)
x_embedded = self.x_embedder(x)
combined = torch.cat([time_embedded, x_embedded], dim=1)
def block_wrap(args):
return block(
args["x"],
args["t"],
args["cond"],
skip_tensor=args.get("skip"),)
skip_stack = []
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for idx, block in enumerate(self.blocks):
if idx <= self.depth // 2:
skip_input = None
else:
skip_input = skip_stack.pop()
if ("block", idx) in blocks_replace:
combined = blocks_replace[("block", idx)](
{
"x": combined,
"t": time_embedded,
"cond": main_condition,
"skip": skip_input,
},
{"original_block": block_wrap},
)
else:
combined = block(combined, time_embedded, main_condition, skip_tensor=skip_input)
if idx < self.depth // 2:
skip_stack.append(combined)
output = self.final_layer(combined)
output = output.movedim(-2, -1) * (-1.0)
cond_emb, uncond_emb = output.chunk(2, dim = 0)
return torch.cat([uncond_emb, cond_emb])

View File

@ -1,6 +1,7 @@
#Based on Flux code because of weird hunyuan video code license.
import torch
import comfy.patcher_extension
import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
@ -348,6 +349,13 @@ class HunyuanVideo(nn.Module):
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, guidance, attention_mask, guiding_frame_index, ref_latent, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)

View File

@ -1,5 +1,6 @@
import torch
from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
from einops import rearrange
@ -261,8 +262,8 @@ class CrossAttention(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.q_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
self.k_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
self.q_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
self.k_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
@ -420,6 +421,13 @@ class LTXVModel(torch.nn.Module):
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs)
def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
orig_shape = list(x.shape)

View File

@ -973,7 +973,7 @@ class VideoVAE(nn.Module):
norm_layer=config.get("norm_layer", "group_norm"),
causal=config.get("causal_decoder", False),
timestep_conditioning=self.timestep_conditioning,
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
spatial_padding_mode=config.get("spatial_padding_mode", "reflect"),
)
self.per_channel_statistics = processor()

View File

@ -11,6 +11,7 @@ import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.patcher_extension
def modulate(x, scale):
@ -590,8 +591,15 @@ class NextDiT(nn.Module):
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
# def forward(self, x, t, cap_feats, cap_mask):
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs)
# def forward(self, x, t, cap_feats, cap_mask):
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
t = 1.0 - timesteps
cap_feats = context
cap_mask = attention_mask

View File

@ -11,7 +11,7 @@ from comfy.ldm.modules.ema import LitEma
import comfy.ops
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = True):
def __init__(self, sample: bool = False):
super().__init__()
self.sample = sample
@ -19,16 +19,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
yield from ()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
log = dict()
posterior = DiagonalGaussianDistribution(z)
if self.sample:
z = posterior.sample()
else:
z = posterior.mode()
kl_loss = posterior.kl()
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
log["kl_loss"] = kl_loss
return z, log
return z, None
class AbstractAutoencoder(torch.nn.Module):

View File

@ -448,7 +448,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
mask = mask.unsqueeze(1)
if SDP_BATCH_LIMIT >= b:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
@ -461,7 +461,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
if mask.shape[0] > 1:
m = mask[i : i + SDP_BATCH_LIMIT]
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(
out[i : i + SDP_BATCH_LIMIT] = comfy.ops.scaled_dot_product_attention(
q[i : i + SDP_BATCH_LIMIT],
k[i : i + SDP_BATCH_LIMIT],
v[i : i + SDP_BATCH_LIMIT],
@ -753,7 +753,7 @@ class BasicTransformerBlock(nn.Module):
for p in patch:
n = p(n, extra_options)
x += n
x = n + x
if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"]
for p in patch:
@ -793,12 +793,12 @@ class BasicTransformerBlock(nn.Module):
for p in patch:
n = p(n, extra_options)
x += n
x = n + x
if self.is_res:
x_skip = x
x = self.ff(self.norm3(x))
if self.is_res:
x += x_skip
x = x_skip + x
return x

View File

@ -109,7 +109,7 @@ class PatchEmbed(nn.Module):
def modulate(x, shift, scale):
if shift is None:
shift = torch.zeros_like(scale)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
return torch.addcmul(shift.unsqueeze(1), x, 1+ scale.unsqueeze(1))
#################################################################################
@ -564,10 +564,7 @@ class DismantledBlock(nn.Module):
assert not self.pre_only
attn1 = self.attn.post_attention(attn)
attn2 = self.attn2.post_attention(attn2)
out1 = gate_msa.unsqueeze(1) * attn1
out2 = gate_msa2.unsqueeze(1) * attn2
x = x + out1
x = x + out2
x = gate_cat(x, gate_msa, gate_msa2, attn1, attn2)
x = x + gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp)
)
@ -594,6 +591,11 @@ class DismantledBlock(nn.Module):
)
return self.post_attention(attn, *intermediates)
def gate_cat(x, gate_msa, gate_msa2, attn1, attn2):
out1 = gate_msa.unsqueeze(1) * attn1
out2 = gate_msa2.unsqueeze(1) * attn2
x = torch.stack([x, out1, out2], dim=0).sum(dim=0)
return x
def block_mixing(*args, use_checkpoint=True, **kwargs):
if use_checkpoint:

View File

@ -36,7 +36,7 @@ def get_timestep_embedding(timesteps, embedding_dim):
def nonlinearity(x):
# swish
return x*torch.sigmoid(x)
return torch.nn.functional.silu(x)
def Normalize(in_channels, num_groups=32):
@ -285,7 +285,7 @@ def pytorch_attention(q, k, v):
)
try:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(orig_shape)
except model_management.OOM_EXCEPTION:
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")

View File

@ -31,7 +31,7 @@ def dynamic_slice(
starts: List[int],
sizes: List[int],
) -> Tensor:
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
slicing = tuple(slice(start, start + size) for start, size in zip(starts, sizes))
return x[slicing]
class AttnChunk(NamedTuple):

View File

@ -0,0 +1,469 @@
# Original code: https://github.com/VectorSpaceLab/OmniGen2
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from comfy.ldm.lightricks.model import Timesteps
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.modules.attention import optimized_attention_masked
import comfy.model_management
import comfy.ldm.common_dit
def apply_rotary_emb(x, freqs_cis):
if x.shape[1] == 0:
return x
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x.shape).to(dtype=x.dtype)
def swiglu(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return F.silu(x) * y
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels: int, time_embed_dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.linear_1 = operations.Linear(in_channels, time_embed_dim, dtype=dtype, device=device)
self.act = nn.SiLU()
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim, dtype=dtype, device=device)
def forward(self, sample: torch.Tensor) -> torch.Tensor:
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class LuminaRMSNormZero(nn.Module):
def __init__(self, embedding_dim: int, norm_eps: float = 1e-5, dtype=None, device=None, operations=None):
super().__init__()
self.silu = nn.SiLU()
self.linear = operations.Linear(min(embedding_dim, 1024), 4 * embedding_dim, dtype=dtype, device=device)
self.norm = operations.RMSNorm(embedding_dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None])
return x, gate_msa, scale_mlp, gate_mlp
class LuminaLayerNormContinuous(nn.Module):
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine: bool = False, eps: float = 1e-6, out_dim: Optional[int] = None, dtype=None, device=None, operations=None):
super().__init__()
self.silu = nn.SiLU()
self.linear_1 = operations.Linear(conditioning_embedding_dim, embedding_dim, dtype=dtype, device=device)
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine, dtype=dtype, device=device)
self.linear_2 = operations.Linear(embedding_dim, out_dim, bias=True, dtype=dtype, device=device) if out_dim is not None else None
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
x = self.norm(x) * (1 + emb)[:, None, :]
if self.linear_2 is not None:
x = self.linear_2(x)
return x
class LuminaFeedForward(nn.Module):
def __init__(self, dim: int, inner_dim: int, multiple_of: int = 256, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
self.linear_1 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
self.linear_2 = operations.Linear(inner_dim, dim, bias=False, dtype=dtype, device=device)
self.linear_3 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h1, h2 = self.linear_1(x), self.linear_3(x)
return self.linear_2(swiglu(h1, h2))
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
def __init__(self, hidden_size: int = 4096, text_feat_dim: int = 2048, frequency_embedding_size: int = 256, norm_eps: float = 1e-5, timestep_scale: float = 1.0, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024), dtype=dtype, device=device, operations=operations)
self.caption_embedder = nn.Sequential(
operations.RMSNorm(text_feat_dim, eps=norm_eps, dtype=dtype, device=device),
operations.Linear(text_feat_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype) -> Tuple[torch.Tensor, torch.Tensor]:
timestep_proj = self.time_proj(timestep).to(dtype=dtype)
time_embed = self.timestep_embedder(timestep_proj)
caption_embed = self.caption_embedder(text_hidden_states)
return time_embed, caption_embed
class Attention(nn.Module):
def __init__(self, query_dim: int, dim_head: int, heads: int, kv_heads: int, eps: float = 1e-5, bias: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.heads = heads
self.kv_heads = kv_heads
self.dim_head = dim_head
self.scale = dim_head ** -0.5
self.to_q = operations.Linear(query_dim, heads * dim_head, bias=bias, dtype=dtype, device=device)
self.to_k = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
self.norm_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.norm_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.to_out = nn.Sequential(
operations.Linear(heads * dim_head, query_dim, bias=bias, dtype=dtype, device=device),
nn.Dropout(0.0)
)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = query.view(batch_size, -1, self.heads, self.dim_head)
key = key.view(batch_size, -1, self.kv_heads, self.dim_head)
value = value.view(batch_size, -1, self.kv_heads, self.dim_head)
query = self.norm_q(query)
key = self.norm_k(key)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if self.kv_heads < self.heads:
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
hidden_states = self.to_out[0](hidden_states)
return hidden_states
class OmniGen2TransformerBlock(nn.Module):
def __init__(self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, modulation: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.modulation = modulation
self.attn = Attention(
query_dim=dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
dtype=dtype, device=device, operations=operations,
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
dtype=dtype, device=device, operations=operations
)
if modulation:
self.norm1 = LuminaRMSNormZero(embedding_dim=dim, norm_eps=norm_eps, dtype=dtype, device=device, operations=operations)
else:
self.norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
return hidden_states
class OmniGen2RotaryPosEmbed(nn.Module):
def __init__(self, theta: int, axes_dim: Tuple[int, int, int], axes_lens: Tuple[int, int, int] = (300, 512, 512), patch_size: int = 2):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
self.axes_lens = axes_lens
self.patch_size = patch_size
self.rope_embedder = EmbedND(dim=sum(axes_dim), theta=self.theta, axes_dim=axes_dim)
def forward(self, batch_size, encoder_seq_len, l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, device):
p = self.patch_size
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]
max_seq_len = max(seq_lengths)
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
max_img_len = max(l_effective_img_len)
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")
pe_shift = cap_seq_len
pe_shift_len = cap_seq_len
if ref_img_sizes[i] is not None:
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
H, W = ref_img_size
ref_H_tokens, ref_W_tokens = H // p, W // p
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids
pe_shift += max(ref_H_tokens, ref_W_tokens)
pe_shift_len += ref_img_len
H, W = img_sizes[i]
H_tokens, W_tokens = H // p, W // p
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
position_ids[i, pe_shift_len: seq_len, 1] = row_ids
position_ids[i, pe_shift_len: seq_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2)
cap_freqs_cis_shape = list(freqs_cis.shape)
cap_freqs_cis_shape[1] = encoder_seq_len
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
ref_img_freqs_cis_shape = list(freqs_cis.shape)
ref_img_freqs_cis_shape[1] = max_ref_img_len
ref_img_freqs_cis = torch.zeros(*ref_img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]
return cap_freqs_cis, ref_img_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths
class OmniGen2Transformer2DModel(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
out_channels: Optional[int] = None,
hidden_size: int = 2304,
num_layers: int = 26,
num_refiner_layers: int = 2,
num_attention_heads: int = 24,
num_kv_heads: int = 8,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
axes_lens: Tuple[int, int, int] = (300, 512, 512),
text_feat_dim: int = 1024,
timestep_scale: float = 1.0,
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.patch_size = patch_size
self.out_channels = out_channels or in_channels
self.hidden_size = hidden_size
self.dtype = dtype
self.rope_embedder = OmniGen2RotaryPosEmbed(
theta=10000,
axes_dim=axes_dim_rope,
axes_lens=axes_lens,
patch_size=patch_size,
)
self.x_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
self.ref_image_patch_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
hidden_size=hidden_size,
text_feat_dim=text_feat_dim,
norm_eps=norm_eps,
timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
)
self.noise_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.ref_image_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.context_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=False, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.layers = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_layers)
])
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
out_dim=patch_size * patch_size * self.out_channels, dtype=dtype, device=device, operations=operations
)
self.image_index_embedding = nn.Parameter(torch.empty(5, hidden_size, device=device, dtype=dtype))
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
batch_size = len(hidden_states)
p = self.patch_size
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]
if ref_image_hidden_states is not None:
ref_image_hidden_states = list(map(lambda ref: comfy.ldm.common_dit.pad_to_patch_size(ref, (p, p)), ref_image_hidden_states))
ref_img_sizes = [[(imgs.size(2), imgs.size(3)) if imgs is not None else None for imgs in ref_image_hidden_states]] * batch_size
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
else:
ref_img_sizes = [None for _ in range(batch_size)]
l_effective_ref_img_len = [[0] for _ in range(batch_size)]
flat_ref_img_hidden_states = None
if ref_image_hidden_states is not None:
imgs = []
for ref_img in ref_image_hidden_states:
B, C, H, W = ref_img.size()
ref_img = rearrange(ref_img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
imgs.append(ref_img)
flat_ref_img_hidden_states = torch.cat(imgs, dim=1)
img = hidden_states
B, C, H, W = img.size()
flat_hidden_states = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
return (
flat_hidden_states, flat_ref_img_hidden_states,
None, None,
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes,
)
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
batch_size = len(hidden_states)
hidden_states = self.x_embedder(hidden_states)
if ref_image_hidden_states is not None:
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
image_index_embedding = comfy.model_management.cast_to(self.image_index_embedding, dtype=hidden_states.dtype, device=hidden_states.device)
for i in range(batch_size):
shift = 0
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + image_index_embedding[j]
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
if ref_image_hidden_states is not None:
for layer in self.ref_image_refiner:
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
return hidden_states
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
B, C, H, W = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
_, _, H_padded, W_padded = hidden_states.shape
timestep = 1.0 - timesteps
text_hidden_states = context
text_attention_mask = attention_mask
ref_image_hidden_states = ref_latents
device = hidden_states.device
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)
(
hidden_states, ref_image_hidden_states,
img_mask, ref_img_mask,
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes,
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
(
context_rotary_emb, ref_img_rotary_emb, noise_rotary_emb,
rotary_emb, encoder_seq_lengths, seq_lengths,
) = self.rope_embedder(
hidden_states.shape[0], text_hidden_states.shape[1], [num_tokens] * text_hidden_states.shape[0],
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes, device,
)
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
img_len = hidden_states.shape[1]
combined_img_hidden_states = self.img_patch_embed_and_refine(
hidden_states, ref_image_hidden_states,
img_mask, ref_img_mask,
noise_rotary_emb, ref_img_rotary_emb,
l_effective_ref_img_len, l_effective_img_len,
temb,
)
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
attention_mask = None
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
hidden_states = self.norm_out(hidden_states, temb)
p = self.patch_size
output = rearrange(hidden_states[:, -img_len:], 'b (h w) (p1 p2 c) -> b c (h p1) (w p2)', h=H_padded // p, w=W_padded// p, p1=p, p2=p)[:, :, :H, :W]
return -output

View File

@ -1,256 +1,256 @@
# Based on:
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
import torch
import torch.nn as nn
from .blocks import (
t2i_modulate,
CaptionEmbedder,
AttentionKVCompress,
MultiHeadCrossAttention,
T2IFinalLayer,
SizeEmbedder,
)
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
grid_h, grid_w = torch.meshgrid(
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
indexing='ij'
)
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
return emb
class PixArtMSBlock(nn.Module):
"""
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
super().__init__()
self.hidden_size = hidden_size
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.attn = AttentionKVCompress(
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
)
self.cross_attn = MultiHeadCrossAttention(
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
)
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
# to be compatible with lower version pytorch
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
dtype=dtype, device=device, operations=operations
)
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
x = x + self.cross_attn(x, y, mask)
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
### Core PixArt Model ###
class PixArtMS(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
learn_sigma=True,
pred_sigma=True,
drop_path: float = 0.,
caption_channels=4096,
pe_interpolation=None,
pe_precision=None,
config=None,
model_max_length=120,
micro_condition=True,
qk_norm=False,
kv_compress_config=None,
dtype=None,
device=None,
operations=None,
**kwargs,
):
nn.Module.__init__(self)
self.dtype = dtype
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.pe_interpolation = pe_interpolation
self.pe_precision = pe_precision
self.hidden_size = hidden_size
self.depth = depth
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.t_block = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
)
self.x_embedder = PatchEmbed(
patch_size=patch_size,
in_chans=in_channels,
embed_dim=hidden_size,
bias=True,
dtype=dtype,
device=device,
operations=operations
)
self.t_embedder = TimestepEmbedder(
hidden_size, dtype=dtype, device=device, operations=operations,
)
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
act_layer=approx_gelu, token_num=model_max_length,
dtype=dtype, device=device, operations=operations,
)
self.micro_conditioning = micro_condition
if self.micro_conditioning:
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
# For fixed sin-cos embedding:
# num_patches = (input_size // patch_size) * (input_size // patch_size)
# self.base_size = input_size // self.patch_size
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
if kv_compress_config is None:
kv_compress_config = {
'sampling': None,
'scale_factor': 1,
'kv_compress_layer': [],
}
self.blocks = nn.ModuleList([
PixArtMSBlock(
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
sampling=kv_compress_config['sampling'],
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
qk_norm=qk_norm,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(depth)
])
self.final_layer = T2IFinalLayer(
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
)
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
"""
Original forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) conditioning
ar: (N, 1): aspect ratio
cs: (N ,2) size conditioning for height/width
"""
B, C, H, W = x.shape
c_res = (H + W) // 2
pe_interpolation = self.pe_interpolation
if pe_interpolation is None or self.pe_precision is not None:
# calculate pe_interpolation on-the-fly
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
pos_embed = get_2d_sincos_pos_embed_torch(
self.hidden_size,
h=(H // self.patch_size),
w=(W // self.patch_size),
pe_interpolation=pe_interpolation,
base_size=((round(c_res / 64) * 64) // self.patch_size),
device=x.device,
dtype=x.dtype,
).unsqueeze(0)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep, x.dtype) # (N, D)
if self.micro_conditioning and (c_size is not None and c_ar is not None):
bs = x.shape[0]
c_size = self.csize_embedder(c_size, bs) # (N, D)
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
t = t + torch.cat([c_size, c_ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = None
y = y.squeeze(1).view(1, -1, x.shape[-1])
for block in self.blocks:
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
return x
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
B, C, H, W = x.shape
# Fallback for missing microconds
if self.micro_conditioning:
if c_size is None:
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
if c_ar is None:
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
## Still accepts the input w/o that dim but returns garbage
if len(context.shape) == 3:
context = context.unsqueeze(1)
## run original forward pass
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
## only return EPS
if self.pred_sigma:
return out[:, :self.in_channels]
return out
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = h // self.patch_size
w = w // self.patch_size
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
# Based on:
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
import torch
import torch.nn as nn
from .blocks import (
t2i_modulate,
CaptionEmbedder,
AttentionKVCompress,
MultiHeadCrossAttention,
T2IFinalLayer,
SizeEmbedder,
)
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
grid_h, grid_w = torch.meshgrid(
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
indexing='ij'
)
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
return emb
class PixArtMSBlock(nn.Module):
"""
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
super().__init__()
self.hidden_size = hidden_size
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.attn = AttentionKVCompress(
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
)
self.cross_attn = MultiHeadCrossAttention(
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
)
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
# to be compatible with lower version pytorch
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
dtype=dtype, device=device, operations=operations
)
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
x = x + self.cross_attn(x, y, mask)
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
### Core PixArt Model ###
class PixArtMS(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
learn_sigma=True,
pred_sigma=True,
drop_path: float = 0.,
caption_channels=4096,
pe_interpolation=None,
pe_precision=None,
config=None,
model_max_length=120,
micro_condition=True,
qk_norm=False,
kv_compress_config=None,
dtype=None,
device=None,
operations=None,
**kwargs,
):
nn.Module.__init__(self)
self.dtype = dtype
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.pe_interpolation = pe_interpolation
self.pe_precision = pe_precision
self.hidden_size = hidden_size
self.depth = depth
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.t_block = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
)
self.x_embedder = PatchEmbed(
patch_size=patch_size,
in_chans=in_channels,
embed_dim=hidden_size,
bias=True,
dtype=dtype,
device=device,
operations=operations
)
self.t_embedder = TimestepEmbedder(
hidden_size, dtype=dtype, device=device, operations=operations,
)
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
act_layer=approx_gelu, token_num=model_max_length,
dtype=dtype, device=device, operations=operations,
)
self.micro_conditioning = micro_condition
if self.micro_conditioning:
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
# For fixed sin-cos embedding:
# num_patches = (input_size // patch_size) * (input_size // patch_size)
# self.base_size = input_size // self.patch_size
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
if kv_compress_config is None:
kv_compress_config = {
'sampling': None,
'scale_factor': 1,
'kv_compress_layer': [],
}
self.blocks = nn.ModuleList([
PixArtMSBlock(
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
sampling=kv_compress_config['sampling'],
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
qk_norm=qk_norm,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(depth)
])
self.final_layer = T2IFinalLayer(
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
)
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
"""
Original forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) conditioning
ar: (N, 1): aspect ratio
cs: (N ,2) size conditioning for height/width
"""
B, C, H, W = x.shape
c_res = (H + W) // 2
pe_interpolation = self.pe_interpolation
if pe_interpolation is None or self.pe_precision is not None:
# calculate pe_interpolation on-the-fly
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
pos_embed = get_2d_sincos_pos_embed_torch(
self.hidden_size,
h=(H // self.patch_size),
w=(W // self.patch_size),
pe_interpolation=pe_interpolation,
base_size=((round(c_res / 64) * 64) // self.patch_size),
device=x.device,
dtype=x.dtype,
).unsqueeze(0)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep, x.dtype) # (N, D)
if self.micro_conditioning and (c_size is not None and c_ar is not None):
bs = x.shape[0]
c_size = self.csize_embedder(c_size, bs) # (N, D)
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
t = t + torch.cat([c_size, c_ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = None
y = y.squeeze(1).view(1, -1, x.shape[-1])
for block in self.blocks:
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
return x
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
B, C, H, W = x.shape
# Fallback for missing microconds
if self.micro_conditioning:
if c_size is None:
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
if c_ar is None:
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
## Still accepts the input w/o that dim but returns garbage
if len(context.shape) == 3:
context = context.unsqueeze(1)
## run original forward pass
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
## only return EPS
if self.pred_sigma:
return out[:, :self.in_channels]
return out
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = h // self.patch_size
w = w // self.patch_size
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs

View File

@ -0,0 +1,77 @@
import torch
import math
from .model import QwenImageTransformer2DModel
class QwenImageControlNetModel(QwenImageTransformer2DModel):
def __init__(
self,
extra_condition_channels=0,
dtype=None,
device=None,
operations=None,
**kwargs
):
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
self.main_model_double = 60
# controlnet_blocks
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(operations.Linear(self.inner_dim, self.inner_dim, device=device, dtype=dtype))
self.controlnet_x_embedder = operations.Linear(self.in_channels + extra_condition_channels, self.inner_dim, device=device, dtype=dtype)
def forward(
self,
x,
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
hint=None,
transformer_options={},
**kwargs
):
timestep = timesteps
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
hidden_states, img_ids, orig_shape = self.process_img(x)
hint, _, _ = self.process_img(hint)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
repeat = math.ceil(self.main_model_double / len(self.controlnet_blocks))
controlnet_block_samples = ()
for i, block in enumerate(self.transformer_blocks):
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
controlnet_block_samples = controlnet_block_samples + (self.controlnet_blocks[i](hidden_states),) * repeat
return {"input": controlnet_block_samples[:self.main_model_double]}

View File

@ -0,0 +1,469 @@
# https://github.com/QwenLM/Qwen-Image (Apache 2.0)
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
from einops import repeat
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, bias=bias, dtype=dtype, device=device)
self.approximate = approximate
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = F.gelu(hidden_states, approximate=self.approximate)
return hidden_states
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
inner_dim=None,
bias: bool = True,
dtype=None, device=None, operations=None
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
self.net = nn.ModuleList([])
self.net.append(GELU(dim, inner_dim, approximate="tanh", bias=bias, dtype=dtype, device=device, operations=operations))
self.net.append(nn.Dropout(dropout))
self.net.append(operations.Linear(inner_dim, dim_out, bias=bias, dtype=dtype, device=device))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
def apply_rotary_emb(x, freqs_cis):
if x.shape[1] == 0:
return x
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x.shape)
class QwenTimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
self.timestep_embedder = TimestepEmbedding(
in_channels=256,
time_embed_dim=embedding_dim,
dtype=dtype,
device=device,
operations=operations
)
def forward(self, timestep, hidden_states):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
return timesteps_emb
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
dim_head: int = 64,
heads: int = 8,
dropout: float = 0.0,
bias: bool = False,
eps: float = 1e-5,
out_bias: bool = True,
out_dim: int = None,
out_context_dim: int = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim
self.heads = heads
self.dim_head = dim_head
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.dropout = dropout
# Q/K normalization
self.norm_q = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
self.norm_k = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
self.norm_added_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.norm_added_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
# Image stream projections
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
self.to_k = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
# Text stream projections
self.add_q_proj = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
self.add_k_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
# Output projections
self.to_out = nn.ModuleList([
operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device),
nn.Dropout(dropout)
])
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
def forward(
self,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
img_attn_output = self.to_out[0](img_attn_output)
img_attn_output = self.to_out[1](img_attn_output)
txt_attn_output = self.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output
class QwenImageTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
eps: float = 1e-6,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.img_mod = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
)
self.img_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.img_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.img_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
self.txt_mod = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.txt_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
self.attn = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
eps=eps,
dtype=dtype,
device=device,
operations=operations,
)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
txt_mod_params = self.txt_mod(temb)
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
img_attn_output, txt_attn_output = self.attn(
hidden_states=img_modulated,
encoder_hidden_states=txt_modulated,
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
class LastLayer(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
elementwise_affine=False,
eps=1e-6,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
self.silu = nn.SiLU()
self.linear = operations.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias, dtype=dtype, device=device)
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine=False, bias=bias, dtype=dtype, device=device)
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
scale, shift = torch.chunk(emb, 2, dim=1)
x = torch.addcmul(shift[:, None, :], self.norm(x), (1 + scale)[:, None, :])
return x
class QwenImageTransformer2DModel(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 64,
out_channels: Optional[int] = 16,
num_layers: int = 60,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 3584,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
image_model=None,
final_layer=True,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.dtype = dtype
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
self.time_text_embed = QwenTimestepProjEmbeddings(
embedding_dim=self.inner_dim,
pooled_projection_dim=pooled_projection_dim,
dtype=dtype,
device=device,
operations=operations
)
self.txt_norm = operations.RMSNorm(joint_attention_dim, eps=1e-6, dtype=dtype, device=device)
self.img_in = operations.Linear(in_channels, self.inner_dim, dtype=dtype, device=device)
self.txt_in = operations.Linear(joint_attention_dim, self.inner_dim, dtype=dtype, device=device)
self.transformer_blocks = nn.ModuleList([
QwenImageTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
dtype=dtype,
device=device,
operations=operations
)
for _ in range(num_layers)
])
if final_layer:
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, t, h, w = x.shape
patch_size = self.patch_size
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
def _forward(
self,
x,
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
transformer_options={},
control=None,
**kwargs
):
timestep = timesteps
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
hidden_states, img_ids, orig_shape = self.process_img(x)
num_embeds = hidden_states.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
for ref in ref_latents:
if index_ref_method:
index += 1
h_offset = 0
w_offset = 0
else:
index = 1
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
hidden_states = torch.cat([hidden_states, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
patches_replace = transformer_options.get("patches_replace", {})
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states[:, :add.shape[1]] += add
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]

View File

@ -4,13 +4,14 @@ import math
import torch
import torch.nn as nn
from einops import repeat
from einops import rearrange
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
import comfy.ldm.common_dit
import comfy.model_management
import comfy.patcher_extension
def sinusoidal_embedding_1d(dim, position):
@ -146,6 +147,18 @@ WAN_CROSSATTENTION_CLASSES = {
}
def repeat_e(e, x):
repeats = 1
if e.size(1) > 1:
repeats = x.size(1) // e.size(1)
if repeats == 1:
return e
if repeats * e.size(1) == x.size(1):
return torch.repeat_interleave(e, repeats, dim=1)
else:
return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)]
class WanAttentionBlock(nn.Module):
def __init__(self,
@ -202,20 +215,23 @@ class WanAttentionBlock(nn.Module):
"""
# assert e.dtype == torch.float32
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
if e.ndim < 4:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
else:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e).unbind(2)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
self.norm1(x) * (1 + e[1]) + e[0],
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs)
x = x + y * e[2]
x = torch.addcmul(x, y, repeat_e(e[2], x))
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
x = x + y * e[5]
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
@ -325,8 +341,12 @@ class Head(nn.Module):
e(Tensor): Shape [B, C]
"""
# assert e.dtype == torch.float32
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
if e.ndim < 3:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
else:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e.unsqueeze(2)).unbind(2)
x = (self.head(torch.addcmul(repeat_e(e[0], x), self.norm(x), 1 + repeat_e(e[1], x))))
return x
@ -375,6 +395,7 @@ class WanModel(torch.nn.Module):
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
in_dim_ref_conv=None,
image_model=None,
device=None,
dtype=None,
@ -468,6 +489,11 @@ class WanModel(torch.nn.Module):
else:
self.img_emb = None
if in_dim_ref_conv is not None:
self.ref_conv = operations.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:], device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
else:
self.ref_conv = None
def forward_orig(
self,
x,
@ -506,8 +532,16 @@ class WanModel(torch.nn.Module):
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
full_ref = None
if self.ref_conv is not None:
full_ref = kwargs.get("reference_latent", None)
if full_ref is not None:
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
x = torch.concat((full_ref, x), dim=1)
# context
context = self.text_embedding(context)
@ -535,31 +569,56 @@ class WanModel(torch.nn.Module):
# head
x = self.head(x, e)
if full_ref is not None:
x = x[:, full_ref.shape[1]:]
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if steps_t is None:
steps_t = t_len
if steps_h is None:
steps_h = h_len
if steps_w is None:
steps_w = w_len
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return freqs
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, clip_fea, time_dim_concat, transformer_options, **kwargs)
def _forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
t_len = t
if time_dim_concat is not None:
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
t_len = x.shape[2]
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
if self.ref_conv is not None and "reference_latent" in kwargs:
t_len += 1
freqs = self.rope_embedder(img_ids).movedim(1, 2)
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
@ -732,7 +791,12 @@ class CameraWanModel(WanModel):
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
if model_type == 'camera':
model_type = 'i2v'
else:
model_type = 't2v'
super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
@ -752,8 +816,7 @@ class CameraWanModel(WanModel):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
if self.control_adapter is not None and camera_conditions is not None:
x_camera = self.control_adapter(camera_conditions).to(x.dtype)
x = x + x_camera
x = x + self.control_adapter(camera_conditions).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
@ -791,3 +854,468 @@ class CameraWanModel(WanModel):
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class CausalConv1d(nn.Module):
def __init__(self,
chan_in,
chan_out,
kernel_size=3,
stride=1,
dilation=1,
pad_mode='replicate',
operations=None,
**kwargs):
super().__init__()
self.pad_mode = pad_mode
padding = (kernel_size - 1, 0) # T
self.time_causal_padding = padding
self.conv = operations.Conv1d(
chan_in,
chan_out,
kernel_size,
stride=stride,
dilation=dilation,
**kwargs)
def forward(self, x):
x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class MotionEncoder_tc(nn.Module):
def __init__(self,
in_dim: int,
hidden_dim: int,
num_heads=int,
need_global=True,
dtype=None,
device=None,
operations=None,):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.num_heads = num_heads
self.need_global = need_global
self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
if need_global:
self.conv1_global = CausalConv1d(
in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs)
self.norm1 = operations.LayerNorm(
hidden_dim // 4,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.act = nn.SiLU()
self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs)
self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs)
if need_global:
self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs)
self.norm1 = operations.LayerNorm(
hidden_dim // 4,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.norm2 = operations.LayerNorm(
hidden_dim // 2,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.norm3 = operations.LayerNorm(
hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
def forward(self, x):
x = rearrange(x, 'b t c -> b c t')
x_ori = x.clone()
b, c, t = x.shape
x = self.conv1_local(x)
x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads)
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv2(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv3(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm3(x)
x = self.act(x)
x = rearrange(x, '(b n) t c -> b t n c', b=b)
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
x = torch.cat([x, padding], dim=-2)
x_local = x.clone()
if not self.need_global:
return x_local
x = self.conv1_global(x_ori)
x = rearrange(x, 'b c t -> b t c')
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv2(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv3(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm3(x)
x = self.act(x)
x = self.final_linear(x)
x = rearrange(x, '(b n) t c -> b t n c', b=b)
return x, x_local
class CausalAudioEncoder(nn.Module):
def __init__(self,
dim=5120,
num_layers=25,
out_dim=2048,
video_rate=8,
num_token=4,
need_global=False,
dtype=None,
device=None,
operations=None):
super().__init__()
self.encoder = MotionEncoder_tc(
in_dim=dim,
hidden_dim=out_dim,
num_heads=num_token,
need_global=need_global, dtype=dtype, device=device, operations=operations)
weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device)
self.weights = torch.nn.Parameter(weight)
self.act = torch.nn.SiLU()
def forward(self, features):
# features B * num_layers * dim * video_length
weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device))
weights_sum = weights.sum(dim=1, keepdims=True)
weighted_feat = ((features * weights) / weights_sum).sum(
dim=1) # b dim f
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
res = self.encoder(weighted_feat) # b f n dim
return res # b f n dim
class AdaLayerNorm(nn.Module):
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None):
super().__init__()
output_dim = output_dim or embedding_dim * 2
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device)
self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device)
def forward(self, x, temb):
temb = self.linear(self.silu(temb))
shift, scale = temb.chunk(2, dim=1)
shift = shift[:, None, :]
scale = scale[:, None, :]
x = self.norm(x) * (1 + scale) + shift
return x
class AudioInjector_WAN(nn.Module):
def __init__(self,
dim=2048,
num_heads=32,
inject_layer=[0, 27],
root_net=None,
enable_adain=False,
adain_dim=2048,
adain_mode=None,
dtype=None,
device=None,
operations=None):
super().__init__()
self.enable_adain = enable_adain
self.adain_mode = adain_mode
self.injected_block_id = {}
audio_injector_id = 0
for inject_id in inject_layer:
self.injected_block_id[inject_id] = audio_injector_id
audio_injector_id += 1
self.injector = nn.ModuleList([
WanT2VCrossAttention(
dim=dim,
num_heads=num_heads,
qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype}
) for _ in range(audio_injector_id)
])
self.injector_pre_norm_feat = nn.ModuleList([
operations.LayerNorm(
dim,
elementwise_affine=False,
eps=1e-6, dtype=dtype, device=device
) for _ in range(audio_injector_id)
])
self.injector_pre_norm_vec = nn.ModuleList([
operations.LayerNorm(
dim,
elementwise_affine=False,
eps=1e-6, dtype=dtype, device=device
) for _ in range(audio_injector_id)
])
if enable_adain:
self.injector_adain_layers = nn.ModuleList([
AdaLayerNorm(
output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations)
for _ in range(audio_injector_id)
])
if adain_mode != "attn_norm":
self.injector_adain_output_layers = nn.ModuleList(
[operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)])
def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len):
audio_attn_id = self.injected_block_id.get(block_id, None)
if audio_attn_id is None:
return x
num_frames = audio_emb.shape[1]
input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames)
if self.enable_adain and self.adain_mode == "attn_norm":
audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c")
adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0])
attn_hidden_states = adain_hidden_states
else:
attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states)
audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
attn_audio_emb = audio_emb
residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb)
residual_out = rearrange(
residual_out, "(b t) n c -> b (t n) c", t=num_frames)
x[:, :seq_len] = x[:, :seq_len] + residual_out
return x
class FramePackMotioner(nn.Module):
def __init__(
self,
inner_dim=1024,
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
zip_frame_buckets=[
1, 2, 16
], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
dtype=None,
device=None,
operations=None):
super().__init__()
self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device)
self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device)
self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device)
self.zip_frame_buckets = zip_frame_buckets
self.inner_dim = inner_dim
self.num_heads = num_heads
self.drop_mode = drop_mode
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
if overlap_frame > 0:
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
if add_last_motion < 2 and self.drop_mode != "drop":
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
padd_lat[:, :, -zero_end_frame:] = 0
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
# patchfy
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
clean_latents_2x = self.proj_2x(clean_latents_2x)
l_2x_shape = clean_latents_2x.shape
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
clean_latents_4x = self.proj_4x(clean_latents_4x)
l_4x_shape = clean_latents_4x.shape
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
if add_last_motion < 2 and self.drop_mode == "drop":
clean_latents_post = clean_latents_post[:, :
0] if add_last_motion < 2 else clean_latents_post
clean_latents_2x = clean_latents_2x[:, :
0] if add_last_motion < 1 else clean_latents_2x
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
return motion_lat, rope
class WanModel_S2V(WanModel):
def __init__(self,
model_type='s2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
audio_dim=1024,
num_audio_token=4,
enable_adain=True,
cond_dim=16,
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
adain_mode="attn_norm",
framepack_drop_mode="padd",
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
self.casual_audio_encoder = CausalAudioEncoder(
dim=audio_dim,
out_dim=self.dim,
num_token=num_audio_token,
need_global=enable_adain, dtype=dtype, device=device, operations=operations)
if cond_dim > 0:
self.cond_encoder = operations.Conv3d(
cond_dim,
self.dim,
kernel_size=self.patch_size,
stride=self.patch_size, device=device, dtype=dtype)
self.audio_injector = AudioInjector_WAN(
dim=self.dim,
num_heads=self.num_heads,
inject_layer=audio_inject_layers,
root_net=self,
enable_adain=enable_adain,
adain_dim=self.dim,
adain_mode=adain_mode,
dtype=dtype, device=device, operations=operations
)
self.frame_packer = FramePackMotioner(
inner_dim=self.dim,
num_heads=self.num_heads,
zip_frame_buckets=[1, 2, 16],
drop_mode=framepack_drop_mode,
dtype=dtype, device=device, operations=operations)
def forward_orig(
self,
x,
t,
context,
audio_embed=None,
reference_latent=None,
control_video=None,
reference_motion=None,
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
if audio_embed is not None:
num_embeds = x.shape[-3] * 4
audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds])
else:
audio_emb = None
# embeddings
bs, _, time, height, width = x.shape
x = self.patch_embedding(x.float()).to(x.dtype)
if control_video is not None:
x = x + self.cond_encoder(control_video)
if t.ndim == 1:
t = t.unsqueeze(1).repeat(1, x.shape[2])
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
seq_len = x.size(1)
cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1)
x = x + cond_mask_weight[0]
if reference_latent is not None:
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
ref = ref.flatten(2).transpose(1, 2)
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=max(30, time + 9), device=x.device, dtype=x.dtype)
ref = ref + cond_mask_weight[1]
x = torch.cat([x, ref], dim=1)
freqs = torch.cat([freqs, freqs_ref], dim=1)
t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1)
del ref, freqs_ref
if reference_motion is not None:
motion_encoded, freqs_motion = self.frame_packer(reference_motion, self)
motion_encoded = motion_encoded + cond_mask_weight[2]
x = torch.cat([x, motion_encoded], dim=1)
freqs = torch.cat([freqs, freqs_motion], dim=1)
t = torch.repeat_interleave(t, 2, dim=1)
t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1)
del motion_encoded, freqs_motion
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
# context
context = self.text_embedding(context)
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context)
if audio_emb is not None:
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@ -24,12 +24,17 @@ class CausalConv3d(ops.Conv3d):
self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
def forward(self, x, cache_x=None, cache_list=None, cache_idx=None):
if cache_list is not None:
cache_x = cache_list[cache_idx]
cache_list[cache_idx] = None
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
del cache_x
x = F.pad(x, padding)
return super().forward(x)
@ -52,15 +57,6 @@ class RMS_norm(nn.Module):
x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma.to(x) + (self.bias.to(x) if self.bias is not None else 0)
class Upsample(nn.Upsample):
def forward(self, x):
"""
Fix bfloat16 support for nearest neighbor interpolation.
"""
return super().forward(x.float()).type_as(x)
class Resample(nn.Module):
def __init__(self, dim, mode):
@ -73,11 +69,11 @@ class Resample(nn.Module):
# layers
if mode == 'upsample2d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
nn.Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
ops.Conv2d(dim, dim // 2, 3, padding=1))
elif mode == 'upsample3d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
nn.Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
ops.Conv2d(dim, dim // 2, 3, padding=1))
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
@ -157,29 +153,6 @@ class Resample(nn.Module):
feat_idx[0] += 1
return x
def init_weight(self, conv):
conv_weight = conv.weight
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def init_weight2(self, conv):
conv_weight = conv.weight.data
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
class ResidualBlock(nn.Module):
@ -198,7 +171,7 @@ class ResidualBlock(nn.Module):
if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
h = self.shortcut(x)
old_x = x
for layer in self.residual:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
@ -210,12 +183,12 @@ class ResidualBlock(nn.Module):
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
x = layer(x, cache_list=feat_cache, cache_idx=idx)
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x + h
return x + self.shortcut(old_x)
class AttentionBlock(nn.Module):
@ -494,12 +467,6 @@ class WanVAE(nn.Module):
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
attn_scales, self.temperal_upsample, dropout)
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_recon = self.decode(z)
return x_recon, mu, log_var
def encode(self, x):
self.clear_cache()
## cache
@ -545,18 +512,6 @@ class WanVAE(nn.Module):
self.clear_cache()
return out
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps * std + mu
def sample(self, imgs, deterministic=False):
mu, log_var = self.encode(imgs)
if deterministic:
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]

726
comfy/ldm/wan/vae2_2.py Normal file
View File

@ -0,0 +1,726 @@
# original version: https://github.com/Wan-Video/Wan2.2/blob/main/wan/modules/vae2_2.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .vae import AttentionBlock, CausalConv3d, RMS_norm
import comfy.ops
ops = comfy.ops.disable_weight_init
CACHE_T = 2
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in (
"none",
"upsample2d",
"upsample3d",
"downsample2d",
"downsample3d",
)
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == "upsample2d":
self.resample = nn.Sequential(
nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
ops.Conv2d(dim, dim, 3, padding=1),
)
elif mode == "upsample3d":
self.resample = nn.Sequential(
nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
ops.Conv2d(dim, dim, 3, padding=1),
# ops.Conv2d(dim, dim//2, 3, padding=1)
)
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == "downsample2d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
elif mode == "downsample3d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == "upsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = "Rep"
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
feat_cache[idx] != "Rep"):
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
feat_cache[idx] == "Rep"):
cache_x = torch.cat(
[
torch.zeros_like(cache_x).to(cache_x.device),
cache_x
],
dim=2,
)
if feat_cache[idx] == "Rep":
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.resample(x)
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
if self.mode == "downsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
x = self.time_conv(
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False),
nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False),
nn.SiLU(),
nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1),
)
self.shortcut = (
CausalConv3d(in_dim, out_dim, 1)
if in_dim != out_dim else nn.Identity())
def forward(self, x, feat_cache=None, feat_idx=[0]):
old_x = x
for layer in self.residual:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, cache_list=feat_cache, cache_idx=idx)
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x + self.shortcut(old_x)
def patchify(x, patch_size):
if patch_size == 1:
return x
if x.dim() == 4:
x = rearrange(
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
elif x.dim() == 5:
x = rearrange(
x,
"b c f (h q) (w r) -> b (c r q) f h w",
q=patch_size,
r=patch_size,
)
else:
raise ValueError(f"Invalid input shape: {x.shape}")
return x
def unpatchify(x, patch_size):
if patch_size == 1:
return x
if x.dim() == 4:
x = rearrange(
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
elif x.dim() == 5:
x = rearrange(
x,
"b (c r q) f h w -> b c f (h q) (w r)",
q=patch_size,
r=patch_size,
)
return x
class AvgDown3D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
factor_t,
factor_s=1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor_t = factor_t
self.factor_s = factor_s
self.factor = self.factor_t * self.factor_s * self.factor_s
assert in_channels * self.factor % out_channels == 0
self.group_size = in_channels * self.factor // out_channels
def forward(self, x: torch.Tensor) -> torch.Tensor:
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
pad = (0, 0, 0, 0, pad_t, 0)
x = F.pad(x, pad)
B, C, T, H, W = x.shape
x = x.view(
B,
C,
T // self.factor_t,
self.factor_t,
H // self.factor_s,
self.factor_s,
W // self.factor_s,
self.factor_s,
)
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
x = x.view(
B,
C * self.factor,
T // self.factor_t,
H // self.factor_s,
W // self.factor_s,
)
x = x.view(
B,
self.out_channels,
self.group_size,
T // self.factor_t,
H // self.factor_s,
W // self.factor_s,
)
x = x.mean(dim=2)
return x
class DupUp3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
factor_t,
factor_s=1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor_t = factor_t
self.factor_s = factor_s
self.factor = self.factor_t * self.factor_s * self.factor_s
assert out_channels * self.factor % in_channels == 0
self.repeats = out_channels * self.factor // in_channels
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
x = x.repeat_interleave(self.repeats, dim=1)
x = x.view(
x.size(0),
self.out_channels,
self.factor_t,
self.factor_s,
self.factor_s,
x.size(2),
x.size(3),
x.size(4),
)
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
x = x.view(
x.size(0),
self.out_channels,
x.size(2) * self.factor_t,
x.size(4) * self.factor_s,
x.size(6) * self.factor_s,
)
if first_chunk:
x = x[:, :, self.factor_t - 1:, :, :]
return x
class Down_ResidualBlock(nn.Module):
def __init__(self,
in_dim,
out_dim,
dropout,
mult,
temperal_downsample=False,
down_flag=False):
super().__init__()
# Shortcut path with downsample
self.avg_shortcut = AvgDown3D(
in_dim,
out_dim,
factor_t=2 if temperal_downsample else 1,
factor_s=2 if down_flag else 1,
)
# Main path with residual blocks and downsample
downsamples = []
for _ in range(mult):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
in_dim = out_dim
# Add the final downsample block
if down_flag:
mode = "downsample3d" if temperal_downsample else "downsample2d"
downsamples.append(Resample(out_dim, mode=mode))
self.downsamples = nn.Sequential(*downsamples)
def forward(self, x, feat_cache=None, feat_idx=[0]):
x_copy = x
for module in self.downsamples:
x = module(x, feat_cache, feat_idx)
return x + self.avg_shortcut(x_copy)
class Up_ResidualBlock(nn.Module):
def __init__(self,
in_dim,
out_dim,
dropout,
mult,
temperal_upsample=False,
up_flag=False):
super().__init__()
# Shortcut path with upsample
if up_flag:
self.avg_shortcut = DupUp3D(
in_dim,
out_dim,
factor_t=2 if temperal_upsample else 1,
factor_s=2 if up_flag else 1,
)
else:
self.avg_shortcut = None
# Main path with residual blocks and upsample
upsamples = []
for _ in range(mult):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
in_dim = out_dim
# Add the final upsample block
if up_flag:
mode = "upsample3d" if temperal_upsample else "upsample2d"
upsamples.append(Resample(out_dim, mode=mode))
self.upsamples = nn.Sequential(*upsamples)
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
x_main = x
for module in self.upsamples:
x_main = module(x_main, feat_cache, feat_idx)
if self.avg_shortcut is not None:
x_shortcut = self.avg_shortcut(x, first_chunk)
return x_main + x_shortcut
else:
return x_main
class Encoder3d(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
t_down_flag = (
temperal_downsample[i]
if i < len(temperal_downsample) else False)
downsamples.append(
Down_ResidualBlock(
in_dim=in_dim,
out_dim=out_dim,
dropout=dropout,
mult=num_res_blocks,
temperal_downsample=t_down_flag,
down_flag=i != len(dim_mult) - 1,
))
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout),
AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout),
)
# # output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Decoder3d(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout),
AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout),
)
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
t_up_flag = temperal_upsample[i] if i < len(
temperal_upsample) else False
upsamples.append(
Up_ResidualBlock(
in_dim=in_dim,
out_dim=out_dim,
dropout=dropout,
mult=num_res_blocks + 1,
temperal_upsample=t_up_flag,
up_flag=i != len(dim_mult) - 1,
))
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, 12, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx, first_chunk)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
def count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, CausalConv3d):
count += 1
return count
class WanVAE(nn.Module):
def __init__(
self,
dim=160,
dec_dim=256,
z_dim=16,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(
dim,
z_dim * 2,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_downsample,
dropout,
)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(
dec_dim,
z_dim,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_upsample,
dropout,
)
def encode(self, x):
self.clear_cache()
x = patchify(x, patch_size=2)
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
self.clear_cache()
return mu
def decode(self, z):
self.clear_cache()
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
first_chunk=True,
)
else:
out_ = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
)
out = torch.cat([out, out_], 2)
out = unpatchify(out, patch_size=2)
self.clear_cache()
return out
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps * std + mu
def sample(self, imgs, deterministic=False):
mu, log_var = self.encode(imgs)
if deterministic:
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
# cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num

View File

@ -260,6 +260,10 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
if isinstance(model, comfy.model_base.GenmoMochi):
for k in sdk:
@ -293,6 +297,16 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.QwenImage):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format
key_lora = k[len("diffusion_model."):-len(".weight")]
# Direct mapping for transformer_blocks format (QwenImage LoRA format)
key_map["{}".format(key_lora)] = k
# Support transformer prefix format
key_map["transformer.{}".format(key_lora)] = k
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
return key_map

View File

@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_uso_lora(sd):
sd_out = {}
for k in sd:
tensor = sd[k]
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
.replace(".up.weight", ".lora_up.weight")
.replace(".qkv_lora2.", ".txt_attn.qkv.")
.replace(".qkv_lora1.", ".img_attn.qkv.")
.replace(".proj_lora1.", ".img_attn.proj.")
.replace(".proj_lora2.", ".txt_attn.proj.")
.replace(".qkv_lora.", ".linear1_qkv.")
.replace(".proj_lora.", ".linear2.")
.replace(".processor.", ".")
)
sd_out[k_to] = tensor
return sd_out
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
return convert_uso_lora(sd)
return sd

View File

@ -16,6 +16,8 @@
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import comfy.ldm.hunyuan3dv2_1
import comfy.ldm.hunyuan3dv2_1.hunyuandit
import torch
import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
@ -34,12 +36,15 @@ import comfy.ldm.flux.model
import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.ldm.cosmos.predict2
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
import comfy.model_management
import comfy.patcher_extension
@ -48,6 +53,7 @@ import comfy.ops
from enum import Enum
from . import utils
import comfy.latent_formats
import comfy.model_sampling
import math
from typing import TYPE_CHECKING
if TYPE_CHECKING:
@ -63,38 +69,39 @@ class ModelType(Enum):
V_PREDICTION_CONTINUOUS = 7
FLUX = 8
IMG_TO_IMG = 9
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
FLOW_COSMOS = 10
def model_sampling(model_config, model_type):
s = ModelSamplingDiscrete
s = comfy.model_sampling.ModelSamplingDiscrete
if model_type == ModelType.EPS:
c = EPS
c = comfy.model_sampling.EPS
elif model_type == ModelType.V_PREDICTION:
c = V_PREDICTION
c = comfy.model_sampling.V_PREDICTION
elif model_type == ModelType.V_PREDICTION_EDM:
c = V_PREDICTION
s = ModelSamplingContinuousEDM
c = comfy.model_sampling.V_PREDICTION
s = comfy.model_sampling.ModelSamplingContinuousEDM
elif model_type == ModelType.FLOW:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingDiscreteFlow
elif model_type == ModelType.STABLE_CASCADE:
c = EPS
s = StableCascadeSampling
c = comfy.model_sampling.EPS
s = comfy.model_sampling.StableCascadeSampling
elif model_type == ModelType.EDM:
c = EDM
s = ModelSamplingContinuousEDM
c = comfy.model_sampling.EDM
s = comfy.model_sampling.ModelSamplingContinuousEDM
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
c = V_PREDICTION
s = ModelSamplingContinuousV
c = comfy.model_sampling.V_PREDICTION
s = comfy.model_sampling.ModelSamplingContinuousV
elif model_type == ModelType.FLUX:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingFlux
elif model_type == ModelType.IMG_TO_IMG:
c = comfy.model_sampling.IMG_TO_IMG
elif model_type == ModelType.FLOW_COSMOS:
c = comfy.model_sampling.COSMOS_RFLOW
s = comfy.model_sampling.ModelSamplingCosmosRFlow
class ModelSampling(s, c):
pass
@ -102,10 +109,12 @@ def model_sampling(model_config, model_type):
return ModelSampling(model_config)
def convert_tensor(extra, dtype):
def convert_tensor(extra, dtype, device):
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra = comfy.model_management.cast_to_device(extra, device, dtype)
else:
extra = comfy.model_management.cast_to_device(extra, device, None)
return extra
@ -143,6 +152,7 @@ class BaseModel(torch.nn.Module):
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
self.memory_usage_shape_process = {}
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@ -156,7 +166,7 @@ class BaseModel(torch.nn.Module):
xc = self.model_sampling.calculate_input(sigma, x)
if c_concat is not None:
xc = torch.cat([xc] + [c_concat], dim=1)
xc = torch.cat([xc] + [comfy.model_management.cast_to_device(c_concat, xc.device, xc.dtype)], dim=1)
context = c_crossattn
dtype = self.get_dtype()
@ -165,20 +175,21 @@ class BaseModel(torch.nn.Module):
dtype = self.manual_cast_dtype
xc = xc.to(dtype)
device = xc.device
t = self.model_sampling.timestep(t).float()
if context is not None:
context = context.to(dtype)
context = comfy.model_management.cast_to_device(context, device, dtype)
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "dtype"):
extra = convert_tensor(extra, dtype)
extra = convert_tensor(extra, dtype, device)
elif isinstance(extra, list):
ex = []
for ext in extra:
ex.append(convert_tensor(ext, dtype))
ex.append(convert_tensor(ext, dtype, device))
extra = ex
extra_conds[o] = extra
@ -342,8 +353,15 @@ class BaseModel(torch.nn.Module):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
if shape is not None:
if c in self.memory_usage_shape_process:
out = []
for s in shape:
out.append(self.memory_usage_shape_process[c](s))
shape = out
if len(shape) > 0:
input_shapes += shape
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
@ -394,7 +412,7 @@ class SD21UNCLIP(BaseModel):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
if unclip_conditioning is None:
return torch.zeros((1, self.adm_channels))
return torch.zeros((1, self.adm_channels), device=device)
else:
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
@ -608,9 +626,11 @@ class IP2P:
if image is None:
image = torch.zeros_like(noise)
else:
image = image.to(device=device)
if image.shape[1:] != noise.shape[1:]:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = utils.common_upscale(image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = utils.resize_to_batch_size(image, noise.shape[0])
return self.process_ip2p_image_in(image)
@ -689,7 +709,7 @@ class StableCascade_B(BaseModel):
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
out["effnet"] = comfy.conds.CONDRegular(prior)
out["effnet"] = comfy.conds.CONDRegular(prior.to(device=noise.device))
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
return out
@ -812,6 +832,7 @@ class PixArt(BaseModel):
class Flux(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
self.memory_usage_factor_conds = ("ref_latents",)
def concat_cond(self, **kwargs):
try:
@ -872,8 +893,27 @@ class Flux(BaseModel):
guidance = kwargs.get("guidance", 3.5)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
ref_latents_method = kwargs.get("reference_latents_method", None)
if ref_latents_method is not None:
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint)
@ -998,6 +1038,45 @@ class CosmosVideo(BaseModel):
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5)
class CosmosPredict2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW_COSMOS, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.predict2.MiniTrainDIT)
self.image_to_video = image_to_video
if self.image_to_video:
self.concat_keys = ("mask_inverted",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
if denoise_mask.ndim <= 4:
return timestep
condition_video_mask_B_1_T_1_1 = denoise_mask.mean(dim=[1, 3, 4], keepdim=True)
c_noise_B_1_T_1_1 = 0.0 * (1.0 - condition_video_mask_B_1_T_1_1) + timestep.reshape(timestep.shape[0], 1, 1, 1, 1) * condition_video_mask_B_1_T_1_1
out = c_noise_B_1_T_1_1.squeeze(dim=[1, 3, 4])
return out
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1))
sigma_noise_augmentation = 0 #TODO
if sigma_noise_augmentation != 0:
latent_image = latent_image + noise
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
sigma = (sigma / (sigma + 1))
return latent_image / (1.0 - sigma)
class Lumina2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
@ -1033,13 +1112,15 @@ class WAN21(BaseModel):
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video or extra_channels == image.shape[1]:
return image
if extra_channels != image.shape[1] + 4:
if not self.image_to_video or extra_channels == image.shape[1]:
return image
if image.shape[1] > (extra_channels - 4):
image = image[:, :(extra_channels - 4)]
@ -1058,7 +1139,11 @@ class WAN21(BaseModel):
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((mask, image), dim=1)
concat_mask_index = kwargs.get("concat_mask_index", 0)
if concat_mask_index != 0:
return torch.cat((image[:, :concat_mask_index], mask, image[:, concat_mask_index:]), dim=1)
else:
return torch.cat((mask, image), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@ -1074,6 +1159,10 @@ class WAN21(BaseModel):
if time_dim_concat is not None:
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1])[:, :, 0])
return out
@ -1098,10 +1187,10 @@ class WAN21_Vace(WAN21):
vace_frames_out = []
for j in range(len(vace_frames)):
vf = vace_frames[j].clone()
vf = vace_frames[j].to(device=noise.device, dtype=noise.dtype, copy=True)
for i in range(0, vf.shape[1], 16):
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
vf = torch.cat([vf, mask[j]], dim=1)
vf = torch.cat([vf, mask[j].to(device=noise.device, dtype=noise.dtype)], dim=1)
vace_frames_out.append(vf)
vace_frames = torch.stack(vace_frames_out, dim=1)
@ -1123,6 +1212,63 @@ class WAN21_Camera(WAN21):
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class WAN22_S2V(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
self.memory_usage_factor_conds = ("reference_latent", "reference_motion")
self.memory_usage_shape_process = {"reference_motion": lambda shape: [shape[0], shape[1], 1.5, shape[-2], shape[-1]]}
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
control_video = kwargs.get("control_video", None)
if control_video is not None:
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['reference_latent'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = reference_motion.shape
return out
class WAN22(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
denoise_mask = kwargs.get("denoise_mask", None)
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
temp_ts = (torch.mean(denoise_mask[:, :, :, :, :], dim=(1, 3, 4), keepdim=True) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1))).reshape(timestep.shape[0], -1)
return temp_ts
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class Hunyuan3Dv2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3d.model.Hunyuan3Dv2)
@ -1138,6 +1284,21 @@ class Hunyuan3Dv2(BaseModel):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class Hunyuan3Dv2_1(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3dv2_1.hunyuandit.HunYuanDiTPlain)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guidance = kwargs.get("guidance", 5.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
@ -1188,3 +1349,62 @@ class ACEStep(BaseModel):
out['speaker_embeds'] = comfy.conds.CONDRegular(torch.zeros(noise.shape[0], 512, device=noise.device, dtype=noise.dtype))
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out
class Omnigen2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class QwenImage(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.qwen_image.model.QwenImageTransformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
ref_latents_method = kwargs.get("reference_latents_method", None)
if ref_latents_method is not None:
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out

View File

@ -346,7 +346,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config = {}
dit_config["image_model"] = "wan2.1"
dim = state_dict['{}head.modulation'.format(key_prefix)].shape[-1]
out_dim = state_dict['{}head.head.weight'.format(key_prefix)].shape[0] // 4
dit_config["dim"] = dim
dit_config["out_dim"] = out_dim
dit_config["num_heads"] = dim // 128
dit_config["ffn_dim"] = state_dict['{}blocks.0.ffn.0.weight'.format(key_prefix)].shape[0]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
@ -362,7 +364,12 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
else:
dit_config["model_type"] = "camera_2.2"
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "s2v"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
@ -371,6 +378,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
if flf_weight is not None:
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
ref_conv_weight = state_dict.get('{}ref_conv.weight'.format(key_prefix))
if ref_conv_weight is not None:
dit_config["in_dim_ref_conv"] = ref_conv_weight.shape[1]
return dit_config
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
@ -388,6 +400,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if f"{key_prefix}t_embedder.mlp.2.weight" in state_dict_keys: # Hunyuan 3D 2.1
dit_config = {}
dit_config["image_model"] = "hunyuan3d2_1"
dit_config["in_channels"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[1]
dit_config["context_dim"] = 1024
dit_config["hidden_size"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 16
dit_config["depth"] = count_blocks(state_dict_keys, f"{key_prefix}blocks.{{}}")
dit_config["qkv_bias"] = False
dit_config["guidance_cond_proj_dim"] = None#f"{key_prefix}t_embedder.cond_proj.weight" in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"
@ -407,6 +433,85 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["text_emb_dim"] = 2048
return dit_config
if '{}blocks.0.mlp.layer1.weight'.format(key_prefix) in state_dict_keys: # Cosmos predict2
dit_config = {}
dit_config["image_model"] = "cosmos_predict2"
dit_config["max_img_h"] = 240
dit_config["max_img_w"] = 240
dit_config["max_frames"] = 128
concat_padding_mask = True
dit_config["in_channels"] = (state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[1] // 4) - int(concat_padding_mask)
dit_config["out_channels"] = 16
dit_config["patch_spatial"] = 2
dit_config["patch_temporal"] = 1
dit_config["model_channels"] = state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[0]
dit_config["concat_padding_mask"] = concat_padding_mask
dit_config["crossattn_emb_channels"] = 1024
dit_config["pos_emb_cls"] = "rope3d"
dit_config["pos_emb_learnable"] = True
dit_config["pos_emb_interpolation"] = "crop"
dit_config["min_fps"] = 1
dit_config["max_fps"] = 30
dit_config["use_adaln_lora"] = True
dit_config["adaln_lora_dim"] = 256
if dit_config["model_channels"] == 2048:
dit_config["num_blocks"] = 28
dit_config["num_heads"] = 16
elif dit_config["model_channels"] == 5120:
dit_config["num_blocks"] = 36
dit_config["num_heads"] = 40
if dit_config["in_channels"] == 16:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 4.0
dit_config["rope_w_extrapolation_ratio"] = 4.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["in_channels"] == 17: # img to video
if dit_config["model_channels"] == 2048:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 3.0
dit_config["rope_w_extrapolation_ratio"] = 3.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["model_channels"] == 5120:
dit_config["rope_h_extrapolation_ratio"] = 2.0
dit_config["rope_w_extrapolation_ratio"] = 2.0
dit_config["rope_t_extrapolation_ratio"] = 0.8333333333333334
dit_config["extra_h_extrapolation_ratio"] = 1.0
dit_config["extra_w_extrapolation_ratio"] = 1.0
dit_config["extra_t_extrapolation_ratio"] = 1.0
dit_config["rope_enable_fps_modulation"] = False
return dit_config
if '{}time_caption_embed.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: # Omnigen2
dit_config = {}
dit_config["image_model"] = "omnigen2"
dit_config["axes_dim_rope"] = [40, 40, 40]
dit_config["axes_lens"] = [1024, 1664, 1664]
dit_config["ffn_dim_multiplier"] = None
dit_config["hidden_size"] = 2520
dit_config["in_channels"] = 16
dit_config["multiple_of"] = 256
dit_config["norm_eps"] = 1e-05
dit_config["num_attention_heads"] = 21
dit_config["num_kv_heads"] = 7
dit_config["num_layers"] = 32
dit_config["num_refiner_layers"] = 2
dit_config["out_channels"] = None
dit_config["patch_size"] = 2
dit_config["text_feat_dim"] = 2048
dit_config["timestep_scale"] = 1000.0
return dit_config
if '{}txt_norm.weight'.format(key_prefix) in state_dict_keys: # Qwen Image
dit_config = {}
dit_config["image_model"] = "qwen_image"
dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@ -793,7 +898,7 @@ def convert_diffusers_mmdit(state_dict, output_prefix=""):
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
hidden_size = state_dict["x_embedder.bias"].shape[0]
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix)
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict and 'pos_embed.proj.weight' in state_dict: #SD3
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)

View File

@ -22,6 +22,7 @@ from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import importlib
import platform
import weakref
import gc
@ -78,7 +79,6 @@ try:
torch_version = torch.version.__version__
temp = torch_version.split(".")
torch_version_numeric = (int(temp[0]), int(temp[1]))
xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available()
except:
pass
@ -101,11 +101,15 @@ if args.directml is not None:
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import intel_extension_for_pytorch as ipex
_ = torch.xpu.device_count()
xpu_available = xpu_available or torch.xpu.is_available()
import intel_extension_for_pytorch as ipex # noqa: F401
except:
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
pass
try:
_ = torch.xpu.device_count()
xpu_available = torch.xpu.is_available()
except:
xpu_available = False
try:
if torch.backends.mps.is_available():
@ -128,6 +132,11 @@ try:
except:
mlu_available = False
try:
ixuca_available = hasattr(torch, "corex")
except:
ixuca_available = False
if args.cpu:
cpu_state = CPUState.CPU
@ -151,6 +160,12 @@ def is_mlu():
return True
return False
def is_ixuca():
global ixuca_available
if ixuca_available:
return True
return False
def get_torch_device():
global directml_enabled
global cpu_state
@ -186,8 +201,9 @@ def get_total_memory(dev=None, torch_total_too=False):
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total_xpu = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_reserved
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total = mem_total_xpu
elif is_ascend_npu():
stats = torch.npu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
@ -274,6 +290,24 @@ def is_amd():
return True
return False
def amd_min_version(device=None, min_rdna_version=0):
if not is_amd():
return False
if is_device_cpu(device):
return False
arch = torch.cuda.get_device_properties(device).gcnArchName
if arch.startswith('gfx') and len(arch) == 7:
try:
cmp_rdna_version = int(arch[4]) + 2
except:
cmp_rdna_version = 0
if cmp_rdna_version >= min_rdna_version:
return True
return False
MIN_WEIGHT_MEMORY_RATIO = 0.4
if is_nvidia():
MIN_WEIGHT_MEMORY_RATIO = 0.0
@ -288,13 +322,14 @@ try:
if torch_version_numeric[0] >= 2:
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
if is_intel_xpu() or is_ascend_npu() or is_mlu():
if is_intel_xpu() or is_ascend_npu() or is_mlu() or is_ixuca():
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
SUPPORT_FP8_OPS = args.supports_fp8_compute
try:
if is_amd():
try:
@ -305,9 +340,17 @@ try:
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches
ENABLE_PYTORCH_ATTENTION = True
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
SUPPORT_FP8_OPS = True
except:
pass
@ -320,7 +363,7 @@ if ENABLE_PYTORCH_ATTENTION:
PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other
try:
if is_nvidia() and PerformanceFeature.Fp16Accumulation in args.fast:
if (is_nvidia() or is_amd()) and PerformanceFeature.Fp16Accumulation in args.fast:
torch.backends.cuda.matmul.allow_fp16_accumulation = True
PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance
logging.info("Enabled fp16 accumulation.")
@ -328,7 +371,7 @@ except:
pass
try:
if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5:
if torch_version_numeric >= (2, 5):
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except:
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
@ -372,6 +415,8 @@ def get_torch_device_name(device):
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
elif device.type == "xpu":
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "{}".format(device.type)
elif is_intel_xpu():
@ -507,6 +552,8 @@ WINDOWS = any(platform.win32_ver())
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
if total_vram > (15 * 1024): # more extra reserved vram on 16GB+ cards
EXTRA_RESERVED_VRAM += 100 * 1024 * 1024
if args.reserve_vram is not None:
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
@ -566,7 +613,13 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
else:
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
models = set(models)
models_temp = set()
for m in models:
models_temp.add(m)
for mm in m.model_patches_models():
models_temp.add(mm)
models = models_temp
models_to_load = []
@ -871,7 +924,10 @@ def vae_dtype(device=None, allowed_dtypes=[]):
return d
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
# also a problem on RDNA4 except fp32 is also slow there.
# This is due to large bf16 convolutions being extremely slow.
if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device):
return d
return torch.float32
@ -921,9 +977,11 @@ def pick_weight_dtype(dtype, fallback_dtype, device=None):
return dtype
def device_supports_non_blocking(device):
if args.force_non_blocking:
return True
if is_device_mps(device):
return False #pytorch bug? mps doesn't support non blocking
if is_intel_xpu():
if is_intel_xpu(): #xpu does support non blocking but it is slower on iGPUs for some reason so disable by default until situation changes
return False
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
return False
@ -963,6 +1021,8 @@ def get_offload_stream(device):
stream_counter = (stream_counter + 1) % len(ss)
if is_device_cuda(device):
ss[stream_counter].wait_stream(torch.cuda.current_stream())
elif is_device_xpu(device):
ss[stream_counter].wait_stream(torch.xpu.current_stream())
stream_counters[device] = stream_counter
return s
elif is_device_cuda(device):
@ -974,6 +1034,15 @@ def get_offload_stream(device):
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
elif is_device_xpu(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.xpu.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
return None
def sync_stream(device, stream):
@ -981,6 +1050,8 @@ def sync_stream(device, stream):
return
if is_device_cuda(device):
torch.cuda.current_stream().wait_stream(stream)
elif is_device_xpu(device):
torch.xpu.current_stream().wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
if device is None or weight.device == device:
@ -1022,6 +1093,8 @@ def xformers_enabled():
return False
if is_mlu():
return False
if is_ixuca():
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
@ -1047,7 +1120,7 @@ def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
if is_nvidia():
return True
if is_intel_xpu():
return True
@ -1057,13 +1130,15 @@ def pytorch_attention_flash_attention():
return True
if is_amd():
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
if is_ixuca():
return True
return False
def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
macos_version = mac_version()
if macos_version is not None and ((14, 5) <= macos_version < (16,)): # black image bug on recent versions of macOS
if macos_version is not None and ((14, 5) <= macos_version): # black image bug on recent versions of macOS, I don't think it's ever getting fixed
upcast = True
if upcast:
@ -1087,8 +1162,8 @@ def get_free_memory(dev=None, torch_free_too=False):
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_xpu + mem_free_torch
elif is_ascend_npu():
stats = torch.npu.memory_stats(dev)
@ -1137,6 +1212,9 @@ def is_device_cpu(device):
def is_device_mps(device):
return is_device_type(device, 'mps')
def is_device_xpu(device):
return is_device_type(device, 'xpu')
def is_device_cuda(device):
return is_device_type(device, 'cuda')
@ -1168,7 +1246,10 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
return False
if is_intel_xpu():
return True
if torch_version_numeric < (2, 3):
return True
else:
return torch.xpu.get_device_properties(device).has_fp16
if is_ascend_npu():
return True
@ -1176,6 +1257,9 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
if is_mlu():
return True
if is_ixuca():
return True
if torch.version.hip:
return True
@ -1231,11 +1315,17 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
if is_intel_xpu():
return True
if torch_version_numeric < (2, 3):
return True
else:
return torch.xpu.is_bf16_supported()
if is_ascend_npu():
return True
if is_ixuca():
return True
if is_amd():
arch = torch.cuda.get_device_properties(device).gcnArchName
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
@ -1262,7 +1352,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
def supports_fp8_compute(device=None):
if args.supports_fp8_compute:
if SUPPORT_FP8_OPS:
return True
if not is_nvidia():
@ -1276,15 +1366,22 @@ def supports_fp8_compute(device=None):
if props.minor < 9:
return False
if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3):
if torch_version_numeric < (2, 3):
return False
if WINDOWS:
if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4):
if torch_version_numeric < (2, 4):
return False
return True
def extended_fp16_support():
# TODO: check why some models work with fp16 on newer torch versions but not on older
if torch_version_numeric < (2, 7):
return False
return True
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:

View File

@ -17,23 +17,26 @@
"""
from __future__ import annotations
from typing import Optional, Callable
import torch
import collections
import copy
import inspect
import logging
import uuid
import collections
import math
import uuid
from typing import Callable, Optional
import torch
import comfy.utils
import comfy.float
import comfy.model_management
import comfy.lora
import comfy.hooks
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
import comfy.utils
from comfy.comfy_types import UnetWrapperFunction
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
def string_to_seed(data):
crc = 0xFFFFFFFF
@ -376,6 +379,9 @@ class ModelPatcher:
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)
def set_model_sampler_calc_cond_batch_function(self, sampler_calc_cond_batch_function):
self.model_options["sampler_calc_cond_batch_function"] = sampler_calc_cond_batch_function
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
self.model_options["model_function_wrapper"] = unet_wrapper_function
@ -424,6 +430,12 @@ class ModelPatcher:
def set_model_forward_timestep_embed_patch(self, patch):
self.set_model_patch(patch, "forward_timestep_embed_patch")
def set_model_double_block_patch(self, patch):
self.set_model_patch(patch, "double_block")
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
@ -480,6 +492,30 @@ class ModelPatcher:
if hasattr(wrap_func, "to"):
self.model_options["model_function_wrapper"] = wrap_func.to(device)
def model_patches_models(self):
to = self.model_options["transformer_options"]
models = []
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "models"):
models += patch_list[i].models()
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "models"):
models += patch_list[k].models()
if "model_function_wrapper" in self.model_options:
wrap_func = self.model_options["model_function_wrapper"]
if hasattr(wrap_func, "models"):
models += wrap_func.models()
return models
def model_dtype(self):
if hasattr(self.model, "get_dtype"):
return self.model.get_dtype()

View File

@ -77,6 +77,25 @@ class IMG_TO_IMG(X0):
def calculate_input(self, sigma, noise):
return noise
class COSMOS_RFLOW:
def calculate_input(self, sigma, noise):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
return noise * (1.0 - sigma)
def calculate_denoised(self, sigma, model_output, model_input):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input * (1.0 - sigma) - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
noise = noise * sigma
noise += latent_image
return noise
def inverse_noise_scaling(self, sigma, latent):
return latent
class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None, zsnr=None):
@ -350,3 +369,15 @@ class ModelSamplingFlux(torch.nn.Module):
if percent >= 1.0:
return 0.0
return flux_time_shift(self.shift, 1.0, 1.0 - percent)
class ModelSamplingCosmosRFlow(ModelSamplingContinuousEDM):
def timestep(self, sigma):
return sigma / (sigma + 1)
def sigma(self, timestep):
sigma_max = self.sigma_max
if timestep >= (sigma_max / (sigma_max + 1)):
return sigma_max
return timestep / (1 - timestep)

View File

@ -24,8 +24,37 @@ import comfy.float
import comfy.rmsnorm
import contextlib
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
try:
if torch.cuda.is_available():
from torch.nn.attention import SDPBackend, sdpa_kernel
import inspect
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
SDPA_BACKEND_PRIORITY = [
SDPBackend.FLASH_ATTENTION,
SDPBackend.EFFICIENT_ATTENTION,
SDPBackend.MATH,
]
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
else:
logging.warning("Torch version too old to set sdpa backend priority.")
except (ModuleNotFoundError, TypeError):
logging.warning("Could not set sdpa backend priority.")
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
torch.backends.cudnn.benchmark = True
def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
@ -336,9 +365,12 @@ class fp8_ops(manual_cast):
return None
def forward_comfy_cast_weights(self, input):
out = fp8_linear(self, input)
if out is not None:
return out
try:
out = fp8_linear(self, input)
if out is not None:
return out
except Exception as e:
logging.info("Exception during fp8 op: {}".format(e))
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)

View File

@ -50,6 +50,7 @@ class WrappersMP:
OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample"
PREDICT_NOISE = "predict_noise"
CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model"
DIFFUSION_MODEL = "diffusion_model"

View File

@ -1,6 +1,7 @@
import torch
import comfy.model_management
import numbers
import logging
RMSNorm = None
@ -9,6 +10,7 @@ try:
RMSNorm = torch.nn.RMSNorm
except:
rms_norm_torch = None
logging.warning("Please update pytorch to use native RMSNorm")
def rms_norm(x, weight=None, eps=1e-6):

View File

@ -149,7 +149,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
'''
Registers hooks from conds.
'''
@ -158,8 +158,8 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
for k in conds:
get_hooks_from_cond(conds[k], hooks)
# add wrappers and callbacks from ModelPatcher to transformer_options
model_options["transformer_options"]["wrappers"] = comfy.patcher_extension.copy_nested_dicts(model.wrappers)
model_options["transformer_options"]["callbacks"] = comfy.patcher_extension.copy_nested_dicts(model.callbacks)
comfy.patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("wrappers", {}), model.wrappers, copy_dict1=False)
comfy.patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("callbacks", {}), model.callbacks, copy_dict1=False)
# begin registering hooks
registered = comfy.hooks.HookGroup()
target_dict = comfy.hooks.create_target_dict(comfy.hooks.EnumWeightTarget.Model)

48
comfy/samplers.py Normal file → Executable file
View File

@ -16,6 +16,8 @@ import comfy.sampler_helpers
import comfy.model_patcher
import comfy.patcher_extension
import comfy.hooks
import comfy.context_windows
import comfy.utils
import scipy.stats
import numpy
@ -60,7 +62,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
if "mask_strength" in conds:
mask_strength = conds["mask_strength"]
mask = conds['mask']
assert (mask.shape[1:] == x_in.shape[2:])
# assert (mask.shape[1:] == x_in.shape[2:])
mask = mask[:input_x.shape[0]]
if area is not None:
@ -68,7 +70,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
mask = mask.narrow(i + 1, area[len(dims) + i], area[i])
mask = mask * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
mask = mask.unsqueeze(1).repeat((input_x.shape[0] // mask.shape[0], input_x.shape[1]) + (1, ) * (mask.ndim - 1))
else:
mask = torch.ones_like(input_x)
mult = mask * strength
@ -89,7 +91,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
conditioning = {}
model_conds = conds["model_conds"]
for c in model_conds:
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], area=area)
hooks = conds.get('hooks', None)
control = conds.get('control', None)
@ -198,14 +200,20 @@ def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.H
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
def calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options: dict[str]):
handler: comfy.context_windows.ContextHandlerABC = model_options.get("context_handler", None)
if handler is None or not handler.should_use_context(model, conds, x_in, timestep, model_options):
return _calc_cond_batch_outer(model, conds, x_in, timestep, model_options)
return handler.execute(_calc_cond_batch_outer, model, conds, x_in, timestep, model_options)
def _calc_cond_batch_outer(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_calc_cond_batch,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, model_options, is_model_options=True)
)
return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
out_conds = []
out_counts = []
# separate conds by matching hooks
@ -373,7 +381,11 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
uncond_ = uncond
conds = [cond, uncond_]
out = calc_cond_batch(model, conds, x, timestep, model_options)
if "sampler_calc_cond_batch_function" in model_options:
args = {"conds": conds, "input": x, "sigma": timestep, "model": model, "model_options": model_options}
out = model_options["sampler_calc_cond_batch_function"](args)
else:
out = calc_cond_batch(model, conds, x, timestep, model_options)
for fn in model_options.get("sampler_pre_cfg_function", []):
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
@ -542,7 +554,10 @@ def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
if len(mask.shape) == len(dims):
mask = mask.unsqueeze(0)
if mask.shape[1:] != dims:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
if mask.ndim < 4:
mask = comfy.utils.common_upscale(mask.unsqueeze(1), dims[-1], dims[-2], 'bilinear', 'none').squeeze(1)
else:
mask = comfy.utils.common_upscale(mask, dims[-1], dims[-2], 'bilinear', 'none')
if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
@ -714,9 +729,9 @@ class Sampler:
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
@ -942,7 +957,14 @@ class CFGGuider:
self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])
def __call__(self, *args, **kwargs):
return self.predict_noise(*args, **kwargs)
return self.outer_predict_noise(*args, **kwargs)
def outer_predict_noise(self, x, timestep, model_options={}, seed=None):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self.predict_noise,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, self.model_options, is_model_options=True)
).execute(x, timestep, model_options, seed)
def predict_noise(self, x, timestep, model_options={}, seed=None):
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
@ -1039,13 +1061,13 @@ class SchedulerHandler(NamedTuple):
use_ms: bool = True
SCHEDULER_HANDLERS = {
"normal": SchedulerHandler(normal_scheduler),
"simple": SchedulerHandler(simple_scheduler),
"sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
"karras": SchedulerHandler(k_diffusion_sampling.get_sigmas_karras, use_ms=False),
"exponential": SchedulerHandler(k_diffusion_sampling.get_sigmas_exponential, use_ms=False),
"sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
"simple": SchedulerHandler(simple_scheduler),
"ddim_uniform": SchedulerHandler(ddim_scheduler),
"beta": SchedulerHandler(beta_scheduler),
"normal": SchedulerHandler(normal_scheduler),
"linear_quadratic": SchedulerHandler(linear_quadratic_schedule),
"kl_optimal": SchedulerHandler(kl_optimal_scheduler, use_ms=False),
}

View File

@ -14,10 +14,12 @@ import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae
import comfy.ldm.wan.vae2_2
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import yaml
import math
import os
import comfy.utils
@ -44,6 +46,8 @@ import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.model_patcher
import comfy.lora
@ -418,28 +422,53 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.middle.0.residual.0.gamma" in sd:
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
if "decoder.upsamples.0.upsamples.0.residual.2.weight" in sd: # Wan 2.2 VAE
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.latent_channels = 48
ddconfig = {"dim": 160, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae2_2.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
else: # Wan 2.1 VAE
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
ln_post = "geo_decoder.ln_post.weight" in sd
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
def estimate_memory(shape, dtype, num_layers = 16, kv_cache_multiplier = 2):
batch, num_tokens, hidden_dim = shape
dtype_size = model_management.dtype_size(dtype)
total_mem = batch * num_tokens * hidden_dim * dtype_size * (1 + kv_cache_multiplier * num_layers)
return total_mem
# better memory estimations
self.memory_used_encode = lambda shape, dtype, num_layers = 8, kv_cache_multiplier = 0:\
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.memory_used_decode = lambda shape, dtype, num_layers = 16, kv_cache_multiplier = 2: \
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE()
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
@ -754,6 +783,8 @@ class CLIPType(Enum):
HIDREAM = 14
CHROMA = 15
ACE = 16
OMNIGEN2 = 17
QWEN_IMAGE = 18
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -773,6 +804,8 @@ class TEModel(Enum):
LLAMA3_8 = 7
T5_XXL_OLD = 8
GEMMA_2_2B = 9
QWEN25_3B = 10
QWEN25_7B = 11
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@ -793,6 +826,12 @@ def detect_te_model(sd):
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
return TEModel.GEMMA_2_2B
if 'model.layers.0.self_attn.k_proj.bias' in sd:
weight = sd['model.layers.0.self_attn.k_proj.bias']
if weight.shape[0] == 256:
return TEModel.QWEN25_3B
if weight.shape[0] == 512:
return TEModel.QWEN25_7B
if "model.layers.0.post_attention_layernorm.weight" in sd:
return TEModel.LLAMA3_8
return None
@ -894,6 +933,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
elif te_model == TEModel.QWEN25_7B:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
@ -969,6 +1014,12 @@ def load_gligen(ckpt_path):
model = model.half()
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def model_detection_error_hint(path, state_dict):
filename = os.path.basename(path)
if 'lora' in filename.lower():
return "\nHINT: This seems to be a Lora file and Lora files should be put in the lora folder and loaded with a lora loader node.."
return ""
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
@ -997,7 +1048,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(ckpt_path, model_detection_error_hint(ckpt_path, sd)))
return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
@ -1081,7 +1132,28 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return (model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
def load_diffusion_model_state_dict(sd, model_options={}):
"""
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
Args:
sd (dict): State dictionary containing model weights and configuration
model_options (dict, optional): Additional options for model loading. Supports:
- dtype: Override model data type
- custom_operations: Custom model operations
- fp8_optimizations: Enable FP8 optimizations
Returns:
ModelPatcher: A wrapped model instance that handles device management and weight loading.
Returns None if the model configuration cannot be detected.
The function:
1. Detects and handles different model formats (regular, diffusers, mmdit)
2. Configures model dtype based on parameters and device capabilities
3. Handles weight conversion and device placement
4. Manages model optimization settings
5. Loads weights and returns a device-managed model instance
"""
dtype = model_options.get("dtype", None)
#Allow loading unets from checkpoint files
@ -1139,7 +1211,7 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in unet: {}".format(left_over))
logging.info("left over keys in diffusion model: {}".format(left_over))
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
@ -1147,8 +1219,8 @@ def load_diffusion_model(unet_path, model_options={}):
sd = comfy.utils.load_torch_file(unet_path)
model = load_diffusion_model_state_dict(sd, model_options=model_options)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
return model
def load_unet(unet_path, dtype=None):

View File

@ -204,17 +204,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
index = 0
pad_extra = 0
embeds_info = []
for o in other_embeds:
emb = o[1]
if torch.is_tensor(emb):
emb = {"type": "embedding", "data": emb}
extra = None
emb_type = emb.get("type", None)
if emb_type == "embedding":
emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
emb, extra = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
@ -229,6 +231,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
embeds_info.append({"type": emb_type, "index": ind, "size": emb_shape, "extra": extra})
else:
index += -1
pad_extra += emb_shape
@ -243,11 +246,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
@ -258,7 +261,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32, embeds_info=embeds_info)
if self.layer == "last":
z = outputs[0].float()
@ -462,7 +465,7 @@ class SDTokenizer:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
self.min_length = min_length
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.end_token = None
self.min_padding = min_padding
@ -482,7 +485,8 @@ class SDTokenizer:
if end_token is not None:
self.end_token = end_token
else:
self.end_token = empty[0]
if has_end_token:
self.end_token = empty[0]
if pad_token is not None:
self.pad_token = pad_token
@ -530,7 +534,10 @@ class SDTokenizer:
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
if kwargs.get("disable_weights", False):
parsed_weights = [(text, 1.0)]
else:
parsed_weights = token_weights(text, 1.0)
# tokenize words
tokens = []

View File

@ -18,7 +18,7 @@
"single_word": false
},
"errors": "replace",
"model_max_length": 77,
"model_max_length": 8192,
"name_or_path": "openai/clip-vit-large-patch14",
"pad_token": "<|endoftext|>",
"special_tokens_map_file": "./special_tokens_map.json",

View File

@ -18,6 +18,8 @@ import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
from . import supported_models_base
from . import latent_formats
@ -698,7 +700,7 @@ class Flux(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.Flux
memory_usage_factor = 2.8
memory_usage_factor = 3.1 # TODO: debug why flux mem usage is so weird on windows.
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
@ -908,6 +910,48 @@ class CosmosI2V(CosmosT2V):
out = model_base.CosmosVideo(self, image_to_video=True, device=device)
return out
class CosmosT2IPredict2(supported_models_base.BASE):
unet_config = {
"image_model": "cosmos_predict2",
"in_channels": 16,
}
sampling_settings = {
"sigma_data": 1.0,
"sigma_max": 80.0,
"sigma_min": 0.002,
}
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
class CosmosI2VPredict2(CosmosT2IPredict2):
unet_config = {
"image_model": "cosmos_predict2",
"in_channels": 17,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, image_to_video=True, device=device)
return out
class Lumina2(supported_models_base.BASE):
unet_config = {
"image_model": "lumina2",
@ -1002,6 +1046,18 @@ class WAN21_Camera(WAN21_T2V):
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
return out
class WAN22_Camera(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "camera_2.2",
"in_dim": 36,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
return out
class WAN21_Vace(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
@ -1016,6 +1072,32 @@ class WAN21_Vace(WAN21_T2V):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class WAN22_S2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "s2v",
}
def __init__(self, unet_config):
super().__init__(unet_config)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN22_S2V(self, device=device)
return out
class WAN22_T2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "t2v",
"out_dim": 48,
}
latent_format = latent_formats.Wan22
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN22(self, image_to_video=True, device=device)
return out
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
@ -1046,6 +1128,17 @@ class Hunyuan3Dv2(supported_models_base.BASE):
def clip_target(self, state_dict={}):
return None
class Hunyuan3Dv2_1(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2_1",
}
latent_format = latent_formats.Hunyuan3Dv2_1
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Hunyuan3Dv2_1(self, device = device)
return out
class Hunyuan3Dv2mini(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2",
@ -1139,6 +1232,70 @@ class ACEStep(supported_models_base.BASE):
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.ace.AceT5Tokenizer, comfy.text_encoders.ace.AceT5Model)
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep]
class Omnigen2(supported_models_base.BASE):
unet_config = {
"image_model": "omnigen2",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 2.6,
}
memory_usage_factor = 1.65 #TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
if comfy.model_management.extended_fp16_support():
self.supported_inference_dtypes = [torch.float16] + self.supported_inference_dtypes
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Omnigen2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_3b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.omnigen2.Omnigen2Tokenizer, comfy.text_encoders.omnigen2.te(**hunyuan_detect))
class QwenImage(supported_models_base.BASE):
unet_config = {
"image_model": "qwen_image",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 1.15,
}
memory_usage_factor = 1.8 #TODO
unet_extra_config = {}
latent_format = latent_formats.Wan21
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.QwenImage(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
models += [SVD_img2vid]

View File

@ -116,7 +116,7 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
mask = None
if attention_mask is not None:

View File

@ -2,12 +2,14 @@ import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ldm.common_dit
import comfy.model_management
from . import qwen_vl
@dataclass
class Llama2Config:
@ -24,6 +26,44 @@ class Llama2Config:
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
@dataclass
class Qwen25_3BConfig:
vocab_size: int = 151936
hidden_size: int = 2048
intermediate_size: int = 11008
num_hidden_layers: int = 36
num_attention_heads: int = 16
num_key_value_heads: int = 2
max_position_embeddings: int = 128000
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
rope_dims = None
@dataclass
class Qwen25_7BVLI_Config:
vocab_size: int = 152064
hidden_size: int = 3584
intermediate_size: int = 18944
num_hidden_layers: int = 28
num_attention_heads: int = 28
num_key_value_heads: int = 4
max_position_embeddings: int = 128000
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
rope_dims = [16, 24, 24]
@dataclass
class Gemma2_2B_Config:
@ -40,6 +80,8 @@ class Gemma2_2B_Config:
head_dim = 256
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
qkv_bias = False
rope_dims = None
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
@ -64,24 +106,30 @@ def rotate_half(x):
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, seq_len, theta, device=None):
def precompute_freqs_cis(head_dim, position_ids, theta, rope_dims=None, device=None):
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0)
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
if rope_dims is not None and position_ids.shape[0] > 1:
mrope_section = rope_dims * 2
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
else:
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
return (cos, sin)
def apply_rope(xq, xk, freqs_cis):
cos = freqs_cis[0].unsqueeze(1)
sin = freqs_cis[1].unsqueeze(1)
cos = freqs_cis[0]
sin = freqs_cis[1]
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed, k_embed
@ -98,9 +146,9 @@ class Attention(nn.Module):
self.inner_size = self.num_heads * self.head_dim
ops = ops or nn
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=False, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=config.qkv_bias, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
def forward(
@ -241,7 +289,7 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
if embeds is not None:
x = embeds
else:
@ -250,9 +298,13 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
if position_ids is None:
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
x.shape[1],
position_ids,
self.config.rope_theta,
self.config.rope_dims,
device=x.device)
mask = None
@ -320,6 +372,53 @@ class Llama2(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_3B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen25_3BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen25_7BVLI_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.visual = qwen_vl.Qwen2VLVisionTransformer(hidden_size=1280, output_hidden_size=config.hidden_size, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image, grid = qwen_vl.process_qwen2vl_images(embed["data"])
return self.visual(image.to(device, dtype=torch.float32), grid), grid
return None, None
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
grid = None
for e in embeds_info:
if e.get("type") == "image":
grid = e.get("extra", None)
position_ids = torch.zeros((3, embeds.shape[1]), device=embeds.device)
start = e.get("index")
position_ids[:, :start] = torch.arange(0, start, device=embeds.device)
end = e.get("size") + start
len_max = int(grid.max()) // 2
start_next = len_max + start
position_ids[:, end:] = torch.arange(start_next, start_next + (embeds.shape[1] - end), device=embeds.device)
position_ids[0, start:end] = start
max_d = int(grid[0][1]) // 2
position_ids[1, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(1).repeat(1, math.ceil((end - start) / max_d)).flatten(0)[:end - start]
max_d = int(grid[0][2]) // 2
position_ids[2, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(0).repeat(math.ceil((end - start) / max_d), 1).flatten(0)[:end - start]
if grid is None:
position_ids = None
return super().forward(x, attention_mask=attention_mask, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=final_layer_norm_intermediate, dtype=dtype, position_ids=position_ids)
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):

View File

@ -0,0 +1,44 @@
from transformers import Qwen2Tokenizer
from comfy import sd1_clip
import comfy.text_encoders.llama
import os
class Qwen25_3BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen25_3b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class Omnigen2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_3b", tokenizer=Qwen25_3BTokenizer)
self.llama_template = '<|im_start|>system\nYou are a helpful assistant that generates high-quality images based on user instructions.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n'
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
class Qwen25_3BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_3B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Omnigen2Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None):
class Omnigen2TEModel_(Omnigen2Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Omnigen2TEModel_

View File

@ -1,42 +1,42 @@
import os
from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
from comfy.sd1_clip import gen_empty_tokens
from transformers import T5TokenizerFast
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
# PixArt expects the negative to be all pad tokens
special_tokens = special_tokens.copy()
special_tokens.pop("end")
return gen_empty_tokens(special_tokens, *args, **kwargs)
class PixArtT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
class PixArtTEModel_(PixArtT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return PixArtTEModel_
import os
from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
from comfy.sd1_clip import gen_empty_tokens
from transformers import T5TokenizerFast
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
# PixArt expects the negative to be all pad tokens
special_tokens = special_tokens.copy()
special_tokens.pop("end")
return gen_empty_tokens(special_tokens, *args, **kwargs)
class PixArtT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
class PixArtTEModel_(PixArtT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return PixArtTEModel_

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,241 @@
{
"add_bos_token": false,
"add_prefix_space": false,
"added_tokens_decoder": {
"151643": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151644": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151645": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151646": {
"content": "<|object_ref_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151647": {
"content": "<|object_ref_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151648": {
"content": "<|box_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151649": {
"content": "<|box_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151650": {
"content": "<|quad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151651": {
"content": "<|quad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151652": {
"content": "<|vision_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151653": {
"content": "<|vision_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151654": {
"content": "<|vision_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151655": {
"content": "<|image_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151656": {
"content": "<|video_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151657": {
"content": "<tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151658": {
"content": "</tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151659": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151660": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151661": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151662": {
"content": "<|fim_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151663": {
"content": "<|repo_name|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151664": {
"content": "<|file_sep|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151665": {
"content": "<|img|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151666": {
"content": "<|endofimg|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151667": {
"content": "<|meta|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151668": {
"content": "<|endofmeta|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"bos_token": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"clean_up_tokenization_spaces": false,
"eos_token": "<|im_end|>",
"errors": "replace",
"extra_special_tokens": {},
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"processor_class": "Qwen2_5_VLProcessor",
"split_special_tokens": false,
"tokenizer_class": "Qwen2Tokenizer",
"unk_token": null
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,85 @@
from transformers import Qwen2Tokenizer
from comfy import sd1_clip
import comfy.text_encoders.llama
import os
import torch
import numbers
class Qwen25_7BVLITokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=3584, embedding_key='qwen25_7b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer)
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
if llama_template is None:
if len(images) > 0:
llama_text = self.llama_template_images.format(text)
else:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
key_name = next(iter(tokens))
embed_count = 0
qwen_tokens = tokens[key_name]
for r in qwen_tokens:
for i in range(len(r)):
if r[i][0] == 151655:
if len(images) > embed_count:
r[i] = ({"type": "image", "data": images[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return tokens
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class QwenImageTEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
def encode_token_weights(self, token_weight_pairs):
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
tok_pairs = token_weight_pairs["qwen25_7b"][0]
count_im_start = 0
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 151644 and count_im_start < 2:
template_end = i
count_im_start += 1
if out.shape[1] > (template_end + 3):
if tok_pairs[template_end + 1][0] == 872:
if tok_pairs[template_end + 2][0] == 198:
template_end += 3
out = out[:, template_end:]
extra["attention_mask"] = extra["attention_mask"][:, template_end:]
if extra["attention_mask"].sum() == torch.numel(extra["attention_mask"]):
extra.pop("attention_mask") # attention mask is useless if no masked elements
return out, pooled, extra
def te(dtype_llama=None, llama_scaled_fp8=None):
class QwenImageTEModel_(QwenImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return QwenImageTEModel_

View File

@ -0,0 +1,428 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
def process_qwen2vl_images(
images: torch.Tensor,
min_pixels: int = 3136,
max_pixels: int = 12845056,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
image_mean: list = None,
image_std: list = None,
):
if image_mean is None:
image_mean = [0.48145466, 0.4578275, 0.40821073]
if image_std is None:
image_std = [0.26862954, 0.26130258, 0.27577711]
batch_size, height, width, channels = images.shape
device = images.device
# dtype = images.dtype
images = images.permute(0, 3, 1, 2)
grid_thw_list = []
img = images[0]
factor = patch_size * merge_size
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = max(factor, math.floor(height / beta / factor) * factor)
w_bar = max(factor, math.floor(width / beta / factor) * factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
img_resized = F.interpolate(
img.unsqueeze(0),
size=(h_bar, w_bar),
mode='bilinear',
align_corners=False
).squeeze(0)
normalized = img_resized.clone()
for c in range(3):
normalized[c] = (img_resized[c] - image_mean[c]) / image_std[c]
grid_h = h_bar // patch_size
grid_w = w_bar // patch_size
grid_thw = torch.tensor([1, grid_h, grid_w], device=device, dtype=torch.long)
pixel_values = normalized
grid_thw_list.append(grid_thw)
image_grid_thw = torch.stack(grid_thw_list)
grid_t = 1
channel = pixel_values.shape[0]
pixel_values = pixel_values.unsqueeze(0).repeat(2, 1, 1, 1)
patches = pixel_values.reshape(
grid_t,
temporal_patch_size,
channel,
grid_h // merge_size,
merge_size,
patch_size,
grid_w // merge_size,
merge_size,
patch_size,
)
patches = patches.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w,
channel * temporal_patch_size * patch_size * patch_size
)
return flatten_patches, image_grid_thw
class VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
embed_dim: int = 3584,
device=None,
dtype=None,
ops=None,
):
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = ops.Conv3d(
in_channels,
embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=False,
device=device,
dtype=dtype
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.view(
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj(hidden_states)
return hidden_states.view(-1, self.embed_dim)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(q, k, cos, sin):
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, seqlen: int, device) -> torch.Tensor:
inv_freq = 1.0 / (self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float, device=device) / self.dim))
seq = torch.arange(seqlen, device=inv_freq.device, dtype=inv_freq.dtype)
freqs = torch.outer(seq, inv_freq)
return freqs
class PatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size ** 2)
self.ln_q = ops.RMSNorm(context_dim, eps=1e-6, device=device, dtype=dtype)
self.mlp = nn.Sequential(
ops.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype),
nn.GELU(),
ops.Linear(self.hidden_size, dim, device=device, dtype=dtype),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x).reshape(-1, self.hidden_size)
x = self.mlp(x)
return x
class VisionAttention(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.scaling = self.head_dim ** -0.5
self.qkv = ops.Linear(hidden_size, hidden_size * 3, bias=True, device=device, dtype=dtype)
self.proj = ops.Linear(hidden_size, hidden_size, bias=True, device=device, dtype=dtype)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
if hidden_states.dim() == 2:
seq_length, _ = hidden_states.shape
batch_size = 1
hidden_states = hidden_states.unsqueeze(0)
else:
batch_size, seq_length, _ = hidden_states.shape
qkv = self.qkv(hidden_states)
qkv = qkv.reshape(batch_size, seq_length, 3, self.num_heads, self.head_dim)
query_states, key_states, value_states = qkv.reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
query_states = query_states.transpose(0, 1).unsqueeze(0)
key_states = key_states.transpose(0, 1).unsqueeze(0)
value_states = value_states.transpose(0, 1).unsqueeze(0)
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
splits = [
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
]
attn_outputs = [
optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
for q, k, v in zip(*splits)
]
attn_output = torch.cat(attn_outputs, dim=1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
class VisionMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, device=None, dtype=None, ops=None):
super().__init__()
self.gate_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.up_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.down_proj = ops.Linear(intermediate_size, hidden_size, bias=True, device=device, dtype=dtype)
self.act_fn = nn.SiLU()
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class VisionBlock(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.norm1 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.norm2 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.attn = VisionAttention(hidden_size, num_heads, device=device, dtype=dtype, ops=ops)
self.mlp = VisionMLP(hidden_size, intermediate_size, device=device, dtype=dtype, ops=ops)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = self.attn(hidden_states, position_embeddings, cu_seqlens, optimized_attention)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen2VLVisionTransformer(nn.Module):
def __init__(
self,
hidden_size: int = 3584,
output_hidden_size: int = 3584,
intermediate_size: int = 3420,
num_heads: int = 16,
num_layers: int = 32,
patch_size: int = 14,
temporal_patch_size: int = 2,
spatial_merge_size: int = 2,
window_size: int = 112,
device=None,
dtype=None,
ops=None
):
super().__init__()
self.hidden_size = hidden_size
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.window_size = window_size
self.fullatt_block_indexes = [7, 15, 23, 31]
self.patch_embed = VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_channels=3,
embed_dim=hidden_size,
device=device,
dtype=dtype,
ops=ops,
)
head_dim = hidden_size // num_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([
VisionBlock(hidden_size, intermediate_size, num_heads, device, dtype, ops)
for _ in range(num_layers)
])
self.merger = PatchMerger(
dim=output_hidden_size,
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
device=device,
dtype=dtype,
ops=ops,
)
def get_window_index(self, grid_thw):
window_index = []
cu_window_seqlens = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_size * self.spatial_merge_size + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def get_position_embeddings(self, grid_thw, device):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h, device=device).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3).flatten()
wpos_ids = torch.arange(w, device=device).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3).flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size, device)
return rotary_pos_emb_full[pos_ids].flatten(1)
def forward(
self,
pixel_values: torch.Tensor,
image_grid_thw: Optional[torch.Tensor] = None,
) -> torch.Tensor:
optimized_attention = optimized_attention_for_device(pixel_values.device, mask=False, small_input=True)
hidden_states = self.patch_embed(pixel_values)
window_index, cu_window_seqlens = self.get_window_index(image_grid_thw)
cu_window_seqlens = torch.tensor(cu_window_seqlens, device=hidden_states.device)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
position_embeddings = self.get_position_embeddings(image_grid_thw, hidden_states.device)
seq_len, _ = hidden_states.size()
spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
hidden_states = hidden_states.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
position_embeddings = position_embeddings.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
position_embeddings = position_embeddings[window_index, :, :]
position_embeddings = position_embeddings.reshape(seq_len, -1)
position_embeddings = torch.cat((position_embeddings, position_embeddings), dim=-1)
position_embeddings = (position_embeddings.cos(), position_embeddings.sin())
cu_seqlens = torch.repeat_interleave(image_grid_thw[:, 1] * image_grid_thw[:, 2], image_grid_thw[:, 0]).cumsum(
dim=0,
dtype=torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for i, block in enumerate(self.blocks):
if i in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
hidden_states = block(hidden_states, position_embeddings, cu_seqlens_now, optimized_attention=optimized_attention)
hidden_states = self.merger(hidden_states)
return hidden_states

View File

@ -146,7 +146,7 @@ class T5Attention(torch.nn.Module):
)
values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
return values.contiguous()
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
q = self.q(x)
@ -199,7 +199,7 @@ class T5Stack(torch.nn.Module):
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@ -31,6 +31,7 @@ from einops import rearrange
from comfy.cli_args import args
MMAP_TORCH_FILES = args.mmap_torch_files
DISABLE_MMAP = args.disable_mmap
ALWAYS_SAFE_LOAD = False
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
@ -58,7 +59,10 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
sd[k] = f.get_tensor(k)
tensor = f.get_tensor(k)
if DISABLE_MMAP: # TODO: Not sure if this is the best way to bypass the mmap issues
tensor = tensor.to(device=device, copy=True)
sd[k] = tensor
if return_metadata:
metadata = f.metadata()
except Exception as e:
@ -77,6 +81,7 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if safe_load or ALWAYS_SAFE_LOAD:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
else:
logging.warning("WARNING: loading {} unsafely, upgrade your pytorch to 2.4 or newer to load this file safely.".format(ckpt))
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
@ -693,6 +698,26 @@ def resize_to_batch_size(tensor, batch_size):
return output
def resize_list_to_batch_size(l, batch_size):
in_batch_size = len(l)
if in_batch_size == batch_size or in_batch_size == 0:
return l
if batch_size <= 1:
return l[:batch_size]
output = []
if batch_size < in_batch_size:
scale = (in_batch_size - 1) / (batch_size - 1)
for i in range(batch_size):
output.append(l[min(round(i * scale), in_batch_size - 1)])
else:
scale = in_batch_size / batch_size
for i in range(batch_size):
output.append(l[min(math.floor((i + 0.5) * scale), in_batch_size - 1)])
return output
def convert_sd_to(state_dict, dtype):
keys = list(state_dict.keys())
for k in keys:
@ -997,11 +1022,12 @@ def set_progress_bar_global_hook(function):
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total):
def __init__(self, total, node_id=None):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
self.node_id = node_id
def update_absolute(self, value, total=None, preview=None):
if total is not None:
@ -1010,7 +1036,7 @@ class ProgressBar:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total, preview)
self.hook(self.current, self.total, preview, node_id=self.node_id)
def update(self, value):
self.update_absolute(self.current + value)

View File

@ -1,4 +1,4 @@
from .base import WeightAdapterBase
from .base import WeightAdapterBase, WeightAdapterTrainBase
from .lora import LoRAAdapter
from .loha import LoHaAdapter
from .lokr import LoKrAdapter
@ -15,3 +15,20 @@ adapters: list[type[WeightAdapterBase]] = [
OFTAdapter,
BOFTAdapter,
]
adapter_maps: dict[str, type[WeightAdapterBase]] = {
"LoRA": LoRAAdapter,
"LoHa": LoHaAdapter,
"LoKr": LoKrAdapter,
"OFT": OFTAdapter,
## We disable not implemented algo for now
# "GLoRA": GLoRAAdapter,
# "BOFT": BOFTAdapter,
}
__all__ = [
"WeightAdapterBase",
"WeightAdapterTrainBase",
"adapters",
"adapter_maps",
] + [a.__name__ for a in adapters]

View File

@ -12,12 +12,20 @@ class WeightAdapterBase:
weights: list[torch.Tensor]
@classmethod
def load(cls, x: str, lora: dict[str, torch.Tensor]) -> Optional["WeightAdapterBase"]:
def load(cls, x: str, lora: dict[str, torch.Tensor], alpha: float, dora_scale: torch.Tensor) -> Optional["WeightAdapterBase"]:
raise NotImplementedError
def to_train(self) -> "WeightAdapterTrainBase":
raise NotImplementedError
@classmethod
def create_train(cls, weight, *args) -> "WeightAdapterTrainBase":
"""
weight: The original weight tensor to be modified.
*args: Additional arguments for configuration, such as rank, alpha etc.
"""
raise NotImplementedError
def calculate_weight(
self,
weight,
@ -33,10 +41,22 @@ class WeightAdapterBase:
class WeightAdapterTrainBase(nn.Module):
# We follow the scheme of PR #7032
def __init__(self):
super().__init__()
# [TODO] Collaborate with LoRA training PR #7032
def __call__(self, w):
"""
w: The original weight tensor to be modified.
"""
raise NotImplementedError
def passive_memory_usage(self):
raise NotImplementedError("passive_memory_usage is not implemented")
def move_to(self, device):
self.to(device)
return self.passive_memory_usage()
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
@ -102,3 +122,54 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
padded_tensor[new_slices] = tensor[orig_slices]
return padded_tensor
def tucker_weight_from_conv(up, down, mid):
up = up.reshape(up.size(0), up.size(1))
down = down.reshape(down.size(0), down.size(1))
return torch.einsum("m n ..., i m, n j -> i j ...", mid, up, down)
def tucker_weight(wa, wb, t):
temp = torch.einsum("i j ..., j r -> i r ...", t, wb)
return torch.einsum("i j ..., i r -> r j ...", temp, wa)
def factorization(dimension: int, factor: int = -1) -> tuple[int, int]:
"""
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
examples)
factor
-1 2 4 8 16 ...
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
"""
if factor > 0 and (dimension % factor) == 0 and dimension >= factor**2:
m = factor
n = dimension // factor
if m > n:
n, m = m, n
return m, n
if factor < 0:
factor = dimension
m, n = 1, dimension
length = m + n
while m < n:
new_m = m + 1
while dimension % new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m > factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n

View File

@ -3,7 +3,120 @@ from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose
class HadaWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, w1u, w1d, w2u, w2d, scale=torch.tensor(1)):
ctx.save_for_backward(w1d, w1u, w2d, w2u, scale)
diff_weight = ((w1u @ w1d) * (w2u @ w2d)) * scale
return diff_weight
@staticmethod
def backward(ctx, grad_out):
(w1d, w1u, w2d, w2u, scale) = ctx.saved_tensors
grad_out = grad_out * scale
temp = grad_out * (w2u @ w2d)
grad_w1u = temp @ w1d.T
grad_w1d = w1u.T @ temp
temp = grad_out * (w1u @ w1d)
grad_w2u = temp @ w2d.T
grad_w2d = w2u.T @ temp
del temp
return grad_w1u, grad_w1d, grad_w2u, grad_w2d, None
class HadaWeightTucker(torch.autograd.Function):
@staticmethod
def forward(ctx, t1, w1u, w1d, t2, w2u, w2d, scale=torch.tensor(1)):
ctx.save_for_backward(t1, w1d, w1u, t2, w2d, w2u, scale)
rebuild1 = torch.einsum("i j ..., j r, i p -> p r ...", t1, w1d, w1u)
rebuild2 = torch.einsum("i j ..., j r, i p -> p r ...", t2, w2d, w2u)
return rebuild1 * rebuild2 * scale
@staticmethod
def backward(ctx, grad_out):
(t1, w1d, w1u, t2, w2d, w2u, scale) = ctx.saved_tensors
grad_out = grad_out * scale
temp = torch.einsum("i j ..., j r -> i r ...", t2, w2d)
rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w2u)
grad_w = rebuild * grad_out
del rebuild
grad_w1u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w1u.T)
del grad_w, temp
grad_w1d = torch.einsum("i r ..., i j ... -> r j", t1, grad_temp)
grad_t1 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w1d.T)
del grad_temp
temp = torch.einsum("i j ..., j r -> i r ...", t1, w1d)
rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w1u)
grad_w = rebuild * grad_out
del rebuild
grad_w2u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w2u.T)
del grad_w, temp
grad_w2d = torch.einsum("i r ..., i j ... -> r j", t2, grad_temp)
grad_t2 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w2d.T)
del grad_temp
return grad_t1, grad_w1u, grad_w1d, grad_t2, grad_w2u, grad_w2d, None
class LohaDiff(WeightAdapterTrainBase):
def __init__(self, weights):
super().__init__()
# Unpack weights tuple from LoHaAdapter
w1a, w1b, alpha, w2a, w2b, t1, t2, _ = weights
# Create trainable parameters
self.hada_w1_a = torch.nn.Parameter(w1a)
self.hada_w1_b = torch.nn.Parameter(w1b)
self.hada_w2_a = torch.nn.Parameter(w2a)
self.hada_w2_b = torch.nn.Parameter(w2b)
self.use_tucker = False
if t1 is not None and t2 is not None:
self.use_tucker = True
self.hada_t1 = torch.nn.Parameter(t1)
self.hada_t2 = torch.nn.Parameter(t2)
else:
# Keep the attributes for consistent access
self.hada_t1 = None
self.hada_t2 = None
# Store rank and non-trainable alpha
self.rank = w1b.shape[0]
self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)
def __call__(self, w):
org_dtype = w.dtype
scale = self.alpha / self.rank
if self.use_tucker:
diff_weight = HadaWeightTucker.apply(self.hada_t1, self.hada_w1_a, self.hada_w1_b, self.hada_t2, self.hada_w2_a, self.hada_w2_b, scale)
else:
diff_weight = HadaWeight.apply(self.hada_w1_a, self.hada_w1_b, self.hada_w2_a, self.hada_w2_b, scale)
# Add the scaled difference to the original weight
weight = w.to(diff_weight) + diff_weight.reshape(w.shape)
return weight.to(org_dtype)
def passive_memory_usage(self):
"""Calculates memory usage of the trainable parameters."""
return sum(param.numel() * param.element_size() for param in self.parameters())
class LoHaAdapter(WeightAdapterBase):
@ -13,6 +126,25 @@ class LoHaAdapter(WeightAdapterBase):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def create_train(cls, weight, rank=1, alpha=1.0):
out_dim = weight.shape[0]
in_dim = weight.shape[1:].numel()
mat1 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
torch.nn.init.normal_(mat1, 0.1)
torch.nn.init.constant_(mat2, 0.0)
mat3 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
mat4 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
torch.nn.init.normal_(mat3, 0.1)
torch.nn.init.normal_(mat4, 0.01)
return LohaDiff(
(mat1, mat2, alpha, mat3, mat4, None, None, None)
)
def to_train(self):
return LohaDiff(self.weights)
@classmethod
def load(
cls,

View File

@ -3,7 +3,77 @@ from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
from .base import (
WeightAdapterBase,
WeightAdapterTrainBase,
weight_decompose,
factorization,
)
class LokrDiff(WeightAdapterTrainBase):
def __init__(self, weights):
super().__init__()
(lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale) = weights
self.use_tucker = False
if lokr_w1_a is not None:
_, rank_a = lokr_w1_a.shape[0], lokr_w1_a.shape[1]
rank_a, _ = lokr_w1_b.shape[0], lokr_w1_b.shape[1]
self.lokr_w1_a = torch.nn.Parameter(lokr_w1_a)
self.lokr_w1_b = torch.nn.Parameter(lokr_w1_b)
self.w1_rebuild = True
self.ranka = rank_a
if lokr_w2_a is not None:
_, rank_b = lokr_w2_a.shape[0], lokr_w2_a.shape[1]
rank_b, _ = lokr_w2_b.shape[0], lokr_w2_b.shape[1]
self.lokr_w2_a = torch.nn.Parameter(lokr_w2_a)
self.lokr_w2_b = torch.nn.Parameter(lokr_w2_b)
if lokr_t2 is not None:
self.use_tucker = True
self.lokr_t2 = torch.nn.Parameter(lokr_t2)
self.w2_rebuild = True
self.rankb = rank_b
if lokr_w1 is not None:
self.lokr_w1 = torch.nn.Parameter(lokr_w1)
self.w1_rebuild = False
if lokr_w2 is not None:
self.lokr_w2 = torch.nn.Parameter(lokr_w2)
self.w2_rebuild = False
self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)
@property
def w1(self):
if self.w1_rebuild:
return (self.lokr_w1_a @ self.lokr_w1_b) * (self.alpha / self.ranka)
else:
return self.lokr_w1
@property
def w2(self):
if self.w2_rebuild:
if self.use_tucker:
w2 = torch.einsum(
'i j k l, j r, i p -> p r k l',
self.lokr_t2,
self.lokr_w2_b,
self.lokr_w2_a
)
else:
w2 = self.lokr_w2_a @ self.lokr_w2_b
return w2 * (self.alpha / self.rankb)
else:
return self.lokr_w2
def __call__(self, w):
diff = torch.kron(self.w1, self.w2)
return w + diff.reshape(w.shape).to(w)
def passive_memory_usage(self):
return sum(param.numel() * param.element_size() for param in self.parameters())
class LoKrAdapter(WeightAdapterBase):
@ -13,6 +83,23 @@ class LoKrAdapter(WeightAdapterBase):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def create_train(cls, weight, rank=1, alpha=1.0):
out_dim = weight.shape[0]
in_dim = weight.shape[1:].numel()
out1, out2 = factorization(out_dim, rank)
in1, in2 = factorization(in_dim, rank)
mat1 = torch.empty(out1, in1, device=weight.device, dtype=weight.dtype)
mat2 = torch.empty(out2, in2, device=weight.device, dtype=weight.dtype)
torch.nn.init.kaiming_uniform_(mat2, a=5**0.5)
torch.nn.init.constant_(mat1, 0.0)
return LokrDiff(
(mat1, mat2, alpha, None, None, None, None, None, None)
)
def to_train(self):
return LokrDiff(self.weights)
@classmethod
def load(
cls,

Some files were not shown because too many files have changed in this diff Show More