Use lazy % formatting in logging functions

Fixes: [PylintW1203:logging-fstring-interpolation](https://pylint.readthedocs.io/en/stable/user_guide/messages/warning/logging-fstring-interpolation.html)
This commit is contained in:
Souyama 2026-01-07 23:39:47 +05:30
parent 3cd7b32f1b
commit 72ef4a676b
35 changed files with 141 additions and 128 deletions

View File

@ -22,7 +22,7 @@ class AppSettings():
with open(file) as f:
return json.load(f)
except:
logging.error(f"The user settings file is corrupted: {file}")
logging.error("The user settings file is corrupted: %s", file)
return {}
else:
return {}

View File

@ -27,7 +27,7 @@ def safe_load_json_file(file_path: str) -> dict:
with open(file_path, "r", encoding="utf-8") as f:
return json.load(f)
except json.JSONDecodeError:
logging.error(f"Error loading {file_path}")
logging.error("Error loading %s", file_path)
return {}

View File

@ -67,7 +67,7 @@ def get_db_path():
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
logging.debug("Database URL: %s", db_url)
db_path = get_db_path()
db_exists = os.path.exists(db_path)
@ -95,7 +95,7 @@ def init_db():
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
logging.info("Database upgraded from %s to %s", current_rev, target_rev)
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails

View File

@ -53,7 +53,7 @@ def get_required_frontend_version():
if line.startswith("comfyui-frontend-package=="):
version_str = line.split("==")[-1]
if not is_valid_version(version_str):
logging.error(f"Invalid version format in requirements.txt: {version_str}")
logging.error("Invalid version format in requirements.txt: %s", version_str)
return None
return version_str
logging.error("comfyui-frontend-package not found in requirements.txt")
@ -62,7 +62,7 @@ def get_required_frontend_version():
logging.error("requirements.txt not found. Cannot determine required frontend version.")
return None
except Exception as e:
logging.error(f"Error reading requirements.txt: {e}")
logging.error("Error reading requirements.txt: %s", e)
return None
@ -89,7 +89,7 @@ ________________________________________________________________________
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
logging.error(f"Failed to check frontend version: {e}")
logging.error("Failed to check frontend version: %s", e)
REQUEST_TIMEOUT = 10 # seconds
@ -225,7 +225,7 @@ class FrontendManager:
if line.startswith("comfyui-workflow-templates=="):
version_str = line.split("==")[-1]
if not is_valid_version(version_str):
logging.error(f"Invalid templates version format in requirements.txt: {version_str}")
logging.error("Invalid templates version format in requirements.txt: %s", version_str)
return None
return version_str
logging.error("comfyui-workflow-templates not found in requirements.txt")
@ -234,7 +234,7 @@ class FrontendManager:
logging.error("requirements.txt not found. Cannot determine required templates version.")
return None
except Exception as e:
logging.error(f"Error reading requirements.txt: {e}")
logging.error("Error reading requirements.txt: %s", e)
return None
@classmethod
@ -282,7 +282,7 @@ comfyui-workflow-templates is not installed.
try:
template_entries = list(iter_templates())
except Exception as exc:
logging.error(f"Failed to enumerate workflow templates: {exc}")
logging.error("Failed to enumerate workflow templates: %s", exc)
return None
asset_map: Dict[str, str] = {}
@ -293,7 +293,7 @@ comfyui-workflow-templates is not installed.
entry.template_id, asset.filename
)
except Exception as exc:
logging.error(f"Failed to resolve template asset paths: {exc}")
logging.error("Failed to resolve template asset paths: %s", exc)
return None
if not asset_map:

View File

@ -144,7 +144,7 @@ class ModelFileManager:
result.append(file_info)
except Exception as e:
logging.warning(f"Warning: Unable to access {file_name}. Error: {e}. Skipping this file.")
logging.warning("Warning: Unable to access %s. Error: %s. Skipping this file.", file_name, e)
continue
for d in subdirs:
@ -152,7 +152,7 @@ class ModelFileManager:
try:
dirs[path] = os.path.getmtime(path)
except FileNotFoundError:
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
logging.warning("Warning: Unable to access %s. Skipping this path.", path)
continue
return result, dirs, time.perf_counter()

View File

@ -241,7 +241,7 @@ class UserManager():
try:
requested_rel_path = parse.unquote(requested_rel_path)
except Exception as e:
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
logging.warning("Failed to decode path parameter: %s, Error: %s", requested_rel_path, e)
return web.Response(status=400, text="Invalid characters in path parameter")
@ -256,7 +256,7 @@ class UserManager():
except KeyError as e:
# Invalid user detected by get_request_user_id inside get_request_user_filepath
logging.warning(f"Access denied for user: {e}")
logging.warning("Access denied for user: %s", e)
return web.Response(status=403, text="Invalid user specified in request")
@ -304,11 +304,11 @@ class UserManager():
entry_info["size"] = stats.st_size
entry_info["modified"] = stats.st_mtime
except OSError as stat_error:
logging.warning(f"Could not stat file {file_path}: {stat_error}")
logging.warning("Could not stat file %s: %s", file_path, stat_error)
pass # Include file with available info
results.append(entry_info)
except OSError as e:
logging.error(f"Error listing directory {target_abs_path}: {e}")
logging.error("Error listing directory %s: %s", target_abs_path, e)
return web.Response(status=500, text="Error reading directory contents")
# Sort results alphabetically, directories first then files
@ -380,7 +380,7 @@ class UserManager():
with open(path, "wb") as f:
f.write(body)
except OSError as e:
logging.warning(f"Error saving file '{path}': {e}")
logging.warning("Error saving file '%s': %s", path, e)
return web.Response(
status=400,
reason="Invalid filename. Please avoid special characters like :\\/*?\"<>|"
@ -444,7 +444,7 @@ class UserManager():
if not overwrite and os.path.exists(dest):
return web.Response(status=409, text="File already exists")
logging.info(f"moving '{source}' -> '{dest}'")
logging.info("moving '%s' -> '%s'", source, dest)
shutil.move(source, dest)
user_path = self.get_request_user_filepath(request, None)

View File

@ -124,9 +124,9 @@ class IndexListContextHandler(ContextHandlerABC):
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.")
logging.info("Using context windows %d with overlap %d for %d frames.", self.context_length, self.context_overlap, x_in.size(self.dim))
if self.cond_retain_index_list:
logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}")
logging.info("Retaining original cond for indexes: %s", self.cond_retain_index_list)
return True
return False
@ -143,7 +143,7 @@ class IndexListContextHandler(ContextHandlerABC):
# if multiple conds, split based on primary region
if self.split_conds_to_windows and len(cond_in) > 1:
region = window.get_region_index(len(cond_in))
logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}")
logging.info("Splitting conds to windows; using region %d for window %d-%d with center ratio %.3f", region, window.index_list[0], window.index_list[-1], window.center_ratio)
cond_in = [cond_in[region]]
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:

View File

@ -86,7 +86,7 @@ def convert_vae_state_dict(vae_state_dict):
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
logging.debug(f"Reshaping {k} for SD format")
logging.debug("Reshaping %s for SD format", k)
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
return new_state_dict

View File

@ -475,7 +475,7 @@ class UniPC:
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
logging.info("using unified predictor-corrector with order %s (solver type: vary coeff)", order)
ns = self.noise_schedule
assert order <= len(model_prev_list)

View File

@ -666,7 +666,7 @@ def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, t
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
logging.warning(f"NOT LOADED {x}")
logging.warning("NOT LOADED %s", x)
return (new_modelpatcher, new_clip, hook_group)
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):

View File

@ -216,7 +216,7 @@ class GeneralDIT(nn.Module):
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
logging.debug("Building positional embedding with %s class, impl %s", self.pos_emb_cls, cls_type)
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,

View File

@ -718,7 +718,7 @@ class MiniTrainDIT(nn.Module):
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
logging.debug("Building positional embedding with %s class, impl %s", self.pos_emb_cls, cls_type)
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,

View File

@ -90,7 +90,7 @@ class CausalContinuousVideoTokenizer(nn.Module):
self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value()
num_parameters = sum(param.numel() for param in self.parameters())
logging.debug(f"model={self.name}, num_parameters={num_parameters:,}")
logging.debug("model=%s, num_parameters=%d", self.name, num_parameters)
logging.debug(
f"z_channels={z_channels}, latent_channels={self.latent_channels}."
)

View File

@ -401,9 +401,9 @@ def make_attn(in_channels, attn_type="vanilla", norm_type="group"):
attn_type = AttentionType.str_to_enum(attn_type)
if attn_type != AttentionType.NONE:
logging.info(f"making attention of type '{attn_type.value}' with {in_channels} in_channels")
logging.info("making attention of type '%s' with %s in_channels", attn_type.value, in_channels)
else:
logging.info(f"making identity attention with {in_channels} in_channels")
logging.info("making identity attention with %s in_channels", in_channels)
match attn_type:
case AttentionType.VANILLA:

View File

@ -58,7 +58,7 @@ class AbstractAutoencoder(torch.nn.Module):
if self.use_ema:
self.model_ema = LitEma(self, decay=ema_decay)
logging.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
logging.info("Keeping EMAs of %s.", len(list(self.model_ema.buffers())))
def get_input(self, batch) -> Any:
raise NotImplementedError()
@ -74,14 +74,14 @@ class AbstractAutoencoder(torch.nn.Module):
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
logging.info(f"{context}: Switched to EMA weights")
logging.info("%s: Switched to EMA weights", context)
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
logging.info(f"{context}: Restored training weights")
logging.info("%s: Restored training weights", context)
def encode(self, *args, **kwargs) -> torch.Tensor:
raise NotImplementedError("encode()-method of abstract base class called")
@ -90,7 +90,7 @@ class AbstractAutoencoder(torch.nn.Module):
raise NotImplementedError("decode()-method of abstract base class called")
def instantiate_optimizer_from_config(self, params, lr, cfg):
logging.info(f"loading >>> {cfg['target']} <<< optimizer from config")
logging.info("loading >>> %s <<< optimizer from config", cfg['target'])
return get_obj_from_str(cfg["target"])(
params, lr=lr, **cfg.get("params", dict())
)

View File

@ -10,7 +10,7 @@ import logging
import functools
from .diffusionmodules.util import AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy.ldm.modules.sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
@ -25,7 +25,11 @@ try:
except ImportError as e:
if model_management.sage_attention_enabled():
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
logging.error("""
To use the `--use-sage-attention` feature, the `sageattention` package must be installed first.
command:
%s -m pip install sageattention""", sys.executable)
else:
raise e
exit(-1)
@ -43,7 +47,11 @@ try:
FLASH_ATTENTION_IS_AVAILABLE = True
except ImportError:
if model_management.flash_attention_enabled():
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
logging.error("""
To use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.
command:
%s -m pip install flash-attn""", sys.executable)
exit(-1)
REGISTERED_ATTENTION_FUNCTIONS = {}
@ -52,7 +60,7 @@ def register_attention_function(name: str, func: Callable):
if name not in REGISTERED_ATTENTION_FUNCTIONS:
REGISTERED_ATTENTION_FUNCTIONS[name] = func
else:
logging.warning(f"Attention function {name} already registered, skipping registration.")
logging.warning("Attention function %s already registered, skipping registration.", name)
def get_attention_function(name: str, default: Any=...) -> Union[Callable, None]:
if name == "optimized":
@ -707,7 +715,7 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
causal=False,
).transpose(1, 2)
except Exception as e:
logging.warning(f"Flash Attention failed, using default SDPA: {e}")
logging.warning("Flash Attention failed, using default SDPA: %s", e)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
if not skip_output_reshape:
out = (

View File

@ -131,7 +131,7 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
# add one to get the final alpha values right (the ones from first scale to data during sampling)
steps_out = ddim_timesteps + 1
if verbose:
logging.info(f'Selected timesteps for ddim sampler: {steps_out}')
logging.info("Selected timesteps for ddim sampler: %s", steps_out)
return steps_out
@ -143,7 +143,7 @@ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
# according the the formula provided in https://arxiv.org/abs/2010.02502
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
if verbose:
logging.info(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
logging.info("Selected alphas for ddim sampler: a_t: %s; a_(t-1): %s", alphas, alphas_prev)
logging.info(f'For the chosen value of eta, which is {eta}, '
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
return sigmas, alphas, alphas_prev

View File

@ -66,7 +66,7 @@ def mean_flat(tensor):
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
logging.info(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
logging.info("%s has %.2f M params.", model.__class__.__name__, total_params * 1e-06)
return total_params

View File

@ -415,7 +415,7 @@ if cpu_state != CPUState.GPU:
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
logging.info(f"Set vram state to: {vram_state.name}")
logging.info("Set vram state to: %s", vram_state.name)
DISABLE_SMART_MEMORY = args.disable_smart_memory
@ -602,7 +602,7 @@ def free_memory(memory_required, device, keep_loaded=[]):
if free_mem > memory_required:
break
memory_to_free = memory_required - free_mem
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
logging.debug("Unloading %s", current_loaded_models[i].model.model.__class__.__name__)
if current_loaded_models[i].model_unload(memory_to_free):
unloaded_model.append(i)
@ -652,7 +652,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
models_to_load.append(loaded)
else:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
logging.info("Requested to load %s", x.model.__class__.__name__)
models_to_load.append(loaded_model)
for loaded_model in models_to_load:

View File

@ -1256,7 +1256,7 @@ class ModelPatcher:
model_sd_keys_set = set(model_sd_keys)
for key in cached_weights:
if key not in model_sd_keys:
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
logging.warning("Cached hook could not patch. Key does not exist in model: %s", key)
continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
model_sd_keys_set.remove(key)
@ -1269,7 +1269,7 @@ class ModelPatcher:
original_weights = self.get_key_patches()
for key in relevant_patches:
if key not in model_sd_keys:
logging.warning(f"Cached hook would not patch. Key does not exist in model: {key}")
logging.warning("Cached hook would not patch. Key does not exist in model: %s", key)
continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
memory_counter=memory_counter)

View File

@ -22,9 +22,9 @@ try:
ck.registry.disable("triton")
for k, v in ck.list_backends().items():
logging.info(f"Found comfy_kitchen backend {k}: {v}")
logging.info("Found comfy_kitchen backend %s: %s", k, v)
except ImportError as e:
logging.error(f"Failed to import comfy_kitchen, Error: {e}, fp8 and fp4 support will not be available.")
logging.error("Failed to import comfy_kitchen, Error: %s, fp8 and fp4 support will not be available.", e)
_CK_AVAILABLE = False
class QuantizedTensor:

View File

@ -570,7 +570,7 @@ class SDTokenizer:
embedding_name = word[len(self.embedding_identifier):].strip('\n')
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
logging.warning("warning, embedding:%s does not exist, ignoring", embedding_name)
else:
if len(embed.shape) == 1:
tokens.append([(embed, weight)])

View File

@ -31,7 +31,7 @@ def generate_stubs_for_module(module_name: str) -> None:
if api_class:
# Generate the stub file
AsyncToSyncConverter.generate_stub_file(api_class, sync_class)
logging.info(f"Generated stub file for {module_name}")
logging.info("Generated stub file for %s", module_name)
else:
logging.warning(
f"Module {module_name} has ComfyAPISync but no ComfyAPI"
@ -46,14 +46,14 @@ def generate_stubs_for_module(module_name: str) -> None:
# Generate the stub file
AsyncToSyncConverter.generate_stub_file(api_class, sync_class)
logging.info(f"Generated stub file for {module_name}")
logging.info("Generated stub file for %s", module_name)
else:
logging.warning(
f"Module {module_name} does not export ComfyAPI or ComfyAPISync"
)
except Exception as e:
logging.error(f"Failed to generate stub for {module_name}: {e}")
logging.error("Failed to generate stub for %s: %s", module_name, e)
import traceback
traceback.print_exc()
@ -73,7 +73,7 @@ def main():
if module_name not in api_modules:
api_modules.append(module_name)
logging.info(f"Found {len(api_modules)} API modules: {api_modules}")
logging.info("Found %s API modules: %s", len(api_modules), api_modules)
# Generate stubs for each module
for module_name in api_modules:

View File

@ -962,7 +962,7 @@ class AsyncToSyncConverter:
seen.add(imp)
unique_imports.append(imp)
else:
logging.warning(f"Duplicate import detected: {imp}")
logging.warning("Duplicate import detected: %s", imp)
# Replace the placeholder with actual imports
stub_content[imports_placeholder_index : imports_placeholder_index + 1] = (
@ -976,7 +976,7 @@ class AsyncToSyncConverter:
with open(sync_stub_path, "w") as f:
f.write("\n".join(stub_content))
logging.info(f"Generated stub file: {sync_stub_path}")
logging.info("Generated stub file: %s", sync_stub_path)
except Exception as e:
# If stub generation fails, log the error but don't break the main functionality

View File

@ -405,11 +405,11 @@ def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_
if sample_rate_1 > sample_rate_2:
waveform_2 = torchaudio.functional.resample(waveform_2, sample_rate_2, sample_rate_1)
output_sample_rate = sample_rate_1
logging.info(f"Resampling audio2 from {sample_rate_2}Hz to {sample_rate_1}Hz for merging.")
logging.info("Resampling audio2 from %sHz to %sHz for merging.", sample_rate_2, sample_rate_1)
else:
waveform_1 = torchaudio.functional.resample(waveform_1, sample_rate_1, sample_rate_2)
output_sample_rate = sample_rate_2
logging.info(f"Resampling audio1 from {sample_rate_1}Hz to {sample_rate_2}Hz for merging.")
logging.info("Resampling audio1 from %sHz to %sHz for merging.", sample_rate_1, sample_rate_2)
else:
output_sample_rate = sample_rate_1
return waveform_1, waveform_2, output_sample_rate
@ -495,10 +495,10 @@ class AudioMerge(IO.ComfyNode):
length_2 = waveform_2.shape[-1]
if length_2 > length_1:
logging.info(f"AudioMerge: Trimming audio2 from {length_2} to {length_1} samples to match audio1 length.")
logging.info("AudioMerge: Trimming audio2 from %s to %s samples to match audio1 length.", length_2, length_1)
waveform_2 = waveform_2[..., :length_1]
elif length_2 < length_1:
logging.info(f"AudioMerge: Padding audio2 from {length_2} to {length_1} samples to match audio1 length.")
logging.info("AudioMerge: Padding audio2 from %s to %s samples to match audio1 length.", length_2, length_1)
pad_shape = list(waveform_2.shape)
pad_shape[-1] = length_1 - length_2
pad_tensor = torch.zeros(pad_shape, dtype=waveform_2.dtype, device=waveform_2.device)

View File

@ -110,7 +110,7 @@ class LoadImageTextDataSetFromFolderNode(io.ComfyNode):
@classmethod
def execute(cls, folder):
logging.info(f"Loading images from folder: {folder}")
logging.info("Loading images from folder: %s", folder)
sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder)
valid_extensions = [".png", ".jpg", ".jpeg", ".webp"]
@ -149,7 +149,7 @@ class LoadImageTextDataSetFromFolderNode(io.ComfyNode):
output_tensor = load_and_process_images(image_files, sub_input_dir)
logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.")
logging.info("Loaded %s images from %s.", len(output_tensor), sub_input_dir)
return io.NodeOutput(output_tensor, captions)
@ -236,7 +236,7 @@ class SaveImageDataSetToFolderNode(io.ComfyNode):
output_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
saved_files = save_images_to_folder(images, output_dir, filename_prefix)
logging.info(f"Saved {len(saved_files)} images to {output_dir}.")
logging.info("Saved %s images to %s.", len(saved_files), output_dir)
return io.NodeOutput()
@ -283,7 +283,7 @@ class SaveImageTextDataSetToFolderNode(io.ComfyNode):
with open(caption_path, "w", encoding="utf-8") as f:
f.write(caption)
logging.info(f"Saved {len(saved_files)} images and captions to {output_dir}.")
logging.info("Saved %s images and captions to %s.", len(saved_files), output_dir)
return io.NodeOutput()
@ -1104,7 +1104,7 @@ class MergeImageListsNode(ImageProcessingNode):
"""Simply return the images list (already merged by input handling)."""
# When multiple list inputs are connected, they're concatenated
# For now, this is a simple pass-through
logging.info(f"Merged image list contains {len(images)} images")
logging.info("Merged image list contains %s images", len(images))
return images
@ -1121,7 +1121,7 @@ class MergeTextListsNode(TextProcessingNode):
"""Simply return the texts list (already merged by input handling)."""
# When multiple list inputs are connected, they're concatenated
# For now, this is a simple pass-through
logging.info(f"Merged text list contains {len(texts)} texts")
logging.info("Merged text list contains %s texts", len(texts))
return texts
@ -1217,7 +1217,7 @@ class ResolutionBucket(io.ComfyNode):
f"Resolution bucket ({h}x{w}): {len(bucket_data['latents'])} samples"
)
logging.info(f"Created {len(buckets)} resolution buckets from {len(flat_latents)} samples")
logging.info("Created %s resolution buckets from %s samples", len(buckets), len(flat_latents))
return io.NodeOutput(output_latents, output_conditions)
@ -1283,7 +1283,7 @@ class MakeTrainingDataset(io.ComfyNode):
)
# Encode images with VAE
logging.info(f"Encoding {num_images} images with VAE...")
logging.info("Encoding %s images with VAE...", num_images)
latents_list = [] # list[{"samples": tensor}]
for img_tensor in images:
# img_tensor is [1, H, W, 3]
@ -1291,7 +1291,7 @@ class MakeTrainingDataset(io.ComfyNode):
latents_list.append({"samples": latent_tensor})
# Encode texts with CLIP
logging.info(f"Encoding {len(texts)} texts with CLIP...")
logging.info("Encoding %s texts with CLIP...", len(texts))
conditioning_list = [] # list[list[cond]]
for text in texts:
if text == "":
@ -1404,7 +1404,7 @@ class SaveTrainingDataset(io.ComfyNode):
with open(metadata_path, "w") as f:
json.dump(metadata, f, indent=2)
logging.info(f"Successfully saved {num_samples} samples to {output_dir}.")
logging.info("Successfully saved %s samples to %s.", num_samples, output_dir)
return io.NodeOutput()
@ -1459,7 +1459,7 @@ class LoadTrainingDataset(io.ComfyNode):
if not shard_files:
raise ValueError(f"No shard files found in {dataset_dir}")
logging.info(f"Loading {len(shard_files)} shards from {dataset_dir}...")
logging.info("Loading %s shards from %s...", len(shard_files), dataset_dir)
# Load all shards
all_latents = [] # list[{"samples": tensor}]
@ -1474,7 +1474,7 @@ class LoadTrainingDataset(io.ComfyNode):
all_latents.extend(shard_data["latents"])
all_conditioning.extend(shard_data["conditioning"])
logging.info(f"Loaded {shard_file}: {len(shard_data['latents'])} samples")
logging.info("Loaded %s: %s samples", shard_file, len(shard_data['latents']))
logging.info(
f"Successfully loaded {len(all_latents)} samples from {dataset_dir}."

View File

@ -32,7 +32,7 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
# if first cond marked this step for skipping, skip it and use appropriate cached values
if easycache.skip_current_step:
if easycache.verbose:
logging.info(f"EasyCache [verbose] - was marked to skip this step by {easycache.first_cond_uuid}. Present uuids: {uuids}")
logging.info("EasyCache [verbose] - was marked to skip this step by %s. Present uuids: %s", easycache.first_cond_uuid, uuids)
return easycache.apply_cache_diff(x, uuids)
if easycache.initial_step:
easycache.first_cond_uuid = uuids[0]
@ -46,13 +46,13 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
easycache.cumulative_change_rate += approx_output_change_rate
if easycache.cumulative_change_rate < easycache.reuse_threshold:
if easycache.verbose:
logging.info(f"EasyCache [verbose] - skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}")
logging.info("EasyCache [verbose] - skipping step; cumulative_change_rate: %s, reuse_threshold: %s", easycache.cumulative_change_rate, easycache.reuse_threshold)
# other conds should also skip this step, and instead use their cached values
easycache.skip_current_step = True
return easycache.apply_cache_diff(x, uuids)
else:
if easycache.verbose:
logging.info(f"EasyCache [verbose] - NOT skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}")
logging.info("EasyCache [verbose] - NOT skipping step; cumulative_change_rate: %s, reuse_threshold: %s", easycache.cumulative_change_rate, easycache.reuse_threshold)
easycache.cumulative_change_rate = 0.0
output: torch.Tensor = executor(*args, **kwargs)
@ -65,11 +65,11 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
approx_output_change_rate = (easycache.relative_transformation_rate * input_change) / easycache.output_prev_norm
easycache.approx_output_change_rates.append(approx_output_change_rate.item())
if easycache.verbose:
logging.info(f"EasyCache [verbose] - approx_output_change_rate: {approx_output_change_rate}")
logging.info("EasyCache [verbose] - approx_output_change_rate: %s", approx_output_change_rate)
if input_change is not None:
easycache.relative_transformation_rate = output_change / input_change
if easycache.verbose:
logging.info(f"EasyCache [verbose] - output_change_rate: {output_change_rate}")
logging.info("EasyCache [verbose] - output_change_rate: %s", output_change_rate)
# TODO: allow cache_diff to be offloaded
easycache.update_cache_diff(output, next_x_prev, uuids)
if has_first_cond_uuid:
@ -77,7 +77,7 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
easycache.output_prev_subsampled = easycache.subsample(output, uuids)
easycache.output_prev_norm = output.flatten().abs().mean()
if easycache.verbose:
logging.info(f"EasyCache [verbose] - x_prev_subsampled: {easycache.x_prev_subsampled.shape}")
logging.info("EasyCache [verbose] - x_prev_subsampled: %s", easycache.x_prev_subsampled.shape)
return output
def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
@ -102,13 +102,13 @@ def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
easycache.cumulative_change_rate += approx_output_change_rate
if easycache.cumulative_change_rate < easycache.reuse_threshold:
if easycache.verbose:
logging.info(f"LazyCache [verbose] - skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}")
logging.info("LazyCache [verbose] - skipping step; cumulative_change_rate: %s, reuse_threshold: %s", easycache.cumulative_change_rate, easycache.reuse_threshold)
# other conds should also skip this step, and instead use their cached values
easycache.skip_current_step = True
return easycache.apply_cache_diff(x)
else:
if easycache.verbose:
logging.info(f"LazyCache [verbose] - NOT skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}")
logging.info("LazyCache [verbose] - NOT skipping step; cumulative_change_rate: %s, reuse_threshold: %s", easycache.cumulative_change_rate, easycache.reuse_threshold)
easycache.cumulative_change_rate = 0.0
output: torch.Tensor = executor(*args, **kwargs)
if easycache.has_output_prev_norm():
@ -120,18 +120,18 @@ def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
approx_output_change_rate = (easycache.relative_transformation_rate * input_change) / easycache.output_prev_norm
easycache.approx_output_change_rates.append(approx_output_change_rate.item())
if easycache.verbose:
logging.info(f"LazyCache [verbose] - approx_output_change_rate: {approx_output_change_rate}")
logging.info("LazyCache [verbose] - approx_output_change_rate: %s", approx_output_change_rate)
if input_change is not None:
easycache.relative_transformation_rate = output_change / input_change
if easycache.verbose:
logging.info(f"LazyCache [verbose] - output_change_rate: {output_change_rate}")
logging.info("LazyCache [verbose] - output_change_rate: %s", output_change_rate)
# TODO: allow cache_diff to be offloaded
easycache.update_cache_diff(output, next_x_prev)
easycache.x_prev_subsampled = easycache.subsample(next_x_prev)
easycache.output_prev_subsampled = easycache.subsample(output)
easycache.output_prev_norm = output.flatten().abs().mean()
if easycache.verbose:
logging.info(f"LazyCache [verbose] - x_prev_subsampled: {easycache.x_prev_subsampled.shape}")
logging.info("LazyCache [verbose] - x_prev_subsampled: %s", easycache.x_prev_subsampled.shape)
return output
def easycache_calc_cond_batch_wrapper(executor, *args, **kwargs):
@ -152,22 +152,22 @@ def easycache_sample_wrapper(executor, *args, **kwargs):
# clone and prepare timesteps
guider.model_options["transformer_options"]["easycache"] = guider.model_options["transformer_options"]["easycache"].clone().prepare_timesteps(guider.model_patcher.model.model_sampling)
easycache: Union[EasyCacheHolder, LazyCacheHolder] = guider.model_options['transformer_options']['easycache']
logging.info(f"{easycache.name} enabled - threshold: {easycache.reuse_threshold}, start_percent: {easycache.start_percent}, end_percent: {easycache.end_percent}")
logging.info("%s enabled - threshold: %s, start_percent: %s, end_percent: %s", easycache.name, easycache.reuse_threshold, easycache.start_percent, easycache.end_percent)
return executor(*args, **kwargs)
finally:
easycache = guider.model_options['transformer_options']['easycache']
output_change_rates = easycache.output_change_rates
approx_output_change_rates = easycache.approx_output_change_rates
if easycache.verbose:
logging.info(f"{easycache.name} [verbose] - output_change_rates {len(output_change_rates)}: {output_change_rates}")
logging.info(f"{easycache.name} [verbose] - approx_output_change_rates {len(approx_output_change_rates)}: {approx_output_change_rates}")
logging.info("%s [verbose] - output_change_rates %s: %s", easycache.name, len(output_change_rates), output_change_rates)
logging.info("%s [verbose] - approx_output_change_rates %s: %s", easycache.name, len(approx_output_change_rates), approx_output_change_rates)
total_steps = len(args[3])-1
# catch division by zero for log statement; sucks to crash after all sampling is done
try:
speedup = total_steps/(total_steps-easycache.total_steps_skipped)
except ZeroDivisionError:
speedup = 1.0
logging.info(f"{easycache.name} - skipped {easycache.total_steps_skipped}/{total_steps} steps ({speedup:.2f}x speedup).")
logging.info("%s - skipped %s/%s steps (%.2fx speedup).", easycache.name, easycache.total_steps_skipped, total_steps, speedup)
easycache.reset()
guider.model_options = orig_model_options

View File

@ -540,7 +540,7 @@ class CreateHookKeyframesInterpolated:
is_first = False
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
if print_keyframes:
logging.info(f"Hook Keyframe - start_percent:{percent} = {strength}")
logging.info("Hook Keyframe - start_percent:%s = %s", percent, strength)
return (prev_hook_kf,)
class CreateHookKeyframesFromFloats:
@ -589,7 +589,7 @@ class CreateHookKeyframesFromFloats:
is_first = False
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
if print_keyframes:
logging.info(f"Hook Keyframe - start_percent:{percent} = {strength}")
logging.info("Hook Keyframe - start_percent:%s = %s", percent, strength)
return (prev_hook_kf,)
#------------------------------------------
###########################################

View File

@ -456,10 +456,10 @@ class ReplaceVideoLatentFrames(io.ComfyNode):
if index < 0:
index = dest_frames + index
if index > dest_frames:
logging.warning(f"ReplaceVideoLatentFrames: Index {index} is out of bounds for destination latent frames {dest_frames}.")
logging.warning("ReplaceVideoLatentFrames: Index %s is out of bounds for destination latent frames %s.", index, dest_frames)
return io.NodeOutput(destination)
if index + source_frames > dest_frames:
logging.warning(f"ReplaceVideoLatentFrames: Source latent frames {source_frames} do not fit within destination latent frames {dest_frames} at the specified index {index}.")
logging.warning("ReplaceVideoLatentFrames: Source latent frames %s do not fit within destination latent frames %s at the specified index %s.", source_frames, dest_frames, index)
return io.NodeOutput(destination)
s = source.copy()
s_source = source["samples"]

View File

@ -390,7 +390,7 @@ def find_all_highest_child_module_with_forward(
model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict)
):
result.append(model)
logging.debug(f"Found module with forward: {name} ({model.__class__.__name__})")
logging.debug("Found module with forward: %s (%s)", name, model.__class__.__name__)
return result
name = name or "root"
for next_name, child in model.named_children():
@ -498,9 +498,9 @@ def _prepare_latents_and_count(latents, dtype, bucket_mode):
num_images = sum(t.shape[0] for t in latents)
multi_res = False # Not using multi_res path in bucket mode
logging.info(f"Bucket mode: {num_buckets} buckets, {num_images} total samples")
logging.info("Bucket mode: %s buckets, %s total samples", num_buckets, num_images)
for i, lat in enumerate(latents):
logging.info(f" Bucket {i}: shape {lat.shape}")
logging.info(" Bucket %s: shape %s", i, lat.shape)
return latents, num_images, multi_res
# Non-bucket mode
@ -509,7 +509,7 @@ def _prepare_latents_and_count(latents, dtype, bucket_mode):
latents = [t.to(dtype) for t in latents]
for latent in latents:
all_shapes.add(latent.shape)
logging.info(f"Latent shapes: {all_shapes}")
logging.info("Latent shapes: %s", all_shapes)
if len(all_shapes) > 1:
multi_res = True
else:
@ -521,7 +521,7 @@ def _prepare_latents_and_count(latents, dtype, bucket_mode):
num_images = latents.shape[0]
multi_res = False
else:
logging.error(f"Invalid latents type: {type(latents)}")
logging.error("Invalid latents type: %s", type(latents))
num_images = 0
multi_res = False
@ -545,7 +545,7 @@ def _validate_and_expand_conditioning(positive, num_images, bucket_mode):
if bucket_mode:
return positive # Skip validation in bucket mode
logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}")
logging.info("Total Images: %s, Total Captions: %s", num_images, len(positive))
if len(positive) == 1 and num_images > 1:
return positive * num_images
elif len(positive) != num_images:

View File

@ -595,7 +595,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
for name, inputs in input_data_all.items():
input_data_formatted[name] = [format_value(x) for x in inputs]
logging.error(f"!!! Exception during processing !!! {ex}")
logging.error("!!! Exception during processing !!! %s", ex)
logging.error(traceback.format_exc())
tips = ""
@ -1061,11 +1061,11 @@ async def validate_prompt(prompt_id, prompt, partial_execution_list: Union[list[
if valid is True:
good_outputs.add(o)
else:
logging.error(f"Failed to validate prompt for output {o}:")
logging.error("Failed to validate prompt for output %s:", o)
if len(reasons) > 0:
logging.error("* (prompt):")
for reason in reasons:
logging.error(f" - {reason['message']}: {reason['details']}")
logging.error(" - %s: %s", reason['message'], reason['details'])
errors += [(o, reasons)]
for node_id, result in validated.items():
valid = result[0]
@ -1081,9 +1081,9 @@ async def validate_prompt(prompt_id, prompt, partial_execution_list: Union[list[
"dependent_outputs": [],
"class_type": class_type
}
logging.error(f"* {class_type} {node_id}:")
logging.error("* %s %s:", class_type, node_id)
for reason in reasons:
logging.error(f" - {reason['message']}: {reason['details']}")
logging.error(" - %s: %s", reason['message'], reason['details'])
node_errors[node_id]["dependent_outputs"].append(o)
logging.error("Output will be ignored")

View File

@ -314,7 +314,7 @@ def recursive_search(directory: str, excluded_dir_names: list[str] | None=None)
try:
dirs[directory] = os.path.getmtime(directory)
except FileNotFoundError:
logging.warning(f"Warning: Unable to access {directory}. Skipping this path.")
logging.warning("Warning: Unable to access %s. Skipping this path.", directory)
logging.debug("recursive file list on directory {}".format(directory))
dirpath: str
@ -328,7 +328,7 @@ def recursive_search(directory: str, excluded_dir_names: list[str] | None=None)
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
except:
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
logging.warning("Warning: Unable to access %s. Skipping this file.", file_name)
continue
for d in subdirs:
@ -336,7 +336,7 @@ def recursive_search(directory: str, excluded_dir_names: list[str] | None=None)
try:
dirs[path] = os.path.getmtime(path)
except FileNotFoundError:
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
logging.warning("Warning: Unable to access %s. Skipping this path.", path)
continue
logging.debug("found {} files".format(len(result)))
return result, dirs

23
main.py
View File

@ -58,7 +58,12 @@ if __name__ == "__main__":
def handle_comfyui_manager_unavailable():
if not args.windows_standalone_build:
logging.warning(f"\n\nYou appear to be running comfyui-manager from source, this is not recommended. Please install comfyui-manager using the following command:\ncommand:\n\t{sys.executable} -m pip install --pre comfyui_manager\n")
logging.warning("""
You appear to be running comfyui-manager from source, this is not recommended. Please install comfyui-manager using the following command:
command:
%s -m pip install --pre comfyui_manager
""", sys.executable)
args.enable_manager = False
@ -85,7 +90,7 @@ def apply_custom_paths():
# --output-directory, --input-directory, --user-directory
if args.output_directory:
output_dir = os.path.abspath(args.output_directory)
logging.info(f"Setting output directory to: {output_dir}")
logging.info("Setting output directory to: %s", output_dir)
folder_paths.set_output_directory(output_dir)
# These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes
@ -98,12 +103,12 @@ def apply_custom_paths():
if args.input_directory:
input_dir = os.path.abspath(args.input_directory)
logging.info(f"Setting input directory to: {input_dir}")
logging.info("Setting input directory to: %s", input_dir)
folder_paths.set_input_directory(input_dir)
if args.user_directory:
user_dir = os.path.abspath(args.user_directory)
logging.info(f"Setting user directory to: {user_dir}")
logging.info("Setting user directory to: %s", user_dir)
folder_paths.set_user_directory(user_dir)
@ -119,7 +124,7 @@ def execute_prestartup_script():
spec.loader.exec_module(module)
return True
except Exception as e:
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
logging.error("Failed to execute startup-script: %s / %s", script_path, e)
return False
node_paths = folder_paths.get_folder_paths("custom_nodes")
@ -140,7 +145,7 @@ def execute_prestartup_script():
script_path = os.path.join(module_path, "prestartup_script.py")
if os.path.exists(script_path):
if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes:
logging.info(f"Prestartup Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes")
logging.info("Prestartup Skipping %s due to disable_all_custom_nodes and whitelist_custom_nodes", possible_module)
continue
time_before = time.perf_counter()
success = execute_script(script_path)
@ -246,7 +251,7 @@ def prompt_worker(q, server_instance):
# Log Time in a more readable way after 10 minutes
if execution_time > 600:
execution_time = time.strftime("%H:%M:%S", time.gmtime(execution_time))
logging.info(f"Prompt executed in {execution_time}")
logging.info("Prompt executed in %s", execution_time)
else:
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
@ -325,7 +330,7 @@ def setup_database():
if dependencies_available():
init_db()
except Exception as e:
logging.error(f"Failed to initialize database. Please ensure you have installed the latest requirements. If the error persists, please report this as in future the database will be required: {e}")
logging.error("Failed to initialize database. Please ensure you have installed the latest requirements. If the error persists, please report this as in future the database will be required: %s", e)
def start_comfyui(asyncio_loop=None):
@ -335,7 +340,7 @@ def start_comfyui(asyncio_loop=None):
"""
if args.temp_directory:
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
logging.info(f"Setting temp directory to: {temp_dir}")
logging.info("Setting temp directory to: %s", temp_dir)
folder_paths.set_temp_directory(temp_dir)
cleanup_temp()

View File

@ -2173,7 +2173,7 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
logging.info("Automatically register web folder {} for {}".format(web_dir_name, project_name))
except Exception as e:
logging.warning(f"Unable to parse pyproject.toml due to lack dependency pydantic-settings, please run 'pip install -r requirements.txt': {e}")
logging.warning("Unable to parse pyproject.toml due to lack dependency pydantic-settings, please run 'pip install -r requirements.txt': %s", e)
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
@ -2193,7 +2193,7 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
elif hasattr(module, "comfy_entrypoint"):
entrypoint = getattr(module, "comfy_entrypoint")
if not callable(entrypoint):
logging.warning(f"comfy_entrypoint in {module_path} is not callable, skipping.")
logging.warning("comfy_entrypoint in %s is not callable, skipping.", module_path)
return False
try:
if inspect.iscoroutinefunction(entrypoint):
@ -2201,11 +2201,11 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
else:
extension = entrypoint()
if not isinstance(extension, ComfyExtension):
logging.warning(f"comfy_entrypoint in {module_path} did not return a ComfyExtension, skipping.")
logging.warning("comfy_entrypoint in %s did not return a ComfyExtension, skipping.", module_path)
return False
node_list = await extension.get_node_list()
if not isinstance(node_list, list):
logging.warning(f"comfy_entrypoint in {module_path} did not return a list of nodes, skipping.")
logging.warning("comfy_entrypoint in %s did not return a list of nodes, skipping.", module_path)
return False
for node_cls in node_list:
node_cls: io.ComfyNode
@ -2217,14 +2217,14 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
NODE_DISPLAY_NAME_MAPPINGS[schema.node_id] = schema.display_name
return True
except Exception as e:
logging.warning(f"Error while calling comfy_entrypoint in {module_path}: {e}")
logging.warning("Error while calling comfy_entrypoint in %s: %s", module_path, e)
return False
else:
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS or NODES_LIST (need one).")
logging.warning("Skip %s module for custom nodes due to the lack of NODE_CLASS_MAPPINGS or NODES_LIST (need one).", module_path)
return False
except Exception as e:
logging.warning(traceback.format_exc())
logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
logging.warning("Cannot import %s module for custom nodes: %s", module_path, e)
return False
async def init_external_custom_nodes():
@ -2252,12 +2252,12 @@ async def init_external_custom_nodes():
if module_path.endswith(".disabled"):
continue
if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes:
logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes")
logging.info("Skipping %s due to disable_all_custom_nodes and whitelist_custom_nodes", possible_module)
continue
if args.enable_manager:
if comfyui_manager.should_be_disabled(module_path):
logging.info(f"Blocked by policy: {module_path}")
logging.info("Blocked by policy: %s", module_path)
continue
time_before = time.perf_counter()

View File

@ -234,7 +234,7 @@ class PromptServer():
if args.front_end_root is None
else args.front_end_root
)
logging.info(f"[Prompt Server] web root: {self.web_root}")
logging.info("[Prompt Server] web root: %s", self.web_root)
routes = web.RouteTableDef()
self.routes = routes
self.last_node_id = None
@ -296,7 +296,7 @@ class PromptServer():
f"Invalid JSON received from client {sid}: {msg.data}"
)
except Exception as e:
logging.error(f"Error processing WebSocket message: {e}")
logging.error("Error processing WebSocket message: %s", e)
finally:
self.sockets.pop(sid, None)
self.sockets_metadata.pop(sid, None)
@ -689,7 +689,7 @@ class PromptServer():
try:
out[x] = node_info(x)
except Exception:
logging.error(f"[ERROR] An error occurred while retrieving information for the '{x}' node.")
logging.error("[ERROR] An error occurred while retrieving information for the '%s' node.", x)
logging.error(traceback.format_exc())
return web.json_response(out)
@ -935,14 +935,14 @@ class PromptServer():
for item in currently_running:
# item structure: (number, prompt_id, prompt, extra_data, outputs_to_execute)
if item[1] == prompt_id:
logging.info(f"Interrupting prompt {prompt_id}")
logging.info("Interrupting prompt %s", prompt_id)
should_interrupt = True
break
if should_interrupt:
nodes.interrupt_processing()
else:
logging.info(f"Prompt {prompt_id} is not currently running, skipping interrupt")
logging.info("Prompt %s is not currently running, skipping interrupt", prompt_id)
else:
# No prompt_id provided, do a global interrupt
logging.info("Global interrupt (no prompt_id specified)")