Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Silversith 2023-06-05 08:26:08 +02:00
commit 7302beb8e0
74 changed files with 6233 additions and 1077 deletions

View File

@ -1,65 +0,0 @@
import pygit2
from datetime import datetime
import sys
def pull(repo, remote_name='origin', branch='master'):
for remote in repo.remotes:
if remote.name == remote_name:
remote.fetch()
remote_master_id = repo.lookup_reference('refs/remotes/origin/%s' % (branch)).target
merge_result, _ = repo.merge_analysis(remote_master_id)
# Up to date, do nothing
if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
return
# We can just fastforward
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
repo.checkout_tree(repo.get(remote_master_id))
try:
master_ref = repo.lookup_reference('refs/heads/%s' % (branch))
master_ref.set_target(remote_master_id)
except KeyError:
repo.create_branch(branch, repo.get(remote_master_id))
repo.head.set_target(remote_master_id)
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
repo.merge(remote_master_id)
if repo.index.conflicts is not None:
for conflict in repo.index.conflicts:
print('Conflicts found in:', conflict[0].path)
raise AssertionError('Conflicts, ahhhhh!!')
user = repo.default_signature
tree = repo.index.write_tree()
commit = repo.create_commit('HEAD',
user,
user,
'Merge!',
tree,
[repo.head.target, remote_master_id])
# We need to do this or git CLI will think we are still merging.
repo.state_cleanup()
else:
raise AssertionError('Unknown merge analysis result')
repo = pygit2.Repository(str(sys.argv[1]))
ident = pygit2.Signature('comfyui', 'comfy@ui')
try:
print("stashing current changes")
repo.stash(ident)
except KeyError:
print("nothing to stash")
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name))
repo.branches.local.create(backup_branch_name, repo.head.peel())
print("checking out master branch")
branch = repo.lookup_branch('master')
ref = repo.lookup_reference(branch.name)
repo.checkout(ref)
print("pulling latest changes")
pull(repo)
print("Done!")

View File

@ -1,2 +0,0 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
pause

View File

@ -1,3 +1,3 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 -r ../ComfyUI/requirements.txt pygit2
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2
pause

View File

@ -1,27 +0,0 @@
HOW TO RUN:
if you have a NVIDIA gpu:
run_nvidia_gpu.bat
To run it in slow CPU mode:
run_cpu.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
RECOMMENDED WAY TO UPDATE:
To update the ComfyUI code: update\update_comfyui.bat
To update ComfyUI with the python dependencies:
update\update_comfyui_and_python_dependencies.bat

View File

@ -1,2 +0,0 @@
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build
pause

View File

@ -41,7 +41,7 @@ def pull(repo, remote_name='origin', branch='master'):
else:
raise AssertionError('Unknown merge analysis result')
pygit2.option(pygit2.GIT_OPT_SET_OWNER_VALIDATION, 0)
repo = pygit2.Repository(str(sys.argv[1]))
ident = pygit2.Signature('comfyui', 'comfy@ui')
try:

View File

@ -0,0 +1,30 @@
name: "Windows Release cu118 dependencies 2"
on:
workflow_dispatch:
# push:
# branches:
# - master
jobs:
build_dependencies:
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10.9'
- shell: bash
run: |
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir
mv temp_wheel_dir cu118_python_deps
tar cf cu118_python_deps.tar cu118_python_deps
- uses: actions/cache/save@v3
with:
path: cu118_python_deps.tar
key: ${{ runner.os }}-build-cu118

View File

@ -30,6 +30,7 @@ jobs:
- uses: actions/checkout@v3
with:
fetch-depth: 0
persist-credentials: false
- shell: bash
run: |
cd ..

View File

@ -17,23 +17,24 @@ jobs:
- uses: actions/checkout@v3
with:
fetch-depth: 0
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: '3.10.9'
python-version: '3.11.3'
- shell: bash
run: |
cd ..
cp -r ComfyUI ComfyUI_copy
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
curl https://www.python.org/ftp/python/3.11.3/python-3.11.3-embed-amd64.zip -o python_embeded.zip
unzip python_embeded.zip -d python_embeded
cd python_embeded
echo 'import site' >> ./python310._pth
echo 'import site' >> ./python311._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python310._pth
sed -i '1i../ComfyUI' ./python311._pth
cd ..
@ -46,6 +47,8 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/nightly/update_windows/* ./update/
cp -r ComfyUI/.ci/nightly/windows_base_files/* ./
cd ..

View File

@ -7,6 +7,8 @@ A powerful and modular stable diffusion GUI and backend.
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
### [Installing ComfyUI](#installing)
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x and SD2.x
@ -17,6 +19,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
- Embeddings/Textual inversion
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
- [Hypernetworks](https://comfyanonymous.github.io/ComfyUI_examples/hypernetworks/)
- Loading full workflows (with seeds) from generated PNG files.
- Saving/Loading workflows as Json files.
- Nodes interface can be used to create complex workflows like one for [Hires fix](https://comfyanonymous.github.io/ComfyUI_examples/2_pass_txt2img/) or much more advanced ones.
@ -25,6 +28,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- [ControlNet and T2I-Adapter](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/)
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
- Starts up very fast.
- Works fully offline: will never download anything.
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
@ -52,6 +56,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
| Q | Toggle visibility of the queue |
| H | Toggle visibility of history |
| R | Refresh graph |
| Double-Click LMB | Open node quick search palette |
Ctrl can also be replaced with Cmd instead for MacOS users

View File

@ -5,17 +5,17 @@ import torch
import torch as th
import torch.nn as nn
from ldm.modules.diffusionmodules.util import (
from ..ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ..ldm.models.diffusion.ddpm import LatentDiffusion
from ..ldm.util import log_txt_as_img, exists, instantiate_from_config
class ControlledUnetModel(UNetModel):

View File

@ -7,9 +7,11 @@ parser.add_argument("--port", type=int, default=8188, help="Set the listen port.
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
@ -29,3 +31,6 @@ parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
args = parser.parse_args()
if args.windows_standalone_build:
args.auto_launch = True

View File

@ -1,14 +1,5 @@
import json
import os
import yaml
import folder_paths
from comfy.ldm.util import instantiate_from_config
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
@ -262,101 +253,3 @@ def convert_text_enc_state_dict(text_enc_dict):
return text_enc_dict
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
# magic
v2 = diffusers_unet_conf["sample_size"] == 96
if 'prediction_type' in diffusers_scheduler_conf:
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
if v2:
if v_pred:
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
vae_config['scale_factor'] = scale_factor
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_v20_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
clip = None
vae = None
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
load_state_dict_to = []
if output_vae:
vae = VAE(scale_factor=scale_factor, config=vae_config)
w.first_stage_model = vae.first_stage_model
load_state_dict_to = [w]
if output_clip:
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
model = instantiate_from_config(config["model"])
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
if fp16:
model = model.half()
return ModelPatcher(model), clip, vae

111
comfy/diffusers_load.py Normal file
View File

@ -0,0 +1,111 @@
import json
import os
import yaml
import folder_paths
from comfy.ldm.util import instantiate_from_config
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
import diffusers_convert
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
# magic
v2 = diffusers_unet_conf["sample_size"] == 96
if 'prediction_type' in diffusers_scheduler_conf:
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
if v2:
if v_pred:
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
vae_config['scale_factor'] = scale_factor
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_v20_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict)
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
clip = None
vae = None
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
load_state_dict_to = []
if output_vae:
vae = VAE(scale_factor=scale_factor, config=vae_config)
w.first_stage_model = vae.first_stage_model
load_state_dict_to = [w]
if output_clip:
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
model = instantiate_from_config(config["model"])
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
if fp16:
model = model.half()
return ModelPatcher(model), clip, vae

View File

@ -712,7 +712,7 @@ class UniPC:
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
atol=0.0078, rtol=0.05, corrector=False,
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
):
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
@ -723,7 +723,7 @@ class UniPC:
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
assert timesteps.shape[0] - 1 == steps
# with torch.no_grad():
for step_index in trange(steps):
for step_index in trange(steps, disable=disable_pbar):
if self.noise_mask is not None:
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
if step_index == 0:
@ -766,6 +766,8 @@ class UniPC:
if model_x is None:
model_x = self.model_fn(x, vec_t)
model_prev_list[-1] = model_x
if callback is not None:
callback(step_index, model_prev_list[-1], x, steps)
else:
raise NotImplementedError()
if denoise_to_zero:
@ -833,7 +835,7 @@ def expand_dims(v, dims):
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=None, noise_mask=None, variant='bh1'):
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
to_zero = False
if sigmas[-1] == 0:
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
@ -877,7 +879,7 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, ex
order = min(3, len(timesteps) - 1)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True)
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
if not to_zero:
x /= ns.marginal_alpha(timesteps[-1])
return x

360
comfy/gligen.py Normal file
View File

@ -0,0 +1,360 @@
import torch
from torch import nn, einsum
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * torch.nn.functional.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class GatedCrossAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
# this can be useful: we can externally change magnitude of tanh(alpha)
# for example, when it is set to 0, then the entire model is same as
# original one
self.scale = 1
def forward(self, x, objs):
x = x + self.scale * \
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
x = x + self.scale * \
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
return x
class GatedSelfAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=query_dim,
heads=n_heads,
dim_head=d_head)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
# this can be useful: we can externally change magnitude of tanh(alpha)
# for example, when it is set to 0, then the entire model is same as
# original one
self.scale = 1
def forward(self, x, objs):
N_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
x = x + self.scale * \
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
return x
class GatedSelfAttentionDense2(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim, context_dim=query_dim, dim_head=d_head)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
# this can be useful: we can externally change magnitude of tanh(alpha)
# for example, when it is set to 0, then the entire model is same as
# original one
self.scale = 1
def forward(self, x, objs):
B, N_visual, _ = x.shape
B, N_ground, _ = objs.shape
objs = self.linear(objs)
# sanity check
size_v = math.sqrt(N_visual)
size_g = math.sqrt(N_ground)
assert int(size_v) == size_v, "Visual tokens must be square rootable"
assert int(size_g) == size_g, "Grounding tokens must be square rootable"
size_v = int(size_v)
size_g = int(size_g)
# select grounding token and resize it to visual token size as residual
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
:, N_visual:, :]
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
out = torch.nn.functional.interpolate(
out, (size_v, size_v), mode='bicubic')
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
# add residual to visual feature
x = x + self.scale * torch.tanh(self.alpha_attn) * residual
x = x + self.scale * \
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
return x
class FourierEmbedder():
def __init__(self, num_freqs=64, temperature=100):
self.num_freqs = num_freqs
self.temperature = temperature
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
@torch.no_grad()
def __call__(self, x, cat_dim=-1):
"x: arbitrary shape of tensor. dim: cat dim"
out = []
for freq in self.freq_bands:
out.append(torch.sin(freq * x))
out.append(torch.cos(freq * x))
return torch.cat(out, cat_dim)
class PositionNet(nn.Module):
def __init__(self, in_dim, out_dim, fourier_freqs=8):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
self.linears = nn.Sequential(
nn.Linear(self.in_dim + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(
torch.zeros([self.in_dim]))
self.null_position_feature = torch.nn.Parameter(
torch.zeros([self.position_dim]))
def forward(self, boxes, masks, positive_embeddings):
B, N, _ = boxes.shape
masks = masks.unsqueeze(-1)
# embedding position (it may includes padding as placeholder)
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
xyxy_null = self.null_position_feature.view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * \
masks + (1 - masks) * positive_null
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
objs = self.linears(
torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
assert objs.shape == torch.Size([B, N, self.out_dim])
return objs
class Gligen(nn.Module):
def __init__(self, modules, position_net, key_dim):
super().__init__()
self.module_list = nn.ModuleList(modules)
self.position_net = position_net
self.key_dim = key_dim
self.max_objs = 30
self.lowvram = False
def _set_position(self, boxes, masks, positive_embeddings):
if self.lowvram == True:
self.position_net.to(boxes.device)
objs = self.position_net(boxes, masks, positive_embeddings)
if self.lowvram == True:
self.position_net.cpu()
def func_lowvram(key, x):
module = self.module_list[key]
module.to(x.device)
r = module(x, objs)
module.cpu()
return r
return func_lowvram
else:
def func(key, x):
module = self.module_list[key]
return module(x, objs)
return func
def set_position(self, latent_image_shape, position_params, device):
batch, c, h, w = latent_image_shape
masks = torch.zeros([self.max_objs], device="cpu")
boxes = []
positive_embeddings = []
for p in position_params:
x1 = (p[4]) / w
y1 = (p[3]) / h
x2 = (p[4] + p[2]) / w
y2 = (p[3] + p[1]) / h
masks[len(boxes)] = 1.0
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
positive_embeddings += [p[0]]
append_boxes = []
append_conds = []
if len(boxes) < self.max_objs:
append_boxes = [torch.zeros(
[self.max_objs - len(boxes), 4], device="cpu")]
append_conds = [torch.zeros(
[self.max_objs - len(boxes), self.key_dim], device="cpu")]
box_out = torch.cat(
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
masks = masks.unsqueeze(0).repeat(batch, 1)
conds = torch.cat(positive_embeddings +
append_conds).unsqueeze(0).repeat(batch, 1, 1)
return self._set_position(
box_out.to(device),
masks.to(device),
conds.to(device))
def set_empty(self, latent_image_shape, device):
batch, c, h, w = latent_image_shape
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
box_out = torch.zeros([self.max_objs, 4],
device="cpu").repeat(batch, 1, 1)
conds = torch.zeros([self.max_objs, self.key_dim],
device="cpu").repeat(batch, 1, 1)
return self._set_position(
box_out.to(device),
masks.to(device),
conds.to(device))
def set_lowvram(self, value=True):
self.lowvram = value
def cleanup(self):
self.lowvram = False
def get_models(self):
return [self]
def load_gligen(sd):
sd_k = sd.keys()
output_list = []
key_dim = 768
for a in ["input_blocks", "middle_block", "output_blocks"]:
for b in range(20):
k_temp = filter(lambda k: "{}.{}.".format(a, b)
in k and ".fuser." in k, sd_k)
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
n_sd = {}
for k in k_temp:
n_sd[k[1]] = sd[k[0]]
if len(n_sd) > 0:
query_dim = n_sd["linear.weight"].shape[0]
key_dim = n_sd["linear.weight"].shape[1]
if key_dim == 768: # SD1.x
n_heads = 8
d_head = query_dim // n_heads
else:
d_head = 64
n_heads = query_dim // d_head
gated = GatedSelfAttentionDense(
query_dim, key_dim, n_heads, d_head)
gated.load_state_dict(n_sd, strict=False)
output_list.append(gated)
if "position_net.null_positive_feature" in sd_k:
in_dim = sd["position_net.null_positive_feature"].shape[0]
out_dim = sd["position_net.linears.4.weight"].shape[0]
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.position_net = PositionNet(in_dim, out_dim)
w.load_state_dict(sd, strict=False)
gligen = Gligen(output_list, w.position_net, key_dim)
return gligen

View File

@ -605,3 +605,47 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
"""DPM-Solver++(2M) SDE."""
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
h_last = None
h = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x

View File

@ -3,11 +3,11 @@ import torch
import torch.nn.functional as F
from contextlib import contextmanager
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from comfy.ldm.modules.diffusionmodules.model import Encoder, Decoder
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from ldm.util import instantiate_from_config
from ldm.modules.ema import LitEma
from comfy.ldm.util import instantiate_from_config
from comfy.ldm.modules.ema import LitEma
# class AutoencoderKL(pl.LightningModule):
class AutoencoderKL(torch.nn.Module):

View File

@ -4,7 +4,7 @@ import torch
import numpy as np
from tqdm import tqdm
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
from comfy.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
class DDIMSampler(object):
@ -81,6 +81,7 @@ class DDIMSampler(object):
extra_args=None,
to_zero=True,
end_step=None,
disable_pbar=False,
**kwargs
):
self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
@ -103,7 +104,8 @@ class DDIMSampler(object):
denoise_function=denoise_function,
extra_args=extra_args,
to_zero=to_zero,
end_step=end_step
end_step=end_step,
disable_pbar=disable_pbar
)
return samples, intermediates
@ -185,7 +187,7 @@ class DDIMSampler(object):
mask=None, x0=None, img_callback=None, log_every_t=100,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None):
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None, disable_pbar=False):
device = self.model.betas.device
b = shape[0]
if x_T is None:
@ -204,7 +206,7 @@ class DDIMSampler(object):
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
# print(f"Running DDIM Sampling with {total_steps} timesteps")
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step)
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step, disable=disable_pbar)
for i, step in enumerate(iterator):
index = total_steps - i - 1

View File

@ -19,12 +19,12 @@ from tqdm import tqdm
from torchvision.utils import make_grid
# from pytorch_lightning.utilities.distributed import rank_zero_only
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from ldm.models.diffusion.ddim import DDIMSampler
from comfy.ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
from comfy.ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ..autoencoder import IdentityFirstStage, AutoencoderKL
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from .ddim import DDIMSampler
__conditioning_keys__ = {'concat': 'c_concat',

View File

@ -6,7 +6,7 @@ from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
from ldm.modules.diffusionmodules.util import checkpoint
from .diffusionmodules.util import checkpoint
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
@ -21,7 +21,7 @@ if model_management.xformers_enabled():
import os
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
from cli_args import args
from comfy.cli_args import args
def exists(val):
return val is not None
@ -163,13 +163,17 @@ class CrossAttentionBirchSan(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
query = self.to_q(x)
context = default(context, x)
key = self.to_k(context)
value = self.to_v(context)
if value is not None:
value = self.to_v(value)
else:
value = self.to_v(context)
del context, x
query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
@ -256,13 +260,17 @@ class CrossAttentionDoggettx(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context)
v_in = self.to_v(context)
if value is not None:
v_in = self.to_v(value)
del value
else:
v_in = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
@ -350,13 +358,17 @@ class CrossAttention(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
@ -402,11 +414,15 @@ class MemoryEfficientCrossAttention(nn.Module):
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
@ -447,19 +463,19 @@ class CrossAttentionPytorch(nn.Module):
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
(q, k, v),
)
@ -468,10 +484,7 @@ class CrossAttentionPytorch(nn.Module):
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
)
return self.to_out(out)
@ -510,16 +523,52 @@ class BasicTransformerBlock(nn.Module):
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
def _forward(self, x, context=None, transformer_options={}):
current_index = None
if "current_index" in transformer_options:
current_index = transformer_options["current_index"]
if "patches" in transformer_options:
transformer_patches = transformer_options["patches"]
else:
transformer_patches = {}
n = self.norm1(x)
if self.disable_self_attn:
context_attn1 = context
else:
context_attn1 = None
value_attn1 = None
if "attn1_patch" in transformer_patches:
patch = transformer_patches["attn1_patch"]
if context_attn1 is None:
context_attn1 = n
value_attn1 = context_attn1
for p in patch:
n, context_attn1, value_attn1 = p(current_index, n, context_attn1, value_attn1)
if "tomesd" in transformer_options:
m, u = tomesd.get_functions(x, transformer_options["tomesd"]["ratio"], transformer_options["original_shape"])
n = u(self.attn1(m(n), context=context if self.disable_self_attn else None))
n = u(self.attn1(m(n), context=context_attn1, value=value_attn1))
else:
n = self.attn1(n, context=context if self.disable_self_attn else None)
n = self.attn1(n, context=context_attn1, value=value_attn1)
x += n
if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"]
for p in patch:
x = p(current_index, x)
n = self.norm2(x)
n = self.attn2(n, context=context)
context_attn2 = context
value_attn2 = None
if "attn2_patch" in transformer_patches:
patch = transformer_patches["attn2_patch"]
value_attn2 = context_attn2
for p in patch:
n, context_attn2, value_attn2 = p(current_index, n, context_attn2, value_attn2)
n = self.attn2(n, context=context_attn2, value=value_attn2)
x += n
x = self.ff(self.norm3(x)) + x

View File

@ -6,7 +6,7 @@ import numpy as np
from einops import rearrange
from typing import Optional, Any
from ldm.modules.attention import MemoryEfficientCrossAttention
from ..attention import MemoryEfficientCrossAttention
from comfy import model_management
if model_management.xformers_enabled_vae():
@ -146,6 +146,41 @@ class ResnetBlock(nn.Module):
return x+h
def slice_attention(q, k, v):
r1 = torch.zeros_like(k, device=q.device)
scale = (int(q.shape[-1])**(-0.5))
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = torch.bmm(q[:, i:end], k) * scale
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
del s1
r1[:, :, i:end] = torch.bmm(v, s2)
del s2
break
except model_management.OOM_EXCEPTION as e:
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again", steps)
return r1
class AttnBlock(nn.Module):
def __init__(self, in_channels):
@ -183,48 +218,15 @@ class AttnBlock(nn.Module):
# compute attention
b,c,h,w = q.shape
scale = (int(c)**(-0.5))
q = q.reshape(b,c,h*w)
q = q.permute(0,2,1) # b,hw,c
k = k.reshape(b,c,h*w) # b,c,hw
v = v.reshape(b,c,h*w)
r1 = torch.zeros_like(k, device=q.device)
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = torch.bmm(q[:, i:end], k) * scale
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
del s1
r1[:, :, i:end] = torch.bmm(v, s2)
del s2
break
except model_management.OOM_EXCEPTION as e:
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again", steps)
r1 = slice_attention(q, k, v)
h_ = r1.reshape(b,c,h,w)
del r1
h_ = self.proj_out(h_)
return x+h_
@ -331,25 +333,18 @@ class MemoryEfficientAttnBlockPytorch(nn.Module):
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(B, t.shape[1], 1, C)
.permute(0, 2, 1, 3)
.reshape(B * 1, t.shape[1], C)
.contiguous(),
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = (
out.unsqueeze(0)
.reshape(B, 1, out.shape[1], C)
.permute(0, 2, 1, 3)
.reshape(B, out.shape[1], C)
)
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
try:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(B, C, H, W)
except model_management.OOM_EXCEPTION as e:
print("scaled_dot_product_attention OOMed: switched to slice attention")
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
out = self.proj_out(out)
return x+out

View File

@ -6,7 +6,7 @@ import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
from .util import (
checkpoint,
conv_nd,
linear,
@ -15,8 +15,8 @@ from ldm.modules.diffusionmodules.util import (
normalization,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.util import exists
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
# dummy replace
@ -76,16 +76,31 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
support it as an extra input.
"""
def forward(self, x, emb, context=None, transformer_options={}):
def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context, transformer_options)
elif isinstance(layer, Upsample):
x = layer(x, output_shape=output_shape)
else:
x = layer(x)
return x
#This is needed because accelerate makes a copy of transformer_options which breaks "current_index"
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None):
for layer in ts:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context, transformer_options)
transformer_options["current_index"] += 1
elif isinstance(layer, Upsample):
x = layer(x, output_shape=output_shape)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
@ -105,14 +120,20 @@ class Upsample(nn.Module):
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
def forward(self, x, output_shape=None):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
if output_shape is not None:
shape[1] = output_shape[3]
shape[2] = output_shape[4]
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
shape = [x.shape[2] * 2, x.shape[3] * 2]
if output_shape is not None:
shape[0] = output_shape[2]
shape[1] = output_shape[3]
x = F.interpolate(x, size=shape, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
@ -782,6 +803,8 @@ class UNetModel(nn.Module):
:return: an [N x C x ...] Tensor of outputs.
"""
transformer_options["original_shape"] = list(x.shape)
transformer_options["current_index"] = 0
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
@ -795,13 +818,13 @@ class UNetModel(nn.Module):
h = x.type(self.dtype)
for id, module in enumerate(self.input_blocks):
h = module(h, emb, context, transformer_options)
h = forward_timestep_embed(module, h, emb, context, transformer_options)
if control is not None and 'input' in control and len(control['input']) > 0:
ctrl = control['input'].pop()
if ctrl is not None:
h += ctrl
hs.append(h)
h = self.middle_block(h, emb, context, transformer_options)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
if control is not None and 'middle' in control and len(control['middle']) > 0:
h += control['middle'].pop()
@ -811,9 +834,14 @@ class UNetModel(nn.Module):
ctrl = control['output'].pop()
if ctrl is not None:
hsp += ctrl
h = th.cat([h, hsp], dim=1)
del hsp
h = module(h, emb, context, transformer_options)
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)

View File

@ -3,8 +3,8 @@ import torch.nn as nn
import numpy as np
from functools import partial
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
from ldm.util import default
from .util import extract_into_tensor, make_beta_schedule
from comfy.ldm.util import default
class AbstractLowScaleModel(nn.Module):

View File

@ -15,7 +15,7 @@ import torch.nn as nn
import numpy as np
from einops import repeat
from ldm.util import instantiate_from_config
from comfy.ldm.util import instantiate_from_config
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):

View File

@ -1,5 +1,5 @@
from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from ldm.modules.diffusionmodules.openaimodel import Timestep
from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from ..diffusionmodules.openaimodel import Timestep
import torch
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):

View File

@ -36,7 +36,7 @@ def bipartite_soft_matching_random2d(metric: torch.Tensor,
"""
B, N, _ = metric.shape
if r <= 0:
if r <= 0 or w == 1 or h == 1:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather

View File

@ -1,45 +1,116 @@
import psutil
from enum import Enum
from cli_args import args
from comfy.cli_args import args
import torch
class VRAMState(Enum):
CPU = 0
DISABLED = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
MPS = 5
SHARED = 5
class CPUState(Enum):
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
total_vram_available_mb = -1
accelerate_enabled = False
lowvram_available = True
xpu_available = False
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import torch
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
except:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
if not args.normalvram and not args.cpu:
if total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
except:
pass
if args.cpu:
cpu_state = CPUState.CPU
def get_torch_device():
global xpu_available
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if xpu_available:
return torch.device("xpu")
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_total
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
@ -77,6 +148,7 @@ if ENABLE_PYTORCH_ATTENTION:
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.novram:
set_vram_to = VRAMState.NO_VRAM
elif args.highvram:
@ -87,32 +159,42 @@ if args.force_fp32:
print("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
if lowvram_available:
try:
import accelerate
accelerate_enabled = True
vram_state = set_vram_to
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
except Exception as e:
import traceback
print(traceback.format_exc())
print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
print("ERROR: LOW VRAM MODE NEEDS accelerate.")
lowvram_available = False
total_vram_available_mb = (total_vram - 1024) // 2
total_vram_available_mb = int(max(256, total_vram_available_mb))
try:
if torch.backends.mps.is_available():
vram_state = VRAMState.MPS
except:
pass
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if args.cpu:
vram_state = VRAMState.CPU
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
print(f"Set vram state to: {vram_state.name}")
def get_torch_device_name(device):
if hasattr(device, 'type'):
if device.type == "cuda":
return "{} {}".format(device, torch.cuda.get_device_name(device))
else:
return "{}".format(device.type)
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
print("Device:", get_torch_device_name(get_torch_device()))
except:
print("Could not pick default device.")
current_loaded_model = None
current_gpu_controlnets = []
@ -133,6 +215,7 @@ def unload_model():
#never unload models from GPU on high vram
if vram_state != VRAMState.HIGH_VRAM:
current_loaded_model.model.cpu()
current_loaded_model.model_patches_to("cpu")
current_loaded_model.unpatch_model()
current_loaded_model = None
@ -156,36 +239,52 @@ def load_model_gpu(model):
except Exception as e:
model.unpatch_model()
raise e
torch_dev = get_torch_device()
model.model_patches_to(torch_dev)
vram_set_state = vram_state
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = model.model_size()
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - (512 * 1024 * 1024)): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
current_loaded_model = model
if vram_state == VRAMState.CPU:
if vram_set_state == VRAMState.DISABLED:
pass
elif vram_state == VRAMState.MPS:
mps_device = torch.device("mps")
real_model.to(mps_device)
pass
elif vram_state == VRAMState.NORMAL_VRAM or vram_state == VRAMState.HIGH_VRAM:
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
model_accelerated = False
real_model.to(get_torch_device())
else:
if vram_state == VRAMState.NO_VRAM:
if vram_set_state == VRAMState.NO_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
elif vram_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
elif vram_set_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device())
model_accelerated = True
return current_loaded_model
def load_controlnet_gpu(models):
def load_controlnet_gpu(control_models):
global current_gpu_controlnets
global vram_state
if vram_state == VRAMState.CPU:
if vram_state == VRAMState.DISABLED:
return
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
for m in control_models:
if hasattr(m, 'set_lowvram'):
m.set_lowvram(True)
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
return
models = []
for m in control_models:
models += m.get_models()
for m in current_gpu_controlnets:
if m not in models:
m.cpu()
@ -208,18 +307,6 @@ def unload_if_low_vram(model):
return model.cpu()
return model
def get_torch_device():
global xpu_available
if vram_state == VRAMState.MPS:
return torch.device("mps")
if vram_state == VRAMState.CPU:
return torch.device("cpu")
else:
if xpu_available:
return torch.device("xpu")
else:
return torch.cuda.current_device()
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
@ -227,7 +314,14 @@ def get_autocast_device(dev):
def xformers_enabled():
if vram_state == VRAMState.CPU:
global xpu_available
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if xpu_available:
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
@ -240,10 +334,20 @@ def xformers_enabled_vae():
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if torch.version.cuda: #pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
@ -251,7 +355,10 @@ def get_free_memory(dev=None, torch_free_too=False):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if xpu_available:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
mem_free_torch = mem_free_total
else:
@ -273,22 +380,32 @@ def maximum_batch_area():
return 0
memory_free = get_free_memory() / (1024 * 1024)
area = ((memory_free - 1024) * 0.9) / (0.6)
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: this needs to be tweaked
area = 20 * memory_free
else:
#TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
area = ((memory_free - 1024) * 0.9) / (0.6)
return int(max(area, 0))
def cpu_mode():
global vram_state
return vram_state == VRAMState.CPU
global cpu_state
return cpu_state == CPUState.CPU
def mps_mode():
global vram_state
return vram_state == VRAMState.MPS
global cpu_state
return cpu_state == CPUState.MPS
def should_use_fp16():
global xpu_available
global directml_enabled
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode() or xpu_available:
return False #TODO ?
@ -309,7 +426,10 @@ def should_use_fp16():
def soft_empty_cache():
global xpu_available
if xpu_available:
global cpu_state
if cpu_state == CPUState.MPS:
torch.mps.empty_cache()
elif xpu_available:
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if torch.version.cuda: #This seems to make things worse on ROCm so I only do it for cuda

92
comfy/sample.py Normal file
View File

@ -0,0 +1,92 @@
import torch
import comfy.model_management
import comfy.samplers
import math
import numpy as np
def prepare_noise(latent_image, seed, noise_inds=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1]+1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
def prepare_mask(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
if noise_mask.shape[0] < shape[0]:
noise_mask = noise_mask.repeat(math.ceil(shape[0] / noise_mask.shape[0]), 1, 1, 1)[:shape[0]]
noise_mask = noise_mask.to(device)
return noise_mask
def broadcast_cond(cond, batch, device):
"""broadcasts conditioning to the batch size"""
copy = []
for p in cond:
t = p[0]
if t.shape[0] < batch:
t = torch.cat([t] * batch)
t = t.to(device)
copy += [[t] + p[1:]]
return copy
def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c[1]:
models += [c[1][model_type]]
return models
def load_additional_models(positive, negative):
"""loads additional models in positive and negative conditioning"""
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
gligen = [x[1] for x in gligen]
models = control_nets + gligen
comfy.model_management.load_controlnet_gpu(models)
return models
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
m.cleanup()
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False):
device = comfy.model_management.get_torch_device()
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
models = load_additional_models(positive, negative)
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar)
samples = samples.cpu()
cleanup_additional_models(models)
return samples

View File

@ -6,23 +6,10 @@ import contextlib
from comfy import model_management
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
import math
class CFGDenoiser(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
else:
cond = self.inner_model(x, sigma, cond=cond)
uncond = self.inner_model(x, sigma, cond=uncond)
return uncond + (cond - uncond) * cond_scale
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
return abs(a*b) // math.gcd(a, b)
#The main sampling function shared by all the samplers
#Returns predicted noise
@ -36,25 +23,40 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
strength = cond[1]['strength']
adm_cond = None
if 'adm' in cond[1]:
adm_cond = cond[1]['adm']
if 'adm_encoded' in cond[1]:
adm_cond = cond[1]['adm_encoded']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
mult = torch.ones_like(input_x) * strength
if 'mask' in cond[1]:
# Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process
mask_strength = 1.0
if "mask_strength" in cond[1]:
mask_strength = cond[1]["mask_strength"]
mask = cond[1]['mask']
assert(mask.shape[1] == x_in.shape[2])
assert(mask.shape[2] == x_in.shape[3])
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in cond[1]:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
conditionning = {}
conditionning['c_crossattn'] = cond[0]
if cond_concat_in is not None and len(cond_concat_in) > 0:
@ -70,7 +72,21 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
control = None
if 'control' in cond[1]:
control = cond[1]['control']
return (input_x, mult, conditionning, area, control)
patches = None
if 'gligen' in cond[1]:
gligen = cond[1]['gligen']
patches = {}
gligen_type = gligen[0]
gligen_model = gligen[1]
if gligen_type == "position":
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
else:
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
patches['middle_patch'] = [gligen_patch]
return (input_x, mult, conditionning, area, control, patches)
def cond_equal_size(c1, c2):
if c1 is c2:
@ -78,8 +94,16 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
if c1.keys() != c2.keys():
return False
if 'c_crossattn' in c1:
if c1['c_crossattn'].shape != c2['c_crossattn'].shape:
return False
s1 = c1['c_crossattn'].shape
s2 = c2['c_crossattn'].shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
return False
mult_min = lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
if 'c_concat' in c1:
if c1['c_concat'].shape != c2['c_concat'].shape:
return False
@ -91,28 +115,49 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
def can_concat_cond(c1, c2):
if c1[0].shape != c2[0].shape:
return False
#control
if (c1[4] is None) != (c2[4] is None):
return False
if c1[4] is not None:
if c1[4] is not c2[4]:
return False
#patches
if (c1[5] is None) != (c2[5] is None):
return False
if (c1[5] is not None):
if c1[5] is not c2[5]:
return False
return cond_equal_size(c1[2], c2[2])
def cond_cat(c_list):
c_crossattn = []
c_concat = []
c_adm = []
crossattn_max_len = 0
for x in c_list:
if 'c_crossattn' in x:
c_crossattn.append(x['c_crossattn'])
c = x['c_crossattn']
if crossattn_max_len == 0:
crossattn_max_len = c.shape[1]
else:
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
c_crossattn.append(c)
if 'c_concat' in x:
c_concat.append(x['c_concat'])
if 'c_adm' in x:
c_adm.append(x['c_adm'])
out = {}
if len(c_crossattn) > 0:
out['c_crossattn'] = [torch.cat(c_crossattn)]
c_crossattn_out = []
for c in c_crossattn:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
c_crossattn_out.append(c)
if len(c_crossattn_out) > 0:
out['c_crossattn'] = [torch.cat(c_crossattn_out)]
if len(c_concat) > 0:
out['c_concat'] = [torch.cat(c_concat)]
if len(c_adm) > 0:
@ -166,6 +211,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
cond_or_uncond = []
area = []
control = None
patches = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
@ -175,6 +221,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
area += [p[3]]
cond_or_uncond += [o[1]]
control = p[4]
patches = p[5]
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
@ -184,8 +231,22 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
if control is not None:
c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
transformer_options = {}
if 'transformer_options' in model_options:
c['transformer_options'] = model_options['transformer_options']
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
c['transformer_options'] = transformer_options
output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
del input_x
@ -279,6 +340,60 @@ def blank_inpaint_image_like(latent_image):
blank_image[:,3] *= 0.1380
return blank_image
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
b = masks.shape[0]
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
for i in range(b):
mask = masks[i]
if mask.numel() == 0:
continue
if torch.max(mask != 0) == False:
is_empty[i] = True
continue
y, x = torch.where(mask)
bounding_boxes[i, 0] = torch.min(x)
bounding_boxes[i, 1] = torch.min(y)
bounding_boxes[i, 2] = torch.max(x)
bounding_boxes[i, 3] = torch.max(y)
return bounding_boxes, is_empty
def resolve_cond_masks(conditions, h, w, device):
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
for i in range(len(conditions)):
c = conditions[i]
if 'mask' in c[1]:
mask = c[1]['mask']
mask = mask.to(device=device)
modified = c[1].copy()
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
if mask.shape[2] != h or mask.shape[3] != w:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)
if modified.get("set_area_to_bounds", False):
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
boxes, is_empty = get_mask_aabb(bounds)
if is_empty[0]:
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
modified['area'] = (8, 8, 0, 0)
else:
box = boxes[0]
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
H = max(8, H)
W = max(8, W)
area = (int(H), int(W), int(Y), int(X))
modified['area'] = area
modified['mask'] = mask
conditions[i] = [c[0], modified]
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
return
@ -309,8 +424,7 @@ def create_cond_with_same_area_if_none(conds, c):
n = c[1].copy()
conds += [[smallest[0], n]]
def apply_control_net_to_equal_area(conds, uncond):
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []
cond_other = []
uncond_cnets = []
@ -318,15 +432,15 @@ def apply_control_net_to_equal_area(conds, uncond):
for t in range(len(conds)):
x = conds[t]
if 'area' not in x[1]:
if 'control' in x[1] and x[1]['control'] is not None:
cond_cnets.append(x[1]['control'])
if name in x[1] and x[1][name] is not None:
cond_cnets.append(x[1][name])
else:
cond_other.append((x, t))
for t in range(len(uncond)):
x = uncond[t]
if 'area' not in x[1]:
if 'control' in x[1] and x[1]['control'] is not None:
uncond_cnets.append(x[1]['control'])
if name in x[1] and x[1][name] is not None:
uncond_cnets.append(x[1][name])
else:
uncond_other.append((x, t))
@ -336,15 +450,16 @@ def apply_control_net_to_equal_area(conds, uncond):
for x in range(len(cond_cnets)):
temp = uncond_other[x % len(uncond_other)]
o = temp[0]
if 'control' in o[1] and o[1]['control'] is not None:
if name in o[1] and o[1][name] is not None:
n = o[1].copy()
n['control'] = cond_cnets[x]
n[name] = uncond_fill_func(cond_cnets, x)
uncond += [[o[0], n]]
else:
n = o[1].copy()
n['control'] = cond_cnets[x]
n[name] = uncond_fill_func(cond_cnets, x)
uncond[temp[1]] = [o[0], n]
def encode_adm(noise_augmentor, conds, batch_size, device):
for t in range(len(conds)):
x = conds[t]
@ -374,15 +489,16 @@ def encode_adm(noise_augmentor, conds, batch_size, device):
else:
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
x[1] = x[1].copy()
x[1]["adm"] = torch.cat([adm_out] * batch_size)
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size)
return conds
class KSampler:
SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
"dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
"dpmpp_2m", "dpmpp_2m_sde", "ddim", "uni_pc", "uni_pc_bh2"]
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
self.model = model
@ -406,7 +522,7 @@ class KSampler:
self.denoise = denoise
self.model_options = model_options
def _calculate_sigmas(self, steps):
def calculate_sigmas(self, steps):
sigmas = None
discard_penultimate_sigma = False
@ -415,13 +531,15 @@ class KSampler:
discard_penultimate_sigma = True
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
elif self.scheduler == "exponential":
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
sigmas = self.model_wrap.get_sigmas(steps)
elif self.scheduler == "simple":
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
sigmas = simple_scheduler(self.model_wrap, steps)
elif self.scheduler == "ddim_uniform":
sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
sigmas = ddim_scheduler(self.model_wrap, steps)
else:
print("error invalid scheduler", self.scheduler)
@ -432,15 +550,15 @@ class KSampler:
def set_steps(self, steps, denoise=None):
self.steps = steps
if denoise is None or denoise > 0.9999:
self.sigmas = self._calculate_sigmas(steps)
self.sigmas = self.calculate_sigmas(steps).to(self.device)
else:
new_steps = int(steps/denoise)
sigmas = self._calculate_sigmas(new_steps)
sigmas = self.calculate_sigmas(new_steps).to(self.device)
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
sigmas = self.sigmas
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
if sigmas is None:
sigmas = self.sigmas
sigma_min = self.sigma_min
if last_step is not None and last_step < (len(sigmas) - 1):
@ -460,13 +578,18 @@ class KSampler:
positive = positive[:]
negative = negative[:]
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
create_cond_with_same_area_if_none(positive, c)
apply_control_net_to_equal_area(positive, negative)
apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if self.model.model.diffusion_model.dtype == torch.float16:
precision_scope = torch.autocast
@ -502,9 +625,9 @@ class KSampler:
with precision_scope(model_management.get_autocast_device(self.device)):
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, variant='bh2')
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
elif self.sampler == "ddim":
timesteps = []
for s in range(sigmas.shape[0]):
@ -512,6 +635,12 @@ class KSampler:
noise_mask = None
if denoise_mask is not None:
noise_mask = 1.0 - denoise_mask
ddim_callback = None
if callback is not None:
total_steps = len(timesteps) - 1
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
sampler = DDIMSampler(self.model, device=self.device)
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
@ -525,11 +654,13 @@ class KSampler:
eta=0.0,
x_T=z_enc,
x0=latent_image,
img_callback=ddim_callback,
denoise_function=sampling_function,
extra_args=extra_args,
mask=noise_mask,
to_zero=sigmas[-1]==0,
end_step=sigmas.shape[0] - 1)
end_step=sigmas.shape[0] - 1,
disable_pbar=disable_pbar)
else:
extra_args["denoise_mask"] = denoise_mask
@ -538,13 +669,18 @@ class KSampler:
noise = noise * sigmas[0]
k_callback = None
total_steps = len(sigmas) - 1
if callback is not None:
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args)
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
return samples.to(torch.float32)

View File

@ -2,8 +2,8 @@ import torch
import contextlib
import copy
import sd1_clip
import sd2_clip
from . import sd1_clip
from . import sd2_clip
from comfy import model_management
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
@ -13,6 +13,8 @@ from .t2i_adapter import adapter
from . import utils
from . import clip_vision
from . import gligen
from . import diffusers_convert
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
m, u = model.load_state_dict(sd, strict=False)
@ -110,6 +112,8 @@ def load_lora(path, to_load):
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
@ -131,6 +135,54 @@ def load_lora(path, to_load):
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
@ -234,15 +286,29 @@ def model_lora_keys(model, key_map={}):
return key_map
class ModelPatcher:
def __init__(self, model):
def __init__(self, model, size=0):
self.size = size
self.model = model
self.patches = []
self.backup = {}
self.model_options = {"transformer_options":{}}
self.model_size()
def model_size(self):
if self.size > 0:
return self.size
model_sd = self.model.state_dict()
size = 0
for k in model_sd:
t = model_sd[k]
size += t.nelement() * t.element_size()
self.size = size
return size
def clone(self):
n = ModelPatcher(self.model)
n = ModelPatcher(self.model, self.size)
n.patches = self.patches[:]
n.model_options = copy.deepcopy(self.model_options)
return n
@ -253,6 +319,29 @@ class ModelPatcher:
def set_model_sampler_cfg_function(self, sampler_cfg_function):
self.model_options["sampler_cfg_function"] = sampler_cfg_function
def set_model_patch(self, patch, name):
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch")
def model_patches_to(self, device):
to = self.model_options["transformer_options"]
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device)
def model_dtype(self):
return self.model.diffusion_model.dtype
@ -291,6 +380,33 @@ class ModelPatcher:
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
elif len(v) == 8: #lokr
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(w1_a.float(), w1_b.float())
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(w2_a.float(), w2_b.float())
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
else: #loha
w1a = v[0]
w1b = v[1]
@ -345,10 +461,10 @@ class CLIP:
else:
params = {}
if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
clip = sd2_clip.SD2ClipModel
tokenizer = sd2_clip.SD2Tokenizer
elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
elif self.target_clip.endswith("FrozenCLIPEmbedder"):
clip = sd1_clip.SD1ClipModel
tokenizer = sd1_clip.SD1Tokenizer
@ -378,7 +494,7 @@ class CLIP:
def tokenize(self, text, return_word_ids=False):
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
def encode_from_tokens(self, tokens):
def encode_from_tokens(self, tokens, return_pooled=False):
if self.layer_idx is not None:
self.cond_stage_model.clip_layer(self.layer_idx)
try:
@ -388,6 +504,10 @@ class CLIP:
except Exception as e:
self.patcher.unpatch_model()
raise e
if return_pooled:
eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__)
pooled = cond[:, eos_token_index]
return cond, pooled
return cond
def encode(self, text):
@ -399,21 +519,32 @@ class VAE:
if config is None:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
else:
self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval()
if ckpt_path is not None:
sd = utils.load_torch_file(ckpt_path)
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd)
self.first_stage_model.load_state_dict(sd, strict=False)
self.scale_factor = scale_factor
if device is None:
device = model_management.get_torch_device()
self.device = device
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
output = torch.clamp((
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
@ -457,20 +588,23 @@ class VAE:
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples /= 3.0
self.first_stage_model = self.first_stage_model.cpu()
samples = samples.cpu()
return samples
def resize_image_to(tensor, target_latent_tensor, batched_number):
tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center")
target_batch_size = target_latent_tensor.shape[0]
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
print(current_batch_size, target_batch_size)
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
@ -487,7 +621,7 @@ def resize_image_to(tensor, target_latent_tensor, batched_number):
return torch.cat([tensor] * batched_number, dim=0)
class ControlNet:
def __init__(self, control_model, device=None):
def __init__(self, control_model, global_average_pooling=False, device=None):
self.control_model = control_model
self.cond_hint_original = None
self.cond_hint = None
@ -496,6 +630,7 @@ class ControlNet:
device = model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
self.global_average_pooling = global_average_pooling
def get_control(self, x_noisy, t, cond_txt, batched_number):
control_prev = None
@ -507,7 +642,9 @@ class ControlNet:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device)
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_model.dtype == torch.float16:
precision_scope = torch.autocast
@ -529,6 +666,9 @@ class ControlNet:
key = 'output'
index = i
x = control[i]
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength
if x.dtype != output_dtype and not autocast_enabled:
x = x.to(output_dtype)
@ -559,15 +699,15 @@ class ControlNet:
self.cond_hint = None
def copy(self):
c = ControlNet(self.control_model)
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
return c
def get_control_models(self):
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_control_models()
out += self.previous_controlnet.get_models()
out.append(self.control_model)
return out
@ -607,7 +747,7 @@ def load_controlnet(ckpt_path, model=None):
use_spatial_transformer=True,
transformer_depth=1,
context_dim=context_dim,
use_checkpoint=True,
use_checkpoint=False,
legacy=False,
use_fp16=use_fp16)
else:
@ -624,7 +764,7 @@ def load_controlnet(ckpt_path, model=None):
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=context_dim,
use_checkpoint=True,
use_checkpoint=False,
legacy=False,
use_fp16=use_fp16)
if pth:
@ -654,7 +794,11 @@ def load_controlnet(ckpt_path, model=None):
if use_fp16:
control_model = control_model.half()
control = ControlNet(control_model)
global_average_pooling = False
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
return control
class T2IAdapter:
@ -678,10 +822,14 @@ class T2IAdapter:
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device)
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint)
self.t2i_model.cpu()
@ -737,10 +885,10 @@ class T2IAdapter:
del self.cond_hint
self.cond_hint = None
def get_control_models(self):
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_control_models()
out += self.previous_controlnet.get_models()
return out
def load_t2i_adapter(t2i_data):
@ -780,13 +928,20 @@ def load_clip(ckpt_path, embedding_directory=None):
clip_data = utils.load_torch_file(ckpt_path)
config = {}
if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=config, embedding_directory=embedding_directory)
clip.load_from_state_dict(clip_data)
return clip
def load_gligen(ckpt_path):
data = utils.load_torch_file(ckpt_path)
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
return model
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
@ -851,9 +1006,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if output_clip:
clip_config = {}
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
@ -874,7 +1029,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
params["noise_schedule_config"] = noise_schedule_config
noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
if size == 1280: #h
params["timestep_dim"] = 1024
elif size == 1024: #l
@ -898,7 +1053,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
}
unet_config = {
"use_checkpoint": True,
"use_checkpoint": False,
"image_size": 32,
"out_channels": 4,
"attention_resolutions": [
@ -926,19 +1081,19 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
if noise_aug_config is not None: #SD2.x unclip model
sd_config["noise_aug_config"] = noise_aug_config
sd_config["image_size"] = 96
sd_config["embedding_dropout"] = 0.25
sd_config["conditioning_key"] = 'crossattn-adm'
model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
elif unet_config["in_channels"] > 4: #inpainting model
sd_config["conditioning_key"] = "hybrid"
sd_config["finetune_keys"] = None
model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
else:
sd_config["conditioning_key"] = "crossattn"

View File

@ -191,11 +191,20 @@ def safe_load_embed_zip(embed_path):
del embed
return out
def expand_directory_list(directories):
dirs = set()
for x in directories:
dirs.add(x)
for root, subdir, file in os.walk(x, followlinks=True):
dirs.add(root)
return list(dirs)
def load_embed(embedding_name, embedding_directory):
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
valid_file = None
for embed_dir in embedding_directory:
embed_path = os.path.join(embed_dir, embedding_name)

View File

@ -56,7 +56,12 @@ class Downsample(nn.Module):
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
if not self.use_conv:
padding = [x.shape[2] % 2, x.shape[3] % 2]
self.op.padding = padding
x = self.op(x)
return x
class ResnetBlock(nn.Module):

View File

@ -1,11 +1,20 @@
import torch
import math
import struct
def load_torch_file(ckpt):
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
import safetensors.torch
sd = safetensors.torch.load_file(ckpt, device="cpu")
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if safe_load:
if not 'weights_only' in torch.load.__code__.co_varnames:
print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
safe_load = False
if safe_load:
pl_sd = torch.load(ckpt, map_location="cpu", weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
@ -42,6 +51,88 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd
def safetensors_header(safetensors_path, max_size=100*1024*1024):
with open(safetensors_path, "rb") as f:
header = f.read(8)
length_of_header = struct.unpack('<Q', header)[0]
if length_of_header > max_size:
return None
return f.read(length_of_header)
def bislerp(samples, width, height):
def slerp(b1, b2, r):
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
c = b1.shape[-1]
#norms
b1_norms = torch.norm(b1, dim=-1, keepdim=True)
b2_norms = torch.norm(b2, dim=-1, keepdim=True)
#normalize
b1_normalized = b1 / b1_norms
b2_normalized = b2 / b2_norms
#zero when norms are zero
b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0
#slerp
dot = (b1_normalized*b2_normalized).sum(1)
omega = torch.acos(dot)
so = torch.sin(omega)
#technically not mathematically correct, but more pleasing?
res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)
#edge cases for same or polar opposites
res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5]
res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
return res
def generate_bilinear_data(length_old, length_new):
coords_1 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32)
coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
ratios = coords_1 - coords_1.floor()
coords_1 = coords_1.to(torch.int64)
coords_2 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32) + 1
coords_2[:,:,:,-1] -= 1
coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
coords_2 = coords_2.to(torch.int64)
return ratios, coords_1, coords_2
n,c,h,w = samples.shape
h_new, w_new = (height, width)
#linear w
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new)
coords_1 = coords_1.expand((n, c, h, -1))
coords_2 = coords_2.expand((n, c, h, -1))
ratios = ratios.expand((n, 1, h, -1))
pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
ratios = ratios.movedim(1, -1).reshape((-1,1))
result = slerp(pass_1, pass_2, ratios)
result = result.reshape(n, h, w_new, c).movedim(-1, 1)
#linear h
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new)
coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
ratios = ratios.movedim(1, -1).reshape((-1,1))
result = slerp(pass_1, pass_2, ratios)
result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
return result
def common_upscale(samples, width, height, upscale_method, crop):
if crop == "center":
old_width = samples.shape[3]
@ -57,10 +148,17 @@ def common_upscale(samples, width, height, upscale_method, crop):
s = samples[:,:,y:old_height-y,x:old_width-x]
else:
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
if upscale_method == "bislerp":
return bislerp(s, width, height)
else:
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
@torch.inference_mode()
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3):
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
for b in range(samples.shape[0]):
s = samples[b:b+1]
@ -80,6 +178,33 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
if pbar is not None:
pbar.update(1)
output[b:b+1] = out/out_div
return output
PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
global PROGRESS_BAR_HOOK
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total)
def update(self, value):
self.update_absolute(self.current + value)

View File

@ -0,0 +1,110 @@
import math
import torch.nn as nn
class CA_layer(nn.Module):
def __init__(self, channel, reduction=16):
super(CA_layer, self).__init__()
# global average pooling
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(channel, channel // reduction, kernel_size=(1, 1), bias=False),
nn.GELU(),
nn.Conv2d(channel // reduction, channel, kernel_size=(1, 1), bias=False),
# nn.Sigmoid()
)
def forward(self, x):
y = self.fc(self.gap(x))
return x * y.expand_as(x)
class Simple_CA_layer(nn.Module):
def __init__(self, channel):
super(Simple_CA_layer, self).__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(
in_channels=channel,
out_channels=channel,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias=True,
)
def forward(self, x):
return x * self.fc(self.gap(x))
class ECA_layer(nn.Module):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def __init__(self, channel):
super(ECA_layer, self).__init__()
b = 1
gamma = 2
k_size = int(abs(math.log(channel, 2) + b) / gamma)
k_size = k_size if k_size % 2 else k_size + 1
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False
)
# self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x: input features with shape [b, c, h, w]
# b, c, h, w = x.size()
# feature descriptor on the global spatial information
y = self.avg_pool(x)
# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
# Multi-scale information fusion
# y = self.sigmoid(y)
return x * y.expand_as(x)
class ECA_MaxPool_layer(nn.Module):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def __init__(self, channel):
super(ECA_MaxPool_layer, self).__init__()
b = 1
gamma = 2
k_size = int(abs(math.log(channel, 2) + b) / gamma)
k_size = k_size if k_size % 2 else k_size + 1
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.conv = nn.Conv1d(
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False
)
# self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x: input features with shape [b, c, h, w]
# b, c, h, w = x.size()
# feature descriptor on the global spatial information
y = self.max_pool(x)
# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
# Multi-scale information fusion
# y = self.sigmoid(y)
return x * y.expand_as(x)

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,577 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OSA.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:07:42 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
from torch import einsum, nn
from .layernorm import LayerNorm2d
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length=1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x)) + x
class Conv_PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = LayerNorm2d(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x)) + x
class FeedForward(nn.Module):
def __init__(self, dim, mult=2, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Conv_FeedForward(nn.Module):
def __init__(self, dim, mult=2, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Conv2d(dim, inner_dim, 1, 1, 0),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(inner_dim, dim, 1, 1, 0),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Gated_Conv_FeedForward(nn.Module):
def __init__(self, dim, mult=1, bias=False, dropout=0.0):
super().__init__()
hidden_features = int(dim * mult)
self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(
hidden_features * 2,
hidden_features * 2,
kernel_size=3,
stride=1,
padding=1,
groups=hidden_features * 2,
bias=bias,
)
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
# MBConv
class SqueezeExcitation(nn.Module):
def __init__(self, dim, shrinkage_rate=0.25):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)
self.gate = nn.Sequential(
Reduce("b c h w -> b c", "mean"),
nn.Linear(dim, hidden_dim, bias=False),
nn.SiLU(),
nn.Linear(hidden_dim, dim, bias=False),
nn.Sigmoid(),
Rearrange("b c -> b c 1 1"),
)
def forward(self, x):
return x * self.gate(x)
class MBConvResidual(nn.Module):
def __init__(self, fn, dropout=0.0):
super().__init__()
self.fn = fn
self.dropsample = Dropsample(dropout)
def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x
class Dropsample(nn.Module):
def __init__(self, prob=0):
super().__init__()
self.prob = prob
def forward(self, x):
device = x.device
if self.prob == 0.0 or (not self.training):
return x
keep_mask = (
torch.FloatTensor((x.shape[0], 1, 1, 1), device=device).uniform_()
> self.prob
)
return x * keep_mask / (1 - self.prob)
def MBConv(
dim_in, dim_out, *, downsample, expansion_rate=4, shrinkage_rate=0.25, dropout=0.0
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1
net = nn.Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
# nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(
hidden_dim, hidden_dim, 3, stride=stride, padding=1, groups=hidden_dim
),
# nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate=shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
# nn.BatchNorm2d(dim_out)
)
if dim_in == dim_out and not downsample:
net = MBConvResidual(net, dropout=dropout)
return net
# attention related classes
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head=32,
dropout=0.0,
window_size=7,
with_pe=True,
):
super().__init__()
assert (
dim % dim_head
) == 0, "dimension should be divisible by dimension per head"
self.heads = dim // dim_head
self.scale = dim_head**-0.5
self.with_pe = with_pe
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.attend = nn.Sequential(nn.Softmax(dim=-1), nn.Dropout(dropout))
self.to_out = nn.Sequential(
nn.Linear(dim, dim, bias=False), nn.Dropout(dropout)
)
# relative positional bias
if self.with_pe:
self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads)
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos))
grid = rearrange(grid, "c i j -> (i j) c")
rel_pos = rearrange(grid, "i ... -> i 1 ...") - rearrange(
grid, "j ... -> 1 j ..."
)
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(
dim=-1
)
self.register_buffer("rel_pos_indices", rel_pos_indices, persistent=False)
def forward(self, x):
batch, height, width, window_height, window_width, _, device, h = (
*x.shape,
x.device,
self.heads,
)
# flatten
x = rearrange(x, "b x y w1 w2 d -> (b x y) (w1 w2) d")
# project for queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
# split heads
q, k, v = map(lambda t: rearrange(t, "b n (h d ) -> b h n d", h=h), (q, k, v))
# scale
q = q * self.scale
# sim
sim = einsum("b h i d, b h j d -> b h i j", q, k)
# add positional bias
if self.with_pe:
bias = self.rel_pos_bias(self.rel_pos_indices)
sim = sim + rearrange(bias, "i j h -> h i j")
# attention
attn = self.attend(sim)
# aggregate
out = einsum("b h i j, b h j d -> b h i d", attn, v)
# merge heads
out = rearrange(
out, "b h (w1 w2) d -> b w1 w2 (h d)", w1=window_height, w2=window_width
)
# combine heads out
out = self.to_out(out)
return rearrange(out, "(b x y) ... -> b x y ...", x=height, y=width)
class Block_Attention(nn.Module):
def __init__(
self,
dim,
dim_head=32,
bias=False,
dropout=0.0,
window_size=7,
with_pe=True,
):
super().__init__()
assert (
dim % dim_head
) == 0, "dimension should be divisible by dimension per head"
self.heads = dim // dim_head
self.ps = window_size
self.scale = dim_head**-0.5
self.with_pe = with_pe
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3,
dim * 3,
kernel_size=3,
stride=1,
padding=1,
groups=dim * 3,
bias=bias,
)
self.attend = nn.Sequential(nn.Softmax(dim=-1), nn.Dropout(dropout))
self.to_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
# project for queries, keys, values
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
q, k, v = qkv.chunk(3, dim=1)
# split heads
q, k, v = map(
lambda t: rearrange(
t,
"b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d",
h=self.heads,
w1=self.ps,
w2=self.ps,
),
(q, k, v),
)
# scale
q = q * self.scale
# sim
sim = einsum("b h i d, b h j d -> b h i j", q, k)
# attention
attn = self.attend(sim)
# aggregate
out = einsum("b h i j, b h j d -> b h i d", attn, v)
# merge heads
out = rearrange(
out,
"(b x y) head (w1 w2) d -> b (head d) (x w1) (y w2)",
x=h // self.ps,
y=w // self.ps,
head=self.heads,
w1=self.ps,
w2=self.ps,
)
out = self.to_out(out)
return out
class Channel_Attention(nn.Module):
def __init__(self, dim, heads, bias=False, dropout=0.0, window_size=7):
super(Channel_Attention, self).__init__()
self.heads = heads
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.ps = window_size
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3,
dim * 3,
kernel_size=3,
stride=1,
padding=1,
groups=dim * 3,
bias=bias,
)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
qkv = qkv.chunk(3, dim=1)
q, k, v = map(
lambda t: rearrange(
t,
"b (head d) (h ph) (w pw) -> b (h w) head d (ph pw)",
ph=self.ps,
pw=self.ps,
head=self.heads,
),
qkv,
)
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = attn @ v
out = rearrange(
out,
"b (h w) head d (ph pw) -> b (head d) (h ph) (w pw)",
h=h // self.ps,
w=w // self.ps,
ph=self.ps,
pw=self.ps,
head=self.heads,
)
out = self.project_out(out)
return out
class Channel_Attention_grid(nn.Module):
def __init__(self, dim, heads, bias=False, dropout=0.0, window_size=7):
super(Channel_Attention_grid, self).__init__()
self.heads = heads
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.ps = window_size
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3,
dim * 3,
kernel_size=3,
stride=1,
padding=1,
groups=dim * 3,
bias=bias,
)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
qkv = qkv.chunk(3, dim=1)
q, k, v = map(
lambda t: rearrange(
t,
"b (head d) (h ph) (w pw) -> b (ph pw) head d (h w)",
ph=self.ps,
pw=self.ps,
head=self.heads,
),
qkv,
)
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = attn @ v
out = rearrange(
out,
"b (ph pw) head d (h w) -> b (head d) (h ph) (w pw)",
h=h // self.ps,
w=w // self.ps,
ph=self.ps,
pw=self.ps,
head=self.heads,
)
out = self.project_out(out)
return out
class OSA_Block(nn.Module):
def __init__(
self,
channel_num=64,
bias=True,
ffn_bias=True,
window_size=8,
with_pe=False,
dropout=0.0,
):
super(OSA_Block, self).__init__()
w = window_size
self.layer = nn.Sequential(
MBConv(
channel_num,
channel_num,
downsample=False,
expansion_rate=1,
shrinkage_rate=0.25,
),
Rearrange(
"b d (x w1) (y w2) -> b x y w1 w2 d", w1=w, w2=w
), # block-like attention
PreNormResidual(
channel_num,
Attention(
dim=channel_num,
dim_head=channel_num // 4,
dropout=dropout,
window_size=window_size,
with_pe=with_pe,
),
),
Rearrange("b x y w1 w2 d -> b d (x w1) (y w2)"),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
# channel-like attention
Conv_PreNormResidual(
channel_num,
Channel_Attention(
dim=channel_num, heads=4, dropout=dropout, window_size=window_size
),
),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
Rearrange(
"b d (w1 x) (w2 y) -> b x y w1 w2 d", w1=w, w2=w
), # grid-like attention
PreNormResidual(
channel_num,
Attention(
dim=channel_num,
dim_head=channel_num // 4,
dropout=dropout,
window_size=window_size,
with_pe=with_pe,
),
),
Rearrange("b x y w1 w2 d -> b d (w1 x) (w2 y)"),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
# channel-like attention
Conv_PreNormResidual(
channel_num,
Channel_Attention_grid(
dim=channel_num, heads=4, dropout=dropout, window_size=window_size
),
),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
)
def forward(self, x):
out = self.layer(x)
return out

View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OSAG.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:08:49 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch.nn as nn
from .esa import ESA
from .OSA import OSA_Block
class OSAG(nn.Module):
def __init__(
self,
channel_num=64,
bias=True,
block_num=4,
ffn_bias=False,
window_size=0,
pe=False,
):
super(OSAG, self).__init__()
# print("window_size: %d" % (window_size))
# print("with_pe", pe)
# print("ffn_bias: %d" % (ffn_bias))
# block_script_name = kwargs.get("block_script_name", "OSA")
# block_class_name = kwargs.get("block_class_name", "OSA_Block")
# script_name = "." + block_script_name
# package = __import__(script_name, fromlist=True)
block_class = OSA_Block # getattr(package, block_class_name)
group_list = []
for _ in range(block_num):
temp_res = block_class(
channel_num,
bias,
ffn_bias=ffn_bias,
window_size=window_size,
with_pe=pe,
)
group_list.append(temp_res)
group_list.append(nn.Conv2d(channel_num, channel_num, 1, 1, 0, bias=bias))
self.residual_layer = nn.Sequential(*group_list)
esa_channel = max(channel_num // 4, 16)
self.esa = ESA(esa_channel, channel_num)
def forward(self, x):
out = self.residual_layer(x)
out = out + x
return self.esa(out)

View File

@ -0,0 +1,133 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OmniSR.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:06:36 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .OSAG import OSAG
from .pixelshuffle import pixelshuffle_block
class OmniSR(nn.Module):
def __init__(
self,
state_dict,
**kwargs,
):
super(OmniSR, self).__init__()
self.state = state_dict
bias = True # Fine to assume this for now
block_num = 1 # Fine to assume this for now
ffn_bias = True
pe = True
num_feat = state_dict["input.weight"].shape[0] or 64
num_in_ch = state_dict["input.weight"].shape[1] or 3
num_out_ch = num_in_ch # we can just assume this for now. pixelshuffle smh
pixelshuffle_shape = state_dict["up.0.weight"].shape[0]
up_scale = math.sqrt(pixelshuffle_shape / num_out_ch)
if up_scale - int(up_scale) > 0:
print(
"out_nc is probably different than in_nc, scale calculation might be wrong"
)
up_scale = int(up_scale)
res_num = 0
for key in state_dict.keys():
if "residual_layer" in key:
temp_res_num = int(key.split(".")[1])
if temp_res_num > res_num:
res_num = temp_res_num
res_num = res_num + 1 # zero-indexed
residual_layer = []
self.res_num = res_num
self.window_size = 8 # we can just assume this for now, but there's probably a way to calculate it (just need to get the sqrt of the right layer)
self.up_scale = up_scale
for _ in range(res_num):
temp_res = OSAG(
channel_num=num_feat,
bias=bias,
block_num=block_num,
ffn_bias=ffn_bias,
window_size=self.window_size,
pe=pe,
)
residual_layer.append(temp_res)
self.residual_layer = nn.Sequential(*residual_layer)
self.input = nn.Conv2d(
in_channels=num_in_ch,
out_channels=num_feat,
kernel_size=3,
stride=1,
padding=1,
bias=bias,
)
self.output = nn.Conv2d(
in_channels=num_feat,
out_channels=num_feat,
kernel_size=3,
stride=1,
padding=1,
bias=bias,
)
self.up = pixelshuffle_block(num_feat, num_out_ch, up_scale, bias=bias)
# self.tail = pixelshuffle_block(num_feat,num_out_ch,up_scale,bias=bias)
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, sqrt(2. / n))
# chaiNNer specific stuff
self.model_arch = "OmniSR"
self.sub_type = "SR"
self.in_nc = num_in_ch
self.out_nc = num_out_ch
self.num_feat = num_feat
self.scale = up_scale
self.supports_fp16 = True # TODO: Test this
self.supports_bfp16 = True
self.min_size_restriction = 16
self.load_state_dict(state_dict, strict=False)
def check_image_size(self, x):
_, _, h, w = x.size()
# import pdb; pdb.set_trace()
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
# x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "constant", 0)
return x
def forward(self, x):
H, W = x.shape[2:]
x = self.check_image_size(x)
residual = self.input(x)
out = self.residual_layer(residual)
# origin
out = torch.add(self.output(out), residual)
out = self.up(out)
out = out[:, :, : H * self.up_scale, : W * self.up_scale]
return out

View File

@ -0,0 +1,294 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: esa.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Thursday, 20th April 2023 9:28:06 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
from .layernorm import LayerNorm2d
def moment(x, dim=(2, 3), k=2):
assert len(x.size()) == 4
mean = torch.mean(x, dim=dim).unsqueeze(-1).unsqueeze(-1)
mk = (1 / (x.size(2) * x.size(3))) * torch.sum(torch.pow(x - mean, k), dim=dim)
return mk
class ESA(nn.Module):
"""
Modification of Enhanced Spatial Attention (ESA), which is proposed by
`Residual Feature Aggregation Network for Image Super-Resolution`
Note: `conv_max` and `conv3_` are NOT used here, so the corresponding codes
are deleted.
"""
def __init__(self, esa_channels, n_feats, conv=nn.Conv2d):
super(ESA, self).__init__()
f = esa_channels
self.conv1 = conv(n_feats, f, kernel_size=1)
self.conv_f = conv(f, f, kernel_size=1)
self.conv2 = conv(f, f, kernel_size=3, stride=2, padding=0)
self.conv3 = conv(f, f, kernel_size=3, padding=1)
self.conv4 = conv(f, n_feats, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
c1_ = self.conv1(x)
c1 = self.conv2(c1_)
v_max = F.max_pool2d(c1, kernel_size=7, stride=3)
c3 = self.conv3(v_max)
c3 = F.interpolate(
c3, (x.size(2), x.size(3)), mode="bilinear", align_corners=False
)
cf = self.conv_f(c1_)
c4 = self.conv4(c3 + cf)
m = self.sigmoid(c4)
return x * m
class LK_ESA(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(LK_ESA, self).__init__()
f = esa_channels
self.conv1 = conv(n_feats, f, kernel_size=1)
self.conv_f = conv(f, f, kernel_size=1)
kernel_size = 17
kernel_expand = kernel_expand
padding = kernel_size // 2
self.vec_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, kernel_size),
padding=(0, padding),
groups=2,
bias=bias,
)
self.vec_conv3x1 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, 3),
padding=(0, 1),
groups=2,
bias=bias,
)
self.hor_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(kernel_size, 1),
padding=(padding, 0),
groups=2,
bias=bias,
)
self.hor_conv1x3 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(3, 1),
padding=(1, 0),
groups=2,
bias=bias,
)
self.conv4 = conv(f, n_feats, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
c1_ = self.conv1(x)
res = self.vec_conv(c1_) + self.vec_conv3x1(c1_)
res = self.hor_conv(res) + self.hor_conv1x3(res)
cf = self.conv_f(c1_)
c4 = self.conv4(res + cf)
m = self.sigmoid(c4)
return x * m
class LK_ESA_LN(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(LK_ESA_LN, self).__init__()
f = esa_channels
self.conv1 = conv(n_feats, f, kernel_size=1)
self.conv_f = conv(f, f, kernel_size=1)
kernel_size = 17
kernel_expand = kernel_expand
padding = kernel_size // 2
self.norm = LayerNorm2d(n_feats)
self.vec_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, kernel_size),
padding=(0, padding),
groups=2,
bias=bias,
)
self.vec_conv3x1 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, 3),
padding=(0, 1),
groups=2,
bias=bias,
)
self.hor_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(kernel_size, 1),
padding=(padding, 0),
groups=2,
bias=bias,
)
self.hor_conv1x3 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(3, 1),
padding=(1, 0),
groups=2,
bias=bias,
)
self.conv4 = conv(f, n_feats, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
c1_ = self.norm(x)
c1_ = self.conv1(c1_)
res = self.vec_conv(c1_) + self.vec_conv3x1(c1_)
res = self.hor_conv(res) + self.hor_conv1x3(res)
cf = self.conv_f(c1_)
c4 = self.conv4(res + cf)
m = self.sigmoid(c4)
return x * m
class AdaGuidedFilter(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(AdaGuidedFilter, self).__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(
in_channels=n_feats,
out_channels=1,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias=True,
)
self.r = 5
def box_filter(self, x, r):
channel = x.shape[1]
kernel_size = 2 * r + 1
weight = 1.0 / (kernel_size**2)
box_kernel = weight * torch.ones(
(channel, 1, kernel_size, kernel_size), dtype=torch.float32, device=x.device
)
output = F.conv2d(x, weight=box_kernel, stride=1, padding=r, groups=channel)
return output
def forward(self, x):
_, _, H, W = x.shape
N = self.box_filter(
torch.ones((1, 1, H, W), dtype=x.dtype, device=x.device), self.r
)
# epsilon = self.fc(self.gap(x))
# epsilon = torch.pow(epsilon, 2)
epsilon = 1e-2
mean_x = self.box_filter(x, self.r) / N
var_x = self.box_filter(x * x, self.r) / N - mean_x * mean_x
A = var_x / (var_x + epsilon)
b = (1 - A) * mean_x
m = A * x + b
# mean_A = self.box_filter(A, self.r) / N
# mean_b = self.box_filter(b, self.r) / N
# m = mean_A * x + mean_b
return x * m
class AdaConvGuidedFilter(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(AdaConvGuidedFilter, self).__init__()
f = esa_channels
self.conv_f = conv(f, f, kernel_size=1)
kernel_size = 17
kernel_expand = kernel_expand
padding = kernel_size // 2
self.vec_conv = nn.Conv2d(
in_channels=f,
out_channels=f,
kernel_size=(1, kernel_size),
padding=(0, padding),
groups=f,
bias=bias,
)
self.hor_conv = nn.Conv2d(
in_channels=f,
out_channels=f,
kernel_size=(kernel_size, 1),
padding=(padding, 0),
groups=f,
bias=bias,
)
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(
in_channels=f,
out_channels=f,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias=True,
)
def forward(self, x):
y = self.vec_conv(x)
y = self.hor_conv(y)
sigma = torch.pow(y, 2)
epsilon = self.fc(self.gap(y))
weight = sigma / (sigma + epsilon)
m = weight * x + (1 - weight)
return x * m

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: layernorm.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Thursday, 20th April 2023 9:28:20 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn as nn
class LayerNormFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, eps):
ctx.eps = eps
N, C, H, W = x.size()
mu = x.mean(1, keepdim=True)
var = (x - mu).pow(2).mean(1, keepdim=True)
y = (x - mu) / (var + eps).sqrt()
ctx.save_for_backward(y, var, weight)
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
return y
@staticmethod
def backward(ctx, grad_output):
eps = ctx.eps
N, C, H, W = grad_output.size()
y, var, weight = ctx.saved_variables
g = grad_output * weight.view(1, C, 1, 1)
mean_g = g.mean(dim=1, keepdim=True)
mean_gy = (g * y).mean(dim=1, keepdim=True)
gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
return (
gx,
(grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0),
grad_output.sum(dim=3).sum(dim=2).sum(dim=0),
None,
)
class LayerNorm2d(nn.Module):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d, self).__init__()
self.register_parameter("weight", nn.Parameter(torch.ones(channels)))
self.register_parameter("bias", nn.Parameter(torch.zeros(channels)))
self.eps = eps
def forward(self, x):
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
class GRN(nn.Module):
"""GRN (Global Response Normalization) layer"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, dim, 1, 1))
self.beta = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(2, 3), keepdim=True)
Nx = Gx / (Gx.mean(dim=1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x

View File

@ -0,0 +1,31 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: pixelshuffle.py
# Created Date: Friday July 1st 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Friday, 1st July 2022 10:18:39 am
# Modified By: Chen Xuanhong
# Copyright (c) 2022 Shanghai Jiao Tong University
#############################################################
import torch.nn as nn
def pixelshuffle_block(
in_channels, out_channels, upscale_factor=2, kernel_size=3, bias=False
):
"""
Upsample features according to `upscale_factor`.
"""
padding = kernel_size // 2
conv = nn.Conv2d(
in_channels,
out_channels * (upscale_factor**2),
kernel_size,
padding=1,
bias=bias,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
return nn.Sequential(*[conv, pixel_shuffle])

View File

@ -79,6 +79,12 @@ class RRDBNet(nn.Module):
self.scale: int = self.get_scale()
self.num_filters: int = self.state[self.key_arr[0]].shape[0]
c2x2 = False
if self.state["model.0.weight"].shape[-2] == 2:
c2x2 = True
self.scale = round(math.sqrt(self.scale / 4))
self.model_arch = "ESRGAN-2c2"
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
@ -105,11 +111,15 @@ class RRDBNet(nn.Module):
out_nc=self.num_filters,
upscale_factor=3,
act_type=self.act,
c2x2=c2x2,
)
else:
upsample_blocks = [
upsample_block(
in_nc=self.num_filters, out_nc=self.num_filters, act_type=self.act
in_nc=self.num_filters,
out_nc=self.num_filters,
act_type=self.act,
c2x2=c2x2,
)
for _ in range(int(math.log(self.scale, 2)))
]
@ -122,6 +132,7 @@ class RRDBNet(nn.Module):
kernel_size=3,
norm_type=None,
act_type=None,
c2x2=c2x2,
),
B.ShortcutBlock(
B.sequential(
@ -138,6 +149,7 @@ class RRDBNet(nn.Module):
act_type=self.act,
mode="CNA",
plus=self.plus,
c2x2=c2x2,
)
for _ in range(self.num_blocks)
],
@ -149,6 +161,7 @@ class RRDBNet(nn.Module):
norm_type=self.norm,
act_type=None,
mode=self.mode,
c2x2=c2x2,
),
)
),
@ -160,6 +173,7 @@ class RRDBNet(nn.Module):
kernel_size=3,
norm_type=None,
act_type=self.act,
c2x2=c2x2,
),
# hr_conv1
B.conv_block(
@ -168,6 +182,7 @@ class RRDBNet(nn.Module):
kernel_size=3,
norm_type=None,
act_type=None,
c2x2=c2x2,
),
)

View File

@ -4,7 +4,10 @@
from __future__ import annotations
from collections import OrderedDict
from typing import Literal
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
import torch
import torch.nn as nn
@ -138,6 +141,19 @@ def sequential(*args):
ConvMode = Literal["CNA", "NAC", "CNAC"]
# 2x2x2 Conv Block
def conv_block_2c2(
in_nc,
out_nc,
act_type="relu",
):
return sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
act(act_type) if act_type else None,
)
def conv_block(
in_nc: int,
out_nc: int,
@ -150,12 +166,17 @@ def conv_block(
norm_type: str | None = None,
act_type: str | None = "relu",
mode: ConvMode = "CNA",
c2x2=False,
):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
if c2x2:
return conv_block_2c2(in_nc, out_nc, act_type=act_type)
assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
@ -282,6 +303,7 @@ class RRDB(nn.Module):
_convtype="Conv2D",
_spectral_norm=False,
plus=False,
c2x2=False,
):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(
@ -295,6 +317,7 @@ class RRDB(nn.Module):
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
@ -307,6 +330,7 @@ class RRDB(nn.Module):
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
@ -319,6 +343,7 @@ class RRDB(nn.Module):
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
def forward(self, x):
@ -362,6 +387,7 @@ class ResidualDenseBlock_5C(nn.Module):
act_type="leakyrelu",
mode: ConvMode = "CNA",
plus=False,
c2x2=False,
):
super(ResidualDenseBlock_5C, self).__init__()
@ -379,6 +405,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv2 = conv_block(
nf + gc,
@ -390,6 +417,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv3 = conv_block(
nf + 2 * gc,
@ -401,6 +429,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv4 = conv_block(
nf + 3 * gc,
@ -412,6 +441,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
if mode == "CNA":
last_act = None
@ -427,6 +457,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=last_act,
mode=mode,
c2x2=c2x2,
)
def forward(self, x):
@ -496,6 +527,7 @@ def upconv_block(
norm_type: str | None = None,
act_type="relu",
mode="nearest",
c2x2=False,
):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
@ -509,5 +541,6 @@ def upconv_block(
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
c2x2=c2x2,
)
return sequential(upsample, conv)

View File

@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.MAT import MAT
from .architecture.OmniSR.OmniSR import OmniSR
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
@ -32,6 +33,7 @@ def load_state_dict(state_dict) -> PyTorchModel:
state_dict = state_dict["params"]
state_dict_keys = list(state_dict.keys())
# SRVGGNet Real-ESRGAN (v2)
if "body.0.weight" in state_dict_keys and "body.1.weight" in state_dict_keys:
model = RealESRGANv2(state_dict)
@ -79,6 +81,9 @@ def load_state_dict(state_dict) -> PyTorchModel:
# MAT
elif "synthesis.first_stage.conv_first.conv.resample_filter" in state_dict_keys:
model = MAT(state_dict)
# Omni-SR
elif "residual_layer.0.residual_layer.0.layer.0.fn.0.weight" in state_dict_keys:
model = OmniSR(state_dict)
# Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1
else:
try:

View File

@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.MAT import MAT
from .architecture.OmniSR.OmniSR import OmniSR
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
@ -13,7 +14,7 @@ from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
from .architecture.Swin2SR import Swin2SR
from .architecture.SwinIR import SwinIR
PyTorchSRModels = (RealESRGANv2, SPSR, SwiftSRGAN, ESRGAN, SwinIR, Swin2SR, HAT)
PyTorchSRModels = (RealESRGANv2, SPSR, SwiftSRGAN, ESRGAN, SwinIR, Swin2SR, HAT, OmniSR)
PyTorchSRModel = Union[
RealESRGANv2,
SPSR,
@ -22,6 +23,7 @@ PyTorchSRModel = Union[
SwinIR,
Swin2SR,
HAT,
OmniSR,
]

View File

@ -0,0 +1,110 @@
import comfy.utils
import folder_paths
import torch
def load_hypernetwork_patch(path, strength):
sd = comfy.utils.load_torch_file(path, safe_load=True)
activation_func = sd.get('activation_func', 'linear')
is_layer_norm = sd.get('is_layer_norm', False)
use_dropout = sd.get('use_dropout', False)
activate_output = sd.get('activate_output', False)
last_layer_dropout = sd.get('last_layer_dropout', False)
valid_activation = {
"linear": torch.nn.Identity,
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
"softsign": torch.nn.Softsign,
}
if activation_func not in valid_activation:
print("Unsupported Hypernetwork format, if you report it I might implement it.", path, " ", activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout)
return None
out = {}
for d in sd:
try:
dim = int(d)
except:
continue
output = []
for index in [0, 1]:
attn_weights = sd[dim][index]
keys = attn_weights.keys()
linears = filter(lambda a: a.endswith(".weight"), keys)
linears = list(map(lambda a: a[:-len(".weight")], linears))
layers = []
for i in range(len(linears)):
lin_name = linears[i]
last_layer = (i == (len(linears) - 1))
penultimate_layer = (i == (len(linears) - 2))
lin_weight = attn_weights['{}.weight'.format(lin_name)]
lin_bias = attn_weights['{}.bias'.format(lin_name)]
layer = torch.nn.Linear(lin_weight.shape[1], lin_weight.shape[0])
layer.load_state_dict({"weight": lin_weight, "bias": lin_bias})
layers.append(layer)
if activation_func != "linear":
if (not last_layer) or (activate_output):
layers.append(valid_activation[activation_func]())
if is_layer_norm:
layers.append(torch.nn.LayerNorm(lin_weight.shape[0]))
if use_dropout:
if (not last_layer) and (not penultimate_layer or last_layer_dropout):
layers.append(torch.nn.Dropout(p=0.3))
output.append(torch.nn.Sequential(*layers))
out[dim] = torch.nn.ModuleList(output)
class hypernetwork_patch:
def __init__(self, hypernet, strength):
self.hypernet = hypernet
self.strength = strength
def __call__(self, current_index, q, k, v):
dim = k.shape[-1]
if dim in self.hypernet:
hn = self.hypernet[dim]
k = k + hn[0](k) * self.strength
v = v + hn[1](v) * self.strength
return q, k, v
def to(self, device):
for d in self.hypernet.keys():
self.hypernet[d] = self.hypernet[d].to(device)
return self
return hypernetwork_patch(out, strength)
class HypernetworkLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"hypernetwork_name": (folder_paths.get_filename_list("hypernetworks"), ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_hypernetwork"
CATEGORY = "loaders"
def load_hypernetwork(self, model, hypernetwork_name, strength):
hypernetwork_path = folder_paths.get_full_path("hypernetworks", hypernetwork_name)
model_hypernetwork = model.clone()
patch = load_hypernetwork_patch(hypernetwork_path, strength)
if patch is not None:
model_hypernetwork.set_model_attn1_patch(patch)
model_hypernetwork.set_model_attn2_patch(patch)
return (model_hypernetwork,)
NODE_CLASS_MAPPINGS = {
"HypernetworkLoader": HypernetworkLoader
}

View File

@ -71,7 +71,7 @@ class MaskToImage:
FUNCTION = "mask_to_image"
def mask_to_image(self, mask):
result = mask[None, :, :, None].expand(-1, -1, -1, 3)
result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
return (result,)
class ImageToMask:
@ -166,7 +166,7 @@ class MaskComposite:
"source": ("MASK",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"operation": (["multiply", "add", "subtract"],),
"operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
}
}
@ -192,6 +192,12 @@ class MaskComposite:
output[top:bottom, left:right] = destination_portion + source_portion
elif operation == "subtract":
output[top:bottom, left:right] = destination_portion - source_portion
elif operation == "and":
output[top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
elif operation == "or":
output[top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
elif operation == "xor":
output[top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
output = torch.clamp(output, 0.0, 1.0)

View File

@ -59,6 +59,12 @@ class Blend:
def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
def gaussian_kernel(kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
class Blur:
def __init__(self):
pass
@ -88,12 +94,6 @@ class Blur:
CATEGORY = "image/postprocessing"
def gaussian_kernel(self, kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0:
return (image,)
@ -101,10 +101,11 @@ class Blur:
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
kernel = gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
blurred = blurred.permute(0, 2, 3, 1)
return (blurred,)
@ -167,9 +168,15 @@ class Sharpen:
"max": 31,
"step": 1
}),
"alpha": ("FLOAT", {
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
"alpha": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 5.0,
"step": 0.1
}),
@ -181,21 +188,21 @@ class Sharpen:
CATEGORY = "image/postprocessing"
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
if sharpen_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
center = kernel_size // 2
kernel[center, center] = kernel_size**2
kernel *= alpha
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)

View File

@ -0,0 +1,108 @@
import torch
class LatentRebatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "latents": ("LATENT",),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, )
FUNCTION = "rebatch"
CATEGORY = "latent/batch"
@staticmethod
def get_batch(latents, list_ind, offset):
'''prepare a batch out of the list of latents'''
samples = latents[list_ind]['samples']
shape = samples.shape
mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
if mask.shape[0] < samples.shape[0]:
mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
if 'batch_index' in latents[list_ind]:
batch_inds = latents[list_ind]['batch_index']
else:
batch_inds = [x+offset for x in range(shape[0])]
return samples, mask, batch_inds
@staticmethod
def get_slices(indexable, num, batch_size):
'''divides an indexable object into num slices of length batch_size, and a remainder'''
slices = []
for i in range(num):
slices.append(indexable[i*batch_size:(i+1)*batch_size])
if num * batch_size < len(indexable):
return slices, indexable[num * batch_size:]
else:
return slices, None
@staticmethod
def slice_batch(batch, num, batch_size):
result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
return list(zip(*result))
@staticmethod
def cat_batch(batch1, batch2):
if batch1[0] is None:
return batch2
result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
return result
def rebatch(self, latents, batch_size):
batch_size = batch_size[0]
output_list = []
current_batch = (None, None, None)
processed = 0
for i in range(len(latents)):
# fetch new entry of list
#samples, masks, indices = self.get_batch(latents, i)
next_batch = self.get_batch(latents, i, processed)
processed += len(next_batch[2])
# set to current if current is None
if current_batch[0] is None:
current_batch = next_batch
# add previous to list if dimensions do not match
elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
current_batch = next_batch
# cat if everything checks out
else:
current_batch = self.cat_batch(current_batch, next_batch)
# add to list if dimensions gone above target batch size
if current_batch[0].shape[0] > batch_size:
num = current_batch[0].shape[0] // batch_size
sliced, remainder = self.slice_batch(current_batch, num, batch_size)
for i in range(num):
output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
current_batch = remainder
#add remainder
if current_batch[0] is not None:
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
#get rid of empty masks
for s in output_list:
if s['noise_mask'].mean() == 1.0:
del s['noise_mask']
return (output_list,)
NODE_CLASS_MAPPINGS = {
"RebatchLatents": LatentRebatch,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"RebatchLatents": "Rebatch Latents",
}

View File

@ -17,7 +17,7 @@ class UpscaleModelLoader:
def load_model(self, model_name):
model_path = folder_paths.get_full_path("upscale_models", model_name)
sd = comfy.utils.load_torch_file(model_path)
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
out = model_loading.load_state_dict(sd).eval()
return (out, )
@ -37,7 +37,12 @@ class ImageUpscaleWithModel:
device = model_management.get_torch_device()
upscale_model.to(device)
in_img = image.movedim(-1,-3).to(device)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=128 + 64, tile_y=128 + 64, overlap = 8, upscale_amount=upscale_model.scale)
tile = 128 + 64
overlap = 8
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
upscale_model.cpu()
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
return (s,)

View File

@ -6,6 +6,7 @@ import threading
import heapq
import traceback
import gc
import time
import torch
import nodes
@ -26,29 +27,96 @@ def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_da
input_data_all[x] = obj
else:
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
input_data_all[x] = input_data
input_data_all[x] = [input_data]
if "hidden" in valid_inputs:
h = valid_inputs["hidden"]
for x in h:
if h[x] == "PROMPT":
input_data_all[x] = prompt
input_data_all[x] = [prompt]
if h[x] == "EXTRA_PNGINFO":
if "extra_pnginfo" in extra_data:
input_data_all[x] = extra_data['extra_pnginfo']
input_data_all[x] = [extra_data['extra_pnginfo']]
if h[x] == "UNIQUE_ID":
input_data_all[x] = unique_id
input_data_all[x] = [unique_id]
return input_data_all
def recursive_execute(server, prompt, outputs, current_item, extra_data={}):
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
# check if node wants the lists
intput_is_list = False
if hasattr(obj, "INPUT_IS_LIST"):
intput_is_list = obj.INPUT_IS_LIST
max_len_input = max([len(x) for x in input_data_all.values()])
# get a slice of inputs, repeat last input when list isn't long enough
def slice_dict(d, i):
d_new = dict()
for k,v in d.items():
d_new[k] = v[i if len(v) > i else -1]
return d_new
results = []
if intput_is_list:
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**input_data_all))
else:
for i in range(max_len_input):
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
return results
def get_output_data(obj, input_data_all):
results = []
uis = []
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
for r in return_values:
if isinstance(r, dict):
if 'ui' in r:
uis.append(r['ui'])
if 'result' in r:
results.append(r['result'])
else:
results.append(r)
output = []
if len(results) > 0:
# check which outputs need concatenating
output_is_list = [False] * len(results[0])
if hasattr(obj, "OUTPUT_IS_LIST"):
output_is_list = obj.OUTPUT_IS_LIST
# merge node execution results
for i, is_list in zip(range(len(results[0])), output_is_list):
if is_list:
output.append([x for o in results for x in o[i]])
else:
output.append([o[i] for o in results])
ui = dict()
if len(uis) > 0:
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
return output, ui
def format_value(x):
if x is None:
return None
elif isinstance(x, (int, float, bool, str)):
return x
else:
return str(x)
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if unique_id in outputs:
return []
executed = []
return (True, None, None)
for x in inputs:
input_data = inputs[x]
@ -57,22 +125,63 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data={}):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
executed += recursive_execute(server, prompt, outputs, input_unique_id, extra_data)
result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui)
if result[0] is not True:
# Another node failed further upstream
return result
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
if server.client_id is not None:
server.last_node_id = unique_id
server.send_sync("executing", { "node": unique_id }, server.client_id)
obj = class_def()
nodes.before_node_execution()
outputs[unique_id] = getattr(obj, obj.FUNCTION)(**input_data_all)
if "ui" in outputs[unique_id]:
input_data_all = None
try:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
if server.client_id is not None:
server.send_sync("executed", { "node": unique_id, "output": outputs[unique_id]["ui"] }, server.client_id)
if "result" in outputs[unique_id]:
outputs[unique_id] = outputs[unique_id]["result"]
return executed + [unique_id]
server.last_node_id = unique_id
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id)
obj = class_def()
output_data, output_ui = get_output_data(obj, input_data_all)
outputs[unique_id] = output_data
if len(output_ui) > 0:
outputs_ui[unique_id] = output_ui
if server.client_id is not None:
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
except comfy.model_management.InterruptProcessingException as iex:
print("Processing interrupted")
# skip formatting inputs/outputs
error_details = {
"node_id": unique_id,
}
return (False, error_details, iex)
except Exception as ex:
typ, _, tb = sys.exc_info()
exception_type = full_type_name(typ)
input_data_formatted = {}
if input_data_all is not None:
input_data_formatted = {}
for name, inputs in input_data_all.items():
input_data_formatted[name] = [format_value(x) for x in inputs]
output_data_formatted = {}
for node_id, node_outputs in outputs.items():
output_data_formatted[node_id] = [[format_value(x) for x in l] for l in node_outputs]
print("!!! Exception during processing !!!")
print(traceback.format_exc())
error_details = {
"node_id": unique_id,
"exception_message": str(ex),
"exception_type": exception_type,
"traceback": traceback.format_tb(tb),
"current_inputs": input_data_formatted,
"current_outputs": output_data_formatted
}
return (False, error_details, ex)
executed.add(unique_id)
return (True, None, None)
def recursive_will_execute(prompt, outputs, current_item):
unique_id = current_item
@ -99,40 +208,45 @@ def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item
is_changed_old = ''
is_changed = ''
to_delete = False
if hasattr(class_def, 'IS_CHANGED'):
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
is_changed_old = old_prompt[unique_id]['is_changed']
if 'is_changed' not in prompt[unique_id]:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
if input_data_all is not None:
is_changed = class_def.IS_CHANGED(**input_data_all)
prompt[unique_id]['is_changed'] = is_changed
try:
#is_changed = class_def.IS_CHANGED(**input_data_all)
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
prompt[unique_id]['is_changed'] = is_changed
except:
to_delete = True
else:
is_changed = prompt[unique_id]['is_changed']
if unique_id not in outputs:
return True
to_delete = False
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if not to_delete:
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if to_delete:
d = outputs.pop(unique_id)
@ -142,10 +256,53 @@ def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item
class PromptExecutor:
def __init__(self, server):
self.outputs = {}
self.outputs_ui = {}
self.old_prompt = {}
self.server = server
def execute(self, prompt, extra_data={}):
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
node_id = error["node_id"]
class_type = prompt[node_id]["class_type"]
# First, send back the status to the frontend depending
# on the exception type
if isinstance(ex, comfy.model_management.InterruptProcessingException):
mes = {
"prompt_id": prompt_id,
"node_id": node_id,
"node_type": class_type,
"executed": list(executed),
}
self.server.send_sync("execution_interrupted", mes, self.server.client_id)
else:
if self.server.client_id is not None:
mes = {
"prompt_id": prompt_id,
"node_id": node_id,
"node_type": class_type,
"executed": list(executed),
"exception_message": error["exception_message"],
"exception_type": error["exception_type"],
"traceback": error["traceback"],
"current_inputs": error["current_inputs"],
"current_outputs": error["current_outputs"],
}
self.server.send_sync("execution_error", mes, self.server.client_id)
# Next, remove the subsequent outputs since they will not be executed
to_delete = []
for o in self.outputs:
if (o not in current_outputs) and (o not in executed):
to_delete += [o]
if o in self.old_prompt:
d = self.old_prompt.pop(o)
del d
for o in to_delete:
d = self.outputs.pop(o)
del d
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
nodes.interrupt_processing(False)
if "client_id" in extra_data:
@ -153,106 +310,268 @@ class PromptExecutor:
else:
self.server.client_id = None
execution_start_time = time.perf_counter()
if self.server.client_id is not None:
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
with torch.inference_mode():
#delete cached outputs if nodes don't exist for them
to_delete = []
for o in self.outputs:
if o not in prompt:
to_delete += [o]
for o in to_delete:
d = self.outputs.pop(o)
del d
for x in prompt:
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
current_outputs = set(self.outputs.keys())
executed = []
try:
to_execute = []
for x in prompt:
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE'):
to_execute += [(0, x)]
while len(to_execute) > 0:
#always execute the output that depends on the least amount of unexecuted nodes first
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
x = to_execute.pop(0)[-1]
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE'):
if class_.OUTPUT_NODE == True:
valid = False
try:
m = validate_inputs(prompt, x)
valid = m[0]
except:
valid = False
if valid:
executed += recursive_execute(self.server, prompt, self.outputs, x, extra_data)
except Exception as e:
print(traceback.format_exc())
to_delete = []
for o in self.outputs:
if o not in current_outputs:
to_delete += [o]
if o in self.old_prompt:
d = self.old_prompt.pop(o)
del d
for o in to_delete:
d = self.outputs.pop(o)
for x in list(self.outputs_ui.keys()):
if x not in current_outputs:
d = self.outputs_ui.pop(x)
del d
else:
executed = set(executed)
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
finally:
self.server.last_node_id = None
if self.server.client_id is not None:
self.server.send_sync("executing", { "node": None }, self.server.client_id)
if self.server.client_id is not None:
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
executed = set()
output_node_id = None
to_execute = []
for node_id in list(execute_outputs):
to_execute += [(0, node_id)]
while len(to_execute) > 0:
#always execute the output that depends on the least amount of unexecuted nodes first
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
output_node_id = to_execute.pop(0)[-1]
# This call shouldn't raise anything if there's an error deep in
# the actual SD code, instead it will report the node where the
# error was raised
success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui)
if success is not True:
self.handle_execution_error(prompt_id, prompt, current_outputs, executed, error, ex)
break
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
self.server.last_node_id = None
if self.server.client_id is not None:
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
gc.collect()
comfy.model_management.soft_empty_cache()
def validate_inputs(prompt, item):
def validate_inputs(prompt, item, validated):
unique_id = item
if unique_id in validated:
return validated[unique_id]
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
class_inputs = obj_class.INPUT_TYPES()
required_inputs = class_inputs['required']
errors = []
valid = True
for x in required_inputs:
if x not in inputs:
return (False, "Required input is missing. {}, {}".format(class_type, x))
error = {
"type": "required_input_missing",
"message": "Required input is missing",
"details": f"{x}",
"extra_info": {
"input_name": x
}
}
errors.append(error)
continue
val = inputs[x]
info = required_inputs[x]
type_input = info[0]
if isinstance(val, list):
if len(val) != 2:
return (False, "Bad Input. {}, {}".format(class_type, x))
error = {
"type": "bad_linked_input",
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]",
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val
}
}
errors.append(error)
continue
o_id = val[0]
o_class_type = prompt[o_id]['class_type']
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
if r[val[1]] != type_input:
return (False, "Return type mismatch. {}, {}, {} != {}".format(class_type, x, r[val[1]], type_input))
r = validate_inputs(prompt, o_id)
if r[0] == False:
return r
received_type = r[val[1]]
details = f"{x}, {received_type} != {type_input}"
error = {
"type": "return_type_mismatch",
"message": "Return type mismatch between linked nodes",
"details": details,
"extra_info": {
"input_name": x,
"input_config": info,
"received_type": received_type,
"linked_node": val
}
}
errors.append(error)
continue
try:
r = validate_inputs(prompt, o_id, validated)
if r[0] is False:
# `r` will be set in `validated[o_id]` already
valid = False
continue
except Exception as ex:
typ, _, tb = sys.exc_info()
valid = False
exception_type = full_type_name(typ)
reasons = [{
"type": "exception_during_inner_validation",
"message": "Exception when validating inner node",
"details": str(ex),
"extra_info": {
"input_name": x,
"input_config": info,
"exception_message": str(ex),
"exception_type": exception_type,
"traceback": traceback.format_tb(tb),
"linked_node": val
}
}]
validated[o_id] = (False, reasons, o_id)
continue
else:
if type_input == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
val = str(val)
inputs[x] = val
try:
if type_input == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
val = str(val)
inputs[x] = val
except Exception as ex:
error = {
"type": "invalid_input_type",
"message": f"Failed to convert an input value to a {type_input} value",
"details": f"{x}, {val}, {ex}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
"exception_message": str(ex)
}
}
errors.append(error)
continue
if len(info) > 1:
if "min" in info[1] and val < info[1]["min"]:
return (False, "Value smaller than min. {}, {}".format(class_type, x))
error = {
"type": "value_smaller_than_min",
"message": "Value {} smaller than min of {}".format(val, info[1]["min"]),
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
if "max" in info[1] and val > info[1]["max"]:
return (False, "Value bigger than max. {}, {}".format(class_type, x))
error = {
"type": "value_bigger_than_max",
"message": "Value {} bigger than max of {}".format(val, info[1]["max"]),
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
if isinstance(type_input, list):
if val not in type_input:
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
return (True, "")
if hasattr(obj_class, "VALIDATE_INPUTS"):
input_data_all = get_input_data(inputs, obj_class, unique_id)
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
for i, r in enumerate(ret):
if r is not True:
details = f"{x}"
if r is not False:
details += f" - {str(r)}"
error = {
"type": "custom_validation_failed",
"message": "Custom validation failed for node",
"details": details,
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
else:
if isinstance(type_input, list):
if val not in type_input:
input_config = info
list_info = ""
# Don't send back gigantic lists like if they're lots of
# scanned model filepaths
if len(type_input) > 20:
list_info = f"(list of length {len(type_input)})"
input_config = None
else:
list_info = str(type_input)
error = {
"type": "value_not_in_list",
"message": "Value not in list",
"details": f"{x}: '{val}' not in {list_info}",
"extra_info": {
"input_name": x,
"input_config": input_config,
"received_value": val,
}
}
errors.append(error)
continue
if len(errors) > 0 or valid is not True:
ret = (False, errors, unique_id)
else:
ret = (True, [], unique_id)
validated[unique_id] = ret
return ret
def full_type_name(klass):
module = klass.__module__
if module == 'builtins':
return klass.__qualname__
return module + '.' + klass.__qualname__
def validate_prompt(prompt):
outputs = set()
@ -262,33 +581,86 @@ def validate_prompt(prompt):
outputs.add(x)
if len(outputs) == 0:
return (False, "Prompt has no outputs")
error = {
"type": "prompt_no_outputs",
"message": "Prompt has no outputs",
"details": "",
"extra_info": {}
}
return (False, error, [], [])
good_outputs = set()
errors = []
node_errors = {}
validated = {}
for o in outputs:
valid = False
reason = ""
reasons = []
try:
m = validate_inputs(prompt, o)
m = validate_inputs(prompt, o, validated)
valid = m[0]
reason = m[1]
except:
reasons = m[1]
except Exception as ex:
typ, _, tb = sys.exc_info()
valid = False
reason = "Parsing error"
exception_type = full_type_name(typ)
reasons = [{
"type": "exception_during_validation",
"message": "Exception when validating node",
"details": str(ex),
"extra_info": {
"exception_type": exception_type,
"traceback": traceback.format_tb(tb)
}
}]
validated[o] = (False, reasons, o)
if valid == True:
good_outputs.add(x)
if valid is True:
good_outputs.add(o)
else:
print("Failed to validate prompt for output {} {}".format(o, reason))
print("output will be ignored")
errors += [(o, reason)]
print(f"Failed to validate prompt for output {o}:")
if len(reasons) > 0:
print("* (prompt):")
for reason in reasons:
print(f" - {reason['message']}: {reason['details']}")
errors += [(o, reasons)]
for node_id, result in validated.items():
valid = result[0]
reasons = result[1]
# If a node upstream has errors, the nodes downstream will also
# be reported as invalid, but there will be no errors attached.
# So don't return those nodes as having errors in the response.
if valid is not True and len(reasons) > 0:
if node_id not in node_errors:
class_type = prompt[node_id]['class_type']
node_errors[node_id] = {
"errors": reasons,
"dependent_outputs": [],
"class_type": class_type
}
print(f"* {class_type} {node_id}:")
for reason in reasons:
print(f" - {reason['message']}: {reason['details']}")
node_errors[node_id]["dependent_outputs"].append(o)
print("Output will be ignored")
if len(good_outputs) == 0:
errors_list = "\n".join(set(map(lambda a: "{}".format(a[1]), errors)))
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list))
errors_list = []
for o, errors in errors:
for error in errors:
errors_list.append(f"{error['message']}: {error['details']}")
errors_list = "\n".join(errors_list)
return (True, "")
error = {
"type": "prompt_outputs_failed_validation",
"message": "Prompt outputs failed validation",
"details": errors_list,
"extra_info": {}
}
return (False, error, list(good_outputs), node_errors)
return (True, None, list(good_outputs), node_errors)
class PromptQueue:
@ -324,8 +696,7 @@ class PromptQueue:
prompt = self.currently_running.pop(item_id)
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
for o in outputs:
if "ui" in outputs[o]:
self.history[prompt[1]]["outputs"][o] = outputs[o]["ui"]
self.history[prompt[1]]["outputs"][o] = outputs[o]
self.server.queue_updated()
def get_current_queue(self):

View File

@ -13,11 +13,13 @@ a111:
models/ESRGAN
models/SwinIR
embeddings: embeddings
hypernetworks: models/hypernetworks
controlnet: models/ControlNet
#other_ui:
# base_path: path/to/ui
# checkpoints: models/checkpoints
# gligen: models/gligen
# custom_nodes: path/custom_nodes

View File

@ -1,14 +1,8 @@
import os
import time
supported_ckpt_extensions = set(['.ckpt', '.pth'])
supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth'])
try:
import safetensors.torch
supported_ckpt_extensions.add('.safetensors')
supported_pt_extensions.add('.safetensors')
except:
print("Could not import safetensors, safetensors support disabled.")
supported_ckpt_extensions = set(['.ckpt', '.pth', '.safetensors'])
supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors'])
folder_names_and_paths = {}
@ -27,16 +21,21 @@ folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")]
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions)
folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions)
folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], [])
folder_names_and_paths["comfy_extras"] = ([os.path.join(base_path, "comfy_extras")], [])
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
filename_list_cache = {}
if not os.path.exists(input_directory):
os.makedirs(input_directory)
@ -68,6 +67,46 @@ def get_directory_by_type(type_name):
return None
# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format
# otherwise use default_path as base_dir
def annotated_filepath(name):
if name.endswith("[output]"):
base_dir = get_output_directory()
name = name[:-9]
elif name.endswith("[input]"):
base_dir = get_input_directory()
name = name[:-8]
elif name.endswith("[temp]"):
base_dir = get_temp_directory()
name = name[:-7]
else:
return name, None
return name, base_dir
def get_annotated_filepath(name, default_dir=None):
name, base_dir = annotated_filepath(name)
if base_dir is None:
if default_dir is not None:
base_dir = default_dir
else:
base_dir = get_input_directory() # fallback path
return os.path.join(base_dir, name)
def exists_annotated_filepath(name):
name, base_dir = annotated_filepath(name)
if base_dir is None:
base_dir = get_input_directory() # fallback path
filepath = os.path.join(base_dir, name)
return os.path.exists(filepath)
def add_model_folder_path(folder_name, full_folder_path):
global folder_names_and_paths
if folder_name in folder_names_and_paths:
@ -77,12 +116,18 @@ def get_folder_paths(folder_name):
return folder_names_and_paths[folder_name][0][:]
def recursive_search(directory):
if not os.path.isdir(directory):
return [], {}
result = []
dirs = {directory: os.path.getmtime(directory)}
for root, subdir, file in os.walk(directory, followlinks=True):
for filepath in file:
#we os.path,join directory with a blank string to generate a path separator at the end.
result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),''))
return result
for d in subdir:
path = os.path.join(root, d)
dirs[path] = os.path.getmtime(path)
return result, dirs
def filter_files_extensions(files, extensions):
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
@ -91,19 +136,90 @@ def filter_files_extensions(files, extensions):
def get_full_path(folder_name, filename):
global folder_names_and_paths
if folder_name not in folder_names_and_paths:
return None
folders = folder_names_and_paths[folder_name]
filename = os.path.relpath(os.path.join("/", filename), "/")
for x in folders[0]:
full_path = os.path.join(x, filename)
if os.path.isfile(full_path):
return full_path
return None
def get_filename_list(folder_name):
def get_filename_list_(folder_name):
global folder_names_and_paths
output_list = set()
folders = folder_names_and_paths[folder_name]
output_folders = {}
for x in folders[0]:
output_list.update(filter_files_extensions(recursive_search(x), folders[1]))
return sorted(list(output_list))
files, folders_all = recursive_search(x)
output_list.update(filter_files_extensions(files, folders[1]))
output_folders = {**output_folders, **folders_all}
return (sorted(list(output_list)), output_folders, time.perf_counter())
def cached_filename_list_(folder_name):
global filename_list_cache
global folder_names_and_paths
if folder_name not in filename_list_cache:
return None
out = filename_list_cache[folder_name]
if time.perf_counter() < (out[2] + 0.5):
return out
for x in out[1]:
time_modified = out[1][x]
folder = x
if os.path.getmtime(folder) != time_modified:
return None
folders = folder_names_and_paths[folder_name]
for x in folders[0]:
if os.path.isdir(x):
if x not in out[1]:
return None
return out
def get_filename_list(folder_name):
out = cached_filename_list_(folder_name)
if out is None:
out = get_filename_list_(folder_name)
global filename_list_cache
filename_list_cache[folder_name] = out
return list(out[0])
def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height=0):
def map_filename(filename):
prefix_len = len(os.path.basename(filename_prefix))
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
def compute_vars(input, image_width, image_height):
input = input.replace("%width%", str(image_width))
input = input.replace("%height%", str(image_height))
return input
filename_prefix = compute_vars(filename_prefix, image_width, image_height)
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
filename = os.path.basename(os.path.normpath(filename_prefix))
full_output_folder = os.path.join(output_dir, subfolder)
if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir:
print("Saving image outside the output folder is not allowed.")
return {}
try:
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
except ValueError:
counter = 1
except FileNotFoundError:
os.makedirs(full_output_folder, exist_ok=True)
counter = 1
return full_output_folder, filename, counter, subfolder, filename_prefix

29
main.py
View File

@ -5,6 +5,7 @@ import shutil
import threading
from comfy.cli_args import args
import comfy.utils
if os.name == "nt":
import logging
@ -32,21 +33,16 @@ def prompt_worker(q, server):
e = execution.PromptExecutor(server)
while True:
item, item_id = q.get()
e.execute(item[-2], item[-1])
q.task_done(item_id, e.outputs)
e.execute(item[2], item[1], item[3], item[4])
q.task_done(item_id, e.outputs_ui)
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
def hijack_progress(server):
from tqdm.auto import tqdm
orig_func = getattr(tqdm, "update")
def wrapped_func(*args, **kwargs):
pbar = args[0]
v = orig_func(*args, **kwargs)
server.send_sync("progress", { "value": pbar.n, "max": pbar.total}, server.client_id)
return v
setattr(tqdm, "update", wrapped_func)
def hook(value, total):
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
comfy.utils.set_progress_bar_global_hook(hook)
def cleanup_temp():
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
@ -95,23 +91,16 @@ if __name__ == "__main__":
threading.Thread(target=prompt_worker, daemon=True, args=(q,server,)).start()
address = args.listen
dont_print = args.dont_print_server
if args.output_directory:
output_dir = os.path.abspath(args.output_directory)
print(f"Setting output directory to: {output_dir}")
folder_paths.set_output_directory(output_dir)
port = args.port
if args.quick_test_for_ci:
exit(0)
call_on_start = None
if args.windows_standalone_build:
if args.auto_launch:
def startup_server(address, port):
import webbrowser
webbrowser.open("http://{}:{}".format(address, port))
@ -119,10 +108,10 @@ if __name__ == "__main__":
if os.name == "nt":
try:
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print, call_on_start=call_on_start))
loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start))
except KeyboardInterrupt:
pass
else:
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print, call_on_start=call_on_start))
loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start))
cleanup_temp()

View File

583
nodes.py
View File

@ -5,18 +5,22 @@ import sys
import json
import hashlib
import traceback
import math
import time
from datetime import datetime
from PIL import Image
from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
import numpy as np
import safetensors.torch
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
import comfy.diffusers_convert
import comfy.diffusers_load
import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
@ -27,6 +31,7 @@ import importlib
import folder_paths
def before_node_execution():
comfy.model_management.throw_exception_if_processing_interrupted()
@ -59,14 +64,44 @@ class ConditioningCombine:
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
@ -74,21 +109,46 @@ class ConditioningSetArea:
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
def append(self, conditioning, width, height, x, y, strength):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
n[1]['strength'] = strength
n[1]['min_sigma'] = min_sigma
n[1]['max_sigma'] = max_sigma
n[1]['set_area_to_bounds'] = False
c.append(n)
return (c, )
class ConditioningSetMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"mask": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, mask, set_cond_area, strength):
c = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
for t in conditioning:
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
return (c, )
class VAEDecode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
@ -101,9 +161,6 @@ class VAEDecode:
return (vae.decode(samples["samples"]), )
class VAEDecodeTiled:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
@ -116,9 +173,6 @@ class VAEDecodeTiled:
return (vae.decode_tiled(samples["samples"]), )
class VAEEncode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
@ -127,20 +181,22 @@ class VAEEncode:
CATEGORY = "latent"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
t = vae.encode(pixels[:,:,:,:3])
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
def encode(self, vae, pixels):
pixels = self.vae_encode_crop_pixels(pixels)
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
class VAEEncodeTiled:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
@ -150,46 +206,123 @@ class VAEEncodeTiled:
CATEGORY = "_for_testing"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
t = vae.encode_tiled(pixels[:,:,:,:3])
return ({"samples":t}, )
class VAEEncodeForInpaint:
def __init__(self, device="cpu"):
self.device = device
class VAEEncodeForInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]
def encode(self, vae, pixels, mask, grow_mask_by=6):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
mask = mask[:x,:y]
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
#grow mask by a few pixels to keep things seamless in latent space
kernel_tensor = torch.ones((1, 1, 6, 6))
mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
m = (1.0 - mask.round())
if grow_mask_by == 0:
mask_erosion = mask
else:
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
padding = math.ceil((grow_mask_by - 1) / 2)
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
t = vae.encode(pixels)
return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
class SaveLatent:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ),
"filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "_for_testing"
def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# support save metadata for latent sharing
prompt_info = ""
if prompt is not None:
prompt_info = json.dumps(prompt)
metadata = {"prompt": prompt_info}
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
file = f"{filename}_{counter:05}_.latent"
file = os.path.join(full_output_folder, file)
output = {}
output["latent_tensor"] = samples["samples"]
safetensors.torch.save_file(output, file, metadata=metadata)
return {}
class LoadLatent:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
return {"required": {"latent": [sorted(files), ]}, }
CATEGORY = "_for_testing"
RETURN_TYPES = ("LATENT", )
FUNCTION = "load"
def load(self, latent):
latent_path = folder_paths.get_annotated_filepath(latent)
latent = safetensors.torch.load_file(latent_path, device="cpu")
samples = {"samples": latent["latent_tensor"].float()}
return (samples, )
@classmethod
def IS_CHANGED(s, latent):
image_path = folder_paths.get_annotated_filepath(latent)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, latent):
if not folder_paths.exists_annotated_filepath(latent):
return "Invalid latent file: {}".format(latent)
return True
class CheckpointLoader:
@classmethod
@ -227,7 +360,10 @@ class DiffusersLoader:
paths = []
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
paths += next(os.walk(search_path))[1]
for root, subdir, files in os.walk(search_path, followlinks=True):
if "model_index.json" in files:
paths.append(os.path.relpath(root, start=search_path))
return {"required": {"model_path": (paths,), }}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
@ -237,12 +373,12 @@ class DiffusersLoader:
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
paths = next(os.walk(search_path))[1]
if model_path in paths:
model_path = os.path.join(search_path, model_path)
path = os.path.join(search_path, model_path)
if os.path.exists(path):
model_path = path
break
return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
class unCLIPCheckpointLoader:
@ -291,6 +427,9 @@ class LoraLoader:
CATEGORY = "loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = folder_paths.get_full_path("loras", lora_name)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
return (model_lora, clip_lora)
@ -372,9 +511,11 @@ class ControlNetApply:
CATEGORY = "conditioning"
def apply_controlnet(self, conditioning, control_net, image, strength):
if strength == 0:
return (conditioning, )
c = []
control_hint = image.movedim(-1,1)
print(control_hint.shape)
for t in conditioning:
n = [t[0], t[1].copy()]
c_net = control_net.copy().set_cond_hint(control_hint, strength)
@ -479,6 +620,9 @@ class unCLIPConditioning:
CATEGORY = "conditioning"
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
if strength == 0:
return (conditioning, )
c = []
for t in conditioning:
o = t[1].copy()
@ -491,6 +635,51 @@ class unCLIPConditioning:
c.append(n)
return (c, )
class GLIGENLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}
RETURN_TYPES = ("GLIGEN",)
FUNCTION = "load_gligen"
CATEGORY = "loaders"
def load_gligen(self, gligen_name):
gligen_path = folder_paths.get_full_path("gligen", gligen_name)
gligen = comfy.sd.load_gligen(gligen_path)
return (gligen,)
class GLIGENTextBoxApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ),
"clip": ("CLIP", ),
"gligen_textbox_model": ("GLIGEN", ),
"text": ("STRING", {"multiline": True}),
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning/gligen"
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
c = []
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
for t in conditioning_to:
n = [t[0], t[1].copy()]
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
prev = []
if "gligen" in n[1]:
prev = n[1]['gligen'][2]
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
c.append(n)
return (c, )
class EmptyLatentImage:
def __init__(self, device="cpu"):
@ -498,8 +687,8 @@ class EmptyLatentImage:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
@ -516,29 +705,68 @@ class LatentFromBatch:
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
FUNCTION = "frombatch"
CATEGORY = "latent"
CATEGORY = "latent/batch"
def rotate(self, samples, batch_index):
def frombatch(self, samples, batch_index, length):
s = samples.copy()
s_in = samples["samples"]
batch_index = min(s_in.shape[0] - 1, batch_index)
s["samples"] = s_in[batch_index:batch_index + 1].clone()
s["batch_index"] = batch_index
length = min(s_in.shape[0] - batch_index, length)
s["samples"] = s_in[batch_index:batch_index + length].clone()
if "noise_mask" in samples:
masks = samples["noise_mask"]
if masks.shape[0] == 1:
s["noise_mask"] = masks.clone()
else:
if masks.shape[0] < s_in.shape[0]:
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
s["noise_mask"] = masks[batch_index:batch_index + length].clone()
if "batch_index" not in s:
s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
else:
s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
return (s,)
class RepeatLatentBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "repeat"
CATEGORY = "latent/batch"
def repeat(self, samples, amount):
s = samples.copy()
s_in = samples["samples"]
s["samples"] = s_in.repeat((amount, 1,1,1))
if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
masks = samples["noise_mask"]
if masks.shape[0] < s_in.shape[0]:
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
if "batch_index" in s:
offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
return (s,)
class LatentUpscale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
@ -550,6 +778,25 @@ class LatentUpscale:
s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
return (s,)
class LatentUpscaleBy:
upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, scale_by):
s = samples.copy()
width = round(samples["samples"].shape[3] * scale_by)
height = round(samples["samples"].shape[2] * scale_by)
s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
return (s,)
class LatentRotate:
@classmethod
def INPUT_TYPES(s):
@ -640,8 +887,8 @@ class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
@ -666,16 +913,6 @@ class LatentCrop:
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
def enforce_image_dim(d, to_d, max_d):
if to_d > max_d:
leftover = (to_d - max_d) % 8
to_d = max_d
d -= leftover
return (d, to_d)
#make sure size is always multiple of 64
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
s['samples'] = samples[:,:,y:to_y, x:to_x]
return (s,)
@ -692,79 +929,30 @@ class SetLatentNoiseMask:
def set_mask(self, samples, mask):
s = samples.copy()
s["noise_mask"] = mask
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (s,)
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
latent_image = latent["samples"]
noise_mask = None
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_index = 0
if "batch_index" in latent:
batch_index = latent["batch_index"]
generator = torch.manual_seed(seed)
for i in range(batch_index):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent['noise_mask']
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * noise.shape[0])
noise_mask = noise_mask.to(device)
noise_mask = latent["noise_mask"]
real_model = None
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = []
negative_copy = []
control_nets = []
for p in positive:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
if 'control' in p[1]:
control_nets += [p[1]['control']]
positive_copy += [[t] + p[1:]]
for n in negative:
t = n[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
if 'control' in n[1]:
control_nets += [n[1]['control']]
negative_copy += [[t] + n[1:]]
control_net_models = []
for x in control_nets:
control_net_models += x.get_control_models()
comfy.model_management.load_controlnet_gpu(control_net_models)
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
else:
#other samplers
pass
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
samples = samples.cpu()
for c in control_nets:
c.cleanup()
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
out = latent.copy()
out["samples"] = samples
return (out, )
@ -847,40 +1035,8 @@ class SaveImage:
CATEGORY = "image"
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
def map_filename(filename):
prefix_len = len(os.path.basename(filename_prefix))
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
def compute_vars(input):
input = input.replace("%width%", str(images[0].shape[1]))
input = input.replace("%height%", str(images[0].shape[0]))
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
input = input.replace("%date%", datetime.now().strftime("%Y%m%d%H%M%S"))
return input
filename_prefix = compute_vars(filename_prefix)
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
filename = os.path.basename(os.path.normpath(filename_prefix))
full_output_folder = os.path.join(self.output_dir, subfolder)
if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
print("Saving image outside the output folder is not allowed.")
return {}
try:
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
except ValueError:
counter = 1
except FileNotFoundError:
os.makedirs(full_output_folder, exist_ok=True)
counter = 1
results = list()
for image in images:
i = 255. * image.cpu().numpy()
@ -919,8 +1075,9 @@ class LoadImage:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(os.listdir(input_dir)), )},
{"image": (sorted(files), )},
}
CATEGORY = "image"
@ -928,9 +1085,9 @@ class LoadImage:
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "load_image"
def load_image(self, image):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
@ -943,20 +1100,28 @@ class LoadImage:
@classmethod
def IS_CHANGED(s, image):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImageMask:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(os.listdir(input_dir)), ),
"channel": (["alpha", "red", "green", "blue"], ),}
{"image": (sorted(files), ),
"channel": (s._color_channels, ), }
}
CATEGORY = "mask"
@ -964,9 +1129,9 @@ class LoadImageMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "load_image"
def load_image(self, image, channel):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
if i.getbands() != ("R", "G", "B", "A"):
i = i.convert("RGBA")
mask = None
@ -982,13 +1147,22 @@ class LoadImageMask:
@classmethod
def IS_CHANGED(s, image, channel):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image, channel):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
if channel not in s._color_channels:
return "Invalid color channel: {}".format(channel)
return True
class ImageScale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
@ -1033,10 +1207,10 @@ class ImagePadForOutpaint:
return {
"required": {
"image": ("IMAGE",),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}
}
@ -1100,7 +1274,9 @@ NODE_CLASS_MAPPINGS = {
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
"LatentUpscaleBy": LatentUpscaleBy,
"LatentFromBatch": LatentFromBatch,
"RepeatLatentBatch": RepeatLatentBatch,
"SaveImage": SaveImage,
"PreviewImage": PreviewImage,
"LoadImage": LoadImage,
@ -1108,8 +1284,10 @@ NODE_CLASS_MAPPINGS = {
"ImageScale": ImageScale,
"ImageInvert": ImageInvert,
"ImagePadForOutpaint": ImagePadForOutpaint,
"ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningSetArea": ConditioningSetArea,
"ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced,
"SetLatentNoiseMask": SetLatentNoiseMask,
"LatentComposite": LatentComposite,
@ -1130,8 +1308,14 @@ NODE_CLASS_MAPPINGS = {
"VAEEncodeTiled": VAEEncodeTiled,
"TomePatchModel": TomePatchModel,
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
"GLIGENLoader": GLIGENLoader,
"GLIGENTextBoxApply": GLIGENTextBoxApply,
"CheckpointLoader": CheckpointLoader,
"DiffusersLoader": DiffusersLoader,
"LoadLatent": LoadLatent,
"SaveLatent": SaveLatent
}
NODE_DISPLAY_NAME_MAPPINGS = {
@ -1155,7 +1339,9 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
"CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)",
"ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetMask": "Conditioning (Set Mask)",
"ControlNetApply": "Apply ControlNet",
# Latent
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
@ -1167,7 +1353,10 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"LatentCrop": "Crop Latent",
"EmptyLatentImage": "Empty Latent Image",
"LatentUpscale": "Upscale Latent",
"LatentUpscaleBy": "Upscale Latent By",
"LatentComposite": "Latent Composite",
"LatentFromBatch" : "Latent From Batch",
"RepeatLatentBatch": "Repeat Latent Batch",
# Image
"SaveImage": "Save Image",
"PreviewImage": "Preview Image",
@ -1199,14 +1388,18 @@ def load_custom_node(module_path):
NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
return True
else:
print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
return False
except Exception as e:
print(traceback.format_exc())
print(f"Cannot import {module_path} module for custom nodes:", e)
return False
def load_custom_nodes():
node_paths = folder_paths.get_folder_paths("custom_nodes")
node_import_times = []
for custom_node_path in node_paths:
possible_modules = os.listdir(custom_node_path)
if "__pycache__" in possible_modules:
@ -1215,7 +1408,20 @@ def load_custom_nodes():
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
load_custom_node(module_path)
if module_path.endswith(".disabled"): continue
time_before = time.perf_counter()
success = load_custom_node(module_path)
node_import_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_import_times) > 0:
print("\nImport times for custom nodes:")
for n in sorted(node_import_times):
if n[2]:
import_message = ""
else:
import_message = " (IMPORT FAILED)"
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
print()
def load_comfy_extras_nodes():
node_paths = folder_paths.get_folder_paths("comfy_extras")
@ -1232,8 +1438,9 @@ def load_comfy_extras_nodes():
def init_custom_nodes():
load_comfy_extras_nodes()
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
load_custom_nodes()
# load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
# load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
# load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
# load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "silver_custom.py"))

View File

@ -47,7 +47,7 @@
" !git pull\n",
"\n",
"!echo -= Install dependencies =-\n",
"!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118"
"!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu117"
]
},
{
@ -138,6 +138,11 @@
"# Controlnet Preprocessor nodes by Fannovel16\n",
"#!cd custom_nodes && git clone https://github.com/Fannovel16/comfy_controlnet_preprocessors; cd comfy_controlnet_preprocessors && python install.py\n",
"\n",
"\n",
"# GLIGEN\n",
"#!wget -c https://huggingface.co/comfyanonymous/GLIGEN_pruned_safetensors/resolve/main/gligen_sd14_textbox_pruned_fp16.safetensors -P ./models/gligen/\n",
"\n",
"\n",
"# ESRGAN upscale model\n",
"#!wget -c https://huggingface.co/sberbank-ai/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth -P ./models/upscale_models/\n",
"#!wget -c https://huggingface.co/sberbank-ai/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth -P ./models/upscale_models/\n",
@ -170,6 +175,8 @@
"import threading\n",
"import time\n",
"import socket\n",
"import urllib.request\n",
"\n",
"def iframe_thread(port):\n",
" while True:\n",
" time.sleep(0.5)\n",
@ -178,7 +185,9 @@
" if result == 0:\n",
" break\n",
" sock.close()\n",
" print(\"\\nComfyUI finished loading, trying to launch localtunnel (if it gets stuck here localtunnel is having issues)\")\n",
" print(\"\\nComfyUI finished loading, trying to launch localtunnel (if it gets stuck here localtunnel is having issues)\\n\")\n",
"\n",
" print(\"The password/enpoint ip for localtunnel is:\", urllib.request.urlopen('https://ipv4.icanhazip.com').read().decode('utf8').strip(\"\\n\"))\n",
" p = subprocess.Popen([\"lt\", \"--port\", \"{}\".format(port)], stdout=subprocess.PIPE)\n",
" for line in p.stdout:\n",
" print(line.decode(), end='')\n",

246
server.py
View File

@ -7,6 +7,9 @@ import execution
import uuid
import json
import glob
from PIL import Image
from io import BytesIO
try:
import aiohttp
from aiohttp import web
@ -19,7 +22,8 @@ except ImportError:
import mimetypes
from comfy.cli_args import args
import comfy.utils
import comfy.model_management
@web.middleware
async def cache_control(request: web.Request, handler):
@ -78,7 +82,7 @@ class PromptServer():
# Reusing existing session, remove old
self.sockets.pop(sid, None)
else:
sid = uuid.uuid4().hex
sid = uuid.uuid4().hex
self.sockets[sid] = ws
@ -110,33 +114,59 @@ class PromptServer():
files = glob.glob(os.path.join(self.web_root, 'extensions/**/*.js'), recursive=True)
return web.json_response(list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files)))
@routes.post("/upload/image")
async def upload_image(request):
upload_dir = folder_paths.get_input_directory()
def get_dir_by_type(dir_type):
if dir_type is None:
dir_type = "input"
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
post = await request.post()
if dir_type == "input":
type_dir = folder_paths.get_input_directory()
elif dir_type == "temp":
type_dir = folder_paths.get_temp_directory()
elif dir_type == "output":
type_dir = folder_paths.get_output_directory()
return type_dir, dir_type
def image_upload(post, image_save_function=None):
image = post.get("image")
overwrite = post.get("overwrite")
image_upload_type = post.get("type")
upload_dir, image_upload_type = get_dir_by_type(image_upload_type)
if image and image.file:
filename = image.filename
if not filename:
return web.Response(status=400)
subfolder = post.get("subfolder", "")
full_output_folder = os.path.join(upload_dir, os.path.normpath(subfolder))
if os.path.commonpath((upload_dir, os.path.abspath(full_output_folder))) != upload_dir:
return web.Response(status=400)
if not os.path.exists(full_output_folder):
os.makedirs(full_output_folder)
split = os.path.splitext(filename)
i = 1
while os.path.exists(os.path.join(upload_dir, filename)):
filename = f"{split[0]} ({i}){split[1]}"
i += 1
filepath = os.path.join(full_output_folder, filename)
filepath = os.path.join(upload_dir, filename)
if overwrite is not None and (overwrite == "true" or overwrite == "1"):
pass
else:
i = 1
while os.path.exists(filepath):
filename = f"{split[0]} ({i}){split[1]}"
filepath = os.path.join(full_output_folder, filename)
i += 1
with open(filepath, "wb") as f:
f.write(image.file.read())
return web.json_response({"name" : filename})
if image_save_function is not None:
image_save_function(image, post, filepath)
else:
with open(filepath, "wb") as f:
f.write(image.file.read())
return web.json_response({"name" : filename, "subfolder": subfolder, "type": image_upload_type})
else:
return web.Response(status=400)
@ -152,14 +182,43 @@ class PromptServer():
if len(images) > 50:
# If there are more than 50 images, raise an exception
return web.json_response({"error": "Too many images, load from output disabled."}, status=400)
return web.json_response({"images": images})
@routes.post("/upload/image")
async def upload_image(request):
post = await request.post()
return image_upload(post)
@routes.post("/upload/mask")
async def upload_mask(request):
post = await request.post()
def image_save_function(image, post, filepath):
original_pil = Image.open(post.get("original_image").file).convert('RGBA')
mask_pil = Image.open(image.file).convert('RGBA')
# alpha copy
new_alpha = mask_pil.getchannel('A')
original_pil.putalpha(new_alpha)
original_pil.save(filepath, compress_level=4)
return image_upload(post, image_save_function)
@routes.get("/view")
async def view_image(request):
if "filename" in request.rel_url.query:
type = request.rel_url.query.get("type", "output")
output_dir = folder_paths.get_directory_by_type(type)
filename = request.rel_url.query["filename"]
filename,output_dir = folder_paths.annotated_filepath(filename)
# validation for security: prevent accessing arbitrary path
if filename[0] == '/' or '..' in filename:
return web.Response(status=400)
if output_dir is None:
type = request.rel_url.query.get("type", "output")
output_dir = folder_paths.get_directory_by_type(type)
if output_dir is None:
return web.Response(status=400)
@ -169,13 +228,49 @@ class PromptServer():
return web.Response(status=403)
output_dir = full_output_dir
filename = request.rel_url.query["filename"]
filename = os.path.basename(filename)
file = os.path.join(output_dir, filename)
if os.path.isfile(file):
return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""})
if 'channel' not in request.rel_url.query:
channel = 'rgba'
else:
channel = request.rel_url.query["channel"]
if channel == 'rgb':
with Image.open(file) as img:
if img.mode == "RGBA":
r, g, b, a = img.split()
new_img = Image.merge('RGB', (r, g, b))
else:
new_img = img.convert("RGB")
buffer = BytesIO()
new_img.save(buffer, format='PNG')
buffer.seek(0)
return web.Response(body=buffer.read(), content_type='image/png',
headers={"Content-Disposition": f"filename=\"{filename}\""})
elif channel == 'a':
with Image.open(file) as img:
if img.mode == "RGBA":
_, _, _, a = img.split()
else:
a = Image.new('L', img.size, 255)
# alpha img
alpha_img = Image.new('RGBA', img.size)
alpha_img.putalpha(a)
alpha_buffer = BytesIO()
alpha_img.save(alpha_buffer, format='PNG')
alpha_buffer.seek(0)
return web.Response(body=alpha_buffer.read(), content_type='image/png',
headers={"Content-Disposition": f"filename=\"{filename}\""})
else:
return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""})
return web.Response(status=404)
@routes.post("/delete")
@ -201,26 +296,87 @@ class PromptServer():
except Exception as e:
return web.json_response({"message": f"An error occurred: {str(e)}"}, status=500)
@routes.get("/view_metadata/{folder_name}")
async def view_metadata(request):
folder_name = request.match_info.get("folder_name", None)
if folder_name is None:
return web.Response(status=404)
if not "filename" in request.rel_url.query:
return web.Response(status=404)
filename = request.rel_url.query["filename"]
if not filename.endswith(".safetensors"):
return web.Response(status=404)
safetensors_path = folder_paths.get_full_path(folder_name, filename)
if safetensors_path is None:
return web.Response(status=404)
out = comfy.utils.safetensors_header(safetensors_path, max_size=1024*1024)
if out is None:
return web.Response(status=404)
dt = json.loads(out)
if not "__metadata__" in dt:
return web.Response(status=404)
return web.json_response(dt["__metadata__"])
@routes.get("/system_stats")
async def get_queue(request):
device = comfy.model_management.get_torch_device()
device_name = comfy.model_management.get_torch_device_name(device)
vram_total, torch_vram_total = comfy.model_management.get_total_memory(device, torch_total_too=True)
vram_free, torch_vram_free = comfy.model_management.get_free_memory(device, torch_free_too=True)
system_stats = {
"devices": [
{
"name": device_name,
"type": device.type,
"index": device.index,
"vram_total": vram_total,
"vram_free": vram_free,
"torch_vram_total": torch_vram_total,
"torch_vram_free": torch_vram_free,
}
]
}
return web.json_response(system_stats)
@routes.get("/prompt")
async def get_prompt(request):
return web.json_response(self.get_queue_info())
def node_info(node_class):
obj_class = nodes.NODE_CLASS_MAPPINGS[node_class]
info = {}
info['input'] = obj_class.INPUT_TYPES()
info['output'] = obj_class.RETURN_TYPES
info['output_is_list'] = obj_class.OUTPUT_IS_LIST if hasattr(obj_class, 'OUTPUT_IS_LIST') else [False] * len(obj_class.RETURN_TYPES)
info['output_name'] = obj_class.RETURN_NAMES if hasattr(obj_class, 'RETURN_NAMES') else info['output']
info['name'] = node_class
info['display_name'] = nodes.NODE_DISPLAY_NAME_MAPPINGS[node_class] if node_class in nodes.NODE_DISPLAY_NAME_MAPPINGS.keys() else node_class
info['description'] = ''
info['category'] = 'sd'
if hasattr(obj_class, 'OUTPUT_NODE') and obj_class.OUTPUT_NODE == True:
info['output_node'] = True
else:
info['output_node'] = False
if hasattr(obj_class, 'CATEGORY'):
info['category'] = obj_class.CATEGORY
return info
@routes.get("/object_info")
async def get_object_info(request):
out = {}
for x in nodes.NODE_CLASS_MAPPINGS:
obj_class = nodes.NODE_CLASS_MAPPINGS[x]
info = {}
info['input'] = obj_class.INPUT_TYPES()
info['output'] = obj_class.RETURN_TYPES
info['output_name'] = obj_class.RETURN_NAMES if hasattr(obj_class, 'RETURN_NAMES') else info['output']
info['name'] = x
info['display_name'] = nodes.NODE_DISPLAY_NAME_MAPPINGS[x] if x in nodes.NODE_DISPLAY_NAME_MAPPINGS.keys() else x
info['description'] = ''
info['category'] = 'sd'
if hasattr(obj_class, 'CATEGORY'):
info['category'] = obj_class.CATEGORY
out[x] = info
out[x] = node_info(x)
return web.json_response(out)
@routes.get("/object_info/{node_class}")
async def get_object_info_node(request):
node_class = request.match_info.get("node_class", None)
out = {}
if (node_class is not None) and (node_class in nodes.NODE_CLASS_MAPPINGS):
out[node_class] = node_info(node_class)
return web.json_response(out)
@routes.get("/history")
@ -262,14 +418,16 @@ class PromptServer():
if "client_id" in json_data:
extra_data["client_id"] = json_data["client_id"]
if valid[0]:
self.prompt_queue.put((number, id(prompt), prompt, extra_data))
prompt_id = str(uuid.uuid4())
outputs_to_execute = valid[2]
self.prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute))
return web.json_response({"prompt_id": prompt_id, "number": number})
else:
resp_code = 400
out_string = valid[1]
print("invalid prompt:", valid[1])
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)
else:
return web.json_response({"error": "no prompt", "node_errors": []}, status=400)
return web.Response(body=out_string, status=resp_code)
@routes.post("/queue")
async def post_queue(request):
json_data = await request.json()
@ -279,9 +437,9 @@ class PromptServer():
if "delete" in json_data:
to_delete = json_data['delete']
for id_to_delete in to_delete:
delete_func = lambda a: a[1] == int(id_to_delete)
delete_func = lambda a: a[1] == id_to_delete
self.prompt_queue.delete_queue_item(delete_func)
return web.Response(status=200)
@routes.post("/interrupt")
@ -305,7 +463,7 @@ class PromptServer():
def add_routes(self):
self.app.add_routes(self.routes)
self.app.add_routes([
web.static('/', self.web_root),
web.static('/', self.web_root, follow_symlinks=True),
])
def get_queue_info(self):

View File

@ -0,0 +1,166 @@
import { app } from "/scripts/app.js";
import { ComfyDialog, $el } from "/scripts/ui.js";
import { ComfyApp } from "/scripts/app.js";
export class ClipspaceDialog extends ComfyDialog {
static items = [];
static instance = null;
static registerButton(name, contextPredicate, callback) {
const item =
$el("button", {
type: "button",
textContent: name,
contextPredicate: contextPredicate,
onclick: callback
})
ClipspaceDialog.items.push(item);
}
static invalidatePreview() {
if(ComfyApp.clipspace && ComfyApp.clipspace.imgs && ComfyApp.clipspace.imgs.length > 0) {
const img_preview = document.getElementById("clipspace_preview");
if(img_preview) {
img_preview.src = ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src;
img_preview.style.maxHeight = "100%";
img_preview.style.maxWidth = "100%";
}
}
}
static invalidate() {
if(ClipspaceDialog.instance) {
const self = ClipspaceDialog.instance;
// allow reconstruct controls when copying from non-image to image content.
const children = $el("div.comfy-modal-content", [ self.createImgSettings(), ...self.createButtons() ]);
if(self.element) {
// update
self.element.removeChild(self.element.firstChild);
self.element.appendChild(children);
}
else {
// new
self.element = $el("div.comfy-modal", { parent: document.body }, [children,]);
}
if(self.element.children[0].children.length <= 1) {
self.element.children[0].appendChild($el("p", {}, ["Unable to find the features to edit content of a format stored in the current Clipspace."]));
}
ClipspaceDialog.invalidatePreview();
}
}
constructor() {
super();
}
createButtons(self) {
const buttons = [];
for(let idx in ClipspaceDialog.items) {
const item = ClipspaceDialog.items[idx];
if(!item.contextPredicate || item.contextPredicate())
buttons.push(ClipspaceDialog.items[idx]);
}
buttons.push(
$el("button", {
type: "button",
textContent: "Close",
onclick: () => { this.close(); }
})
);
return buttons;
}
createImgSettings() {
if(ComfyApp.clipspace.imgs) {
const combo_items = [];
const imgs = ComfyApp.clipspace.imgs;
for(let i=0; i < imgs.length; i++) {
combo_items.push($el("option", {value:i}, [`${i}`]));
}
const combo1 = $el("select",
{id:"clipspace_img_selector", onchange:(event) => {
ComfyApp.clipspace['selectedIndex'] = event.target.selectedIndex;
ClipspaceDialog.invalidatePreview();
} }, combo_items);
const row1 =
$el("tr", {},
[
$el("td", {}, [$el("font", {color:"white"}, ["Select Image"])]),
$el("td", {}, [combo1])
]);
const combo2 = $el("select",
{id:"clipspace_img_paste_mode", onchange:(event) => {
ComfyApp.clipspace['img_paste_mode'] = event.target.value;
} },
[
$el("option", {value:'selected'}, 'selected'),
$el("option", {value:'all'}, 'all')
]);
combo2.value = ComfyApp.clipspace['img_paste_mode'];
const row2 =
$el("tr", {},
[
$el("td", {}, [$el("font", {color:"white"}, ["Paste Mode"])]),
$el("td", {}, [combo2])
]);
const td = $el("td", {align:'center', width:'100px', height:'100px', colSpan:'2'},
[ $el("img",{id:"clipspace_preview", ondragstart:() => false},[]) ]);
const row3 =
$el("tr", {}, [td]);
return $el("table", {}, [row1, row2, row3]);
}
else {
return [];
}
}
createImgPreview() {
if(ComfyApp.clipspace.imgs) {
return $el("img",{id:"clipspace_preview", ondragstart:() => false});
}
else
return [];
}
show() {
const img_preview = document.getElementById("clipspace_preview");
ClipspaceDialog.invalidate();
this.element.style.display = "block";
}
}
app.registerExtension({
name: "Comfy.Clipspace",
init(app) {
app.openClipspace =
function () {
if(!ClipspaceDialog.instance) {
ClipspaceDialog.instance = new ClipspaceDialog(app);
ComfyApp.clipspace_invalidate_handler = ClipspaceDialog.invalidate;
}
if(ComfyApp.clipspace) {
ClipspaceDialog.instance.show();
}
else
app.ui.dialog.show("Clipspace is Empty!");
};
}
});

View File

@ -174,7 +174,7 @@ const els = {}
// const ctxMenu = LiteGraph.ContextMenu;
app.registerExtension({
name: id,
init() {
addCustomNodeDefs(node_defs) {
const sortObjectKeys = (unordered) => {
return Object.keys(unordered).sort().reduce((obj, key) => {
obj[key] = unordered[key];
@ -182,10 +182,10 @@ app.registerExtension({
}, {});
};
const getSlotTypes = async () => {
function getSlotTypes() {
var types = [];
const defs = await api.getNodeDefs();
const defs = node_defs;
for (const nodeId in defs) {
const nodeData = defs[nodeId];
@ -212,8 +212,8 @@ app.registerExtension({
return types;
};
const completeColorPalette = async (colorPalette) => {
var types = await getSlotTypes();
function completeColorPalette(colorPalette) {
var types = getSlotTypes();
for (const type of types) {
if (!colorPalette.colors.node_slot[type]) {
@ -232,10 +232,27 @@ app.registerExtension({
"name": "My Color Palette",
"colors": {
"node_slot": {
},
"litegraph_base": {
},
"comfy_base": {
}
}
};
// Copy over missing keys from default color palette
const defaultColorPalette = colorPalettes[defaultColorPaletteId];
for (const key in defaultColorPalette.colors.litegraph_base) {
if (!colorPalette.colors.litegraph_base[key]) {
colorPalette.colors.litegraph_base[key] = "";
}
}
for (const key in defaultColorPalette.colors.comfy_base) {
if (!colorPalette.colors.comfy_base[key]) {
colorPalette.colors.comfy_base[key] = "";
}
}
return completeColorPalette(colorPalette);
};

View File

@ -89,24 +89,17 @@ app.registerExtension({
end = nearestEnclosure.end;
selectedText = inputField.value.substring(start, end);
} else {
// Select the current word, find the start and end of the word (first space before and after)
const wordStart = inputField.value.substring(0, start).lastIndexOf(" ") + 1;
const wordEnd = inputField.value.substring(end).indexOf(" ");
// If there is no space after the word, select to the end of the string
if (wordEnd === -1) {
end = inputField.value.length;
} else {
end += wordEnd;
// Select the current word, find the start and end of the word
const delimiters = " .,\\/!?%^*;:{}=-_`~()\r\n\t";
while (!delimiters.includes(inputField.value[start - 1]) && start > 0) {
start--;
}
while (!delimiters.includes(inputField.value[end]) && end < inputField.value.length) {
end++;
}
start = wordStart;
// Remove all punctuation at the end and beginning of the word
while (inputField.value[start].match(/[.,\/#!$%\^&\*;:{}=\-_`~()]/)) {
start++;
}
while (inputField.value[end - 1].match(/[.,\/#!$%\^&\*;:{}=\-_`~()]/)) {
end--;
}
selectedText = inputField.value.substring(start, end);
if (!selectedText) return;
}
@ -135,8 +128,13 @@ app.registerExtension({
// Increment the weight
const weightDelta = event.key === "ArrowUp" ? delta : -delta;
const updatedText = selectedText.replace(/(.*:)(\d+(\.\d+)?)(.*)/, (match, prefix, weight, _, suffix) => {
return prefix + incrementWeight(weight, weightDelta) + suffix;
const updatedText = selectedText.replace(/\((.*):(\d+(?:\.\d+)?)\)/, (match, text, weight) => {
weight = incrementWeight(weight, weightDelta);
if (weight == 1) {
return text;
} else {
return `(${text}:${weight})`;
}
});
inputField.setRangeText(updatedText, start, end, "select");

View File

@ -0,0 +1,648 @@
import { app } from "/scripts/app.js";
import { ComfyDialog, $el } from "/scripts/ui.js";
import { ComfyApp } from "/scripts/app.js";
import { ClipspaceDialog } from "/extensions/core/clipspace.js";
// Helper function to convert a data URL to a Blob object
function dataURLToBlob(dataURL) {
const parts = dataURL.split(';base64,');
const contentType = parts[0].split(':')[1];
const byteString = atob(parts[1]);
const arrayBuffer = new ArrayBuffer(byteString.length);
const uint8Array = new Uint8Array(arrayBuffer);
for (let i = 0; i < byteString.length; i++) {
uint8Array[i] = byteString.charCodeAt(i);
}
return new Blob([arrayBuffer], { type: contentType });
}
function loadedImageToBlob(image) {
const canvas = document.createElement('canvas');
canvas.width = image.width;
canvas.height = image.height;
const ctx = canvas.getContext('2d');
ctx.drawImage(image, 0, 0);
const dataURL = canvas.toDataURL('image/png', 1);
const blob = dataURLToBlob(dataURL);
return blob;
}
async function uploadMask(filepath, formData) {
await fetch('/upload/mask', {
method: 'POST',
body: formData
}).then(response => {}).catch(error => {
console.error('Error:', error);
});
ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']] = new Image();
ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src = "/view?" + new URLSearchParams(filepath).toString();
if(ComfyApp.clipspace.images)
ComfyApp.clipspace.images[ComfyApp.clipspace['selectedIndex']] = filepath;
ClipspaceDialog.invalidatePreview();
}
function prepareRGB(image, backupCanvas, backupCtx) {
// paste mask data into alpha channel
backupCtx.drawImage(image, 0, 0, backupCanvas.width, backupCanvas.height);
const backupData = backupCtx.getImageData(0, 0, backupCanvas.width, backupCanvas.height);
// refine mask image
for (let i = 0; i < backupData.data.length; i += 4) {
if(backupData.data[i+3] == 255)
backupData.data[i+3] = 0;
else
backupData.data[i+3] = 255;
backupData.data[i] = 0;
backupData.data[i+1] = 0;
backupData.data[i+2] = 0;
}
backupCtx.globalCompositeOperation = 'source-over';
backupCtx.putImageData(backupData, 0, 0);
}
class MaskEditorDialog extends ComfyDialog {
static instance = null;
static getInstance() {
if(!MaskEditorDialog.instance) {
MaskEditorDialog.instance = new MaskEditorDialog(app);
}
return MaskEditorDialog.instance;
}
is_layout_created = false;
constructor() {
super();
this.element = $el("div.comfy-modal", { parent: document.body },
[ $el("div.comfy-modal-content",
[...this.createButtons()]),
]);
}
createButtons() {
return [];
}
createButton(name, callback) {
var button = document.createElement("button");
button.innerText = name;
button.addEventListener("click", callback);
return button;
}
createLeftButton(name, callback) {
var button = this.createButton(name, callback);
button.style.cssFloat = "left";
button.style.marginRight = "4px";
return button;
}
createRightButton(name, callback) {
var button = this.createButton(name, callback);
button.style.cssFloat = "right";
button.style.marginLeft = "4px";
return button;
}
createLeftSlider(self, name, callback) {
const divElement = document.createElement('div');
divElement.id = "maskeditor-slider";
divElement.style.cssFloat = "left";
divElement.style.fontFamily = "sans-serif";
divElement.style.marginRight = "4px";
divElement.style.color = "var(--input-text)";
divElement.style.backgroundColor = "var(--comfy-input-bg)";
divElement.style.borderRadius = "8px";
divElement.style.borderColor = "var(--border-color)";
divElement.style.borderStyle = "solid";
divElement.style.fontSize = "15px";
divElement.style.height = "21px";
divElement.style.padding = "1px 6px";
divElement.style.display = "flex";
divElement.style.position = "relative";
divElement.style.top = "2px";
self.brush_slider_input = document.createElement('input');
self.brush_slider_input.setAttribute('type', 'range');
self.brush_slider_input.setAttribute('min', '1');
self.brush_slider_input.setAttribute('max', '100');
self.brush_slider_input.setAttribute('value', '10');
const labelElement = document.createElement("label");
labelElement.textContent = name;
divElement.appendChild(labelElement);
divElement.appendChild(self.brush_slider_input);
self.brush_slider_input.addEventListener("change", callback);
return divElement;
}
setlayout(imgCanvas, maskCanvas) {
const self = this;
// If it is specified as relative, using it only as a hidden placeholder for padding is recommended
// to prevent anomalies where it exceeds a certain size and goes outside of the window.
var placeholder = document.createElement("div");
placeholder.style.position = "relative";
placeholder.style.height = "50px";
var bottom_panel = document.createElement("div");
bottom_panel.style.position = "absolute";
bottom_panel.style.bottom = "0px";
bottom_panel.style.left = "20px";
bottom_panel.style.right = "20px";
bottom_panel.style.height = "50px";
var brush = document.createElement("div");
brush.id = "brush";
brush.style.backgroundColor = "transparent";
brush.style.outline = "1px dashed black";
brush.style.boxShadow = "0 0 0 1px white";
brush.style.borderRadius = "50%";
brush.style.MozBorderRadius = "50%";
brush.style.WebkitBorderRadius = "50%";
brush.style.position = "absolute";
brush.style.zIndex = 8889;
brush.style.pointerEvents = "none";
this.brush = brush;
this.element.appendChild(imgCanvas);
this.element.appendChild(maskCanvas);
this.element.appendChild(placeholder); // must below z-index than bottom_panel to avoid covering button
this.element.appendChild(bottom_panel);
document.body.appendChild(brush);
var brush_size_slider = this.createLeftSlider(self, "Thickness", (event) => {
self.brush_size = event.target.value;
self.updateBrushPreview(self, null, null);
});
var clearButton = this.createLeftButton("Clear",
() => {
self.maskCtx.clearRect(0, 0, self.maskCanvas.width, self.maskCanvas.height);
self.backupCtx.clearRect(0, 0, self.backupCanvas.width, self.backupCanvas.height);
});
var cancelButton = this.createRightButton("Cancel", () => {
document.removeEventListener("mouseup", MaskEditorDialog.handleMouseUp);
document.removeEventListener("keydown", MaskEditorDialog.handleKeyDown);
self.close();
});
this.saveButton = this.createRightButton("Save", () => {
document.removeEventListener("mouseup", MaskEditorDialog.handleMouseUp);
document.removeEventListener("keydown", MaskEditorDialog.handleKeyDown);
self.save();
});
this.element.appendChild(imgCanvas);
this.element.appendChild(maskCanvas);
this.element.appendChild(placeholder); // must below z-index than bottom_panel to avoid covering button
this.element.appendChild(bottom_panel);
bottom_panel.appendChild(clearButton);
bottom_panel.appendChild(this.saveButton);
bottom_panel.appendChild(cancelButton);
bottom_panel.appendChild(brush_size_slider);
imgCanvas.style.position = "relative";
imgCanvas.style.top = "200";
imgCanvas.style.left = "0";
maskCanvas.style.position = "absolute";
}
show() {
if(!this.is_layout_created) {
// layout
const imgCanvas = document.createElement('canvas');
const maskCanvas = document.createElement('canvas');
const backupCanvas = document.createElement('canvas');
imgCanvas.id = "imageCanvas";
maskCanvas.id = "maskCanvas";
backupCanvas.id = "backupCanvas";
this.setlayout(imgCanvas, maskCanvas);
// prepare content
this.imgCanvas = imgCanvas;
this.maskCanvas = maskCanvas;
this.backupCanvas = backupCanvas;
this.maskCtx = maskCanvas.getContext('2d');
this.backupCtx = backupCanvas.getContext('2d');
this.setEventHandler(maskCanvas);
this.is_layout_created = true;
// replacement of onClose hook since close is not real close
const self = this;
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.type === 'attributes' && mutation.attributeName === 'style') {
if(self.last_display_style && self.last_display_style != 'none' && self.element.style.display == 'none') {
ComfyApp.onClipspaceEditorClosed();
}
self.last_display_style = self.element.style.display;
}
});
});
const config = { attributes: true };
observer.observe(this.element, config);
}
this.setImages(this.imgCanvas, this.backupCanvas);
if(ComfyApp.clipspace_return_node) {
this.saveButton.innerText = "Save to node";
}
else {
this.saveButton.innerText = "Save";
}
this.saveButton.disabled = false;
this.element.style.display = "block";
this.element.style.zIndex = 8888; // NOTE: alert dialog must be high priority.
}
isOpened() {
return this.element.style.display == "block";
}
setImages(imgCanvas, backupCanvas) {
const imgCtx = imgCanvas.getContext('2d');
const backupCtx = backupCanvas.getContext('2d');
const maskCtx = this.maskCtx;
const maskCanvas = this.maskCanvas;
backupCtx.clearRect(0,0,this.backupCanvas.width,this.backupCanvas.height);
imgCtx.clearRect(0,0,this.imgCanvas.width,this.imgCanvas.height);
maskCtx.clearRect(0,0,this.maskCanvas.width,this.maskCanvas.height);
// image load
const orig_image = new Image();
window.addEventListener("resize", () => {
// repositioning
imgCanvas.width = window.innerWidth - 250;
imgCanvas.height = window.innerHeight - 200;
// redraw image
let drawWidth = orig_image.width;
let drawHeight = orig_image.height;
if (orig_image.width > imgCanvas.width) {
drawWidth = imgCanvas.width;
drawHeight = (drawWidth / orig_image.width) * orig_image.height;
}
if (drawHeight > imgCanvas.height) {
drawHeight = imgCanvas.height;
drawWidth = (drawHeight / orig_image.height) * orig_image.width;
}
imgCtx.drawImage(orig_image, 0, 0, drawWidth, drawHeight);
// update mask
maskCanvas.width = drawWidth;
maskCanvas.height = drawHeight;
maskCanvas.style.top = imgCanvas.offsetTop + "px";
maskCanvas.style.left = imgCanvas.offsetLeft + "px";
backupCtx.drawImage(maskCanvas, 0, 0, maskCanvas.width, maskCanvas.height, 0, 0, backupCanvas.width, backupCanvas.height);
maskCtx.drawImage(backupCanvas, 0, 0, backupCanvas.width, backupCanvas.height, 0, 0, maskCanvas.width, maskCanvas.height);
});
const filepath = ComfyApp.clipspace.images;
const touched_image = new Image();
touched_image.onload = function() {
backupCanvas.width = touched_image.width;
backupCanvas.height = touched_image.height;
prepareRGB(touched_image, backupCanvas, backupCtx);
};
const alpha_url = new URL(ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src)
alpha_url.searchParams.delete('channel');
alpha_url.searchParams.set('channel', 'a');
touched_image.src = alpha_url;
// original image load
orig_image.onload = function() {
window.dispatchEvent(new Event('resize'));
};
const rgb_url = new URL(ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src);
rgb_url.searchParams.delete('channel');
rgb_url.searchParams.set('channel', 'rgb');
orig_image.src = rgb_url;
this.image = orig_image;
}
setEventHandler(maskCanvas) {
maskCanvas.addEventListener("contextmenu", (event) => {
event.preventDefault();
});
const self = this;
maskCanvas.addEventListener('wheel', (event) => this.handleWheelEvent(self,event));
maskCanvas.addEventListener('pointerdown', (event) => this.handlePointerDown(self,event));
document.addEventListener('pointerup', MaskEditorDialog.handlePointerUp);
maskCanvas.addEventListener('pointermove', (event) => this.draw_move(self,event));
maskCanvas.addEventListener('touchmove', (event) => this.draw_move(self,event));
maskCanvas.addEventListener('pointerover', (event) => { this.brush.style.display = "block"; });
maskCanvas.addEventListener('pointerleave', (event) => { this.brush.style.display = "none"; });
document.addEventListener('keydown', MaskEditorDialog.handleKeyDown);
}
brush_size = 10;
drawing_mode = false;
lastx = -1;
lasty = -1;
lasttime = 0;
static handleKeyDown(event) {
const self = MaskEditorDialog.instance;
if (event.key === ']') {
self.brush_size = Math.min(self.brush_size+2, 100);
} else if (event.key === '[') {
self.brush_size = Math.max(self.brush_size-2, 1);
} else if(event.key === 'Enter') {
self.save();
}
self.updateBrushPreview(self);
}
static handlePointerUp(event) {
event.preventDefault();
MaskEditorDialog.instance.drawing_mode = false;
}
updateBrushPreview(self) {
const brush = self.brush;
var centerX = self.cursorX;
var centerY = self.cursorY;
brush.style.width = self.brush_size * 2 + "px";
brush.style.height = self.brush_size * 2 + "px";
brush.style.left = (centerX - self.brush_size) + "px";
brush.style.top = (centerY - self.brush_size) + "px";
}
handleWheelEvent(self, event) {
if(event.deltaY < 0)
self.brush_size = Math.min(self.brush_size+2, 100);
else
self.brush_size = Math.max(self.brush_size-2, 1);
self.brush_slider_input.value = self.brush_size;
self.updateBrushPreview(self);
}
draw_move(self, event) {
event.preventDefault();
this.cursorX = event.pageX;
this.cursorY = event.pageY;
self.updateBrushPreview(self);
if (window.TouchEvent && event instanceof TouchEvent || event.buttons == 1) {
var diff = performance.now() - self.lasttime;
const maskRect = self.maskCanvas.getBoundingClientRect();
var x = event.offsetX;
var y = event.offsetY
if(event.offsetX == null) {
x = event.targetTouches[0].clientX - maskRect.left;
}
if(event.offsetY == null) {
y = event.targetTouches[0].clientY - maskRect.top;
}
var brush_size = this.brush_size;
if(event instanceof PointerEvent && event.pointerType == 'pen') {
brush_size *= event.pressure;
this.last_pressure = event.pressure;
}
else if(window.TouchEvent && event instanceof TouchEvent && diff < 20){
// The firing interval of PointerEvents in Pen is unreliable, so it is supplemented by TouchEvents.
brush_size *= this.last_pressure;
}
else {
brush_size = this.brush_size;
}
if(diff > 20 && !this.drawing_mode)
requestAnimationFrame(() => {
self.maskCtx.beginPath();
self.maskCtx.fillStyle = "rgb(0,0,0)";
self.maskCtx.globalCompositeOperation = "source-over";
self.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false);
self.maskCtx.fill();
self.lastx = x;
self.lasty = y;
});
else
requestAnimationFrame(() => {
self.maskCtx.beginPath();
self.maskCtx.fillStyle = "rgb(0,0,0)";
self.maskCtx.globalCompositeOperation = "source-over";
var dx = x - self.lastx;
var dy = y - self.lasty;
var distance = Math.sqrt(dx * dx + dy * dy);
var directionX = dx / distance;
var directionY = dy / distance;
for (var i = 0; i < distance; i+=5) {
var px = self.lastx + (directionX * i);
var py = self.lasty + (directionY * i);
self.maskCtx.arc(px, py, brush_size, 0, Math.PI * 2, false);
self.maskCtx.fill();
}
self.lastx = x;
self.lasty = y;
});
self.lasttime = performance.now();
}
else if(event.buttons == 2 || event.buttons == 5 || event.buttons == 32) {
const maskRect = self.maskCanvas.getBoundingClientRect();
const x = event.offsetX || event.targetTouches[0].clientX - maskRect.left;
const y = event.offsetY || event.targetTouches[0].clientY - maskRect.top;
var brush_size = this.brush_size;
if(event instanceof PointerEvent && event.pointerType == 'pen') {
brush_size *= event.pressure;
this.last_pressure = event.pressure;
}
else if(window.TouchEvent && event instanceof TouchEvent && diff < 20){
brush_size *= this.last_pressure;
}
else {
brush_size = this.brush_size;
}
if(diff > 20 && !drawing_mode) // cannot tracking drawing_mode for touch event
requestAnimationFrame(() => {
self.maskCtx.beginPath();
self.maskCtx.globalCompositeOperation = "destination-out";
self.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false);
self.maskCtx.fill();
self.lastx = x;
self.lasty = y;
});
else
requestAnimationFrame(() => {
self.maskCtx.beginPath();
self.maskCtx.globalCompositeOperation = "destination-out";
var dx = x - self.lastx;
var dy = y - self.lasty;
var distance = Math.sqrt(dx * dx + dy * dy);
var directionX = dx / distance;
var directionY = dy / distance;
for (var i = 0; i < distance; i+=5) {
var px = self.lastx + (directionX * i);
var py = self.lasty + (directionY * i);
self.maskCtx.arc(px, py, brush_size, 0, Math.PI * 2, false);
self.maskCtx.fill();
}
self.lastx = x;
self.lasty = y;
});
self.lasttime = performance.now();
}
}
handlePointerDown(self, event) {
var brush_size = this.brush_size;
if(event instanceof PointerEvent && event.pointerType == 'pen') {
brush_size *= event.pressure;
this.last_pressure = event.pressure;
}
if ([0, 2, 5].includes(event.button)) {
self.drawing_mode = true;
event.preventDefault();
const maskRect = self.maskCanvas.getBoundingClientRect();
const x = event.offsetX || event.targetTouches[0].clientX - maskRect.left;
const y = event.offsetY || event.targetTouches[0].clientY - maskRect.top;
self.maskCtx.beginPath();
if (event.button == 0) {
self.maskCtx.fillStyle = "rgb(0,0,0)";
self.maskCtx.globalCompositeOperation = "source-over";
} else {
self.maskCtx.globalCompositeOperation = "destination-out";
}
self.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false);
self.maskCtx.fill();
self.lastx = x;
self.lasty = y;
self.lasttime = performance.now();
}
}
async save() {
const backupCtx = this.backupCanvas.getContext('2d', {willReadFrequently:true});
backupCtx.clearRect(0,0,this.backupCanvas.width,this.backupCanvas.height);
backupCtx.drawImage(this.maskCanvas,
0, 0, this.maskCanvas.width, this.maskCanvas.height,
0, 0, this.backupCanvas.width, this.backupCanvas.height);
// paste mask data into alpha channel
const backupData = backupCtx.getImageData(0, 0, this.backupCanvas.width, this.backupCanvas.height);
// refine mask image
for (let i = 0; i < backupData.data.length; i += 4) {
if(backupData.data[i+3] == 255)
backupData.data[i+3] = 0;
else
backupData.data[i+3] = 255;
backupData.data[i] = 0;
backupData.data[i+1] = 0;
backupData.data[i+2] = 0;
}
backupCtx.globalCompositeOperation = 'source-over';
backupCtx.putImageData(backupData, 0, 0);
const formData = new FormData();
const filename = "clipspace-mask-" + performance.now() + ".png";
const item =
{
"filename": filename,
"subfolder": "clipspace",
"type": "input",
};
if(ComfyApp.clipspace.images)
ComfyApp.clipspace.images[0] = item;
if(ComfyApp.clipspace.widgets) {
const index = ComfyApp.clipspace.widgets.findIndex(obj => obj.name === 'image');
if(index >= 0)
ComfyApp.clipspace.widgets[index].value = item;
}
const dataURL = this.backupCanvas.toDataURL();
const blob = dataURLToBlob(dataURL);
const original_blob = loadedImageToBlob(this.image);
formData.append('image', blob, filename);
formData.append('original_image', original_blob);
formData.append('type', "input");
formData.append('subfolder', "clipspace");
this.saveButton.innerText = "Saving...";
this.saveButton.disabled = true;
await uploadMask(item, formData);
ComfyApp.onClipspaceEditorSave();
this.close();
}
}
app.registerExtension({
name: "Comfy.MaskEditor",
init(app) {
ComfyApp.open_maskeditor =
function () {
const dlg = MaskEditorDialog.getInstance();
if(!dlg.isOpened()) {
dlg.show();
}
};
const context_predicate = () => ComfyApp.clipspace && ComfyApp.clipspace.imgs && ComfyApp.clipspace.imgs.length > 0
ClipspaceDialog.registerButton("MaskEditor", context_predicate, ComfyApp.open_maskeditor);
}
});

View File

@ -1,21 +1,91 @@
import { app } from "/scripts/app.js";
import { ComfyWidgets } from "/scripts/widgets.js";
// Adds defaults for quickly adding nodes with middle click on the input/output
app.registerExtension({
name: "Comfy.SlotDefaults",
suggestionsNumber: null,
init() {
LiteGraph.search_filter_enabled = true;
LiteGraph.middle_click_slot_add_default_node = true;
LiteGraph.slot_types_default_in = {
MODEL: "CheckpointLoaderSimple",
LATENT: "EmptyLatentImage",
VAE: "VAELoader",
};
LiteGraph.slot_types_default_out = {
LATENT: "VAEDecode",
IMAGE: "SaveImage",
CLIP: "CLIPTextEncode",
};
this.suggestionsNumber = app.ui.settings.addSetting({
id: "Comfy.NodeSuggestions.number",
name: "number of nodes suggestions",
type: "slider",
attrs: {
min: 1,
max: 100,
step: 1,
},
defaultValue: 5,
onChange: (newVal, oldVal) => {
this.setDefaults(newVal);
}
});
},
slot_types_default_out: {},
slot_types_default_in: {},
async beforeRegisterNodeDef(nodeType, nodeData, app) {
var nodeId = nodeData.name;
var inputs = [];
inputs = nodeData["input"]["required"]; //only show required inputs to reduce the mess also not logical to create node with optional inputs
for (const inputKey in inputs) {
var input = (inputs[inputKey]);
if (typeof input[0] !== "string") continue;
var type = input[0]
if (type in ComfyWidgets) {
var customProperties = input[1]
if (!(customProperties?.forceInput)) continue; //ignore widgets that don't force input
}
if (!(type in this.slot_types_default_out)) {
this.slot_types_default_out[type] = ["Reroute"];
}
if (this.slot_types_default_out[type].includes(nodeId)) continue;
this.slot_types_default_out[type].push(nodeId);
// Input types have to be stored as lower case
// Store each node that can handle this input type
const lowerType = type.toLocaleLowerCase();
if (!(lowerType in LiteGraph.registered_slot_in_types)) {
LiteGraph.registered_slot_in_types[lowerType] = { nodes: [] };
}
LiteGraph.registered_slot_in_types[lowerType].nodes.push(nodeType.comfyClass);
}
var outputs = nodeData["output"];
for (const key in outputs) {
var type = outputs[key];
if (!(type in this.slot_types_default_in)) {
this.slot_types_default_in[type] = ["Reroute"];// ["Reroute", "Primitive"]; primitive doesn't always work :'()
}
this.slot_types_default_in[type].push(nodeId);
// Store each node that can handle this output type
if (!(type in LiteGraph.registered_slot_out_types)) {
LiteGraph.registered_slot_out_types[type] = { nodes: [] };
}
LiteGraph.registered_slot_out_types[type].nodes.push(nodeType.comfyClass);
if(!LiteGraph.slot_types_out.includes(type)) {
LiteGraph.slot_types_out.push(type);
}
}
var maxNum = this.suggestionsNumber.value;
this.setDefaults(maxNum);
},
setDefaults(maxNum) {
LiteGraph.slot_types_default_out = {};
LiteGraph.slot_types_default_in = {};
for (const type in this.slot_types_default_out) {
LiteGraph.slot_types_default_out[type] = this.slot_types_default_out[type].slice(0, maxNum);
}
for (const type in this.slot_types_default_in) {
LiteGraph.slot_types_default_in[type] = this.slot_types_default_in[type].slice(0, maxNum);
}
}
});

View File

@ -300,7 +300,7 @@ app.registerExtension({
}
}
if (widget.type === "number") {
if (widget.type === "number" || widget.type === "combo") {
addValueControlWidget(this, widget, "fixed");
}

View File

@ -16,5 +16,5 @@
window.graph = app.graph;
</script>
</head>
<body></body>
<body class="litegraph"></body>
</html>

View File

@ -3628,6 +3628,18 @@
return size;
};
LGraphNode.prototype.inResizeCorner = function(canvasX, canvasY) {
var rows = this.outputs ? this.outputs.length : 1;
var outputs_offset = (this.constructor.slot_start_y || 0) + rows * LiteGraph.NODE_SLOT_HEIGHT;
return isInsideRectangle(canvasX,
canvasY,
this.pos[0] + this.size[0] - 15,
this.pos[1] + Math.max(this.size[1] - 15, outputs_offset),
20,
20
);
}
/**
* returns all the info available about a property of this node.
*
@ -5868,23 +5880,16 @@ LGraphNode.prototype.executeAction = function(action)
//when clicked on top of a node
//and it is not interactive
if (node && this.allow_interaction && !skip_action && !this.read_only) {
if (node && (this.allow_interaction || node.flags.allow_interaction) && !skip_action && !this.read_only) {
if (!this.live_mode && !node.flags.pinned) {
this.bringToFront(node);
} //if it wasn't selected?
//not dragging mouse to connect two slots
if ( !this.connecting_node && !node.flags.collapsed && !this.live_mode ) {
if ( this.allow_interaction && !this.connecting_node && !node.flags.collapsed && !this.live_mode ) {
//Search for corner for resize
if ( !skip_action &&
node.resizable !== false &&
isInsideRectangle( e.canvasX,
e.canvasY,
node.pos[0] + node.size[0] - 5,
node.pos[1] + node.size[1] - 5,
10,
10
)
node.resizable !== false && node.inResizeCorner(e.canvasX, e.canvasY)
) {
this.graph.beforeChange();
this.resizing_node = node;
@ -6028,7 +6033,7 @@ LGraphNode.prototype.executeAction = function(action)
}
//double clicking
if (is_double_click && this.selected_nodes[node.id]) {
if (this.allow_interaction && is_double_click && this.selected_nodes[node.id]) {
//double click node
if (node.onDblClick) {
node.onDblClick( e, pos, this );
@ -6302,6 +6307,9 @@ LGraphNode.prototype.executeAction = function(action)
this.dirty_canvas = true;
}
//get node over
var node = this.graph.getNodeOnPos(e.canvasX,e.canvasY,this.visible_nodes);
if (this.dragging_rectangle)
{
this.dragging_rectangle[2] = e.canvasX - this.dragging_rectangle[0];
@ -6331,14 +6339,11 @@ LGraphNode.prototype.executeAction = function(action)
this.ds.offset[1] += delta[1] / this.ds.scale;
this.dirty_canvas = true;
this.dirty_bgcanvas = true;
} else if (this.allow_interaction && !this.read_only) {
} else if ((this.allow_interaction || (node && node.flags.allow_interaction)) && !this.read_only) {
if (this.connecting_node) {
this.dirty_canvas = true;
}
//get node over
var node = this.graph.getNodeOnPos(e.canvasX,e.canvasY,this.visible_nodes);
//remove mouseover flag
for (var i = 0, l = this.graph._nodes.length; i < l; ++i) {
if (this.graph._nodes[i].mouseOver && node != this.graph._nodes[i] ) {
@ -6424,16 +6429,7 @@ LGraphNode.prototype.executeAction = function(action)
//Search for corner
if (this.canvas) {
if (
isInsideRectangle(
e.canvasX,
e.canvasY,
node.pos[0] + node.size[0] - 5,
node.pos[1] + node.size[1] - 5,
5,
5
)
) {
if (node.inResizeCorner(e.canvasX, e.canvasY)) {
this.canvas.style.cursor = "se-resize";
} else {
this.canvas.style.cursor = "crosshair";
@ -7298,10 +7294,6 @@ LGraphNode.prototype.executeAction = function(action)
if (this.onShowNodePanel) {
this.onShowNodePanel(n);
}
else
{
this.showShowNodePanel(n);
}
if (this.onNodeDblClicked) {
this.onNodeDblClicked(n);
@ -8103,11 +8095,15 @@ LGraphNode.prototype.executeAction = function(action)
bgcolor = bgcolor || LiteGraph.NODE_DEFAULT_COLOR;
hovercolor = hovercolor || "#555";
textcolor = textcolor || LiteGraph.NODE_TEXT_COLOR;
var yFix = y + LiteGraph.NODE_TITLE_HEIGHT + 2; // fix the height with the title
var pos = this.mouse;
var hover = LiteGraph.isInsideRectangle( pos[0], pos[1], x,yFix,w,h );
pos = this.last_click_position;
var clicked = pos && LiteGraph.isInsideRectangle( pos[0], pos[1], x,yFix,w,h );
var pos = this.ds.convertOffsetToCanvas(this.graph_mouse);
var hover = LiteGraph.isInsideRectangle( pos[0], pos[1], x,y,w,h );
pos = this.last_click_position ? [this.last_click_position[0], this.last_click_position[1]] : null;
if(pos) {
var rect = this.canvas.getBoundingClientRect();
pos[0] -= rect.left;
pos[1] -= rect.top;
}
var clicked = pos && LiteGraph.isInsideRectangle( pos[0], pos[1], x,y,w,h );
ctx.fillStyle = hover ? hovercolor : bgcolor;
if(clicked)
@ -9738,7 +9734,7 @@ LGraphNode.prototype.executeAction = function(action)
if (show_text) {
ctx.textAlign = "center";
ctx.fillStyle = text_color;
ctx.fillText(w.name, widget_width * 0.5, y + H * 0.7);
ctx.fillText(w.label || w.name, widget_width * 0.5, y + H * 0.7);
}
break;
case "toggle":
@ -9759,8 +9755,9 @@ LGraphNode.prototype.executeAction = function(action)
ctx.fill();
if (show_text) {
ctx.fillStyle = secondary_text_color;
if (w.name != null) {
ctx.fillText(w.name, margin * 2, y + H * 0.7);
const label = w.label || w.name;
if (label != null) {
ctx.fillText(label, margin * 2, y + H * 0.7);
}
ctx.fillStyle = w.value ? text_color : secondary_text_color;
ctx.textAlign = "right";
@ -9795,7 +9792,7 @@ LGraphNode.prototype.executeAction = function(action)
ctx.textAlign = "center";
ctx.fillStyle = text_color;
ctx.fillText(
w.name + " " + Number(w.value).toFixed(3),
w.label || w.name + " " + Number(w.value).toFixed(3),
widget_width * 0.5,
y + H * 0.7
);
@ -9830,7 +9827,7 @@ LGraphNode.prototype.executeAction = function(action)
ctx.fill();
}
ctx.fillStyle = secondary_text_color;
ctx.fillText(w.name, margin * 2 + 5, y + H * 0.7);
ctx.fillText(w.label || w.name, margin * 2 + 5, y + H * 0.7);
ctx.fillStyle = text_color;
ctx.textAlign = "right";
if (w.type == "number") {
@ -9882,8 +9879,9 @@ LGraphNode.prototype.executeAction = function(action)
//ctx.stroke();
ctx.fillStyle = secondary_text_color;
if (w.name != null) {
ctx.fillText(w.name, margin * 2, y + H * 0.7);
const label = w.label || w.name;
if (label != null) {
ctx.fillText(label, margin * 2, y + H * 0.7);
}
ctx.fillStyle = text_color;
ctx.textAlign = "right";
@ -9915,7 +9913,7 @@ LGraphNode.prototype.executeAction = function(action)
event,
active_widget
) {
if (!node.widgets || !node.widgets.length) {
if (!node.widgets || !node.widgets.length || (!this.allow_interaction && !node.flags.allow_interaction)) {
return null;
}
@ -9953,11 +9951,11 @@ LGraphNode.prototype.executeAction = function(action)
}
break;
case "slider":
var range = w.options.max - w.options.min;
var old_value = w.value;
var nvalue = Math.clamp((x - 15) / (widget_width - 30), 0, 1);
if(w.options.read_only) break;
w.value = w.options.min + (w.options.max - w.options.min) * nvalue;
if (w.callback) {
if (old_value != w.value) {
setTimeout(function() {
inner_value_change(w, w.value);
}, 20);
@ -10044,7 +10042,7 @@ LGraphNode.prototype.executeAction = function(action)
if (event.click_time < 200 && delta == 0) {
this.prompt("Value",w.value,function(v) {
// check if v is a valid equation or a number
if (/^[0-9+\-*/()\s]+$/.test(v)) {
if (/^[0-9+\-*/()\s]+|\d+\.\d+$/.test(v)) {
try {//solve the equation if possible
v = eval(v);
} catch (e) { }
@ -10304,6 +10302,119 @@ LGraphNode.prototype.executeAction = function(action)
canvas.graph.add(group);
};
/**
* Determines the furthest nodes in each direction
* @param nodes {LGraphNode[]} the nodes to from which boundary nodes will be extracted
* @return {{left: LGraphNode, top: LGraphNode, right: LGraphNode, bottom: LGraphNode}}
*/
LGraphCanvas.getBoundaryNodes = function(nodes) {
let top = null;
let right = null;
let bottom = null;
let left = null;
for (const nID in nodes) {
const node = nodes[nID];
const [x, y] = node.pos;
const [width, height] = node.size;
if (top === null || y < top.pos[1]) {
top = node;
}
if (right === null || x + width > right.pos[0] + right.size[0]) {
right = node;
}
if (bottom === null || y + height > bottom.pos[1] + bottom.size[1]) {
bottom = node;
}
if (left === null || x < left.pos[0]) {
left = node;
}
}
return {
"top": top,
"right": right,
"bottom": bottom,
"left": left
};
}
/**
* Determines the furthest nodes in each direction for the currently selected nodes
* @return {{left: LGraphNode, top: LGraphNode, right: LGraphNode, bottom: LGraphNode}}
*/
LGraphCanvas.prototype.boundaryNodesForSelection = function() {
return LGraphCanvas.getBoundaryNodes(Object.values(this.selected_nodes));
}
/**
*
* @param {LGraphNode[]} nodes a list of nodes
* @param {"top"|"bottom"|"left"|"right"} direction Direction to align the nodes
* @param {LGraphNode?} align_to Node to align to (if null, align to the furthest node in the given direction)
*/
LGraphCanvas.alignNodes = function (nodes, direction, align_to) {
if (!nodes) {
return;
}
const canvas = LGraphCanvas.active_canvas;
let boundaryNodes = []
if (align_to === undefined) {
boundaryNodes = LGraphCanvas.getBoundaryNodes(nodes)
} else {
boundaryNodes = {
"top": align_to,
"right": align_to,
"bottom": align_to,
"left": align_to
}
}
for (const [_, node] of Object.entries(canvas.selected_nodes)) {
switch (direction) {
case "right":
node.pos[0] = boundaryNodes["right"].pos[0] + boundaryNodes["right"].size[0] - node.size[0];
break;
case "left":
node.pos[0] = boundaryNodes["left"].pos[0];
break;
case "top":
node.pos[1] = boundaryNodes["top"].pos[1];
break;
case "bottom":
node.pos[1] = boundaryNodes["bottom"].pos[1] + boundaryNodes["bottom"].size[1] - node.size[1];
break;
}
}
canvas.dirty_canvas = true;
canvas.dirty_bgcanvas = true;
};
LGraphCanvas.onNodeAlign = function(value, options, event, prev_menu, node) {
new LiteGraph.ContextMenu(["Top", "Bottom", "Left", "Right"], {
event: event,
callback: inner_clicked,
parentMenu: prev_menu,
});
function inner_clicked(value) {
LGraphCanvas.alignNodes(LGraphCanvas.active_canvas.selected_nodes, value.toLowerCase(), node);
}
}
LGraphCanvas.onGroupAlign = function(value, options, event, prev_menu) {
new LiteGraph.ContextMenu(["Top", "Bottom", "Left", "Right"], {
event: event,
callback: inner_clicked,
parentMenu: prev_menu,
});
function inner_clicked(value) {
LGraphCanvas.alignNodes(LGraphCanvas.active_canvas.selected_nodes, value.toLowerCase());
}
}
LGraphCanvas.onMenuAdd = function (node, options, e, prev_menu, callback) {
var canvas = LGraphCanvas.active_canvas;
@ -12904,6 +13015,14 @@ LGraphNode.prototype.executeAction = function(action)
options.push({ content: "Options", callback: that.showShowGraphOptionsPanel });
}*/
if (Object.keys(this.selected_nodes).length > 1) {
options.push({
content: "Align",
has_submenu: true,
callback: LGraphCanvas.onGroupAlign,
})
}
if (this._graph_stack && this._graph_stack.length > 0) {
options.push(null, {
content: "Close subgraph",
@ -12948,6 +13067,10 @@ LGraphNode.prototype.executeAction = function(action)
has_submenu: true,
callback: LGraphCanvas.onShowMenuNodeProperties
},
{
content: "Properties Panel",
callback: function(item, options, e, menu, node) { LGraphCanvas.active_canvas.showShowNodePanel(node) }
},
null,
{
content: "Title",
@ -13018,6 +13141,14 @@ LGraphNode.prototype.executeAction = function(action)
callback: LGraphCanvas.onMenuNodeToSubgraph
});
if (Object.keys(this.selected_nodes).length > 1) {
options.push({
content: "Align Selected To",
has_submenu: true,
callback: LGraphCanvas.onNodeAlign,
})
}
options.push(null, {
content: "Remove",
disabled: !(node.removable !== false && !node.block_delete ),

View File

@ -35,7 +35,7 @@ class ComfyApi extends EventTarget {
}
let opened = false;
let existingSession = sessionStorage["Comfy.SessionId"] || "";
let existingSession = window.name;
if (existingSession) {
existingSession = "?clientId=" + existingSession;
}
@ -75,7 +75,7 @@ class ComfyApi extends EventTarget {
case "status":
if (msg.data.sid) {
this.clientId = msg.data.sid;
sessionStorage["Comfy.SessionId"] = this.clientId;
window.name = this.clientId;
}
this.dispatchEvent(new CustomEvent("status", { detail: msg.data.status }));
break;
@ -88,6 +88,12 @@ class ComfyApi extends EventTarget {
case "executed":
this.dispatchEvent(new CustomEvent("executed", { detail: msg.data }));
break;
case "execution_start":
this.dispatchEvent(new CustomEvent("execution_start", { detail: msg.data }));
break;
case "execution_error":
this.dispatchEvent(new CustomEvent("execution_error", { detail: msg.data }));
break;
default:
if (this.#registered.has(msg.type)) {
this.dispatchEvent(new CustomEvent(msg.type, { detail: msg.data }));
@ -170,7 +176,7 @@ class ComfyApi extends EventTarget {
if (res.status !== 200) {
throw {
response: await res.text(),
response: await res.json(),
};
}
}

View File

@ -2,7 +2,7 @@ import { ComfyWidgets } from "./widgets.js";
import { ComfyUI, $el } from "./ui.js";
import { api } from "./api.js";
import { defaultGraph } from "./defaultGraph.js";
import { getPngMetadata, importA1111 } from "./pnginfo.js";
import { getPngMetadata, importA1111, getLatentMetadata } from "./pnginfo.js";
/**
* @typedef {import("types/comfy").ComfyExtension} ComfyExtension
@ -20,6 +20,15 @@ export class ComfyApp {
*/
#processingQueue = false;
/**
* Content Clipboard
* @type {serialized node object}
*/
static clipspace = null;
static clipspace_invalidate_handler = null;
static open_maskeditor = null;
static clipspace_return_node = null;
constructor() {
this.ui = new ComfyUI(this);
@ -42,6 +51,114 @@ export class ComfyApp {
this.shiftDown = false;
}
static isImageNode(node) {
return node.imgs || (node && node.widgets && node.widgets.findIndex(obj => obj.name === 'image') >= 0);
}
static onClipspaceEditorSave() {
if(ComfyApp.clipspace_return_node) {
ComfyApp.pasteFromClipspace(ComfyApp.clipspace_return_node);
}
}
static onClipspaceEditorClosed() {
ComfyApp.clipspace_return_node = null;
}
static copyToClipspace(node) {
var widgets = null;
if(node.widgets) {
widgets = node.widgets.map(({ type, name, value }) => ({ type, name, value }));
}
var imgs = undefined;
var orig_imgs = undefined;
if(node.imgs != undefined) {
imgs = [];
orig_imgs = [];
for (let i = 0; i < node.imgs.length; i++) {
imgs[i] = new Image();
imgs[i].src = node.imgs[i].src;
orig_imgs[i] = imgs[i];
}
}
var selectedIndex = 0;
if(node.imageIndex) {
selectedIndex = node.imageIndex;
}
ComfyApp.clipspace = {
'widgets': widgets,
'imgs': imgs,
'original_imgs': orig_imgs,
'images': node.images,
'selectedIndex': selectedIndex,
'img_paste_mode': 'selected' // reset to default im_paste_mode state on copy action
};
ComfyApp.clipspace_return_node = null;
if(ComfyApp.clipspace_invalidate_handler) {
ComfyApp.clipspace_invalidate_handler();
}
}
static pasteFromClipspace(node) {
if(ComfyApp.clipspace) {
// image paste
if(ComfyApp.clipspace.imgs && node.imgs) {
if(node.images && ComfyApp.clipspace.images) {
if(ComfyApp.clipspace['img_paste_mode'] == 'selected') {
app.nodeOutputs[node.id + ""].images = node.images = [ComfyApp.clipspace.images[ComfyApp.clipspace['selectedIndex']]];
}
else
app.nodeOutputs[node.id + ""].images = node.images = ComfyApp.clipspace.images;
}
if(ComfyApp.clipspace.imgs) {
// deep-copy to cut link with clipspace
if(ComfyApp.clipspace['img_paste_mode'] == 'selected') {
const img = new Image();
img.src = ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src;
node.imgs = [img];
node.imageIndex = 0;
}
else {
const imgs = [];
for(let i=0; i<ComfyApp.clipspace.imgs.length; i++) {
imgs[i] = new Image();
imgs[i].src = ComfyApp.clipspace.imgs[i].src;
node.imgs = imgs;
}
}
}
}
if(node.widgets) {
if(ComfyApp.clipspace.images) {
const clip_image = ComfyApp.clipspace.images[ComfyApp.clipspace['selectedIndex']];
const index = node.widgets.findIndex(obj => obj.name === 'image');
if(index >= 0) {
node.widgets[index].value = clip_image;
}
}
if(ComfyApp.clipspace.widgets) {
ComfyApp.clipspace.widgets.forEach(({ type, name, value }) => {
const prop = Object.values(node.widgets).find(obj => obj.type === type && obj.name === name);
if (prop && prop.type != 'button') {
prop.value = value;
prop.callback(value);
}
});
}
}
app.graph.setDirtyCanvas(true);
}
}
/**
* Invoke an extension callback
* @param {keyof ComfyExtension} method The extension callback to execute
@ -130,6 +247,32 @@ export class ComfyApp {
);
}
}
// prevent conflict of clipspace content
if(!ComfyApp.clipspace_return_node) {
options.push({
content: "Copy (Clipspace)",
callback: (obj) => { ComfyApp.copyToClipspace(this); }
});
if(ComfyApp.clipspace != null) {
options.push({
content: "Paste (Clipspace)",
callback: () => { ComfyApp.pasteFromClipspace(this); }
});
}
if(ComfyApp.isImageNode(this)) {
options.push({
content: "Open in MaskEditor",
callback: (obj) => {
ComfyApp.copyToClipspace(this);
ComfyApp.clipspace_return_node = this;
ComfyApp.open_maskeditor();
}
});
}
}
};
}
@ -180,6 +323,34 @@ export class ComfyApp {
*/
#addDrawBackgroundHandler(node) {
const app = this;
function getImageTop(node) {
let shiftY;
if (node.imageOffset != null) {
shiftY = node.imageOffset;
} else {
if (node.widgets?.length) {
const w = node.widgets[node.widgets.length - 1];
shiftY = w.last_y;
if (w.computeSize) {
shiftY += w.computeSize()[1] + 4;
} else {
shiftY += LiteGraph.NODE_WIDGET_HEIGHT + 4;
}
} else {
shiftY = node.computeSize()[1];
}
}
return shiftY;
}
node.prototype.setSizeForImage = function () {
const minHeight = getImageTop(this) + 220;
if (this.size[1] < minHeight) {
this.setSize([this.size[0], minHeight]);
}
};
node.prototype.onDrawBackground = function (ctx) {
if (!this.flags.collapsed) {
const output = app.nodeOutputs[this.id + ""];
@ -200,9 +371,7 @@ export class ComfyApp {
).then((imgs) => {
if (this.images === output.images) {
this.imgs = imgs.filter(Boolean);
if (this.size[1] < 100) {
this.size[1] = 250;
}
this.setSizeForImage?.();
app.graph.setDirtyCanvas(true);
}
});
@ -227,12 +396,7 @@ export class ComfyApp {
this.imageIndex = imageIndex = 0;
}
let shiftY;
if (this.imageOffset != null) {
shiftY = this.imageOffset;
} else {
shiftY = this.computeSize()[1];
}
const shiftY = getImageTop(this);
let dw = this.size[0];
let dh = this.size[1];
@ -607,20 +771,31 @@ export class ComfyApp {
LGraphCanvas.prototype.drawNodeShape = function (node, ctx, size, fgcolor, bgcolor, selected, mouse_over) {
const res = origDrawNodeShape.apply(this, arguments);
const nodeErrors = self.lastPromptError?.node_errors[node.id];
let color = null;
let lineWidth = 1;
if (node.id === +self.runningNodeId) {
color = "#0f0";
} else if (self.dragOverNode && node.id === self.dragOverNode.id) {
color = "dodgerblue";
}
else if (self.lastPromptError != null && nodeErrors?.errors) {
color = "red";
lineWidth = 2;
}
else if (self.lastExecutionError && +self.lastExecutionError.node_id === node.id) {
color = "#f0f";
lineWidth = 2;
}
if (color) {
const shape = node._shape || node.constructor.shape || LiteGraph.ROUND_SHAPE;
ctx.lineWidth = 1;
ctx.lineWidth = lineWidth;
ctx.globalAlpha = 0.8;
ctx.beginPath();
if (shape == LiteGraph.BOX_SHAPE)
ctx.rect(-6, -6 + LiteGraph.NODE_TITLE_HEIGHT, 12 + size[0] + 1, 12 + size[1] + LiteGraph.NODE_TITLE_HEIGHT);
ctx.rect(-6, -6 - LiteGraph.NODE_TITLE_HEIGHT, 12 + size[0] + 1, 12 + size[1] + LiteGraph.NODE_TITLE_HEIGHT);
else if (shape == LiteGraph.ROUND_SHAPE || (shape == LiteGraph.CARD_SHAPE && node.flags.collapsed))
ctx.roundRect(
-6,
@ -632,23 +807,39 @@ export class ComfyApp {
else if (shape == LiteGraph.CARD_SHAPE)
ctx.roundRect(
-6,
-6 + LiteGraph.NODE_TITLE_HEIGHT,
-6 - LiteGraph.NODE_TITLE_HEIGHT,
12 + size[0] + 1,
12 + size[1] + LiteGraph.NODE_TITLE_HEIGHT,
this.round_radius * 2,
2
);
[this.round_radius * 2, this.round_radius * 2, 2, 2]
);
else if (shape == LiteGraph.CIRCLE_SHAPE)
ctx.arc(size[0] * 0.5, size[1] * 0.5, size[0] * 0.5 + 6, 0, Math.PI * 2);
ctx.strokeStyle = color;
ctx.stroke();
ctx.strokeStyle = fgcolor;
ctx.globalAlpha = 1;
}
if (self.progress) {
ctx.fillStyle = "green";
ctx.fillRect(0, 0, size[0] * (self.progress.value / self.progress.max), 6);
ctx.fillStyle = bgcolor;
if (self.progress && node.id === +self.runningNodeId) {
ctx.fillStyle = "green";
ctx.fillRect(0, 0, size[0] * (self.progress.value / self.progress.max), 6);
ctx.fillStyle = bgcolor;
}
// Highlight inputs that failed validation
if (nodeErrors) {
ctx.lineWidth = 2;
ctx.strokeStyle = "red";
for (const error of nodeErrors.errors) {
if (error.extra_info && error.extra_info.input_name) {
const inputIndex = node.findInputSlot(error.extra_info.input_name)
if (inputIndex !== -1) {
let pos = node.getConnectionPos(true, inputIndex);
ctx.beginPath();
ctx.arc(pos[0] - node.pos[0], pos[1] - node.pos[1], 12, 0, 2 * Math.PI, false)
ctx.stroke();
}
}
}
}
@ -706,6 +897,17 @@ export class ComfyApp {
}
});
api.addEventListener("execution_start", ({ detail }) => {
this.lastExecutionError = null
});
api.addEventListener("execution_error", ({ detail }) => {
this.lastExecutionError = detail;
const formattedError = this.#formatExecutionError(detail);
this.ui.dialog.show(formattedError);
this.canvas.draw(true, true);
});
api.init();
}
@ -739,7 +941,9 @@ export class ComfyApp {
await this.#loadExtensions();
// Create and mount the LiteGraph in the DOM
const canvasEl = (this.canvasEl = Object.assign(document.createElement("canvas"), { id: "graph-canvas" }));
const mainCanvas = document.createElement("canvas")
mainCanvas.style.touchAction = "none"
const canvasEl = (this.canvasEl = Object.assign(mainCanvas, { id: "graph-canvas" }));
canvasEl.tabIndex = "1";
document.body.prepend(canvasEl);
@ -806,6 +1010,11 @@ export class ComfyApp {
const app = this;
// Load node definitions from the backend
const defs = await api.getNodeDefs();
await this.registerNodesFromDefs(defs);
await this.#invokeExtensionsAsync("registerCustomNodes");
}
async registerNodesFromDefs(defs) {
await this.#invokeExtensionsAsync("addCustomNodeDefs", defs);
// Generate list of known widgets
@ -851,7 +1060,8 @@ export class ComfyApp {
for (const o in nodeData["output"]) {
const output = nodeData["output"][o];
const outputName = nodeData["output_name"][o] || output;
this.addOutput(outputName, output);
const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ;
this.addOutput(outputName, output, { shape: outputShape });
}
const s = this.computeSize();
@ -877,8 +1087,6 @@ export class ComfyApp {
LiteGraph.registerNodeType(nodeId, node);
node.category = nodeData.category;
}
await this.#invokeExtensionsAsync("registerCustomNodes");
}
/**
@ -888,8 +1096,10 @@ export class ComfyApp {
loadGraphData(graphData) {
this.clean();
let reset_invalid_values = false;
if (!graphData) {
graphData = structuredClone(defaultGraph);
reset_invalid_values = true;
}
const missingNodeTypes = [];
@ -975,6 +1185,13 @@ export class ComfyApp {
}
}
}
if (reset_invalid_values) {
if (widget.type == "combo") {
if (!widget.options.values.includes(widget.value) && widget.options.values.length > 0) {
widget.value = widget.options.values[0];
}
}
}
}
}
@ -1068,6 +1285,43 @@ export class ComfyApp {
return { workflow, output };
}
#formatPromptError(error) {
if (error == null) {
return "(unknown error)"
}
else if (typeof error === "string") {
return error;
}
else if (error.stack && error.message) {
return error.toString()
}
else if (error.response) {
let message = error.response.error.message;
if (error.response.error.details)
message += ": " + error.response.error.details;
for (const [nodeID, nodeError] of Object.entries(error.response.node_errors)) {
message += "\n" + nodeError.class_type + ":"
for (const errorReason of nodeError.errors) {
message += "\n - " + errorReason.message + ": " + errorReason.details
}
}
return message
}
return "(unknown error)"
}
#formatExecutionError(error) {
if (error == null) {
return "(unknown error)"
}
const traceback = error.traceback.join("")
const nodeId = error.node_id
const nodeType = error.node_type
return `Error occurred when executing ${nodeType}:\n\n${error.exception_message}\n\n${traceback}`
}
async queuePrompt(number, batchCount = 1) {
this.#queueItems.push({ number, batchCount });
@ -1075,8 +1329,10 @@ export class ComfyApp {
if (this.#processingQueue) {
return;
}
this.#processingQueue = true;
this.lastPromptError = null;
try {
while (this.#queueItems.length) {
({ number, batchCount } = this.#queueItems.pop());
@ -1087,7 +1343,12 @@ export class ComfyApp {
try {
await api.queuePrompt(number, p);
} catch (error) {
this.ui.dialog.show(error.response || error.toString());
const formattedError = this.#formatPromptError(error)
this.ui.dialog.show(formattedError);
if (error.response) {
this.lastPromptError = error.response;
this.canvas.draw(true, true);
}
break;
}
@ -1133,6 +1394,11 @@ export class ComfyApp {
this.loadGraphData(JSON.parse(reader.result));
};
reader.readAsText(file);
} else if (file.name?.endsWith(".latent")) {
const info = await getLatentMetadata(file);
if (info.workflow) {
this.loadGraphData(JSON.parse(info.workflow));
}
}
}
@ -1161,14 +1427,19 @@ export class ComfyApp {
const def = defs[node.type];
// HOTFIX: The current patch is designed to prevent the rest of the code from breaking due to primitive nodes,
// and additional work is needed to consider the primitive logic in the refresh logic.
if(!def)
continue;
for(const widgetNum in node.widgets) {
const widget = node.widgets[widgetNum]
if(widget.type == "combo" && def["input"]["required"][widget.name] !== undefined) {
widget.options.values = def["input"]["required"][widget.name][0];
if(!widget.options.values.includes(widget.value)) {
if(widget.name != 'image' && !widget.options.values.includes(widget.value)) {
widget.value = widget.options.values[0];
widget.callback(widget.value);
}
}
}
@ -1180,6 +1451,8 @@ export class ComfyApp {
*/
clean() {
this.nodeOutputs = {};
this.lastPromptError = null;
this.lastExecutionError = null;
}
}

View File

@ -47,12 +47,29 @@ export function getPngMetadata(file) {
});
}
export function getLatentMetadata(file) {
return new Promise((r) => {
const reader = new FileReader();
reader.onload = (event) => {
const safetensorsData = new Uint8Array(event.target.result);
const dataView = new DataView(safetensorsData.buffer);
let header_size = dataView.getUint32(0, true);
let offset = 8;
let header = JSON.parse(String.fromCharCode(...safetensorsData.slice(offset, offset + header_size)));
r(header.__metadata__);
};
reader.readAsArrayBuffer(file);
});
}
export async function importA1111(graph, parameters) {
const p = parameters.lastIndexOf("\nSteps:");
if (p > -1) {
const embeddings = await api.getEmbeddings();
const opts = parameters
.substr(p)
.split("\n")[1]
.split(",")
.reduce((p, n) => {
const s = n.split(":");

View File

@ -465,7 +465,7 @@ export class ComfyUI {
const fileInput = $el("input", {
id: "comfy-file-input",
type: "file",
accept: ".json,image/png",
accept: ".json,image/png,.latent",
style: { display: "none" },
parent: document.body,
onchange: () => {
@ -581,6 +581,7 @@ export class ComfyUI {
}),
$el("button", { id: "comfy-load-button", textContent: "Load", onclick: () => fileInput.click() }),
$el("button", { id: "comfy-refresh-button", textContent: "Refresh", onclick: () => app.refreshComboInNodes() }),
$el("button", { id: "comfy-clipspace-button", textContent: "Clipspace", onclick: () => app.openClipspace() }),
$el("button", { id: "comfy-clear-button", textContent: "Clear", onclick: () => {
if (!confirmClear.value || confirm("Clear workflow?")) {
app.clean();

View File

@ -19,35 +19,60 @@ export function addValueControlWidget(node, targetWidget, defaultValue = "random
var v = valueControl.value;
let min = targetWidget.options.min;
let max = targetWidget.options.max;
// limit to something that javascript can handle
max = Math.min(1125899906842624, max);
min = Math.max(-1125899906842624, min);
let range = (max - min) / (targetWidget.options.step / 10);
if (targetWidget.type == "combo" && v !== "fixed") {
let current_index = targetWidget.options.values.indexOf(targetWidget.value);
let current_length = targetWidget.options.values.length;
//adjust values based on valueControl Behaviour
switch (v) {
case "fixed":
break;
case "increment":
targetWidget.value += targetWidget.options.step / 10;
break;
case "decrement":
targetWidget.value -= targetWidget.options.step / 10;
break;
case "randomize":
targetWidget.value = Math.floor(Math.random() * range) * (targetWidget.options.step / 10) + min;
default:
break;
switch (v) {
case "increment":
current_index += 1;
break;
case "decrement":
current_index -= 1;
break;
case "randomize":
current_index = Math.floor(Math.random() * current_length);
default:
break;
}
current_index = Math.max(0, current_index);
current_index = Math.min(current_length - 1, current_index);
if (current_index >= 0) {
let value = targetWidget.options.values[current_index];
targetWidget.value = value;
targetWidget.callback(value);
}
} else { //number
let min = targetWidget.options.min;
let max = targetWidget.options.max;
// limit to something that javascript can handle
max = Math.min(1125899906842624, max);
min = Math.max(-1125899906842624, min);
let range = (max - min) / (targetWidget.options.step / 10);
//adjust values based on valueControl Behaviour
switch (v) {
case "fixed":
break;
case "increment":
targetWidget.value += targetWidget.options.step / 10;
break;
case "decrement":
targetWidget.value -= targetWidget.options.step / 10;
break;
case "randomize":
targetWidget.value = Math.floor(Math.random() * range) * (targetWidget.options.step / 10) + min;
default:
break;
}
/*check if values are over or under their respective
* ranges and set them to min or max.*/
if (targetWidget.value < min)
targetWidget.value = min;
if (targetWidget.value > max)
targetWidget.value = max;
}
/*check if values are over or under their respective
* ranges and set them to min or max.*/
if (targetWidget.value < min)
targetWidget.value = min;
if (targetWidget.value > max)
targetWidget.value = max;
}
return valueControl;
};
@ -130,16 +155,24 @@ function addMultilineWidget(node, name, opts, app) {
computeSize(node.size);
}
const visible = app.canvas.ds.scale > 0.5 && this.type === "customtext";
const t = ctx.getTransform();
const margin = 10;
const elRect = ctx.canvas.getBoundingClientRect();
const transform = new DOMMatrix()
.scaleSelf(elRect.width / ctx.canvas.width, elRect.height / ctx.canvas.height)
.multiplySelf(ctx.getTransform())
.translateSelf(margin, margin + y);
Object.assign(this.inputEl.style, {
left: `${t.a * margin + t.e}px`,
top: `${t.d * (y + widgetHeight - margin - 3) + t.f}px`,
width: `${(widgetWidth - margin * 2 - 3) * t.a}px`,
height: `${(this.parent.inputHeight - margin * 2 - 4) * t.d}px`,
transformOrigin: "0 0",
transform: transform,
left: "0px",
top: "0px",
width: `${widgetWidth - (margin * 2)}px`,
height: `${this.parent.inputHeight - (margin * 2)}px`,
position: "absolute",
zIndex: 1,
fontSize: `${t.d * 10.0}px`,
background: (!node.color)?'':node.color,
color: (!node.color)?'':'white',
zIndex: app.graph._nodes.indexOf(node),
});
this.inputEl.hidden = !visible;
},
@ -259,19 +292,51 @@ export const ComfyWidgets = {
let uploadWidget;
function showImage(name) {
// Position the image somewhere sensible
if (!node.imageOffset) {
node.imageOffset = uploadWidget.last_y ? uploadWidget.last_y + 25 : 75;
}
const img = new Image();
img.onload = () => {
node.imgs = [img];
app.graph.setDirtyCanvas(true);
};
img.src = `/view?filename=${name}&type=input`;
let folder_separator = name.lastIndexOf("/");
let subfolder = "";
if (folder_separator > -1) {
subfolder = name.substring(0, folder_separator);
name = name.substring(folder_separator + 1);
}
img.src = `/view?filename=${name}&type=input&subfolder=${subfolder}`;
node.setSizeForImage?.();
}
var default_value = imageWidget.value;
Object.defineProperty(imageWidget, "value", {
set : function(value) {
this._real_value = value;
},
get : function() {
let value = "";
if (this._real_value) {
value = this._real_value;
} else {
return default_value;
}
if (value.filename) {
let real_value = value;
value = "";
if (real_value.subfolder) {
value = real_value.subfolder + "/";
}
value += real_value.filename;
if(real_value.type && real_value.type !== "input")
value += ` [${real_value.type}]`;
}
return value;
}
});
// Add our own callback to the combo widget to render an image when it changes
const cb = node.callback;
imageWidget.callback = function () {

View File

@ -39,6 +39,8 @@ body {
padding: 2px;
resize: none;
border: none;
box-sizing: border-box;
font-size: 10px;
}
.comfy-modal {
@ -120,7 +122,7 @@ body {
.comfy-menu > button,
.comfy-menu-btns button,
.comfy-menu .comfy-list button,
.comfy-modal button{
.comfy-modal button {
color: var(--input-text);
background-color: var(--comfy-input-bg);
border-radius: 8px;
@ -129,6 +131,15 @@ body {
margin-top: 2px;
}
.comfy-menu > button:hover,
.comfy-menu-btns button:hover,
.comfy-menu .comfy-list button:hover,
.comfy-modal button:hover,
.comfy-settings-btn:hover {
filter: brightness(1.2);
cursor: pointer;
}
.comfy-menu span.drag-handle {
width: 10px;
height: 20px;
@ -248,8 +259,11 @@ button.comfy-queue-btn {
}
}
/* Input popup */
.graphdialog {
min-height: 1em;
background-color: var(--comfy-menu-bg);
}
.graphdialog .name {
@ -273,15 +287,72 @@ button.comfy-queue-btn {
border-radius: 12px 0 0 12px;
}
/* Context menu */
.litegraph .dialog {
z-index: 1;
font-family: Arial;
}
.litegraph .litemenu-entry.has_submenu {
position: relative;
padding-right: 20px;
}
}
.litemenu-entry.has_submenu::after {
.litemenu-entry.has_submenu::after {
content: ">";
position: absolute;
top: 0;
right: 2px;
}
}
.litegraph.litecontextmenu,
.litegraph.litecontextmenu.dark {
z-index: 9999 !important;
background-color: var(--comfy-menu-bg) !important;
filter: brightness(95%);
}
.litegraph.litecontextmenu .litemenu-entry:hover:not(.disabled):not(.separator) {
background-color: var(--comfy-menu-bg) !important;
filter: brightness(155%);
color: var(--input-text);
}
.litegraph.litecontextmenu .litemenu-entry.submenu,
.litegraph.litecontextmenu.dark .litemenu-entry.submenu {
background-color: var(--comfy-menu-bg) !important;
color: var(--input-text);
}
.litegraph.litecontextmenu input {
background-color: var(--comfy-input-bg) !important;
color: var(--input-text) !important;
}
/* Search box */
.litegraph.litesearchbox {
z-index: 9999 !important;
background-color: var(--comfy-menu-bg) !important;
overflow: hidden;
display: block;
}
.litegraph.litesearchbox input,
.litegraph.litesearchbox select {
background-color: var(--comfy-input-bg) !important;
color: var(--input-text);
}
.litegraph.lite-search-item {
color: var(--input-text);
background-color: var(--comfy-input-bg);
filter: brightness(80%);
padding-left: 0.2em;
}
.litegraph.lite-search-item.generic_type {
color: var(--input-text);
filter: brightness(50%);
}