From c0c9720d77774ed2c87981da87189fe1c14a57fa Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 01:48:28 -0800 Subject: [PATCH 01/74] Fix stable release workflow not pulling latest comfy kitchen. (#11695) --- .github/workflows/stable-release.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/stable-release.yml b/.github/workflows/stable-release.yml index 28484a9d1..f501b7b31 100644 --- a/.github/workflows/stable-release.yml +++ b/.github/workflows/stable-release.yml @@ -117,7 +117,7 @@ jobs: ./python.exe get-pip.py ./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/* - grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt + grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt ./python.exe -s -m pip install -r requirements_comfyui.txt rm requirements_comfyui.txt From 3cd7b32f1b7e7e90395cefe7d9f9b1f89276d8ce Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 02:15:14 -0800 Subject: [PATCH 02/74] Support gemma 12B with quant weights. (#11696) --- comfy/text_encoders/lt.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index e5964e42b..130ebaeae 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer): class Gemma3_12BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -119,12 +119,12 @@ class LTXAVTEModel(torch.nn.Module): return self.load_state_dict(sdo, strict=False) -def ltxav_te(dtype_llama=None, llama_scaled_fp8=None): +def ltxav_te(dtype_llama=None, llama_quantization_metadata=None): class LTXAVTEModel_(LTXAVTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) From 48e5ea1dfd23a9cb5d118d7af661b026d66743bc Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 7 Jan 2026 15:39:20 -0800 Subject: [PATCH 03/74] model_patcher: Remove confusing load stat (#11710) If the loader passes 1e32 as the usable memory size, it means force the full load. This happens with CPU loads and a few other misc cases. Removing the confusing number and just leave the other details. --- comfy/model_patcher.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 93d26c690..4528814ad 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -790,11 +790,12 @@ class ModelPatcher: for param in params: self.pin_weight_to_device("{}.{}".format(n, param)) + usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else "" if lowvram_counter > 0: - logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) + logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) self.model.model_lowvram = True else: - logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) + logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load)) self.model.model_lowvram = False if full_load: self.model.to(device_to) From 1c705f7bfb0fb59f6213dfb85ec5d5dc2ce4300e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Thu, 8 Jan 2026 01:39:59 +0200 Subject: [PATCH 04/74] Add device selection for LTXAVTextEncoderLoader (#11700) --- comfy_extras/nodes_lt_audio.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py index 26b0160d2..1966fd1bf 100644 --- a/comfy_extras/nodes_lt_audio.py +++ b/comfy_extras/nodes_lt_audio.py @@ -185,6 +185,10 @@ class LTXAVTextEncoderLoader(io.ComfyNode): io.Combo.Input( "ckpt_name", options=folder_paths.get_filename_list("checkpoints"), + ), + io.Combo.Input( + "device", + options=["default", "cpu"], ) ], outputs=[io.Clip.Output()], @@ -197,7 +201,11 @@ class LTXAVTextEncoderLoader(io.ComfyNode): clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder) clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) - clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) + model_options = {} + if device == "cpu": + model_options["load_device"] = model_options["offload_device"] = torch.device("cpu") + + clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options) return io.NodeOutput(clip) From 34751fe9f9ade0c715768202c19211dc0c72e760 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 16:12:15 -0800 Subject: [PATCH 05/74] Lower ltxv text encoder vram use. (#11713) --- comfy/text_encoders/lt.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 130ebaeae..dc0694e0e 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -98,10 +98,13 @@ class LTXAVTEModel(torch.nn.Module): out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs) out_device = out.device + if comfy.model_management.should_use_bf16(self.execution_device): + out = out.to(device=self.execution_device, dtype=torch.bfloat16) out = out.movedim(1, -1).to(self.execution_device) out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6) out = out.reshape((out.shape[0], out.shape[1], -1)) out = self.text_embedding_projection(out) + out = out.float() out_vid = self.video_embeddings_connector(out)[0] out_audio = self.audio_embeddings_connector(out)[0] out = torch.concat((out_vid, out_audio), dim=-1) From 007b87e7ac29e55ce0ad2c436f5ae68f3a078080 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 16:48:47 -0800 Subject: [PATCH 06/74] Bump required comfy-kitchen version. (#11714) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index bc8346bcf..13e95afa0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.3 +comfy-kitchen>=0.2.5 #non essential dependencies: kornia>=0.7.1 From 3cd19e99c10a25cf6e6b51b82e3c16c501733b8c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 17:04:56 -0800 Subject: [PATCH 07/74] Increase ltxav mem estimation by a bit. (#11715) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index ee9a79001..d44c0bc37 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -845,7 +845,7 @@ class LTXAV(LTXV): def __init__(self, unet_config): super().__init__(unet_config) - self.memory_usage_factor = 0.055 # TODO + self.memory_usage_factor = 0.061 # TODO def get_model(self, state_dict, prefix="", device=None): out = model_base.LTXAV(self, device=device) From 25bc1b5b57d61930d6ab60d8cf7e9241d26e4fe9 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 17:11:22 -0800 Subject: [PATCH 08/74] Add memory estimation function to ltxav text encoder. (#11716) --- comfy/sd.py | 11 +++++++---- comfy/text_encoders/lt.py | 8 ++++++++ 2 files changed, 15 insertions(+), 4 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index 32157e18b..efde3839c 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -218,7 +218,7 @@ class CLIP: if unprojected: self.cond_stage_model.set_clip_options({"projected_pooled": False}) - self.load_model() + self.load_model(tokens) self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) all_hooks.reset() self.patcher.patch_hooks(None) @@ -266,7 +266,7 @@ class CLIP: if return_pooled == "unprojected": self.cond_stage_model.set_clip_options({"projected_pooled": False}) - self.load_model() + self.load_model(tokens) self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) o = self.cond_stage_model.encode_token_weights(tokens) cond, pooled = o[:2] @@ -299,8 +299,11 @@ class CLIP: sd_clip[k] = sd_tokenizer[k] return sd_clip - def load_model(self): - model_management.load_model_gpu(self.patcher) + def load_model(self, tokens={}): + memory_used = 0 + if hasattr(self.cond_stage_model, "memory_estimation_function"): + memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) return self.patcher def get_key_patches(self): diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index dc0694e0e..776e25e97 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -121,6 +121,14 @@ class LTXAVTEModel(torch.nn.Module): return self.load_state_dict(sdo, strict=False) + def memory_estimation_function(self, token_weight_pairs, device=None): + constant = 6.0 + if comfy.model_management.should_use_bf16(device): + constant /= 2.0 + + token_weight_pairs = token_weight_pairs.get("gemma3_12b", []) + num_tokens = sum(map(lambda a: len(a), token_weight_pairs)) + return num_tokens * constant * 1024 * 1024 def ltxav_te(dtype_llama=None, llama_quantization_metadata=None): class LTXAVTEModel_(LTXAVTEModel): From b6c79a648a013f477f514f61580d1a06220b15eb Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 7 Jan 2026 18:01:16 -0800 Subject: [PATCH 09/74] ops: Fix offloading with FP8MM performance (#11697) This logic was checking comfy_cast_weights, and going straight to to the forward_comfy_cast_weights implementation without attempting to downscale input to fp8 in the event comfy_cast_weights is set. The main reason comfy_cast_weights would be set would be for async offload, which is not a good reason to nix FP8MM. So instead, and together the underlying exclusions for FP8MM which are: * having a weight_function (usually LowVramPatch) * force_cast_weights (compute dtype override) * the weight is not Quantized * the input is already quantized * the model or layer has MM explictily disabled. If you get past all of those exclusions, quantize the input tensor. Then hand the new input, quantized or not off to forward_comfy_cast_weights to handle it. If the weight is offloaded but input is quantized you will get an offloaded MM8. --- comfy/model_patcher.py | 1 + comfy/ops.py | 30 +++++++++++++++--------------- 2 files changed, 16 insertions(+), 15 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 4528814ad..f6b80a40f 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -718,6 +718,7 @@ class ModelPatcher: continue cast_weight = self.force_cast_weights + m.comfy_force_cast_weights = self.force_cast_weights if lowvram_weight: if hasattr(m, "comfy_cast_weights"): m.weight_function = [] diff --git a/comfy/ops.py b/comfy/ops.py index cd536e22d..8156c42ff 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -654,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec run_every_op() input_shape = input.shape - tensor_3d = input.ndim == 3 - - if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: - return self.forward_comfy_cast_weights(input, *args, **kwargs) + reshaped_3d = False if (getattr(self, 'layout_type', None) is not None and - not isinstance(input, QuantizedTensor)): + not isinstance(input, QuantizedTensor) and not self._full_precision_mm and + not getattr(self, 'comfy_force_cast_weights', False) and + len(self.weight_function) == 0 and len(self.bias_function) == 0): # Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others) - if tensor_3d: - input = input.reshape(-1, input_shape[2]) + input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input - if input.ndim != 2: - # Fall back to comfy_cast_weights for non-2D tensors - return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs) + # Fall back to non-quantized for non-2D tensors + if input_reshaped.ndim == 2: + reshaped_3d = input.ndim == 3 + # dtype is now implicit in the layout class + scale = getattr(self, 'input_scale', None) + if scale is not None: + scale = comfy.model_management.cast_to_device(scale, input.device, None) + input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale) - # dtype is now implicit in the layout class - input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None)) - - output = self._forward(input, self.weight, self.bias) + output = self.forward_comfy_cast_weights(input) # Reshape output back to 3D if input was 3D - if tensor_3d: + if reshaped_3d: output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0])) return output From 21e842508733809354a7b04944b2995ed1169370 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 18:07:26 -0800 Subject: [PATCH 10/74] Add warning for old pytorch. (#11718) --- comfy/quant_ops.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 5a17bc6f5..8324be42a 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -19,6 +19,7 @@ try: cuda_version = tuple(map(int, str(torch.version.cuda).split('.'))) if cuda_version < (13,): ck.registry.disable("cuda") + logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.") ck.registry.disable("triton") for k, v in ck.list_backends().items(): From fcd9a236b091bd4e77b177134ddfcf7d7dbd71fd Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 8 Jan 2026 10:22:23 +0800 Subject: [PATCH 11/74] Update template to 0.7.69 (#11719) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 13e95afa0..49567ad61 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.67 +comfyui-workflow-templates==0.7.69 comfyui-embedded-docs==0.3.1 torch torchsde From ac12f77bed7bbbaf20289533bf7c0bff275e4a41 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 7 Jan 2026 22:10:08 -0500 Subject: [PATCH 12/74] ComfyUI version v0.8.1 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 750673f08..4eb6070fe 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.8.0" +__version__ = "0.8.1" diff --git a/pyproject.toml b/pyproject.toml index 951c2c978..0037abd6c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.8.0" +version = "0.8.1" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From 50d6e1caf401bf72dca1e9df7e194e722e1bd98b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 20:07:05 -0800 Subject: [PATCH 13/74] Tweak ltxv vae mem estimation. (#11722) --- comfy/sd.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index efde3839c..5a7221620 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -479,8 +479,8 @@ class VAE: self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config) self.latent_channels = 128 self.latent_dim = 3 - self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) - self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (1200 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (80 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32) self.upscale_index_formula = (8, 32, 32) self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32) From 2e9d51680a90bca9cc375ba7767f7bf3ed27d563 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 7 Jan 2026 23:50:02 -0500 Subject: [PATCH 14/74] ComfyUI version v0.8.2 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 4eb6070fe..df82ed4fc 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.8.1" +__version__ = "0.8.2" diff --git a/pyproject.toml b/pyproject.toml index 0037abd6c..49f1a03fd 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.8.1" +version = "0.8.2" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From a60b7b86c54ea1498e9c5a5c3d6018c0714654d9 Mon Sep 17 00:00:00 2001 From: Yoland Yan <4950057+yoland68@users.noreply.github.com> Date: Wed, 7 Jan 2026 21:41:57 -0800 Subject: [PATCH 15/74] Revert "Force sequential execution in CI test jobs (#11687)" (#11725) This reverts commit ce0000c4f2a7dba12324585dddb784b43e3cd3d0. --- .github/workflows/test-ci.yml | 2 -- 1 file changed, 2 deletions(-) diff --git a/.github/workflows/test-ci.yml b/.github/workflows/test-ci.yml index 63df2dc3a..adfc5dd32 100644 --- a/.github/workflows/test-ci.yml +++ b/.github/workflows/test-ci.yml @@ -20,7 +20,6 @@ jobs: test-stable: strategy: fail-fast: false - max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux, windows] # os: [macos, linux] @@ -75,7 +74,6 @@ jobs: test-unix-nightly: strategy: fail-fast: false - max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux] os: [linux] From 5943fbf457d78becbb924a74780e0efc68505a17 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Fri, 9 Jan 2026 01:15:42 +0900 Subject: [PATCH 16/74] bump comfyui_manager version to the 4.0.5 (#11732) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index 6585b0c19..bea6d4927 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.4 +comfyui_manager==4.0.5 From 0f11869d55c7a459371b8114b1345e55a0274723 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 8 Jan 2026 14:16:58 -0800 Subject: [PATCH 17/74] Better detection if AMD torch compiled with efficient attention. (#11745) --- comfy/model_management.py | 15 +++++++++++++-- 1 file changed, 13 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 928282092..e5de4a5b5 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -22,7 +22,6 @@ from enum import Enum from comfy.cli_args import args, PerformanceFeature import torch import sys -import importlib import platform import weakref import gc @@ -349,10 +348,22 @@ try: except: rocm_version = (6, -1) + def aotriton_supported(gpu_arch): + path = torch.__path__[0] + path = os.path.join(os.path.join(path, "lib"), "aotriton.images") + gfx = set(map(lambda a: a[4:], filter(lambda a: a.startswith("amd-gfx"), os.listdir(path)))) + if gpu_arch in gfx: + return True + if "{}x".format(gpu_arch[:-1]) in gfx: + return True + if "{}xx".format(gpu_arch[:-2]) in gfx: + return True + return False + logging.info("AMD arch: {}".format(arch)) logging.info("ROCm version: {}".format(rocm_version)) if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: - if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not. + if aotriton_supported(arch): # AMD efficient attention implementation depends on aotriton. if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950 ENABLE_PYTORCH_ATTENTION = True From 1a206564487d672561d83ce3eb007517bf018995 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 8 Jan 2026 14:23:59 -0800 Subject: [PATCH 18/74] Fix import issue. (#11746) --- comfy/ldm/hunyuan_video/upsampler.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index d9e76922f..51b6d1da8 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -3,8 +3,8 @@ import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm -import model_management -import model_patcher +import comfy.model_management +import comfy.model_patcher class SRResidualCausalBlock3D(nn.Module): def __init__(self, channels: int): @@ -103,13 +103,13 @@ UPSAMPLERS = { class HunyuanVideo15SRModel(): def __init__(self, model_type, config): - self.load_device = model_management.vae_device() - offload_device = model_management.vae_offload_device() - self.dtype = model_management.vae_dtype(self.load_device) + self.load_device = comfy.model_management.vae_device() + offload_device = comfy.model_management.vae_offload_device() + self.dtype = comfy.model_management.vae_dtype(self.load_device) self.model_class = UPSAMPLERS.get(model_type) self.model = self.model_class(**config).eval() - self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) def load_sd(self, sd): return self.model.load_state_dict(sd, strict=True) @@ -118,5 +118,5 @@ class HunyuanVideo15SRModel(): return self.model.state_dict() def resample_latent(self, latent): - model_management.load_model_gpu(self.patcher) + comfy.model_management.load_model_gpu(self.patcher) return self.model(latent.to(self.load_device)) From 027042db6811c875562296f0a6b797c89d59e426 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Fri, 9 Jan 2026 05:14:06 +0200 Subject: [PATCH 19/74] Add node: JoinAudioChannels (#11728) --- comfy_extras/nodes_audio.py | 53 +++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 94ad5e8a8..15b3aa401 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -399,6 +399,58 @@ class SplitAudioChannels(IO.ComfyNode): separate = execute # TODO: remove +class JoinAudioChannels(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="JoinAudioChannels", + display_name="Join Audio Channels", + description="Joins left and right mono audio channels into a stereo audio.", + category="audio", + inputs=[ + IO.Audio.Input("audio_left"), + IO.Audio.Input("audio_right"), + ], + outputs=[ + IO.Audio.Output(display_name="audio"), + ], + ) + + @classmethod + def execute(cls, audio_left, audio_right) -> IO.NodeOutput: + waveform_left = audio_left["waveform"] + sample_rate_left = audio_left["sample_rate"] + waveform_right = audio_right["waveform"] + sample_rate_right = audio_right["sample_rate"] + + if waveform_left.shape[1] != 1 or waveform_right.shape[1] != 1: + raise ValueError("AudioJoin: Both input audios must be mono.") + + # Handle different sample rates by resampling to the higher rate + waveform_left, waveform_right, output_sample_rate = match_audio_sample_rates( + waveform_left, sample_rate_left, waveform_right, sample_rate_right + ) + + # Handle different lengths by trimming to the shorter length + length_left = waveform_left.shape[-1] + length_right = waveform_right.shape[-1] + + if length_left != length_right: + min_length = min(length_left, length_right) + if length_left > min_length: + logging.info(f"JoinAudioChannels: Trimming left channel from {length_left} to {min_length} samples.") + waveform_left = waveform_left[..., :min_length] + if length_right > min_length: + logging.info(f"JoinAudioChannels: Trimming right channel from {length_right} to {min_length} samples.") + waveform_right = waveform_right[..., :min_length] + + # Join the channels into stereo + left_channel = waveform_left[..., 0:1, :] + right_channel = waveform_right[..., 0:1, :] + stereo_waveform = torch.cat([left_channel, right_channel], dim=1) + + return IO.NodeOutput({"waveform": stereo_waveform, "sample_rate": output_sample_rate}) + def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): if sample_rate_1 != sample_rate_2: @@ -616,6 +668,7 @@ class AudioExtension(ComfyExtension): RecordAudio, TrimAudioDuration, SplitAudioChannels, + JoinAudioChannels, AudioConcat, AudioMerge, AudioAdjustVolume, From b48d6a83d4f7012a1b6f6f41e66b0ac3f3253b8a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 8 Jan 2026 19:15:50 -0800 Subject: [PATCH 20/74] Fix csp error in frontend when forcing offline. (#11749) --- server.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/server.py b/server.py index 70c8b5e3b..4db3347cb 100644 --- a/server.py +++ b/server.py @@ -184,7 +184,7 @@ def create_block_external_middleware(): else: response = await handler(request) - response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';" + response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self' data:; frame-src 'self'; object-src 'self';" return response return block_external_middleware From 114fc73685129bf4e8ddced432247fe67dc6fbff Mon Sep 17 00:00:00 2001 From: Comfy Org PR Bot Date: Fri, 9 Jan 2026 12:16:15 +0900 Subject: [PATCH 21/74] Bump comfyui-frontend-package to 1.36.13 (#11645) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 49567ad61..7686a5f8a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.35.9 +comfyui-frontend-package==1.36.13 comfyui-workflow-templates==0.7.69 comfyui-embedded-docs==0.3.1 torch From 1dc3da631423b776669a6a9128bb1aeaf5592c55 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Thu, 8 Jan 2026 19:21:51 -0800 Subject: [PATCH 22/74] Add most basic Asset support for models (#11315) * Brought over minimal elements from PR 10045 to reproduce seed_assets and register_assets_system without adding anything to the DB or server routes yet, for now making everything sync (can introduce async once everything is cleaned up and brought over) * Added db script to insert assets stuff, cleaned up some code; assets (models) now get added/rescanned * Added support for 5 http endpoints for assets * Replaced Optional with | None in schemas_in.py and schemas_out.py * Remove two routes that will not be relevant yet in this PR: HEAD /api/assets/hash/ and PUT /api/assets//preview * Remove some functions the two deleted endpoints were using * Don't show assets scan message upon calling /object_info endpoint * removed unsued import to satisfy ruff * Simplified hashing function tpye hint and _hash_file_obj * Satisfied ruff --- alembic_db/versions/0001_assets.py | 174 +++++++++++++++++++ app/assets/api/routes.py | 102 +++++++++++ app/assets/api/schemas_in.py | 94 ++++++++++ app/assets/api/schemas_out.py | 60 +++++++ app/assets/database/bulk_ops.py | 188 ++++++++++++++++++++ app/assets/database/models.py | 233 +++++++++++++++++++++++++ app/assets/database/queries.py | 267 +++++++++++++++++++++++++++++ app/assets/database/tags.py | 62 +++++++ app/assets/hashing.py | 75 ++++++++ app/assets/helpers.py | 216 +++++++++++++++++++++++ app/assets/manager.py | 123 +++++++++++++ app/assets/scanner.py | 229 +++++++++++++++++++++++++ app/database/models.py | 25 ++- comfy/cli_args.py | 1 + main.py | 3 + server.py | 4 + 16 files changed, 1847 insertions(+), 9 deletions(-) create mode 100644 alembic_db/versions/0001_assets.py create mode 100644 app/assets/api/routes.py create mode 100644 app/assets/api/schemas_in.py create mode 100644 app/assets/api/schemas_out.py create mode 100644 app/assets/database/bulk_ops.py create mode 100644 app/assets/database/models.py create mode 100644 app/assets/database/queries.py create mode 100644 app/assets/database/tags.py create mode 100644 app/assets/hashing.py create mode 100644 app/assets/helpers.py create mode 100644 app/assets/manager.py create mode 100644 app/assets/scanner.py diff --git a/alembic_db/versions/0001_assets.py b/alembic_db/versions/0001_assets.py new file mode 100644 index 000000000..1e10b94dc --- /dev/null +++ b/alembic_db/versions/0001_assets.py @@ -0,0 +1,174 @@ +""" +Initial assets schema +Revision ID: 0001_assets +Revises: None +Create Date: 2025-12-10 00:00:00 +""" + +from alembic import op +import sqlalchemy as sa + +revision = "0001_assets" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade() -> None: + # ASSETS: content identity + op.create_table( + "assets", + sa.Column("id", sa.String(length=36), primary_key=True), + sa.Column("hash", sa.String(length=256), nullable=True), + sa.Column("size_bytes", sa.BigInteger(), nullable=False, server_default="0"), + sa.Column("mime_type", sa.String(length=255), nullable=True), + sa.Column("created_at", sa.DateTime(timezone=False), nullable=False), + sa.CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"), + ) + op.create_index("uq_assets_hash", "assets", ["hash"], unique=True) + op.create_index("ix_assets_mime_type", "assets", ["mime_type"]) + + # ASSETS_INFO: user-visible references + op.create_table( + "assets_info", + sa.Column("id", sa.String(length=36), primary_key=True), + sa.Column("owner_id", sa.String(length=128), nullable=False, server_default=""), + sa.Column("name", sa.String(length=512), nullable=False), + sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False), + sa.Column("preview_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="SET NULL"), nullable=True), + sa.Column("user_metadata", sa.JSON(), nullable=True), + sa.Column("created_at", sa.DateTime(timezone=False), nullable=False), + sa.Column("updated_at", sa.DateTime(timezone=False), nullable=False), + sa.Column("last_access_time", sa.DateTime(timezone=False), nullable=False), + sa.UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"), + ) + op.create_index("ix_assets_info_owner_id", "assets_info", ["owner_id"]) + op.create_index("ix_assets_info_asset_id", "assets_info", ["asset_id"]) + op.create_index("ix_assets_info_name", "assets_info", ["name"]) + op.create_index("ix_assets_info_created_at", "assets_info", ["created_at"]) + op.create_index("ix_assets_info_last_access_time", "assets_info", ["last_access_time"]) + op.create_index("ix_assets_info_owner_name", "assets_info", ["owner_id", "name"]) + + # TAGS: normalized tag vocabulary + op.create_table( + "tags", + sa.Column("name", sa.String(length=512), primary_key=True), + sa.Column("tag_type", sa.String(length=32), nullable=False, server_default="user"), + sa.CheckConstraint("name = lower(name)", name="ck_tags_lowercase"), + ) + op.create_index("ix_tags_tag_type", "tags", ["tag_type"]) + + # ASSET_INFO_TAGS: many-to-many for tags on AssetInfo + op.create_table( + "asset_info_tags", + sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False), + sa.Column("tag_name", sa.String(length=512), sa.ForeignKey("tags.name", ondelete="RESTRICT"), nullable=False), + sa.Column("origin", sa.String(length=32), nullable=False, server_default="manual"), + sa.Column("added_at", sa.DateTime(timezone=False), nullable=False), + sa.PrimaryKeyConstraint("asset_info_id", "tag_name", name="pk_asset_info_tags"), + ) + op.create_index("ix_asset_info_tags_tag_name", "asset_info_tags", ["tag_name"]) + op.create_index("ix_asset_info_tags_asset_info_id", "asset_info_tags", ["asset_info_id"]) + + # ASSET_CACHE_STATE: N:1 local cache rows per Asset + op.create_table( + "asset_cache_state", + sa.Column("id", sa.Integer(), primary_key=True, autoincrement=True), + sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="CASCADE"), nullable=False), + sa.Column("file_path", sa.Text(), nullable=False), # absolute local path to cached file + sa.Column("mtime_ns", sa.BigInteger(), nullable=True), + sa.Column("needs_verify", sa.Boolean(), nullable=False, server_default=sa.text("false")), + sa.CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"), + sa.UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"), + ) + op.create_index("ix_asset_cache_state_file_path", "asset_cache_state", ["file_path"]) + op.create_index("ix_asset_cache_state_asset_id", "asset_cache_state", ["asset_id"]) + + # ASSET_INFO_META: typed KV projection of user_metadata for filtering/sorting + op.create_table( + "asset_info_meta", + sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False), + sa.Column("key", sa.String(length=256), nullable=False), + sa.Column("ordinal", sa.Integer(), nullable=False, server_default="0"), + sa.Column("val_str", sa.String(length=2048), nullable=True), + sa.Column("val_num", sa.Numeric(38, 10), nullable=True), + sa.Column("val_bool", sa.Boolean(), nullable=True), + sa.Column("val_json", sa.JSON(), nullable=True), + sa.PrimaryKeyConstraint("asset_info_id", "key", "ordinal", name="pk_asset_info_meta"), + ) + op.create_index("ix_asset_info_meta_key", "asset_info_meta", ["key"]) + op.create_index("ix_asset_info_meta_key_val_str", "asset_info_meta", ["key", "val_str"]) + op.create_index("ix_asset_info_meta_key_val_num", "asset_info_meta", ["key", "val_num"]) + op.create_index("ix_asset_info_meta_key_val_bool", "asset_info_meta", ["key", "val_bool"]) + + # Tags vocabulary + tags_table = sa.table( + "tags", + sa.column("name", sa.String(length=512)), + sa.column("tag_type", sa.String()), + ) + op.bulk_insert( + tags_table, + [ + {"name": "models", "tag_type": "system"}, + {"name": "input", "tag_type": "system"}, + {"name": "output", "tag_type": "system"}, + + {"name": "configs", "tag_type": "system"}, + {"name": "checkpoints", "tag_type": "system"}, + {"name": "loras", "tag_type": "system"}, + {"name": "vae", "tag_type": "system"}, + {"name": "text_encoders", "tag_type": "system"}, + {"name": "diffusion_models", "tag_type": "system"}, + {"name": "clip_vision", "tag_type": "system"}, + {"name": "style_models", "tag_type": "system"}, + {"name": "embeddings", "tag_type": "system"}, + {"name": "diffusers", "tag_type": "system"}, + {"name": "vae_approx", "tag_type": "system"}, + {"name": "controlnet", "tag_type": "system"}, + {"name": "gligen", "tag_type": "system"}, + {"name": "upscale_models", "tag_type": "system"}, + {"name": "hypernetworks", "tag_type": "system"}, + {"name": "photomaker", "tag_type": "system"}, + {"name": "classifiers", "tag_type": "system"}, + + {"name": "encoder", "tag_type": "system"}, + {"name": "decoder", "tag_type": "system"}, + + {"name": "missing", "tag_type": "system"}, + {"name": "rescan", "tag_type": "system"}, + ], + ) + + +def downgrade() -> None: + op.drop_index("ix_asset_info_meta_key_val_bool", table_name="asset_info_meta") + op.drop_index("ix_asset_info_meta_key_val_num", table_name="asset_info_meta") + op.drop_index("ix_asset_info_meta_key_val_str", table_name="asset_info_meta") + op.drop_index("ix_asset_info_meta_key", table_name="asset_info_meta") + op.drop_table("asset_info_meta") + + op.drop_index("ix_asset_cache_state_asset_id", table_name="asset_cache_state") + op.drop_index("ix_asset_cache_state_file_path", table_name="asset_cache_state") + op.drop_constraint("uq_asset_cache_state_file_path", table_name="asset_cache_state") + op.drop_table("asset_cache_state") + + op.drop_index("ix_asset_info_tags_asset_info_id", table_name="asset_info_tags") + op.drop_index("ix_asset_info_tags_tag_name", table_name="asset_info_tags") + op.drop_table("asset_info_tags") + + op.drop_index("ix_tags_tag_type", table_name="tags") + op.drop_table("tags") + + op.drop_constraint("uq_assets_info_asset_owner_name", table_name="assets_info") + op.drop_index("ix_assets_info_owner_name", table_name="assets_info") + op.drop_index("ix_assets_info_last_access_time", table_name="assets_info") + op.drop_index("ix_assets_info_created_at", table_name="assets_info") + op.drop_index("ix_assets_info_name", table_name="assets_info") + op.drop_index("ix_assets_info_asset_id", table_name="assets_info") + op.drop_index("ix_assets_info_owner_id", table_name="assets_info") + op.drop_table("assets_info") + + op.drop_index("uq_assets_hash", table_name="assets") + op.drop_index("ix_assets_mime_type", table_name="assets") + op.drop_table("assets") diff --git a/app/assets/api/routes.py b/app/assets/api/routes.py new file mode 100644 index 000000000..30e87a898 --- /dev/null +++ b/app/assets/api/routes.py @@ -0,0 +1,102 @@ +import logging +import uuid +from aiohttp import web + +from pydantic import ValidationError + +import app.assets.manager as manager +from app import user_manager +from app.assets.api import schemas_in +from app.assets.helpers import get_query_dict + +ROUTES = web.RouteTableDef() +USER_MANAGER: user_manager.UserManager | None = None + +# UUID regex (canonical hyphenated form, case-insensitive) +UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}" + +def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None: + global USER_MANAGER + USER_MANAGER = user_manager_instance + app.add_routes(ROUTES) + +def _error_response(status: int, code: str, message: str, details: dict | None = None) -> web.Response: + return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status) + + +def _validation_error_response(code: str, ve: ValidationError) -> web.Response: + return _error_response(400, code, "Validation failed.", {"errors": ve.json()}) + + +@ROUTES.get("/api/assets") +async def list_assets(request: web.Request) -> web.Response: + """ + GET request to list assets. + """ + query_dict = get_query_dict(request) + try: + q = schemas_in.ListAssetsQuery.model_validate(query_dict) + except ValidationError as ve: + return _validation_error_response("INVALID_QUERY", ve) + + payload = manager.list_assets( + include_tags=q.include_tags, + exclude_tags=q.exclude_tags, + name_contains=q.name_contains, + metadata_filter=q.metadata_filter, + limit=q.limit, + offset=q.offset, + sort=q.sort, + order=q.order, + owner_id=USER_MANAGER.get_request_user_id(request), + ) + return web.json_response(payload.model_dump(mode="json")) + + +@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}") +async def get_asset(request: web.Request) -> web.Response: + """ + GET request to get an asset's info as JSON. + """ + asset_info_id = str(uuid.UUID(request.match_info["id"])) + try: + result = manager.get_asset( + asset_info_id=asset_info_id, + owner_id=USER_MANAGER.get_request_user_id(request), + ) + except ValueError as e: + return _error_response(404, "ASSET_NOT_FOUND", str(e), {"id": asset_info_id}) + except Exception: + logging.exception( + "get_asset failed for asset_info_id=%s, owner_id=%s", + asset_info_id, + USER_MANAGER.get_request_user_id(request), + ) + return _error_response(500, "INTERNAL", "Unexpected server error.") + return web.json_response(result.model_dump(mode="json"), status=200) + + +@ROUTES.get("/api/tags") +async def get_tags(request: web.Request) -> web.Response: + """ + GET request to list all tags based on query parameters. + """ + query_map = dict(request.rel_url.query) + + try: + query = schemas_in.TagsListQuery.model_validate(query_map) + except ValidationError as e: + return web.json_response( + {"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": e.errors()}}, + status=400, + ) + + result = manager.list_tags( + prefix=query.prefix, + limit=query.limit, + offset=query.offset, + order=query.order, + include_zero=query.include_zero, + owner_id=USER_MANAGER.get_request_user_id(request), + ) + return web.json_response(result.model_dump(mode="json")) diff --git a/app/assets/api/schemas_in.py b/app/assets/api/schemas_in.py new file mode 100644 index 000000000..200b41aef --- /dev/null +++ b/app/assets/api/schemas_in.py @@ -0,0 +1,94 @@ +import json +import uuid +from typing import Any, Literal + +from pydantic import ( + BaseModel, + ConfigDict, + Field, + conint, + field_validator, +) + + +class ListAssetsQuery(BaseModel): + include_tags: list[str] = Field(default_factory=list) + exclude_tags: list[str] = Field(default_factory=list) + name_contains: str | None = None + + # Accept either a JSON string (query param) or a dict + metadata_filter: dict[str, Any] | None = None + + limit: conint(ge=1, le=500) = 20 + offset: conint(ge=0) = 0 + + sort: Literal["name", "created_at", "updated_at", "size", "last_access_time"] = "created_at" + order: Literal["asc", "desc"] = "desc" + + @field_validator("include_tags", "exclude_tags", mode="before") + @classmethod + def _split_csv_tags(cls, v): + # Accept "a,b,c" or ["a","b"] (we are liberal in what we accept) + if v is None: + return [] + if isinstance(v, str): + return [t.strip() for t in v.split(",") if t.strip()] + if isinstance(v, list): + out: list[str] = [] + for item in v: + if isinstance(item, str): + out.extend([t.strip() for t in item.split(",") if t.strip()]) + return out + return v + + @field_validator("metadata_filter", mode="before") + @classmethod + def _parse_metadata_json(cls, v): + if v is None or isinstance(v, dict): + return v + if isinstance(v, str) and v.strip(): + try: + parsed = json.loads(v) + except Exception as e: + raise ValueError(f"metadata_filter must be JSON: {e}") from e + if not isinstance(parsed, dict): + raise ValueError("metadata_filter must be a JSON object") + return parsed + return None + + +class TagsListQuery(BaseModel): + model_config = ConfigDict(extra="ignore", str_strip_whitespace=True) + + prefix: str | None = Field(None, min_length=1, max_length=256) + limit: int = Field(100, ge=1, le=1000) + offset: int = Field(0, ge=0, le=10_000_000) + order: Literal["count_desc", "name_asc"] = "count_desc" + include_zero: bool = True + + @field_validator("prefix") + @classmethod + def normalize_prefix(cls, v: str | None) -> str | None: + if v is None: + return v + v = v.strip() + return v.lower() or None + + +class SetPreviewBody(BaseModel): + """Set or clear the preview for an AssetInfo. Provide an Asset.id or null.""" + preview_id: str | None = None + + @field_validator("preview_id", mode="before") + @classmethod + def _norm_uuid(cls, v): + if v is None: + return None + s = str(v).strip() + if not s: + return None + try: + uuid.UUID(s) + except Exception: + raise ValueError("preview_id must be a UUID") + return s diff --git a/app/assets/api/schemas_out.py b/app/assets/api/schemas_out.py new file mode 100644 index 000000000..9f8184f20 --- /dev/null +++ b/app/assets/api/schemas_out.py @@ -0,0 +1,60 @@ +from datetime import datetime +from typing import Any + +from pydantic import BaseModel, ConfigDict, Field, field_serializer + + +class AssetSummary(BaseModel): + id: str + name: str + asset_hash: str | None = None + size: int | None = None + mime_type: str | None = None + tags: list[str] = Field(default_factory=list) + preview_url: str | None = None + created_at: datetime | None = None + updated_at: datetime | None = None + last_access_time: datetime | None = None + + model_config = ConfigDict(from_attributes=True) + + @field_serializer("created_at", "updated_at", "last_access_time") + def _ser_dt(self, v: datetime | None, _info): + return v.isoformat() if v else None + + +class AssetsList(BaseModel): + assets: list[AssetSummary] + total: int + has_more: bool + + +class AssetDetail(BaseModel): + id: str + name: str + asset_hash: str | None = None + size: int | None = None + mime_type: str | None = None + tags: list[str] = Field(default_factory=list) + user_metadata: dict[str, Any] = Field(default_factory=dict) + preview_id: str | None = None + created_at: datetime | None = None + last_access_time: datetime | None = None + + model_config = ConfigDict(from_attributes=True) + + @field_serializer("created_at", "last_access_time") + def _ser_dt(self, v: datetime | None, _info): + return v.isoformat() if v else None + + +class TagUsage(BaseModel): + name: str + count: int + type: str + + +class TagsList(BaseModel): + tags: list[TagUsage] = Field(default_factory=list) + total: int + has_more: bool diff --git a/app/assets/database/bulk_ops.py b/app/assets/database/bulk_ops.py new file mode 100644 index 000000000..9352cd65d --- /dev/null +++ b/app/assets/database/bulk_ops.py @@ -0,0 +1,188 @@ +import os +import uuid +import sqlalchemy +from typing import Iterable +from sqlalchemy.orm import Session +from sqlalchemy.dialects import sqlite + +from app.assets.helpers import utcnow +from app.assets.database.models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, AssetInfoMeta + +MAX_BIND_PARAMS = 800 + +def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]: + if not rows: + return [] + rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row)) + for i in range(0, len(rows), rows_per_stmt): + yield rows[i:i + rows_per_stmt] + +def _iter_chunks(seq, n: int): + for i in range(0, len(seq), n): + yield seq[i:i + n] + +def _rows_per_stmt(cols: int) -> int: + return max(1, MAX_BIND_PARAMS // max(1, cols)) + + +def seed_from_paths_batch( + session: Session, + *, + specs: list[dict], + owner_id: str = "", +) -> dict: + """Each spec is a dict with keys: + - abs_path: str + - size_bytes: int + - mtime_ns: int + - info_name: str + - tags: list[str] + - fname: Optional[str] + """ + if not specs: + return {"inserted_infos": 0, "won_states": 0, "lost_states": 0} + + now = utcnow() + asset_rows: list[dict] = [] + state_rows: list[dict] = [] + path_to_asset: dict[str, str] = {} + asset_to_info: dict[str, dict] = {} # asset_id -> prepared info row + path_list: list[str] = [] + + for sp in specs: + ap = os.path.abspath(sp["abs_path"]) + aid = str(uuid.uuid4()) + iid = str(uuid.uuid4()) + path_list.append(ap) + path_to_asset[ap] = aid + + asset_rows.append( + { + "id": aid, + "hash": None, + "size_bytes": sp["size_bytes"], + "mime_type": None, + "created_at": now, + } + ) + state_rows.append( + { + "asset_id": aid, + "file_path": ap, + "mtime_ns": sp["mtime_ns"], + } + ) + asset_to_info[aid] = { + "id": iid, + "owner_id": owner_id, + "name": sp["info_name"], + "asset_id": aid, + "preview_id": None, + "user_metadata": {"filename": sp["fname"]} if sp["fname"] else None, + "created_at": now, + "updated_at": now, + "last_access_time": now, + "_tags": sp["tags"], + "_filename": sp["fname"], + } + + # insert all seed Assets (hash=NULL) + ins_asset = sqlite.insert(Asset) + for chunk in _iter_chunks(asset_rows, _rows_per_stmt(5)): + session.execute(ins_asset, chunk) + + # try to claim AssetCacheState (file_path) + winners_by_path: set[str] = set() + ins_state = ( + sqlite.insert(AssetCacheState) + .on_conflict_do_nothing(index_elements=[AssetCacheState.file_path]) + .returning(AssetCacheState.file_path) + ) + for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)): + winners_by_path.update((session.execute(ins_state, chunk)).scalars().all()) + + all_paths_set = set(path_list) + losers_by_path = all_paths_set - winners_by_path + lost_assets = [path_to_asset[p] for p in losers_by_path] + if lost_assets: # losers get their Asset removed + for id_chunk in _iter_chunks(lost_assets, MAX_BIND_PARAMS): + session.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(id_chunk))) + + if not winners_by_path: + return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)} + + # insert AssetInfo only for winners + winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path] + ins_info = ( + sqlite.insert(AssetInfo) + .on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name]) + .returning(AssetInfo.id) + ) + + inserted_info_ids: set[str] = set() + for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)): + inserted_info_ids.update((session.execute(ins_info, chunk)).scalars().all()) + + # build and insert tag + meta rows for the AssetInfo + tag_rows: list[dict] = [] + meta_rows: list[dict] = [] + if inserted_info_ids: + for row in winner_info_rows: + iid = row["id"] + if iid not in inserted_info_ids: + continue + for t in row["_tags"]: + tag_rows.append({ + "asset_info_id": iid, + "tag_name": t, + "origin": "automatic", + "added_at": now, + }) + if row["_filename"]: + meta_rows.append( + { + "asset_info_id": iid, + "key": "filename", + "ordinal": 0, + "val_str": row["_filename"], + "val_num": None, + "val_bool": None, + "val_json": None, + } + ) + + bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS) + return { + "inserted_infos": len(inserted_info_ids), + "won_states": len(winners_by_path), + "lost_states": len(losers_by_path), + } + + +def bulk_insert_tags_and_meta( + session: Session, + *, + tag_rows: list[dict], + meta_rows: list[dict], + max_bind_params: int, +) -> None: + """Batch insert into asset_info_tags and asset_info_meta with ON CONFLICT DO NOTHING. + - tag_rows keys: asset_info_id, tag_name, origin, added_at + - meta_rows keys: asset_info_id, key, ordinal, val_str, val_num, val_bool, val_json + """ + if tag_rows: + ins_links = ( + sqlite.insert(AssetInfoTag) + .on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name]) + ) + for chunk in _chunk_rows(tag_rows, cols_per_row=4, max_bind_params=max_bind_params): + session.execute(ins_links, chunk) + if meta_rows: + ins_meta = ( + sqlite.insert(AssetInfoMeta) + .on_conflict_do_nothing( + index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal] + ) + ) + for chunk in _chunk_rows(meta_rows, cols_per_row=7, max_bind_params=max_bind_params): + session.execute(ins_meta, chunk) diff --git a/app/assets/database/models.py b/app/assets/database/models.py new file mode 100644 index 000000000..3cd28f68b --- /dev/null +++ b/app/assets/database/models.py @@ -0,0 +1,233 @@ +from __future__ import annotations + +import uuid +from datetime import datetime + +from typing import Any +from sqlalchemy import ( + JSON, + BigInteger, + Boolean, + CheckConstraint, + DateTime, + ForeignKey, + Index, + Integer, + Numeric, + String, + Text, + UniqueConstraint, +) +from sqlalchemy.orm import Mapped, foreign, mapped_column, relationship + +from app.assets.helpers import utcnow +from app.database.models import to_dict, Base + + +class Asset(Base): + __tablename__ = "assets" + + id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4())) + hash: Mapped[str | None] = mapped_column(String(256), nullable=True) + size_bytes: Mapped[int] = mapped_column(BigInteger, nullable=False, default=0) + mime_type: Mapped[str | None] = mapped_column(String(255)) + created_at: Mapped[datetime] = mapped_column( + DateTime(timezone=False), nullable=False, default=utcnow + ) + + infos: Mapped[list[AssetInfo]] = relationship( + "AssetInfo", + back_populates="asset", + primaryjoin=lambda: Asset.id == foreign(AssetInfo.asset_id), + foreign_keys=lambda: [AssetInfo.asset_id], + cascade="all,delete-orphan", + passive_deletes=True, + ) + + preview_of: Mapped[list[AssetInfo]] = relationship( + "AssetInfo", + back_populates="preview_asset", + primaryjoin=lambda: Asset.id == foreign(AssetInfo.preview_id), + foreign_keys=lambda: [AssetInfo.preview_id], + viewonly=True, + ) + + cache_states: Mapped[list[AssetCacheState]] = relationship( + back_populates="asset", + cascade="all, delete-orphan", + passive_deletes=True, + ) + + __table_args__ = ( + Index("uq_assets_hash", "hash", unique=True), + Index("ix_assets_mime_type", "mime_type"), + CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"), + ) + + def to_dict(self, include_none: bool = False) -> dict[str, Any]: + return to_dict(self, include_none=include_none) + + def __repr__(self) -> str: + return f"" + + +class AssetCacheState(Base): + __tablename__ = "asset_cache_state" + + id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True) + asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="CASCADE"), nullable=False) + file_path: Mapped[str] = mapped_column(Text, nullable=False) + mtime_ns: Mapped[int | None] = mapped_column(BigInteger, nullable=True) + needs_verify: Mapped[bool] = mapped_column(Boolean, nullable=False, default=False) + + asset: Mapped[Asset] = relationship(back_populates="cache_states") + + __table_args__ = ( + Index("ix_asset_cache_state_file_path", "file_path"), + Index("ix_asset_cache_state_asset_id", "asset_id"), + CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"), + UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"), + ) + + def to_dict(self, include_none: bool = False) -> dict[str, Any]: + return to_dict(self, include_none=include_none) + + def __repr__(self) -> str: + return f"" + + +class AssetInfo(Base): + __tablename__ = "assets_info" + + id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4())) + owner_id: Mapped[str] = mapped_column(String(128), nullable=False, default="") + name: Mapped[str] = mapped_column(String(512), nullable=False) + asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False) + preview_id: Mapped[str | None] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL")) + user_metadata: Mapped[dict[str, Any] | None] = mapped_column(JSON(none_as_null=True)) + created_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow) + updated_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow) + last_access_time: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow) + + asset: Mapped[Asset] = relationship( + "Asset", + back_populates="infos", + foreign_keys=[asset_id], + lazy="selectin", + ) + preview_asset: Mapped[Asset | None] = relationship( + "Asset", + back_populates="preview_of", + foreign_keys=[preview_id], + ) + + metadata_entries: Mapped[list[AssetInfoMeta]] = relationship( + back_populates="asset_info", + cascade="all,delete-orphan", + passive_deletes=True, + ) + + tag_links: Mapped[list[AssetInfoTag]] = relationship( + back_populates="asset_info", + cascade="all,delete-orphan", + passive_deletes=True, + overlaps="tags,asset_infos", + ) + + tags: Mapped[list[Tag]] = relationship( + secondary="asset_info_tags", + back_populates="asset_infos", + lazy="selectin", + viewonly=True, + overlaps="tag_links,asset_info_links,asset_infos,tag", + ) + + __table_args__ = ( + UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"), + Index("ix_assets_info_owner_name", "owner_id", "name"), + Index("ix_assets_info_owner_id", "owner_id"), + Index("ix_assets_info_asset_id", "asset_id"), + Index("ix_assets_info_name", "name"), + Index("ix_assets_info_created_at", "created_at"), + Index("ix_assets_info_last_access_time", "last_access_time"), + ) + + def to_dict(self, include_none: bool = False) -> dict[str, Any]: + data = to_dict(self, include_none=include_none) + data["tags"] = [t.name for t in self.tags] + return data + + def __repr__(self) -> str: + return f"" + + +class AssetInfoMeta(Base): + __tablename__ = "asset_info_meta" + + asset_info_id: Mapped[str] = mapped_column( + String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True + ) + key: Mapped[str] = mapped_column(String(256), primary_key=True) + ordinal: Mapped[int] = mapped_column(Integer, primary_key=True, default=0) + + val_str: Mapped[str | None] = mapped_column(String(2048), nullable=True) + val_num: Mapped[float | None] = mapped_column(Numeric(38, 10), nullable=True) + val_bool: Mapped[bool | None] = mapped_column(Boolean, nullable=True) + val_json: Mapped[Any | None] = mapped_column(JSON(none_as_null=True), nullable=True) + + asset_info: Mapped[AssetInfo] = relationship(back_populates="metadata_entries") + + __table_args__ = ( + Index("ix_asset_info_meta_key", "key"), + Index("ix_asset_info_meta_key_val_str", "key", "val_str"), + Index("ix_asset_info_meta_key_val_num", "key", "val_num"), + Index("ix_asset_info_meta_key_val_bool", "key", "val_bool"), + ) + + +class AssetInfoTag(Base): + __tablename__ = "asset_info_tags" + + asset_info_id: Mapped[str] = mapped_column( + String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True + ) + tag_name: Mapped[str] = mapped_column( + String(512), ForeignKey("tags.name", ondelete="RESTRICT"), primary_key=True + ) + origin: Mapped[str] = mapped_column(String(32), nullable=False, default="manual") + added_at: Mapped[datetime] = mapped_column( + DateTime(timezone=False), nullable=False, default=utcnow + ) + + asset_info: Mapped[AssetInfo] = relationship(back_populates="tag_links") + tag: Mapped[Tag] = relationship(back_populates="asset_info_links") + + __table_args__ = ( + Index("ix_asset_info_tags_tag_name", "tag_name"), + Index("ix_asset_info_tags_asset_info_id", "asset_info_id"), + ) + + +class Tag(Base): + __tablename__ = "tags" + + name: Mapped[str] = mapped_column(String(512), primary_key=True) + tag_type: Mapped[str] = mapped_column(String(32), nullable=False, default="user") + + asset_info_links: Mapped[list[AssetInfoTag]] = relationship( + back_populates="tag", + overlaps="asset_infos,tags", + ) + asset_infos: Mapped[list[AssetInfo]] = relationship( + secondary="asset_info_tags", + back_populates="tags", + viewonly=True, + overlaps="asset_info_links,tag_links,tags,asset_info", + ) + + __table_args__ = ( + Index("ix_tags_tag_type", "tag_type"), + ) + + def __repr__(self) -> str: + return f"" diff --git a/app/assets/database/queries.py b/app/assets/database/queries.py new file mode 100644 index 000000000..0824c0c2f --- /dev/null +++ b/app/assets/database/queries.py @@ -0,0 +1,267 @@ +import sqlalchemy as sa +from collections import defaultdict +from sqlalchemy import select, exists, func +from sqlalchemy.orm import Session, contains_eager, noload +from app.assets.database.models import Asset, AssetInfo, AssetInfoMeta, AssetInfoTag, Tag +from app.assets.helpers import escape_like_prefix, normalize_tags +from typing import Sequence + + +def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement: + """Build owner visibility predicate for reads. Owner-less rows are visible to everyone.""" + owner_id = (owner_id or "").strip() + if owner_id == "": + return AssetInfo.owner_id == "" + return AssetInfo.owner_id.in_(["", owner_id]) + + +def apply_tag_filters( + stmt: sa.sql.Select, + include_tags: Sequence[str] | None = None, + exclude_tags: Sequence[str] | None = None, +) -> sa.sql.Select: + """include_tags: every tag must be present; exclude_tags: none may be present.""" + include_tags = normalize_tags(include_tags) + exclude_tags = normalize_tags(exclude_tags) + + if include_tags: + for tag_name in include_tags: + stmt = stmt.where( + exists().where( + (AssetInfoTag.asset_info_id == AssetInfo.id) + & (AssetInfoTag.tag_name == tag_name) + ) + ) + + if exclude_tags: + stmt = stmt.where( + ~exists().where( + (AssetInfoTag.asset_info_id == AssetInfo.id) + & (AssetInfoTag.tag_name.in_(exclude_tags)) + ) + ) + return stmt + +def apply_metadata_filter( + stmt: sa.sql.Select, + metadata_filter: dict | None = None, +) -> sa.sql.Select: + """Apply filters using asset_info_meta projection table.""" + if not metadata_filter: + return stmt + + def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement: + return sa.exists().where( + AssetInfoMeta.asset_info_id == AssetInfo.id, + AssetInfoMeta.key == key, + *preds, + ) + + def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement: + if value is None: + no_row_for_key = sa.not_( + sa.exists().where( + AssetInfoMeta.asset_info_id == AssetInfo.id, + AssetInfoMeta.key == key, + ) + ) + null_row = _exists_for_pred( + key, + AssetInfoMeta.val_json.is_(None), + AssetInfoMeta.val_str.is_(None), + AssetInfoMeta.val_num.is_(None), + AssetInfoMeta.val_bool.is_(None), + ) + return sa.or_(no_row_for_key, null_row) + + if isinstance(value, bool): + return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value)) + if isinstance(value, (int, float)): + from decimal import Decimal + num = value if isinstance(value, Decimal) else Decimal(str(value)) + return _exists_for_pred(key, AssetInfoMeta.val_num == num) + if isinstance(value, str): + return _exists_for_pred(key, AssetInfoMeta.val_str == value) + return _exists_for_pred(key, AssetInfoMeta.val_json == value) + + for k, v in metadata_filter.items(): + if isinstance(v, list): + ors = [_exists_clause_for_value(k, elem) for elem in v] + if ors: + stmt = stmt.where(sa.or_(*ors)) + else: + stmt = stmt.where(_exists_clause_for_value(k, v)) + return stmt + + +def asset_exists_by_hash(session: Session, asset_hash: str) -> bool: + """ + Check if an asset with a given hash exists in database. + """ + row = ( + session.execute( + select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1) + ) + ).first() + return row is not None + +def get_asset_info_by_id(session: Session, asset_info_id: str) -> AssetInfo | None: + return session.get(AssetInfo, asset_info_id) + +def list_asset_infos_page( + session: Session, + owner_id: str = "", + include_tags: Sequence[str] | None = None, + exclude_tags: Sequence[str] | None = None, + name_contains: str | None = None, + metadata_filter: dict | None = None, + limit: int = 20, + offset: int = 0, + sort: str = "created_at", + order: str = "desc", +) -> tuple[list[AssetInfo], dict[str, list[str]], int]: + base = ( + select(AssetInfo) + .join(Asset, Asset.id == AssetInfo.asset_id) + .options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags)) + .where(visible_owner_clause(owner_id)) + ) + + if name_contains: + escaped, esc = escape_like_prefix(name_contains) + base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc)) + + base = apply_tag_filters(base, include_tags, exclude_tags) + base = apply_metadata_filter(base, metadata_filter) + + sort = (sort or "created_at").lower() + order = (order or "desc").lower() + sort_map = { + "name": AssetInfo.name, + "created_at": AssetInfo.created_at, + "updated_at": AssetInfo.updated_at, + "last_access_time": AssetInfo.last_access_time, + "size": Asset.size_bytes, + } + sort_col = sort_map.get(sort, AssetInfo.created_at) + sort_exp = sort_col.desc() if order == "desc" else sort_col.asc() + + base = base.order_by(sort_exp).limit(limit).offset(offset) + + count_stmt = ( + select(sa.func.count()) + .select_from(AssetInfo) + .join(Asset, Asset.id == AssetInfo.asset_id) + .where(visible_owner_clause(owner_id)) + ) + if name_contains: + escaped, esc = escape_like_prefix(name_contains) + count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc)) + count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags) + count_stmt = apply_metadata_filter(count_stmt, metadata_filter) + + total = int((session.execute(count_stmt)).scalar_one() or 0) + + infos = (session.execute(base)).unique().scalars().all() + + id_list: list[str] = [i.id for i in infos] + tag_map: dict[str, list[str]] = defaultdict(list) + if id_list: + rows = session.execute( + select(AssetInfoTag.asset_info_id, Tag.name) + .join(Tag, Tag.name == AssetInfoTag.tag_name) + .where(AssetInfoTag.asset_info_id.in_(id_list)) + ) + for aid, tag_name in rows.all(): + tag_map[aid].append(tag_name) + + return infos, tag_map, total + +def fetch_asset_info_asset_and_tags( + session: Session, + asset_info_id: str, + owner_id: str = "", +) -> tuple[AssetInfo, Asset, list[str]] | None: + stmt = ( + select(AssetInfo, Asset, Tag.name) + .join(Asset, Asset.id == AssetInfo.asset_id) + .join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True) + .join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True) + .where( + AssetInfo.id == asset_info_id, + visible_owner_clause(owner_id), + ) + .options(noload(AssetInfo.tags)) + .order_by(Tag.name.asc()) + ) + + rows = (session.execute(stmt)).all() + if not rows: + return None + + first_info, first_asset, _ = rows[0] + tags: list[str] = [] + seen: set[str] = set() + for _info, _asset, tag_name in rows: + if tag_name and tag_name not in seen: + seen.add(tag_name) + tags.append(tag_name) + return first_info, first_asset, tags + +def list_tags_with_usage( + session: Session, + prefix: str | None = None, + limit: int = 100, + offset: int = 0, + include_zero: bool = True, + order: str = "count_desc", + owner_id: str = "", +) -> tuple[list[tuple[str, str, int]], int]: + counts_sq = ( + select( + AssetInfoTag.tag_name.label("tag_name"), + func.count(AssetInfoTag.asset_info_id).label("cnt"), + ) + .select_from(AssetInfoTag) + .join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id) + .where(visible_owner_clause(owner_id)) + .group_by(AssetInfoTag.tag_name) + .subquery() + ) + + q = ( + select( + Tag.name, + Tag.tag_type, + func.coalesce(counts_sq.c.cnt, 0).label("count"), + ) + .select_from(Tag) + .join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True) + ) + + if prefix: + escaped, esc = escape_like_prefix(prefix.strip().lower()) + q = q.where(Tag.name.like(escaped + "%", escape=esc)) + + if not include_zero: + q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0) + + if order == "name_asc": + q = q.order_by(Tag.name.asc()) + else: + q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc()) + + total_q = select(func.count()).select_from(Tag) + if prefix: + escaped, esc = escape_like_prefix(prefix.strip().lower()) + total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc)) + if not include_zero: + total_q = total_q.where( + Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name)) + ) + + rows = (session.execute(q.limit(limit).offset(offset))).all() + total = (session.execute(total_q)).scalar_one() + + rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows] + return rows_norm, int(total or 0) diff --git a/app/assets/database/tags.py b/app/assets/database/tags.py new file mode 100644 index 000000000..3ab6497c2 --- /dev/null +++ b/app/assets/database/tags.py @@ -0,0 +1,62 @@ +from typing import Iterable + +import sqlalchemy +from sqlalchemy.orm import Session +from sqlalchemy.dialects import sqlite + +from app.assets.helpers import normalize_tags, utcnow +from app.assets.database.models import Tag, AssetInfoTag, AssetInfo + + +def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None: + wanted = normalize_tags(list(names)) + if not wanted: + return + rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))] + ins = ( + sqlite.insert(Tag) + .values(rows) + .on_conflict_do_nothing(index_elements=[Tag.name]) + ) + return session.execute(ins) + +def add_missing_tag_for_asset_id( + session: Session, + *, + asset_id: str, + origin: str = "automatic", +) -> None: + select_rows = ( + sqlalchemy.select( + AssetInfo.id.label("asset_info_id"), + sqlalchemy.literal("missing").label("tag_name"), + sqlalchemy.literal(origin).label("origin"), + sqlalchemy.literal(utcnow()).label("added_at"), + ) + .where(AssetInfo.asset_id == asset_id) + .where( + sqlalchemy.not_( + sqlalchemy.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing")) + ) + ) + ) + session.execute( + sqlite.insert(AssetInfoTag) + .from_select( + ["asset_info_id", "tag_name", "origin", "added_at"], + select_rows, + ) + .on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name]) + ) + +def remove_missing_tag_for_asset_id( + session: Session, + *, + asset_id: str, +) -> None: + session.execute( + sqlalchemy.delete(AssetInfoTag).where( + AssetInfoTag.asset_info_id.in_(sqlalchemy.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)), + AssetInfoTag.tag_name == "missing", + ) + ) diff --git a/app/assets/hashing.py b/app/assets/hashing.py new file mode 100644 index 000000000..4b72084b9 --- /dev/null +++ b/app/assets/hashing.py @@ -0,0 +1,75 @@ +from blake3 import blake3 +from typing import IO +import os +import asyncio + + +DEFAULT_CHUNK = 8 * 1024 *1024 # 8MB + +# NOTE: this allows hashing different representations of a file-like object +def blake3_hash( + fp: str | IO[bytes], + chunk_size: int = DEFAULT_CHUNK, +) -> str: + """ + Returns a BLAKE3 hex digest for ``fp``, which may be: + - a filename (str/bytes) or PathLike + - an open binary file object + If ``fp`` is a file object, it must be opened in **binary** mode and support + ``read``, ``seek``, and ``tell``. The function will seek to the start before + reading and will attempt to restore the original position afterward. + """ + # duck typing to check if input is a file-like object + if hasattr(fp, "read"): + return _hash_file_obj(fp, chunk_size) + + with open(os.fspath(fp), "rb") as f: + return _hash_file_obj(f, chunk_size) + + +async def blake3_hash_async( + fp: str | IO[bytes], + chunk_size: int = DEFAULT_CHUNK, +) -> str: + """Async wrapper for ``blake3_hash_sync``. + Uses a worker thread so the event loop remains responsive. + """ + # If it is a path, open inside the worker thread to keep I/O off the loop. + if hasattr(fp, "read"): + return await asyncio.to_thread(blake3_hash, fp, chunk_size) + + def _worker() -> str: + with open(os.fspath(fp), "rb") as f: + return _hash_file_obj(f, chunk_size) + + return await asyncio.to_thread(_worker) + + +def _hash_file_obj(file_obj: IO, chunk_size: int = DEFAULT_CHUNK) -> str: + """ + Hash an already-open binary file object by streaming in chunks. + - Seeks to the beginning before reading (if supported). + - Restores the original position afterward (if tell/seek are supported). + """ + if chunk_size <= 0: + chunk_size = DEFAULT_CHUNK + + # in case file object is already open and not at the beginning, track so can be restored after hashing + orig_pos = file_obj.tell() + + try: + # seek to the beginning before reading + if orig_pos != 0: + file_obj.seek(0) + + h = blake3() + while True: + chunk = file_obj.read(chunk_size) + if not chunk: + break + h.update(chunk) + return h.hexdigest() + finally: + # restore original position in file object, if needed + if orig_pos != 0: + file_obj.seek(orig_pos) diff --git a/app/assets/helpers.py b/app/assets/helpers.py new file mode 100644 index 000000000..6755d0e56 --- /dev/null +++ b/app/assets/helpers.py @@ -0,0 +1,216 @@ +import contextlib +import os +from aiohttp import web +from datetime import datetime, timezone +from pathlib import Path +from typing import Literal, Any + +import folder_paths + + +RootType = Literal["models", "input", "output"] +ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output") + +def get_query_dict(request: web.Request) -> dict[str, Any]: + """ + Gets a dictionary of query parameters from the request. + + 'request.query' is a MultiMapping[str], needs to be converted to a dictionary to be validated by Pydantic. + """ + query_dict = { + key: request.query.getall(key) if len(request.query.getall(key)) > 1 else request.query.get(key) + for key in request.query.keys() + } + return query_dict + +def list_tree(base_dir: str) -> list[str]: + out: list[str] = [] + base_abs = os.path.abspath(base_dir) + if not os.path.isdir(base_abs): + return out + for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False): + for name in filenames: + out.append(os.path.abspath(os.path.join(dirpath, name))) + return out + +def prefixes_for_root(root: RootType) -> list[str]: + if root == "models": + bases: list[str] = [] + for _bucket, paths in get_comfy_models_folders(): + bases.extend(paths) + return [os.path.abspath(p) for p in bases] + if root == "input": + return [os.path.abspath(folder_paths.get_input_directory())] + if root == "output": + return [os.path.abspath(folder_paths.get_output_directory())] + return [] + +def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]: + """Escapes %, _ and the escape char itself in a LIKE prefix. + Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like(). + """ + s = s.replace(escape, escape + escape) # escape the escape char first + s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards + return s, escape + +def fast_asset_file_check( + *, + mtime_db: int | None, + size_db: int | None, + stat_result: os.stat_result, +) -> bool: + if mtime_db is None: + return False + actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000)) + if int(mtime_db) != int(actual_mtime_ns): + return False + sz = int(size_db or 0) + if sz > 0: + return int(stat_result.st_size) == sz + return True + +def utcnow() -> datetime: + """Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC.""" + return datetime.now(timezone.utc).replace(tzinfo=None) + +def get_comfy_models_folders() -> list[tuple[str, list[str]]]: + """Build a list of (folder_name, base_paths[]) categories that are configured for model locations. + + We trust `folder_paths.folder_names_and_paths` and include a category if + *any* of its base paths lies under the Comfy `models_dir`. + """ + targets: list[tuple[str, list[str]]] = [] + models_root = os.path.abspath(folder_paths.models_dir) + for name, (paths, _exts) in folder_paths.folder_names_and_paths.items(): + if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths): + targets.append((name, paths)) + return targets + +def compute_relative_filename(file_path: str) -> str | None: + """ + Return the model's path relative to the last well-known folder (the model category), + using forward slashes, eg: + /.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors" + /.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors" + + For non-model paths, returns None. + NOTE: this is a temporary helper, used only for initializing metadata["filename"] field. + """ + try: + root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path) + except ValueError: + return None + + p = Path(rel_path) + parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)] + if not parts: + return None + + if root_category == "models": + # parts[0] is the category ("checkpoints", "vae", etc) – drop it + inside = parts[1:] if len(parts) > 1 else [parts[0]] + return "/".join(inside) + return "/".join(parts) # input/output: keep all parts + + +def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]: + """Given an absolute or relative file path, determine which root category the path belongs to: + - 'input' if the file resides under `folder_paths.get_input_directory()` + - 'output' if the file resides under `folder_paths.get_output_directory()` + - 'models' if the file resides under any base path of categories returned by `get_comfy_models_folders()` + + Returns: + (root_category, relative_path_inside_that_root) + For 'models', the relative path is prefixed with the category name: + e.g. ('models', 'vae/test/sub/ae.safetensors') + + Raises: + ValueError: if the path does not belong to input, output, or configured model bases. + """ + fp_abs = os.path.abspath(file_path) + + def _is_within(child: str, parent: str) -> bool: + try: + return os.path.commonpath([child, parent]) == parent + except Exception: + return False + + def _rel(child: str, parent: str) -> str: + return os.path.relpath(os.path.join(os.sep, os.path.relpath(child, parent)), os.sep) + + # 1) input + input_base = os.path.abspath(folder_paths.get_input_directory()) + if _is_within(fp_abs, input_base): + return "input", _rel(fp_abs, input_base) + + # 2) output + output_base = os.path.abspath(folder_paths.get_output_directory()) + if _is_within(fp_abs, output_base): + return "output", _rel(fp_abs, output_base) + + # 3) models (check deepest matching base to avoid ambiguity) + best: tuple[int, str, str] | None = None # (base_len, bucket, rel_inside_bucket) + for bucket, bases in get_comfy_models_folders(): + for b in bases: + base_abs = os.path.abspath(b) + if not _is_within(fp_abs, base_abs): + continue + cand = (len(base_abs), bucket, _rel(fp_abs, base_abs)) + if best is None or cand[0] > best[0]: + best = cand + + if best is not None: + _, bucket, rel_inside = best + combined = os.path.join(bucket, rel_inside) + return "models", os.path.relpath(os.path.join(os.sep, combined), os.sep) + + raise ValueError(f"Path is not within input, output, or configured model bases: {file_path}") + +def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]: + """Return a tuple (name, tags) derived from a filesystem path. + + Semantics: + - Root category is determined by `get_relative_to_root_category_path_of_asset`. + - The returned `name` is the base filename with extension from the relative path. + - The returned `tags` are: + [root_category] + parent folders of the relative path (in order) + For 'models', this means: + file '/.../ModelsDir/vae/test_tag/ae.safetensors' + -> root_category='models', some_path='vae/test_tag/ae.safetensors' + -> name='ae.safetensors', tags=['models', 'vae', 'test_tag'] + + Raises: + ValueError: if the path does not belong to input, output, or configured model bases. + """ + root_category, some_path = get_relative_to_root_category_path_of_asset(file_path) + p = Path(some_path) + parent_parts = [part for part in p.parent.parts if part not in (".", "..", p.anchor)] + return p.name, list(dict.fromkeys(normalize_tags([root_category, *parent_parts]))) + +def normalize_tags(tags: list[str] | None) -> list[str]: + """ + Normalize a list of tags by: + - Stripping whitespace and converting to lowercase. + - Removing duplicates. + """ + return [t.strip().lower() for t in (tags or []) if (t or "").strip()] + +def collect_models_files() -> list[str]: + out: list[str] = [] + for folder_name, bases in get_comfy_models_folders(): + rel_files = folder_paths.get_filename_list(folder_name) or [] + for rel_path in rel_files: + abs_path = folder_paths.get_full_path(folder_name, rel_path) + if not abs_path: + continue + abs_path = os.path.abspath(abs_path) + allowed = False + for b in bases: + base_abs = os.path.abspath(b) + with contextlib.suppress(Exception): + if os.path.commonpath([abs_path, base_abs]) == base_abs: + allowed = True + break + if allowed: + out.append(abs_path) + return out diff --git a/app/assets/manager.py b/app/assets/manager.py new file mode 100644 index 000000000..6425e7aa2 --- /dev/null +++ b/app/assets/manager.py @@ -0,0 +1,123 @@ +from typing import Sequence + +from app.database.db import create_session +from app.assets.api import schemas_out +from app.assets.database.queries import ( + asset_exists_by_hash, + fetch_asset_info_asset_and_tags, + list_asset_infos_page, + list_tags_with_usage, +) + + +def _safe_sort_field(requested: str | None) -> str: + if not requested: + return "created_at" + v = requested.lower() + if v in {"name", "created_at", "updated_at", "size", "last_access_time"}: + return v + return "created_at" + + +def asset_exists(asset_hash: str) -> bool: + with create_session() as session: + return asset_exists_by_hash(session, asset_hash=asset_hash) + +def list_assets( + include_tags: Sequence[str] | None = None, + exclude_tags: Sequence[str] | None = None, + name_contains: str | None = None, + metadata_filter: dict | None = None, + limit: int = 20, + offset: int = 0, + sort: str = "created_at", + order: str = "desc", + owner_id: str = "", +) -> schemas_out.AssetsList: + sort = _safe_sort_field(sort) + order = "desc" if (order or "desc").lower() not in {"asc", "desc"} else order.lower() + + with create_session() as session: + infos, tag_map, total = list_asset_infos_page( + session, + owner_id=owner_id, + include_tags=include_tags, + exclude_tags=exclude_tags, + name_contains=name_contains, + metadata_filter=metadata_filter, + limit=limit, + offset=offset, + sort=sort, + order=order, + ) + + summaries: list[schemas_out.AssetSummary] = [] + for info in infos: + asset = info.asset + tags = tag_map.get(info.id, []) + summaries.append( + schemas_out.AssetSummary( + id=info.id, + name=info.name, + asset_hash=asset.hash if asset else None, + size=int(asset.size_bytes) if asset else None, + mime_type=asset.mime_type if asset else None, + tags=tags, + preview_url=f"/api/assets/{info.id}/content", + created_at=info.created_at, + updated_at=info.updated_at, + last_access_time=info.last_access_time, + ) + ) + + return schemas_out.AssetsList( + assets=summaries, + total=total, + has_more=(offset + len(summaries)) < total, + ) + +def get_asset(asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail: + with create_session() as session: + res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id) + if not res: + raise ValueError(f"AssetInfo {asset_info_id} not found") + info, asset, tag_names = res + preview_id = info.preview_id + + return schemas_out.AssetDetail( + id=info.id, + name=info.name, + asset_hash=asset.hash if asset else None, + size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None, + mime_type=asset.mime_type if asset else None, + tags=tag_names, + user_metadata=info.user_metadata or {}, + preview_id=preview_id, + created_at=info.created_at, + last_access_time=info.last_access_time, + ) + +def list_tags( + prefix: str | None = None, + limit: int = 100, + offset: int = 0, + order: str = "count_desc", + include_zero: bool = True, + owner_id: str = "", +) -> schemas_out.TagsList: + limit = max(1, min(1000, limit)) + offset = max(0, offset) + + with create_session() as session: + rows, total = list_tags_with_usage( + session, + prefix=prefix, + limit=limit, + offset=offset, + include_zero=include_zero, + order=order, + owner_id=owner_id, + ) + + tags = [schemas_out.TagUsage(name=name, count=count, type=tag_type) for (name, tag_type, count) in rows] + return schemas_out.TagsList(tags=tags, total=total, has_more=(offset + len(tags)) < total) diff --git a/app/assets/scanner.py b/app/assets/scanner.py new file mode 100644 index 000000000..a16e41d94 --- /dev/null +++ b/app/assets/scanner.py @@ -0,0 +1,229 @@ +import contextlib +import time +import logging +import os +import sqlalchemy + +import folder_paths +from app.database.db import create_session, dependencies_available +from app.assets.helpers import ( + collect_models_files, compute_relative_filename, fast_asset_file_check, get_name_and_tags_from_asset_path, + list_tree,prefixes_for_root, escape_like_prefix, + RootType +) +from app.assets.database.tags import add_missing_tag_for_asset_id, ensure_tags_exist, remove_missing_tag_for_asset_id +from app.assets.database.bulk_ops import seed_from_paths_batch +from app.assets.database.models import Asset, AssetCacheState, AssetInfo + + +def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> None: + """ + Scan the given roots and seed the assets into the database. + """ + if not dependencies_available(): + if enable_logging: + logging.warning("Database dependencies not available, skipping assets scan") + return + t_start = time.perf_counter() + created = 0 + skipped_existing = 0 + paths: list[str] = [] + try: + existing_paths: set[str] = set() + for r in roots: + try: + survivors: set[str] = _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True) + if survivors: + existing_paths.update(survivors) + except Exception as e: + logging.exception("fast DB scan failed for %s: %s", r, e) + + if "models" in roots: + paths.extend(collect_models_files()) + if "input" in roots: + paths.extend(list_tree(folder_paths.get_input_directory())) + if "output" in roots: + paths.extend(list_tree(folder_paths.get_output_directory())) + + specs: list[dict] = [] + tag_pool: set[str] = set() + for p in paths: + abs_p = os.path.abspath(p) + if abs_p in existing_paths: + skipped_existing += 1 + continue + try: + stat_p = os.stat(abs_p, follow_symlinks=False) + except OSError: + continue + # skip empty files + if not stat_p.st_size: + continue + name, tags = get_name_and_tags_from_asset_path(abs_p) + specs.append( + { + "abs_path": abs_p, + "size_bytes": stat_p.st_size, + "mtime_ns": getattr(stat_p, "st_mtime_ns", int(stat_p.st_mtime * 1_000_000_000)), + "info_name": name, + "tags": tags, + "fname": compute_relative_filename(abs_p), + } + ) + for t in tags: + tag_pool.add(t) + # if no file specs, nothing to do + if not specs: + return + with create_session() as sess: + if tag_pool: + ensure_tags_exist(sess, tag_pool, tag_type="user") + + result = seed_from_paths_batch(sess, specs=specs, owner_id="") + created += result["inserted_infos"] + sess.commit() + finally: + if enable_logging: + logging.info( + "Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)", + roots, + time.perf_counter() - t_start, + created, + skipped_existing, + len(paths), + ) + + +def _fast_db_consistency_pass( + root: RootType, + *, + collect_existing_paths: bool = False, + update_missing_tags: bool = False, +) -> set[str] | None: + """Fast DB+FS pass for a root: + - Toggle needs_verify per state using fast check + - For hashed assets with at least one fast-ok state in this root: delete stale missing states + - For seed assets with all states missing: delete Asset and its AssetInfos + - Optionally add/remove 'missing' tags based on fast-ok in this root + - Optionally return surviving absolute paths + """ + prefixes = prefixes_for_root(root) + if not prefixes: + return set() if collect_existing_paths else None + + conds = [] + for p in prefixes: + base = os.path.abspath(p) + if not base.endswith(os.sep): + base += os.sep + escaped, esc = escape_like_prefix(base) + conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc)) + + with create_session() as sess: + rows = ( + sess.execute( + sqlalchemy.select( + AssetCacheState.id, + AssetCacheState.file_path, + AssetCacheState.mtime_ns, + AssetCacheState.needs_verify, + AssetCacheState.asset_id, + Asset.hash, + Asset.size_bytes, + ) + .join(Asset, Asset.id == AssetCacheState.asset_id) + .where(sqlalchemy.or_(*conds)) + .order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc()) + ) + ).all() + + by_asset: dict[str, dict] = {} + for sid, fp, mtime_db, needs_verify, aid, a_hash, a_size in rows: + acc = by_asset.get(aid) + if acc is None: + acc = {"hash": a_hash, "size_db": int(a_size or 0), "states": []} + by_asset[aid] = acc + + fast_ok = False + try: + exists = True + fast_ok = fast_asset_file_check( + mtime_db=mtime_db, + size_db=acc["size_db"], + stat_result=os.stat(fp, follow_symlinks=True), + ) + except FileNotFoundError: + exists = False + except OSError: + exists = False + + acc["states"].append({ + "sid": sid, + "fp": fp, + "exists": exists, + "fast_ok": fast_ok, + "needs_verify": bool(needs_verify), + }) + + to_set_verify: list[int] = [] + to_clear_verify: list[int] = [] + stale_state_ids: list[int] = [] + survivors: set[str] = set() + + for aid, acc in by_asset.items(): + a_hash = acc["hash"] + states = acc["states"] + any_fast_ok = any(s["fast_ok"] for s in states) + all_missing = all(not s["exists"] for s in states) + + for s in states: + if not s["exists"]: + continue + if s["fast_ok"] and s["needs_verify"]: + to_clear_verify.append(s["sid"]) + if not s["fast_ok"] and not s["needs_verify"]: + to_set_verify.append(s["sid"]) + + if a_hash is None: + if states and all_missing: # remove seed Asset completely, if no valid AssetCache exists + sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id == aid)) + asset = sess.get(Asset, aid) + if asset: + sess.delete(asset) + else: + for s in states: + if s["exists"]: + survivors.add(os.path.abspath(s["fp"])) + continue + + if any_fast_ok: # if Asset has at least one valid AssetCache record, remove any invalid AssetCache records + for s in states: + if not s["exists"]: + stale_state_ids.append(s["sid"]) + if update_missing_tags: + with contextlib.suppress(Exception): + remove_missing_tag_for_asset_id(sess, asset_id=aid) + elif update_missing_tags: + with contextlib.suppress(Exception): + add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic") + + for s in states: + if s["exists"]: + survivors.add(os.path.abspath(s["fp"])) + + if stale_state_ids: + sess.execute(sqlalchemy.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids))) + if to_set_verify: + sess.execute( + sqlalchemy.update(AssetCacheState) + .where(AssetCacheState.id.in_(to_set_verify)) + .values(needs_verify=True) + ) + if to_clear_verify: + sess.execute( + sqlalchemy.update(AssetCacheState) + .where(AssetCacheState.id.in_(to_clear_verify)) + .values(needs_verify=False) + ) + sess.commit() + return survivors if collect_existing_paths else None diff --git a/app/database/models.py b/app/database/models.py index 6facfb8f2..e7572677a 100644 --- a/app/database/models.py +++ b/app/database/models.py @@ -1,14 +1,21 @@ -from sqlalchemy.orm import declarative_base +from typing import Any +from datetime import datetime +from sqlalchemy.orm import DeclarativeBase -Base = declarative_base() +class Base(DeclarativeBase): + pass - -def to_dict(obj): +def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]: fields = obj.__table__.columns.keys() - return { - field: (val.to_dict() if hasattr(val, "to_dict") else val) - for field in fields - if (val := getattr(obj, field)) - } + out: dict[str, Any] = {} + for field in fields: + val = getattr(obj, field) + if val is None and not include_none: + continue + if isinstance(val, datetime): + out[field] = val.isoformat() + else: + out[field] = val + return out # TODO: Define models here diff --git a/comfy/cli_args.py b/comfy/cli_args.py index dae9a895d..1716c3de7 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -231,6 +231,7 @@ database_default_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db") ) parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.") +parser.add_argument("--disable-assets-autoscan", action="store_true", help="Disable asset scanning on startup for database synchronization.") if comfy.options.args_parsing: args = parser.parse_args() diff --git a/main.py b/main.py index 0e07a95da..37b06c1fa 100644 --- a/main.py +++ b/main.py @@ -7,6 +7,7 @@ import folder_paths import time from comfy.cli_args import args from app.logger import setup_logger +from app.assets.scanner import seed_assets import itertools import utils.extra_config import logging @@ -324,6 +325,8 @@ def setup_database(): from app.database.db import init_db, dependencies_available if dependencies_available(): init_db() + if not args.disable_assets_autoscan: + seed_assets(["models"], enable_logging=True) except Exception as e: logging.error(f"Failed to initialize database. Please ensure you have installed the latest requirements. If the error persists, please report this as in future the database will be required: {e}") diff --git a/server.py b/server.py index 4db3347cb..da2baefd4 100644 --- a/server.py +++ b/server.py @@ -33,6 +33,8 @@ import node_helpers from comfyui_version import __version__ from app.frontend_management import FrontendManager, parse_version from comfy_api.internal import _ComfyNodeInternal +from app.assets.scanner import seed_assets +from app.assets.api.routes import register_assets_system from app.user_manager import UserManager from app.model_manager import ModelFileManager @@ -235,6 +237,7 @@ class PromptServer(): else args.front_end_root ) logging.info(f"[Prompt Server] web root: {self.web_root}") + register_assets_system(self.app, self.user_manager) routes = web.RouteTableDef() self.routes = routes self.last_node_id = None @@ -683,6 +686,7 @@ class PromptServer(): @routes.get("/object_info") async def get_object_info(request): + seed_assets(["models"]) with folder_paths.cache_helper: out = {} for x in nodes.NODE_CLASS_MAPPINGS: From 6207f86c18d2cf2d70ab059987b62d4b38466e77 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 8 Jan 2026 20:34:48 -0800 Subject: [PATCH 23/74] Fix VAEEncodeForInpaint to support WAN VAE tuple downscale_ratio (#11572) Use vae.spacial_compression_encode() instead of directly accessing downscale_ratio to handle both standard VAEs (int) and WAN VAEs (tuple). Addresses reviewer feedback on PR #11259. Co-authored-by: ChrisFab16 --- nodes.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/nodes.py b/nodes.py index 56b74ebe3..1aa391f4a 100644 --- a/nodes.py +++ b/nodes.py @@ -378,14 +378,15 @@ class VAEEncodeForInpaint: CATEGORY = "latent/inpaint" def encode(self, vae, pixels, mask, grow_mask_by=6): - x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio - y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio + downscale_ratio = vae.spacial_compression_encode() + x = (pixels.shape[1] // downscale_ratio) * downscale_ratio + y = (pixels.shape[2] // downscale_ratio) * downscale_ratio mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear") pixels = pixels.clone() if pixels.shape[1] != x or pixels.shape[2] != y: - x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2 - y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2 + x_offset = (pixels.shape[1] % downscale_ratio) // 2 + y_offset = (pixels.shape[2] % downscale_ratio) // 2 pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:] mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset] From 4609fcd26081156eef921bd9f43726f670ee6f51 Mon Sep 17 00:00:00 2001 From: Terry Jia Date: Fri, 9 Jan 2026 00:31:19 -0500 Subject: [PATCH 24/74] add node - image compare (#11343) --- comfy_api/latest/_io.py | 13 +++++++ comfy_extras/nodes_image_compare.py | 53 +++++++++++++++++++++++++++++ nodes.py | 1 + 3 files changed, 67 insertions(+) create mode 100644 comfy_extras/nodes_image_compare.py diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 764fa8b2b..50143ff53 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -1113,6 +1113,18 @@ class DynamicSlot(ComfyTypeI): out_dict[input_type][finalized_id] = value out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) +@comfytype(io_type="IMAGECOMPARE") +class ImageCompare(ComfyTypeI): + Type = dict + + class Input(WidgetInput): + def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, + socketless: bool=True): + super().__init__(id, display_name, optional, tooltip, None, None, socketless) + + def as_dict(self): + return super().as_dict() + DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {} def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]): DYNAMIC_INPUT_LOOKUP[io_type] = func @@ -1958,4 +1970,5 @@ __all__ = [ "add_to_dict_v1", "add_to_dict_v3", "V3Data", + "ImageCompare", ] diff --git a/comfy_extras/nodes_image_compare.py b/comfy_extras/nodes_image_compare.py new file mode 100644 index 000000000..8e9f809e6 --- /dev/null +++ b/comfy_extras/nodes_image_compare.py @@ -0,0 +1,53 @@ +import nodes + +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension + + +class ImageCompare(IO.ComfyNode): + """Compares two images with a slider interface.""" + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="ImageCompare", + display_name="Image Compare", + description="Compares two images side by side with a slider.", + category="image", + is_experimental=True, + is_output_node=True, + inputs=[ + IO.Image.Input("image_a", optional=True), + IO.Image.Input("image_b", optional=True), + IO.ImageCompare.Input("compare_view"), + ], + outputs=[], + ) + + @classmethod + def execute(cls, image_a=None, image_b=None, compare_view=None) -> IO.NodeOutput: + result = {"a_images": [], "b_images": []} + + preview_node = nodes.PreviewImage() + + if image_a is not None and len(image_a) > 0: + saved = preview_node.save_images(image_a, "comfy.compare.a") + result["a_images"] = saved["ui"]["images"] + + if image_b is not None and len(image_b) > 0: + saved = preview_node.save_images(image_b, "comfy.compare.b") + result["b_images"] = saved["ui"]["images"] + + return IO.NodeOutput(ui=result) + + +class ImageCompareExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + ImageCompare, + ] + + +async def comfy_entrypoint() -> ImageCompareExtension: + return ImageCompareExtension() diff --git a/nodes.py b/nodes.py index 1aa391f4a..5a9d42d4a 100644 --- a/nodes.py +++ b/nodes.py @@ -2370,6 +2370,7 @@ async def init_builtin_extra_nodes(): "nodes_nop.py", "nodes_kandinsky5.py", "nodes_wanmove.py", + "nodes_image_compare.py", ] import_failed = [] From 04c49a29b493f3f9037b83cec45f6369b5c4816b Mon Sep 17 00:00:00 2001 From: ric-yu Date: Thu, 8 Jan 2026 21:57:36 -0800 Subject: [PATCH 25/74] feat: add cancelled filter to /jobs (#11680) --- comfy_execution/jobs.py | 31 +++++++++++++++++------------ tests/execution/test_jobs.py | 38 +++++++++++++++++++++++++++++++++++- 2 files changed, 55 insertions(+), 14 deletions(-) diff --git a/comfy_execution/jobs.py b/comfy_execution/jobs.py index 59fb49357..97fd803b8 100644 --- a/comfy_execution/jobs.py +++ b/comfy_execution/jobs.py @@ -14,8 +14,9 @@ class JobStatus: IN_PROGRESS = 'in_progress' COMPLETED = 'completed' FAILED = 'failed' + CANCELLED = 'cancelled' - ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED] + ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED, CANCELLED] # Media types that can be previewed in the frontend @@ -94,12 +95,6 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: status_info = history_item.get('status', {}) status_str = status_info.get('status_str') if status_info else None - if status_str == 'success': - status = JobStatus.COMPLETED - elif status_str == 'error': - status = JobStatus.FAILED - else: - status = JobStatus.COMPLETED outputs = history_item.get('outputs', {}) outputs_count, preview_output = get_outputs_summary(outputs) @@ -107,6 +102,7 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: execution_error = None execution_start_time = None execution_end_time = None + was_interrupted = False if status_info: messages = status_info.get('messages', []) for entry in messages: @@ -119,6 +115,15 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: execution_end_time = event_data.get('timestamp') if event_name == 'execution_error': execution_error = event_data + elif event_name == 'execution_interrupted': + was_interrupted = True + + if status_str == 'success': + status = JobStatus.COMPLETED + elif status_str == 'error': + status = JobStatus.CANCELLED if was_interrupted else JobStatus.FAILED + else: + status = JobStatus.COMPLETED job = prune_dict({ 'id': prompt_id, @@ -268,13 +273,13 @@ def get_all_jobs( for item in queued: jobs.append(normalize_queue_item(item, JobStatus.PENDING)) - include_completed = JobStatus.COMPLETED in status_filter - include_failed = JobStatus.FAILED in status_filter - if include_completed or include_failed: + history_statuses = {JobStatus.COMPLETED, JobStatus.FAILED, JobStatus.CANCELLED} + requested_history_statuses = history_statuses & set(status_filter) + if requested_history_statuses: for prompt_id, history_item in history.items(): - is_failed = history_item.get('status', {}).get('status_str') == 'error' - if (is_failed and include_failed) or (not is_failed and include_completed): - jobs.append(normalize_history_item(prompt_id, history_item)) + job = normalize_history_item(prompt_id, history_item) + if job.get('status') in requested_history_statuses: + jobs.append(job) if workflow_id: jobs = [j for j in jobs if j.get('workflow_id') == workflow_id] diff --git a/tests/execution/test_jobs.py b/tests/execution/test_jobs.py index 918c8080a..4d2f9ed36 100644 --- a/tests/execution/test_jobs.py +++ b/tests/execution/test_jobs.py @@ -19,6 +19,7 @@ class TestJobStatus: assert JobStatus.IN_PROGRESS == 'in_progress' assert JobStatus.COMPLETED == 'completed' assert JobStatus.FAILED == 'failed' + assert JobStatus.CANCELLED == 'cancelled' def test_all_contains_all_statuses(self): """ALL should contain all status values.""" @@ -26,7 +27,8 @@ class TestJobStatus: assert JobStatus.IN_PROGRESS in JobStatus.ALL assert JobStatus.COMPLETED in JobStatus.ALL assert JobStatus.FAILED in JobStatus.ALL - assert len(JobStatus.ALL) == 4 + assert JobStatus.CANCELLED in JobStatus.ALL + assert len(JobStatus.ALL) == 5 class TestIsPreviewable: @@ -336,6 +338,40 @@ class TestNormalizeHistoryItem: assert job['execution_error']['node_type'] == 'KSampler' assert job['execution_error']['exception_message'] == 'CUDA out of memory' + def test_cancelled_job(self): + """Cancelled/interrupted history item should have cancelled status.""" + history_item = { + 'prompt': ( + 5, + 'prompt-cancelled', + {'nodes': {}}, + {'create_time': 1234567890000}, + ['node1'], + ), + 'status': { + 'status_str': 'error', + 'completed': False, + 'messages': [ + ('execution_start', {'prompt_id': 'prompt-cancelled', 'timestamp': 1234567890500}), + ('execution_interrupted', { + 'prompt_id': 'prompt-cancelled', + 'node_id': '5', + 'node_type': 'KSampler', + 'executed': ['1', '2', '3'], + 'timestamp': 1234567891000, + }) + ] + }, + 'outputs': {}, + } + + job = normalize_history_item('prompt-cancelled', history_item) + assert job['status'] == 'cancelled' + assert job['execution_start_time'] == 1234567890500 + assert job['execution_end_time'] == 1234567891000 + # Cancelled jobs should not have execution_error set + assert 'execution_error' not in job + def test_include_outputs(self): """When include_outputs=True, should include full output data.""" history_item = { From ec0a832acb25fbe53bd4fc25d286a9ee442a3bcf Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Thu, 8 Jan 2026 22:49:12 -0800 Subject: [PATCH 26/74] Add workaround for hacky nodepack(s) that edit folder_names_and_paths to have values with tuples of more than 2. Other things could potentially break with those nodepack(s), so I will hunt for the guilty nodepack(s) now. (#11755) --- app/assets/helpers.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/app/assets/helpers.py b/app/assets/helpers.py index 6755d0e56..08b465b5a 100644 --- a/app/assets/helpers.py +++ b/app/assets/helpers.py @@ -81,7 +81,8 @@ def get_comfy_models_folders() -> list[tuple[str, list[str]]]: """ targets: list[tuple[str, list[str]]] = [] models_root = os.path.abspath(folder_paths.models_dir) - for name, (paths, _exts) in folder_paths.folder_names_and_paths.items(): + for name, values in folder_paths.folder_names_and_paths.items(): + paths, _exts = values[0], values[1] # NOTE: this prevents nodepacks that hackily edit folder_... from breaking ComfyUI if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths): targets.append((name, paths)) return targets From bd0e6825e84606e0706bbb5645e9ea1f4ad8154d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 9 Jan 2026 11:21:06 -0800 Subject: [PATCH 27/74] Be less strict when loading mixed ops weights. (#11769) --- comfy/ops.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/ops.py b/comfy/ops.py index 8156c42ff..1cf22f0cc 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -546,7 +546,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec weight_key = f"{prefix}weight" weight = state_dict.pop(weight_key, None) if weight is None: - raise ValueError(f"Missing weight for layer {layer_name}") + logging.warning(f"Missing weight for layer {layer_name}") + return manually_loaded_keys = [weight_key] From 4484b93d615059012d3a5ce91d1dbbb0cbaa2d76 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 9 Jan 2026 22:25:56 +0200 Subject: [PATCH 28/74] fix(api-nodes): do not downscale the input image for Topaz Enhance (#11768) --- comfy_api_nodes/nodes_topaz.py | 7 ++++--- comfy_api_nodes/util/upload_helpers.py | 3 ++- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py index b04575ad8..9dc5f45bc 100644 --- a/comfy_api_nodes/nodes_topaz.py +++ b/comfy_api_nodes/nodes_topaz.py @@ -2,7 +2,6 @@ import builtins from io import BytesIO import aiohttp -import torch from typing_extensions import override from comfy_api.latest import IO, ComfyExtension, Input @@ -138,7 +137,7 @@ class TopazImageEnhance(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str = "", subject_detection: str = "All", face_enhancement: bool = True, @@ -153,7 +152,9 @@ class TopazImageEnhance(IO.ComfyNode): ) -> IO.NodeOutput: if get_number_of_images(image) != 1: raise ValueError("Only one input image is supported.") - download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png") + download_url = await upload_images_to_comfyapi( + cls, image, max_images=1, mime_type="image/png", total_pixels=4096*4096 + ) initial_response = await sync_op( cls, ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"), diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index f1ed7fe9c..2535a0884 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -49,6 +49,7 @@ async def upload_images_to_comfyapi( mime_type: str | None = None, wait_label: str | None = "Uploading", show_batch_index: bool = True, + total_pixels: int = 2048 * 2048, ) -> list[str]: """ Uploads images to ComfyUI API and returns download URLs. @@ -63,7 +64,7 @@ async def upload_images_to_comfyapi( for idx in range(num_to_upload): tensor = image[idx] if is_batch else image - img_io = tensor_to_bytesio(tensor, mime_type=mime_type) + img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type) effective_label = wait_label if wait_label and show_batch_index and num_to_upload > 1: From 393d2880ddc6e57c0fa3b878bb50fa2901bd57e6 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 9 Jan 2026 22:59:38 +0200 Subject: [PATCH 29/74] feat(api-nodes): added nodes for Vidu2 (#11760) --- comfy_api_nodes/apis/vidu.py | 41 +++ comfy_api_nodes/nodes_vidu.py | 588 +++++++++++++++++++++++++--------- 2 files changed, 482 insertions(+), 147 deletions(-) create mode 100644 comfy_api_nodes/apis/vidu.py diff --git a/comfy_api_nodes/apis/vidu.py b/comfy_api_nodes/apis/vidu.py new file mode 100644 index 000000000..a9bb6f7ce --- /dev/null +++ b/comfy_api_nodes/apis/vidu.py @@ -0,0 +1,41 @@ +from pydantic import BaseModel, Field + + +class SubjectReference(BaseModel): + id: str = Field(...) + images: list[str] = Field(...) + + +class TaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(..., max_length=2000) + duration: int = Field(...) + seed: int = Field(..., ge=0, le=2147483647) + aspect_ratio: str | None = Field(None) + resolution: str | None = Field(None) + movement_amplitude: str | None = Field(None) + images: list[str] | None = Field(None, description="Base64 encoded string or image URL") + subjects: list[SubjectReference] | None = Field(None) + bgm: bool | None = Field(None) + audio: bool | None = Field(None) + + +class TaskCreationResponse(BaseModel): + task_id: str = Field(...) + state: str = Field(...) + created_at: str = Field(...) + code: int | None = Field(None, description="Error code") + + +class TaskResult(BaseModel): + id: str = Field(..., description="Creation id") + url: str = Field(..., description="The URL of the generated results, valid for one hour") + cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour") + + +class TaskStatusResponse(BaseModel): + state: str = Field(...) + err_code: str | None = Field(None) + progress: float | None = Field(None) + credits: int | None = Field(None) + creations: list[TaskResult] = Field(..., description="Generated results") diff --git a/comfy_api_nodes/nodes_vidu.py b/comfy_api_nodes/nodes_vidu.py index 7a679f0d9..9d94ae7ad 100644 --- a/comfy_api_nodes/nodes_vidu.py +++ b/comfy_api_nodes/nodes_vidu.py @@ -1,12 +1,13 @@ -import logging -from enum import Enum -from typing import Literal, Optional, TypeVar - -import torch -from pydantic import BaseModel, Field from typing_extensions import override -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.apis.vidu import ( + SubjectReference, + TaskCreationRequest, + TaskCreationResponse, + TaskResult, + TaskStatusResponse, +) from comfy_api_nodes.util import ( ApiEndpoint, download_url_to_video_output, @@ -17,6 +18,7 @@ from comfy_api_nodes.util import ( validate_image_aspect_ratio, validate_image_dimensions, validate_images_aspect_ratio_closeness, + validate_string, ) VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video" @@ -25,98 +27,33 @@ VIDU_REFERENCE_VIDEO = "/proxy/vidu/reference2video" VIDU_START_END_VIDEO = "/proxy/vidu/start-end2video" VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations" -R = TypeVar("R") - - -class VideoModelName(str, Enum): - vidu_q1 = "viduq1" - - -class AspectRatio(str, Enum): - r_16_9 = "16:9" - r_9_16 = "9:16" - r_1_1 = "1:1" - - -class Resolution(str, Enum): - r_1080p = "1080p" - - -class MovementAmplitude(str, Enum): - auto = "auto" - small = "small" - medium = "medium" - large = "large" - - -class TaskCreationRequest(BaseModel): - model: VideoModelName = VideoModelName.vidu_q1 - prompt: Optional[str] = Field(None, max_length=1500) - duration: Optional[Literal[5]] = 5 - seed: Optional[int] = Field(0, ge=0, le=2147483647) - aspect_ratio: Optional[AspectRatio] = AspectRatio.r_16_9 - resolution: Optional[Resolution] = Resolution.r_1080p - movement_amplitude: Optional[MovementAmplitude] = MovementAmplitude.auto - images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL") - - -class TaskCreationResponse(BaseModel): - task_id: str = Field(...) - state: str = Field(...) - created_at: str = Field(...) - code: Optional[int] = Field(None, description="Error code") - - -class TaskResult(BaseModel): - id: str = Field(..., description="Creation id") - url: str = Field(..., description="The URL of the generated results, valid for one hour") - cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour") - - -class TaskStatusResponse(BaseModel): - state: str = Field(...) - err_code: Optional[str] = Field(None) - creations: list[TaskResult] = Field(..., description="Generated results") - - -def get_video_url_from_response(response) -> Optional[str]: - if response.creations: - return response.creations[0].url - return None - - -def get_video_from_response(response) -> TaskResult: - if not response.creations: - error_msg = f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}" - logging.info(error_msg) - raise RuntimeError(error_msg) - logging.info("Vidu task %s succeeded. Video URL: %s", response.creations[0].id, response.creations[0].url) - return response.creations[0] - async def execute_task( cls: type[IO.ComfyNode], vidu_endpoint: str, payload: TaskCreationRequest, - estimated_duration: int, -) -> R: - response = await sync_op( +) -> list[TaskResult]: + task_creation_response = await sync_op( cls, endpoint=ApiEndpoint(path=vidu_endpoint, method="POST"), response_model=TaskCreationResponse, data=payload, ) - if response.state == "failed": - error_msg = f"Vidu request failed. Code: {response.code}" - logging.error(error_msg) - raise RuntimeError(error_msg) - return await poll_op( + if task_creation_response.state == "failed": + raise RuntimeError(f"Vidu request failed. Code: {task_creation_response.code}") + response = await poll_op( cls, - ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % response.task_id), + ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % task_creation_response.task_id), response_model=TaskStatusResponse, status_extractor=lambda r: r.state, - estimated_duration=estimated_duration, + progress_extractor=lambda r: r.progress, + max_poll_attempts=320, ) + if not response.creations: + raise RuntimeError( + f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}" + ) + return response.creations class ViduTextToVideoNode(IO.ComfyNode): @@ -127,14 +64,9 @@ class ViduTextToVideoNode(IO.ComfyNode): node_id="ViduTextToVideoNode", display_name="Vidu Text To Video Generation", category="api node/video/Vidu", - description="Generate video from text prompt", + description="Generate video from a text prompt", inputs=[ - IO.Combo.Input( - "model", - options=VideoModelName, - default=VideoModelName.vidu_q1, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.String.Input( "prompt", multiline=True, @@ -163,22 +95,19 @@ class ViduTextToVideoNode(IO.ComfyNode): ), IO.Combo.Input( "aspect_ratio", - options=AspectRatio, - default=AspectRatio.r_16_9, + options=["16:9", "9:16", "1:1"], tooltip="The aspect ratio of the output video", optional=True, ), IO.Combo.Input( "resolution", - options=Resolution, - default=Resolution.r_1080p, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=MovementAmplitude, - default=MovementAmplitude.auto, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -208,7 +137,7 @@ class ViduTextToVideoNode(IO.ComfyNode): if not prompt: raise ValueError("The prompt field is required and cannot be empty.") payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -216,8 +145,8 @@ class ViduTextToVideoNode(IO.ComfyNode): resolution=resolution, movement_amplitude=movement_amplitude, ) - results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload, 320) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduImageToVideoNode(IO.ComfyNode): @@ -230,12 +159,7 @@ class ViduImageToVideoNode(IO.ComfyNode): category="api node/video/Vidu", description="Generate video from image and optional prompt", inputs=[ - IO.Combo.Input( - "model", - options=VideoModelName, - default=VideoModelName.vidu_q1, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.Image.Input( "image", tooltip="An image to be used as the start frame of the generated video", @@ -270,15 +194,13 @@ class ViduImageToVideoNode(IO.ComfyNode): ), IO.Combo.Input( "resolution", - options=Resolution, - default=Resolution.r_1080p, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=MovementAmplitude, - default=MovementAmplitude.auto.value, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -298,7 +220,7 @@ class ViduImageToVideoNode(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, duration: int, seed: int, @@ -309,7 +231,7 @@ class ViduImageToVideoNode(IO.ComfyNode): raise ValueError("Only one input image is allowed.") validate_image_aspect_ratio(image, (1, 4), (4, 1)) payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -322,8 +244,8 @@ class ViduImageToVideoNode(IO.ComfyNode): max_images=1, mime_type="image/png", ) - results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload, 120) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduReferenceVideoNode(IO.ComfyNode): @@ -334,14 +256,9 @@ class ViduReferenceVideoNode(IO.ComfyNode): node_id="ViduReferenceVideoNode", display_name="Vidu Reference To Video Generation", category="api node/video/Vidu", - description="Generate video from multiple images and prompt", + description="Generate video from multiple images and a prompt", inputs=[ - IO.Combo.Input( - "model", - options=VideoModelName, - default=VideoModelName.vidu_q1, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.Image.Input( "images", tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).", @@ -374,22 +291,19 @@ class ViduReferenceVideoNode(IO.ComfyNode): ), IO.Combo.Input( "aspect_ratio", - options=AspectRatio, - default=AspectRatio.r_16_9, + options=["16:9", "9:16", "1:1"], tooltip="The aspect ratio of the output video", optional=True, ), IO.Combo.Input( "resolution", - options=[model.value for model in Resolution], - default=Resolution.r_1080p.value, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=[model.value for model in MovementAmplitude], - default=MovementAmplitude.auto.value, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -409,7 +323,7 @@ class ViduReferenceVideoNode(IO.ComfyNode): async def execute( cls, model: str, - images: torch.Tensor, + images: Input.Image, prompt: str, duration: int, seed: int, @@ -426,7 +340,7 @@ class ViduReferenceVideoNode(IO.ComfyNode): validate_image_aspect_ratio(image, (1, 4), (4, 1)) validate_image_dimensions(image, min_width=128, min_height=128) payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -440,8 +354,8 @@ class ViduReferenceVideoNode(IO.ComfyNode): max_images=7, mime_type="image/png", ) - results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload, 120) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduStartEndToVideoNode(IO.ComfyNode): @@ -454,12 +368,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode): category="api node/video/Vidu", description="Generate a video from start and end frames and a prompt", inputs=[ - IO.Combo.Input( - "model", - options=[model.value for model in VideoModelName], - default=VideoModelName.vidu_q1.value, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.Image.Input( "first_frame", tooltip="Start frame", @@ -497,15 +406,13 @@ class ViduStartEndToVideoNode(IO.ComfyNode): ), IO.Combo.Input( "resolution", - options=[model.value for model in Resolution], - default=Resolution.r_1080p.value, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=[model.value for model in MovementAmplitude], - default=MovementAmplitude.auto.value, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -525,8 +432,8 @@ class ViduStartEndToVideoNode(IO.ComfyNode): async def execute( cls, model: str, - first_frame: torch.Tensor, - end_frame: torch.Tensor, + first_frame: Input.Image, + end_frame: Input.Image, prompt: str, duration: int, seed: int, @@ -535,7 +442,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode): ) -> IO.NodeOutput: validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False) payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -546,8 +453,391 @@ class ViduStartEndToVideoNode(IO.ComfyNode): (await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0] for frame in (first_frame, end_frame) ] - results = await execute_task(cls, VIDU_START_END_VIDEO, payload, 96) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_START_END_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2TextToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2TextToVideoNode", + display_name="Vidu2 Text-to-Video Generation", + category="api node/video/Vidu", + description="Generate video from a text prompt", + inputs=[ + IO.Combo.Input("model", options=["viduq2"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A textual description for video generation, with a maximum length of 2000 characters.", + ), + IO.Int.Input( + "duration", + default=5, + min=1, + max=10, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "3:4", "4:3", "1:1"]), + IO.Combo.Input("resolution", options=["720p", "1080p"]), + IO.Boolean.Input( + "background_music", + default=False, + tooltip="Whether to add background music to the generated video.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + duration: int, + seed: int, + aspect_ratio: str, + resolution: str, + background_music: bool, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2000) + results = await execute_task( + cls, + VIDU_TEXT_TO_VIDEO, + TaskCreationRequest( + model=model, + prompt=prompt, + duration=duration, + seed=seed, + aspect_ratio=aspect_ratio, + resolution=resolution, + bgm=background_music, + ), + ) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2ImageToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2ImageToVideoNode", + display_name="Vidu2 Image-to-Video Generation", + category="api node/video/Vidu", + description="Generate a video from an image and an optional prompt.", + inputs=[ + IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]), + IO.Image.Input( + "image", + tooltip="An image to be used as the start frame of the generated video.", + ), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="An optional text prompt for video generation (max 2000 characters).", + ), + IO.Int.Input( + "duration", + default=5, + min=1, + max=10, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input( + "resolution", + options=["720p", "1080p"], + ), + IO.Combo.Input( + "movement_amplitude", + options=["auto", "small", "medium", "large"], + tooltip="The movement amplitude of objects in the frame.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + image: Input.Image, + prompt: str, + duration: int, + seed: int, + resolution: str, + movement_amplitude: str, + ) -> IO.NodeOutput: + if get_number_of_images(image) > 1: + raise ValueError("Only one input image is allowed.") + validate_image_aspect_ratio(image, (1, 4), (4, 1)) + validate_string(prompt, max_length=2000) + results = await execute_task( + cls, + VIDU_IMAGE_TO_VIDEO, + TaskCreationRequest( + model=model, + prompt=prompt, + duration=duration, + seed=seed, + resolution=resolution, + movement_amplitude=movement_amplitude, + images=await upload_images_to_comfyapi( + cls, + image, + max_images=1, + mime_type="image/png", + ), + ), + ) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2ReferenceVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2ReferenceVideoNode", + display_name="Vidu2 Reference-to-Video Generation", + category="api node/video/Vidu", + description="Generate a video from multiple reference images and a prompt.", + inputs=[ + IO.Combo.Input("model", options=["viduq2"]), + IO.Autogrow.Input( + "subjects", + template=IO.Autogrow.TemplateNames( + IO.Image.Input("reference_images"), + names=["subject1", "subject2", "subject3"], + min=1, + ), + tooltip="For each subject, provide up to 3 reference images (7 images total across all subjects). " + "Reference them in prompts via @subject{subject_id}.", + ), + IO.String.Input( + "prompt", + multiline=True, + tooltip="When enabled, the video will include generated speech and background music " + "based on the prompt.", + ), + IO.Boolean.Input( + "audio", + default=False, + tooltip="When enabled video will contain generated speech and background music based on the prompt.", + ), + IO.Int.Input( + "duration", + default=5, + min=1, + max=10, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "4:3", "3:4", "1:1"]), + IO.Combo.Input("resolution", options=["720p"]), + IO.Combo.Input( + "movement_amplitude", + options=["auto", "small", "medium", "large"], + tooltip="The movement amplitude of objects in the frame.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + subjects: IO.Autogrow.Type, + prompt: str, + audio: bool, + duration: int, + seed: int, + aspect_ratio: str, + resolution: str, + movement_amplitude: str, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2000) + total_images = 0 + for i in subjects: + if get_number_of_images(subjects[i]) > 3: + raise ValueError("Maximum number of images per subject is 3.") + for im in subjects[i]: + total_images += 1 + validate_image_aspect_ratio(im, (1, 4), (4, 1)) + validate_image_dimensions(im, min_width=128, min_height=128) + if total_images > 7: + raise ValueError("Too many reference images; the maximum allowed is 7.") + subjects_param: list[SubjectReference] = [] + for i in subjects: + subjects_param.append( + SubjectReference( + id=i, + images=await upload_images_to_comfyapi( + cls, + subjects[i], + max_images=3, + mime_type="image/png", + wait_label=f"Uploading reference images for {i}", + ), + ), + ) + payload = TaskCreationRequest( + model=model, + prompt=prompt, + audio=audio, + duration=duration, + seed=seed, + aspect_ratio=aspect_ratio, + resolution=resolution, + movement_amplitude=movement_amplitude, + subjects=subjects_param, + ) + results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2StartEndToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2StartEndToVideoNode", + display_name="Vidu2 Start/End Frame-to-Video Generation", + category="api node/video/Vidu", + description="Generate a video from a start frame, an end frame, and a prompt.", + inputs=[ + IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]), + IO.Image.Input("first_frame"), + IO.Image.Input("end_frame"), + IO.String.Input( + "prompt", + multiline=True, + tooltip="Prompt description (max 2000 characters).", + ), + IO.Int.Input( + "duration", + default=5, + min=2, + max=8, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input("resolution", options=["720p", "1080p"]), + IO.Combo.Input( + "movement_amplitude", + options=["auto", "small", "medium", "large"], + tooltip="The movement amplitude of objects in the frame.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + first_frame: Input.Image, + end_frame: Input.Image, + prompt: str, + duration: int, + seed: int, + resolution: str, + movement_amplitude: str, + ) -> IO.NodeOutput: + validate_string(prompt, max_length=2000) + if get_number_of_images(first_frame) > 1: + raise ValueError("Only one input image is allowed for `first_frame`.") + if get_number_of_images(end_frame) > 1: + raise ValueError("Only one input image is allowed for `end_frame`.") + validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False) + payload = TaskCreationRequest( + model=model, + prompt=prompt, + duration=duration, + seed=seed, + resolution=resolution, + movement_amplitude=movement_amplitude, + images=[ + (await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0] + for frame in (first_frame, end_frame) + ], + ) + results = await execute_task(cls, VIDU_START_END_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduExtension(ComfyExtension): @@ -558,6 +848,10 @@ class ViduExtension(ComfyExtension): ViduImageToVideoNode, ViduReferenceVideoNode, ViduStartEndToVideoNode, + Vidu2TextToVideoNode, + Vidu2ImageToVideoNode, + Vidu2ReferenceVideoNode, + Vidu2StartEndToVideoNode, ] From 153bc524bf9db76d723289f6420f418f63966972 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Sat, 10 Jan 2026 14:29:30 +0800 Subject: [PATCH 30/74] chore: update embedded docs to v0.4.0 (#11776) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 7686a5f8a..6c1cd86d2 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ comfyui-frontend-package==1.36.13 comfyui-workflow-templates==0.7.69 -comfyui-embedded-docs==0.3.1 +comfyui-embedded-docs==0.4.0 torch torchsde torchvision From dc202a2e51bf7a6cd00e606b2d2941bc223f2ad2 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 9 Jan 2026 23:03:57 -0800 Subject: [PATCH 31/74] Properly save mixed ops. (#11772) --- comfy/ops.py | 26 ++++++++++++------- .../comfy_quant/test_mixed_precision.py | 6 ++--- 2 files changed, 20 insertions(+), 12 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 1cf22f0cc..9c0b54ff4 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -625,21 +625,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec missing_keys.remove(key) def state_dict(self, *args, destination=None, prefix="", **kwargs): - sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) - if isinstance(self.weight, QuantizedTensor): - layout_cls = self.weight._layout_cls + if destination is not None: + sd = destination + else: + sd = {} - # Check if it's any FP8 variant (E4M3 or E5M2) - if layout_cls in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"): - sd["{}weight_scale".format(prefix)] = self.weight._params.scale - elif layout_cls == "TensorCoreNVFP4Layout": - sd["{}weight_scale_2".format(prefix)] = self.weight._params.scale - sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale + if self.bias is not None: + sd["{}bias".format(prefix)] = self.bias + + if isinstance(self.weight, QuantizedTensor): + sd_out = self.weight.state_dict("{}weight".format(prefix)) + for k in sd_out: + sd[k] = sd_out[k] quant_conf = {"format": self.quant_format} if self._full_precision_mm_config: quant_conf["full_precision_matrix_mult"] = True sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8) + + input_scale = getattr(self, 'input_scale', None) + if input_scale is not None: + sd["{}input_scale".format(prefix)] = input_scale + else: + sd["{}weight".format(prefix)] = self.weight return sd def _forward(self, input, weight, bias): diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index 7b2eac940..7c740491d 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -153,9 +153,9 @@ class TestMixedPrecisionOps(unittest.TestCase): state_dict2 = model.state_dict() # Verify layer1.weight is a QuantizedTensor with scale preserved - self.assertIsInstance(state_dict2["layer1.weight"], QuantizedTensor) - self.assertEqual(state_dict2["layer1.weight"]._params.scale.item(), 3.0) - self.assertEqual(state_dict2["layer1.weight"]._layout_cls, "TensorCoreFP8E4M3Layout") + self.assertTrue(torch.equal(state_dict2["layer1.weight"].view(torch.uint8), fp8_weight.view(torch.uint8))) + self.assertEqual(state_dict2["layer1.weight_scale"].item(), 3.0) + self.assertEqual(model.layer1.weight._layout_cls, "TensorCoreFP8E4M3Layout") # Verify non-quantized layers are standard tensors self.assertNotIsInstance(state_dict2["layer2.weight"], QuantizedTensor) From 6e4b1f9d00306fe14d7ca5adf2c7468d631b23d5 Mon Sep 17 00:00:00 2001 From: DELUXA Date: Sat, 10 Jan 2026 23:51:05 +0200 Subject: [PATCH 32/74] pythorch_attn_by_def_on_gfx1200 (#11793) --- comfy/model_management.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index e5de4a5b5..9d39be7b2 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -368,7 +368,7 @@ try: if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950 ENABLE_PYTORCH_ATTENTION = True if rocm_version >= (7, 0): - if any((a in arch) for a in ["gfx1201"]): + if any((a in arch) for a in ["gfx1200", "gfx1201"]): ENABLE_PYTORCH_ATTENTION = True if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4): if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0 From cd912963f17c9ae00ec12e1869293edb78720831 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 10 Jan 2026 14:31:31 -0800 Subject: [PATCH 33/74] Fix issue with t5 text encoder in fp4. (#11794) --- comfy/model_detection.py | 2 ++ comfy/sd.py | 4 ++-- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 0853b3aec..aff5a50b9 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -237,6 +237,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): else: dit_config["vec_in_dim"] = None + dit_config["num_heads"] = dit_config["hidden_size"] // sum(dit_config["axes_dim"]) + dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma diff --git a/comfy/sd.py b/comfy/sd.py index 5a7221620..b689c0dfc 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -1059,9 +1059,9 @@ def detect_te_model(sd): return TEModel.JINA_CLIP_2 if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd: weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"] - if weight.shape[-1] == 4096: + if weight.shape[0] == 10240: return TEModel.T5_XXL - elif weight.shape[-1] == 2048: + elif weight.shape[0] == 5120: return TEModel.T5_XL if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd: return TEModel.T5_XXL_OLD From 2f642d5d9b48ad7cad13bbdd5f8adcf506f565a7 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 10 Jan 2026 14:40:42 -0800 Subject: [PATCH 34/74] Fix chroma fp8 te being treated as fp16. (#11795) --- comfy/text_encoders/cosmos.py | 2 +- comfy/text_encoders/genmo.py | 2 +- comfy/text_encoders/pixart_t5.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy/text_encoders/cosmos.py b/comfy/text_encoders/cosmos.py index 448381fa9..f4b40ac68 100644 --- a/comfy/text_encoders/cosmos.py +++ b/comfy/text_encoders/cosmos.py @@ -36,7 +36,7 @@ def te(dtype_t5=None, t5_quantization_metadata=None): if t5_quantization_metadata is not None: model_options = model_options.copy() model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata - if dtype is None: + if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return CosmosTEModel_ diff --git a/comfy/text_encoders/genmo.py b/comfy/text_encoders/genmo.py index 5daea8135..2d7a3fbce 100644 --- a/comfy/text_encoders/genmo.py +++ b/comfy/text_encoders/genmo.py @@ -32,7 +32,7 @@ def mochi_te(dtype_t5=None, t5_quantization_metadata=None): if t5_quantization_metadata is not None: model_options = model_options.copy() model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata - if dtype is None: + if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return MochiTEModel_ diff --git a/comfy/text_encoders/pixart_t5.py b/comfy/text_encoders/pixart_t5.py index e5e5f18be..51c6e50c7 100644 --- a/comfy/text_encoders/pixart_t5.py +++ b/comfy/text_encoders/pixart_t5.py @@ -36,7 +36,7 @@ def pixart_te(dtype_t5=None, t5_quantization_metadata=None): if t5_quantization_metadata is not None: model_options = model_options.copy() model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata - if dtype is None: + if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return PixArtTEModel_ From 5cd1113236b0fb032a51bf9d63ba196a2510b0d4 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sun, 11 Jan 2026 13:07:11 +0200 Subject: [PATCH 35/74] fix(api-nodes): use a unique name for uploading audio files (#11778) --- comfy_api_nodes/nodes_kling.py | 2 +- comfy_api_nodes/util/conversions.py | 4 ++-- comfy_api_nodes/util/upload_helpers.py | 3 +-- 3 files changed, 4 insertions(+), 5 deletions(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 9c707a339..01d9c34f5 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -567,7 +567,7 @@ async def execute_lipsync( # Upload the audio file to Comfy API and get download URL if audio: audio_url = await upload_audio_to_comfyapi( - cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg", filename="output.mp3" + cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg" ) logging.info("Uploaded audio to Comfy API. URL: %s", audio_url) else: diff --git a/comfy_api_nodes/util/conversions.py b/comfy_api_nodes/util/conversions.py index d64239c86..99c302a2a 100644 --- a/comfy_api_nodes/util/conversions.py +++ b/comfy_api_nodes/util/conversions.py @@ -55,7 +55,7 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to def tensor_to_bytesio( image: torch.Tensor, - name: str | None = None, + *, total_pixels: int = 2048 * 2048, mime_type: str = "image/png", ) -> BytesIO: @@ -75,7 +75,7 @@ def tensor_to_bytesio( pil_image = tensor_to_pil(image, total_pixels=total_pixels) img_binary = pil_to_bytesio(pil_image, mime_type=mime_type) - img_binary.name = f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}" + img_binary.name = f"{uuid.uuid4()}.{mimetype_to_extension(mime_type)}" return img_binary diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index 2535a0884..cea0d1203 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -82,7 +82,6 @@ async def upload_audio_to_comfyapi( container_format: str = "mp4", codec_name: str = "aac", mime_type: str = "audio/mp4", - filename: str = "uploaded_audio.mp4", ) -> str: """ Uploads a single audio input to ComfyUI API and returns its download URL. @@ -92,7 +91,7 @@ async def upload_audio_to_comfyapi( waveform: torch.Tensor = audio["waveform"] audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, container_format, codec_name) - return await upload_file_to_comfyapi(cls, audio_bytes_io, filename, mime_type) + return await upload_file_to_comfyapi(cls, audio_bytes_io, f"{uuid.uuid4()}.{container_format}", mime_type) async def upload_video_to_comfyapi( From c6238047ee1ffd87eade7c3ab5a8e53c11d4ce39 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 11 Jan 2026 18:11:53 -0800 Subject: [PATCH 36/74] Put more details about portable in readme. (#11816) --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 6d09758c0..e25f3cda7 100644 --- a/README.md +++ b/README.md @@ -183,7 +183,7 @@ Simply download, extract with [7-Zip](https://7-zip.org) or with the windows exp If you have trouble extracting it, right click the file -> properties -> unblock -Update your Nvidia drivers if it doesn't start. +The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start. #### Alternative Downloads: @@ -212,7 +212,7 @@ Python 3.14 works but you may encounter issues with the torch compile node. The Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12 -torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old. +torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old. ### Instructions: From a3b5d4996abcd906c7c99f15b69fde051afcb4be Mon Sep 17 00:00:00 2001 From: kelseyee <971704395@qq.com> Date: Tue, 13 Jan 2026 04:38:46 +0800 Subject: [PATCH 37/74] Support ModelScope-Trainer DiffSynth lora for Z Image. (#11805) --- comfy/lora.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/lora.py b/comfy/lora.py index 2ed0acb9d..e8246bd66 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -322,6 +322,7 @@ def model_lora_keys_unet(model, key_map={}): key_map["diffusion_model.{}".format(key_lora)] = to key_map["transformer.{}".format(key_lora)] = to key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + key_map[key_lora] = to if isinstance(model, comfy.model_base.Kandinsky5): for k in sdk: From c881a1d6897d8fee84559a8e3e49b9116efdb959 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 12 Jan 2026 14:05:54 -0800 Subject: [PATCH 38/74] Support the siglip 2 naflex model as a clip vision model. (#11831) Not useful yet. --- comfy/clip_model.py | 62 +++++++++++++++++++++- comfy/clip_vision.py | 25 ++++++--- comfy/clip_vision_siglip2_base_naflex.json | 14 +++++ 3 files changed, 91 insertions(+), 10 deletions(-) create mode 100644 comfy/clip_vision_siglip2_base_naflex.json diff --git a/comfy/clip_model.py b/comfy/clip_model.py index e88872728..d7d3f994c 100644 --- a/comfy/clip_model.py +++ b/comfy/clip_model.py @@ -1,6 +1,7 @@ import torch from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.ops +import math def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): image = image[:, :, :, :3] if image.shape[3] > 3 else image @@ -21,6 +22,39 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s image = torch.clip((255. * image), 0, 255).round() / 255.0 return (image - mean.view([3,1,1])) / std.view([3,1,1]) +def siglip2_flex_calc_resolution(oh, ow, patch_size, max_num_patches, eps=1e-5): + def scale_dim(size, scale): + scaled = math.ceil(size * scale / patch_size) * patch_size + return max(patch_size, int(scaled)) + + # Binary search for optimal scale + lo, hi = eps / 10, 100.0 + while hi - lo >= eps: + mid = (lo + hi) / 2 + h, w = scale_dim(oh, mid), scale_dim(ow, mid) + if (h // patch_size) * (w // patch_size) <= max_num_patches: + lo = mid + else: + hi = mid + + return scale_dim(oh, lo), scale_dim(ow, lo) + +def siglip2_preprocess(image, size, patch_size, num_patches, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True): + if size > 0: + return clip_preprocess(image, size=size, mean=mean, std=std, crop=crop) + + image = image[:, :, :, :3] if image.shape[3] > 3 else image + mean = torch.tensor(mean, device=image.device, dtype=image.dtype) + std = torch.tensor(std, device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + + b, c, h, w = image.shape + h, w = siglip2_flex_calc_resolution(h, w, patch_size, num_patches) + + image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear", antialias=True) + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1]) + class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): super().__init__() @@ -175,6 +209,27 @@ class CLIPTextModel(torch.nn.Module): out = self.text_projection(x[2]) return (x[0], x[1], out, x[2]) +def siglip2_pos_embed(embed_weight, embeds, orig_shape): + embed_weight_len = round(embed_weight.shape[0] ** 0.5) + embed_weight = comfy.ops.cast_to_input(embed_weight, embeds).movedim(1, 0).reshape(1, -1, embed_weight_len, embed_weight_len) + embed_weight = torch.nn.functional.interpolate(embed_weight, size=orig_shape, mode="bilinear", align_corners=False, antialias=True) + embed_weight = embed_weight.reshape(-1, embed_weight.shape[-2] * embed_weight.shape[-1]).movedim(0, 1) + return embeds + embed_weight + +class Siglip2Embeddings(torch.nn.Module): + def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", num_patches=None, dtype=None, device=None, operations=None): + super().__init__() + self.patch_embedding = operations.Linear(num_channels * patch_size * patch_size, embed_dim, dtype=dtype, device=device) + self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device) + self.patch_size = patch_size + + def forward(self, pixel_values): + b, c, h, w = pixel_values.shape + img = pixel_values.movedim(1, -1).reshape(b, h // self.patch_size, self.patch_size, w // self.patch_size, self.patch_size, c) + img = img.permute(0, 1, 3, 2, 4, 5) + img = img.reshape(b, img.shape[1] * img.shape[2], -1) + img = self.patch_embedding(img) + return siglip2_pos_embed(self.position_embedding.weight, img, (h // self.patch_size, w // self.patch_size)) class CLIPVisionEmbeddings(torch.nn.Module): def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None): @@ -218,8 +273,11 @@ class CLIPVision(torch.nn.Module): intermediate_activation = config_dict["hidden_act"] model_type = config_dict["model_type"] - self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations) - if model_type == "siglip_vision_model": + if model_type in ["siglip2_vision_model"]: + self.embeddings = Siglip2Embeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, num_patches=config_dict.get("num_patches", None), dtype=dtype, device=device, operations=operations) + else: + self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations) + if model_type in ["siglip_vision_model", "siglip2_vision_model"]: self.pre_layrnorm = lambda a: a self.output_layernorm = True else: diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index d5fc53497..66f2a9d9c 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -21,6 +21,7 @@ clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from br IMAGE_ENCODERS = { "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection, "siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection, + "siglip2_vision_model": comfy.clip_model.CLIPVisionModelProjection, "dinov2": comfy.image_encoders.dino2.Dinov2Model, } @@ -32,9 +33,10 @@ class ClipVisionModel(): self.image_size = config.get("image_size", 224) self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073]) self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711]) - model_type = config.get("model_type", "clip_vision_model") - model_class = IMAGE_ENCODERS.get(model_type) - if model_type == "siglip_vision_model": + self.model_type = config.get("model_type", "clip_vision_model") + self.config = config.copy() + model_class = IMAGE_ENCODERS.get(self.model_type) + if self.model_type == "siglip_vision_model": self.return_all_hidden_states = True else: self.return_all_hidden_states = False @@ -55,7 +57,10 @@ class ClipVisionModel(): def encode_image(self, image, crop=True): comfy.model_management.load_model_gpu(self.patcher) - pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() + if self.model_type == "siglip2_vision_model": + pixel_values = comfy.clip_model.siglip2_preprocess(image.to(self.load_device), size=self.image_size, patch_size=self.config.get("patch_size", 16), num_patches=self.config.get("num_patches", 256), mean=self.image_mean, std=self.image_std, crop=crop).float() + else: + pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2) outputs = Output() @@ -107,10 +112,14 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False): elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0] if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152: - if embed_shape == 729: - json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json") - elif embed_shape == 1024: - json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json") + patch_embedding_shape = sd["vision_model.embeddings.patch_embedding.weight"].shape + if len(patch_embedding_shape) == 2: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip2_base_naflex.json") + else: + if embed_shape == 729: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json") + elif embed_shape == 1024: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json") elif embed_shape == 577: if "multi_modal_projector.linear_1.bias" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json") diff --git a/comfy/clip_vision_siglip2_base_naflex.json b/comfy/clip_vision_siglip2_base_naflex.json new file mode 100644 index 000000000..6f6b99bd6 --- /dev/null +++ b/comfy/clip_vision_siglip2_base_naflex.json @@ -0,0 +1,14 @@ +{ + "num_channels": 3, + "hidden_act": "gelu_pytorch_tanh", + "hidden_size": 1152, + "image_size": -1, + "intermediate_size": 4304, + "model_type": "siglip2_vision_model", + "num_attention_heads": 16, + "num_hidden_layers": 27, + "patch_size": 16, + "num_patches": 256, + "image_mean": [0.5, 0.5, 0.5], + "image_std": [0.5, 0.5, 0.5] +} From fd5c0755af18530ff1225f5946c7a647b9694032 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Tue, 13 Jan 2026 00:28:59 +0200 Subject: [PATCH 39/74] Reduce LTX2 VRAM use by more efficient timestep embed handling (#11829) --- comfy/ldm/lightricks/av_model.py | 136 ++++++++++++++++++++++++------- 1 file changed, 106 insertions(+), 30 deletions(-) diff --git a/comfy/ldm/lightricks/av_model.py b/comfy/ldm/lightricks/av_model.py index 759535501..c12ace241 100644 --- a/comfy/ldm/lightricks/av_model.py +++ b/comfy/ldm/lightricks/av_model.py @@ -11,6 +11,69 @@ from comfy.ldm.lightricks.model import ( from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier import comfy.ldm.common_dit +class CompressedTimestep: + """Store video timestep embeddings in compressed form using per-frame indexing.""" + __slots__ = ('data', 'batch_size', 'num_frames', 'patches_per_frame', 'feature_dim') + + def __init__(self, tensor: torch.Tensor, patches_per_frame: int): + """ + tensor: [batch_size, num_tokens, feature_dim] tensor where num_tokens = num_frames * patches_per_frame + patches_per_frame: Number of spatial patches per frame (height * width in latent space) + """ + self.batch_size, num_tokens, self.feature_dim = tensor.shape + + # Check if compression is valid (num_tokens must be divisible by patches_per_frame) + if num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame: + self.patches_per_frame = patches_per_frame + self.num_frames = num_tokens // patches_per_frame + + # Reshape to [batch, frames, patches_per_frame, feature_dim] and store one value per frame + # All patches in a frame are identical, so we only keep the first one + reshaped = tensor.view(self.batch_size, self.num_frames, patches_per_frame, self.feature_dim) + self.data = reshaped[:, :, 0, :].contiguous() # [batch, frames, feature_dim] + else: + # Not divisible or too small - store directly without compression + self.patches_per_frame = 1 + self.num_frames = num_tokens + self.data = tensor + + def expand(self): + """Expand back to original tensor.""" + if self.patches_per_frame == 1: + return self.data + + # [batch, frames, feature_dim] -> [batch, frames, patches_per_frame, feature_dim] -> [batch, tokens, feature_dim] + expanded = self.data.unsqueeze(2).expand(self.batch_size, self.num_frames, self.patches_per_frame, self.feature_dim) + return expanded.reshape(self.batch_size, -1, self.feature_dim) + + def expand_for_computation(self, scale_shift_table: torch.Tensor, batch_size: int, indices: slice = slice(None, None)): + """Compute ada values on compressed per-frame data, then expand spatially.""" + num_ada_params = scale_shift_table.shape[0] + + # No compression - compute directly + if self.patches_per_frame == 1: + num_tokens = self.data.shape[1] + dim_per_param = self.feature_dim // num_ada_params + reshaped = self.data.reshape(batch_size, num_tokens, num_ada_params, dim_per_param)[:, :, indices, :] + table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=self.data.device, dtype=self.data.dtype) + ada_values = (table_values + reshaped).unbind(dim=2) + return ada_values + + # Compressed: compute on per-frame data then expand spatially + # Reshape: [batch, frames, feature_dim] -> [batch, frames, num_ada_params, dim_per_param] + frame_reshaped = self.data.reshape(batch_size, self.num_frames, num_ada_params, -1)[:, :, indices, :] + table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to( + device=self.data.device, dtype=self.data.dtype + ) + frame_ada = (table_values + frame_reshaped).unbind(dim=2) + + # Expand each ada parameter spatially: [batch, frames, dim] -> [batch, frames, patches, dim] -> [batch, tokens, dim] + return tuple( + frame_val.unsqueeze(2).expand(batch_size, self.num_frames, self.patches_per_frame, -1) + .reshape(batch_size, -1, frame_val.shape[-1]) + for frame_val in frame_ada + ) + class BasicAVTransformerBlock(nn.Module): def __init__( self, @@ -119,6 +182,9 @@ class BasicAVTransformerBlock(nn.Module): def get_ada_values( self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None) ): + if isinstance(timestep, CompressedTimestep): + return timestep.expand_for_computation(scale_shift_table, batch_size, indices) + num_ada_params = scale_shift_table.shape[0] ada_values = ( @@ -146,10 +212,7 @@ class BasicAVTransformerBlock(nn.Module): gate_timestep, ) - scale_shift_chunks = [t.squeeze(2) for t in scale_shift_ada_values] - gate_ada_values = [t.squeeze(2) for t in gate_ada_values] - - return (*scale_shift_chunks, *gate_ada_values) + return (*scale_shift_ada_values, *gate_ada_values) def forward( self, @@ -543,72 +606,80 @@ class LTXAVModel(LTXVModel): if grid_mask is not None: timestep = timestep[:, grid_mask] - timestep = timestep * self.timestep_scale_multiplier + timestep_scaled = timestep * self.timestep_scale_multiplier + v_timestep, v_embedded_timestep = self.adaln_single( - timestep.flatten(), + timestep_scaled.flatten(), {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_dtype, ) - # Second dimension is 1 or number of tokens (if timestep_per_token) - v_timestep = v_timestep.view(batch_size, -1, v_timestep.shape[-1]) - v_embedded_timestep = v_embedded_timestep.view( - batch_size, -1, v_embedded_timestep.shape[-1] - ) + # Calculate patches_per_frame from orig_shape: [batch, channels, frames, height, width] + # Video tokens are arranged as (frames * height * width), so patches_per_frame = height * width + orig_shape = kwargs.get("orig_shape") + v_patches_per_frame = None + if orig_shape is not None and len(orig_shape) == 5: + # orig_shape[3] = height, orig_shape[4] = width (in latent space) + v_patches_per_frame = orig_shape[3] * orig_shape[4] + + # Reshape to [batch_size, num_tokens, dim] and compress for storage + v_timestep = CompressedTimestep(v_timestep.view(batch_size, -1, v_timestep.shape[-1]), v_patches_per_frame) + v_embedded_timestep = CompressedTimestep(v_embedded_timestep.view(batch_size, -1, v_embedded_timestep.shape[-1]), v_patches_per_frame) # Prepare audio timestep a_timestep = kwargs.get("a_timestep") if a_timestep is not None: - a_timestep = a_timestep * self.timestep_scale_multiplier + a_timestep_scaled = a_timestep * self.timestep_scale_multiplier + a_timestep_flat = a_timestep_scaled.flatten() + timestep_flat = timestep_scaled.flatten() av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier + # Cross-attention timesteps - compress these too av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single( - a_timestep.flatten(), + a_timestep_flat, {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_dtype, ) av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single( - timestep.flatten(), + timestep_flat, {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_dtype, ) av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single( - timestep.flatten() * av_ca_factor, + timestep_flat * av_ca_factor, {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_dtype, ) av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single( - a_timestep.flatten() * av_ca_factor, + a_timestep_flat * av_ca_factor, {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_dtype, ) + # Compress cross-attention timesteps (only video side, audio is too small to benefit) + cross_av_timestep_ss = [ + av_ca_audio_scale_shift_timestep.view(batch_size, -1, av_ca_audio_scale_shift_timestep.shape[-1]), + CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed + CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed + av_ca_v2a_gate_noise_timestep.view(batch_size, -1, av_ca_v2a_gate_noise_timestep.shape[-1]), + ] + a_timestep, a_embedded_timestep = self.audio_adaln_single( - a_timestep.flatten(), + a_timestep_flat, {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_dtype, ) + # Audio timesteps a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1]) - a_embedded_timestep = a_embedded_timestep.view( - batch_size, -1, a_embedded_timestep.shape[-1] - ) - cross_av_timestep_ss = [ - av_ca_audio_scale_shift_timestep, - av_ca_video_scale_shift_timestep, - av_ca_a2v_gate_noise_timestep, - av_ca_v2a_gate_noise_timestep, - ] - cross_av_timestep_ss = list( - [t.view(batch_size, -1, t.shape[-1]) for t in cross_av_timestep_ss] - ) + a_embedded_timestep = a_embedded_timestep.view(batch_size, -1, a_embedded_timestep.shape[-1]) else: - a_timestep = timestep + a_timestep = timestep_scaled a_embedded_timestep = kwargs.get("embedded_timestep") cross_av_timestep_ss = [] @@ -767,6 +838,11 @@ class LTXAVModel(LTXVModel): ax = x[1] v_embedded_timestep = embedded_timestep[0] a_embedded_timestep = embedded_timestep[1] + + # Expand compressed video timestep if needed + if isinstance(v_embedded_timestep, CompressedTimestep): + v_embedded_timestep = v_embedded_timestep.expand() + vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs) # Process audio output From c2b65e2fceea821276c143ad52478552633922bf Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 13 Jan 2026 06:29:25 +0800 Subject: [PATCH 40/74] Update workflow templates to v0.8.0 (#11828) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 6c1cd86d2..890070d5d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.36.13 -comfyui-workflow-templates==0.7.69 +comfyui-workflow-templates==0.8.0 comfyui-embedded-docs==0.4.0 torch torchsde From ecaeeb990d7a5c3820b6f2373d04335d051d6b47 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 13 Jan 2026 11:18:01 +0800 Subject: [PATCH 41/74] chore: update workflow templates to v0.8.4 (#11835) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 890070d5d..077c8930a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.36.13 -comfyui-workflow-templates==0.8.0 +comfyui-workflow-templates==0.8.4 comfyui-embedded-docs==0.4.0 torch torchsde From b3c0e4de57bfd27e3dd94bd9723bb4c714668a09 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 12 Jan 2026 19:33:54 -0800 Subject: [PATCH 42/74] Make loras work on nvfp4 models. (#11837) The initial applying is a bit slow but will probably be sped up in the future. --- comfy/float.py | 113 +++++++++++++++++++++++++++++++++++++++++++++ comfy/ops.py | 2 +- comfy/quant_ops.py | 37 ++++++++++++++- requirements.txt | 2 +- 4 files changed, 150 insertions(+), 4 deletions(-) diff --git a/comfy/float.py b/comfy/float.py index 521316fd2..e638b1ff7 100644 --- a/comfy/float.py +++ b/comfy/float.py @@ -65,3 +65,116 @@ def stochastic_rounding(value, dtype, seed=0): return output return value.to(dtype=dtype) + + +# TODO: improve this? +def stochastic_float_to_fp4_e2m1(x, generator): + sign = torch.signbit(x).to(torch.uint8) + x_abs = x.abs() + + exp = torch.floor(torch.log2(x_abs) + 1.0).clamp(0, 3) + x += (torch.rand(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator) - 0.5) * (2 ** (exp - 2.0)) * 1.25 + + x_abs = x.abs() + exp = torch.floor(torch.log2(x_abs) + 1.1925).clamp(0, 3) + + mantissa = torch.where( + exp > 0, + (x_abs / (2.0 ** (exp - 1)) - 1.0) * 2.0, + (x_abs * 2.0) + ).round().to(torch.uint8) + + fp4 = (sign << 3) | (exp.to(torch.uint8) << 1) | mantissa + + fp4_flat = fp4.view(-1) + packed = (fp4_flat[0::2] << 4) | fp4_flat[1::2] + return packed.reshape(list(x.shape)[:-1] + [-1]) + + +def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor: + """ + Rearrange a large matrix by breaking it into blocks and applying the rearrangement pattern. + See: + https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout + + Args: + input_matrix: Input tensor of shape (H, W) + Returns: + Rearranged tensor of shape (32*ceil_div(H,128), 16*ceil_div(W,4)) + """ + + def ceil_div(a, b): + return (a + b - 1) // b + + rows, cols = input_matrix.shape + n_row_blocks = ceil_div(rows, 128) + n_col_blocks = ceil_div(cols, 4) + + # Calculate the padded shape + padded_rows = n_row_blocks * 128 + padded_cols = n_col_blocks * 4 + + padded = input_matrix + if (rows, cols) != (padded_rows, padded_cols): + padded = torch.zeros( + (padded_rows, padded_cols), + device=input_matrix.device, + dtype=input_matrix.dtype, + ) + padded[:rows, :cols] = input_matrix + + # Rearrange the blocks + blocks = padded.view(n_row_blocks, 128, n_col_blocks, 4).permute(0, 2, 1, 3) + rearranged = blocks.reshape(-1, 4, 32, 4).transpose(1, 2).reshape(-1, 32, 16) + if flatten: + return rearranged.flatten() + + return rearranged.reshape(padded_rows, padded_cols) + + +def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): + F4_E2M1_MAX = 6.0 + F8_E4M3_MAX = 448.0 + + def roundup(x: int, multiple: int) -> int: + """Round up x to the nearest multiple.""" + return ((x + multiple - 1) // multiple) * multiple + + orig_shape = x.shape + + # Handle padding + if pad_16x: + rows, cols = x.shape + padded_rows = roundup(rows, 16) + padded_cols = roundup(cols, 16) + if padded_rows != rows or padded_cols != cols: + x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows)) + # Note: We update orig_shape because the output tensor logic below assumes x.shape matches + # what we want to produce. If we pad here, we want the padded output. + orig_shape = x.shape + + block_size = 16 + + x = x.reshape(orig_shape[0], -1, block_size) + max_abs = torch.amax(torch.abs(x), dim=-1) + block_scale = max_abs / F4_E2M1_MAX + scaled_block_scales = block_scale / per_tensor_scale.to(block_scale.dtype) + scaled_block_scales_fp8 = torch.clamp(scaled_block_scales, max=F8_E4M3_MAX).to(torch.float8_e4m3fn) + total_scale = per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype) + + # Handle zero blocks (from padding): avoid 0/0 NaN + zero_scale_mask = (total_scale == 0) + total_scale_safe = torch.where(zero_scale_mask, torch.ones_like(total_scale), total_scale) + + x = x / total_scale_safe.unsqueeze(-1) + + generator = torch.Generator(device=x.device) + generator.manual_seed(seed) + + x = torch.where(zero_scale_mask.unsqueeze(-1), torch.zeros_like(x), x) + + x = x.view(orig_shape) + data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator) + + blocked_scales = to_blocked(scaled_block_scales_fp8, flatten=False) + return data_lp, blocked_scales diff --git a/comfy/ops.py b/comfy/ops.py index 9c0b54ff4..415c39e92 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -699,7 +699,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): if getattr(self, 'layout_type', None) is not None: # dtype is now implicit in the layout class - weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True) + weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True).to(self.weight.dtype) else: weight = weight.to(self.weight.dtype) if return_weight: diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 8324be42a..7a61203c3 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -7,7 +7,7 @@ try: QuantizedTensor, QuantizedLayout, TensorCoreFP8Layout as _CKFp8Layout, - TensorCoreNVFP4Layout, # Direct import, no wrapper needed + TensorCoreNVFP4Layout as _CKNvfp4Layout, register_layout_op, register_layout_class, get_layout_class, @@ -34,7 +34,7 @@ except ImportError as e: class _CKFp8Layout: pass - class TensorCoreNVFP4Layout: + class _CKNvfp4Layout: pass def register_layout_class(name, cls): @@ -84,6 +84,39 @@ class _TensorCoreFP8LayoutBase(_CKFp8Layout): return qdata, params +class TensorCoreNVFP4Layout(_CKNvfp4Layout): + @classmethod + def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False): + if tensor.dim() != 2: + raise ValueError(f"NVFP4 requires 2D tensor, got {tensor.dim()}D") + + orig_dtype = tensor.dtype + orig_shape = tuple(tensor.shape) + + if scale is None or (isinstance(scale, str) and scale == "recalculate"): + scale = torch.amax(tensor.abs()) / (ck.float_utils.F8_E4M3_MAX * ck.float_utils.F4_E2M1_MAX) + + if not isinstance(scale, torch.Tensor): + scale = torch.tensor(scale) + scale = scale.to(device=tensor.device, dtype=torch.float32) + + padded_shape = cls.get_padded_shape(orig_shape) + needs_padding = padded_shape != orig_shape + + if stochastic_rounding > 0: + qdata, block_scale = comfy.float.stochastic_round_quantize_nvfp4(tensor, scale, pad_16x=needs_padding, seed=stochastic_rounding) + else: + qdata, block_scale = ck.quantize_nvfp4(tensor, scale, pad_16x=needs_padding) + + params = cls.Params( + scale=scale, + orig_dtype=orig_dtype, + orig_shape=orig_shape, + block_scale=block_scale, + ) + return qdata, params + + class TensorCoreFP8E4M3Layout(_TensorCoreFP8LayoutBase): FP8_DTYPE = torch.float8_e4m3fn diff --git a/requirements.txt b/requirements.txt index 077c8930a..43737056e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.5 +comfy-kitchen>=0.2.6 #non essential dependencies: kornia>=0.7.1 From 117e7a5853cc34b6a012e06bb3efcc79ab314184 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 12 Jan 2026 21:01:52 -0800 Subject: [PATCH 43/74] Refactor to try to lower mem usage. (#11840) --- comfy/float.py | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) diff --git a/comfy/float.py b/comfy/float.py index e638b1ff7..c806af76b 100644 --- a/comfy/float.py +++ b/comfy/float.py @@ -69,26 +69,31 @@ def stochastic_rounding(value, dtype, seed=0): # TODO: improve this? def stochastic_float_to_fp4_e2m1(x, generator): + orig_shape = x.shape sign = torch.signbit(x).to(torch.uint8) - x_abs = x.abs() - exp = torch.floor(torch.log2(x_abs) + 1.0).clamp(0, 3) + exp = torch.floor(torch.log2(x.abs()) + 1.0).clamp(0, 3) x += (torch.rand(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator) - 0.5) * (2 ** (exp - 2.0)) * 1.25 - x_abs = x.abs() - exp = torch.floor(torch.log2(x_abs) + 1.1925).clamp(0, 3) + x = x.abs() + exp = torch.floor(torch.log2(x) + 1.1925).clamp(0, 3) mantissa = torch.where( exp > 0, - (x_abs / (2.0 ** (exp - 1)) - 1.0) * 2.0, - (x_abs * 2.0) + (x / (2.0 ** (exp - 1)) - 1.0) * 2.0, + (x * 2.0), + out=x ).round().to(torch.uint8) + del x - fp4 = (sign << 3) | (exp.to(torch.uint8) << 1) | mantissa + exp = exp.to(torch.uint8) + + fp4 = (sign << 3) | (exp << 1) | mantissa + del sign, exp, mantissa fp4_flat = fp4.view(-1) packed = (fp4_flat[0::2] << 4) | fp4_flat[1::2] - return packed.reshape(list(x.shape)[:-1] + [-1]) + return packed.reshape(list(orig_shape)[:-1] + [-1]) def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor: From acd0e536533cdf038bbaa32730cd12a438cc3a60 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Mon, 12 Jan 2026 21:15:24 -0800 Subject: [PATCH 44/74] Make bulk_ops not use .returning to be compatible with python 3.10 and 3.11 sqlalchemy (#11839) --- app/assets/database/bulk_ops.py | 30 +++++++++++++++++++++++------- 1 file changed, 23 insertions(+), 7 deletions(-) diff --git a/app/assets/database/bulk_ops.py b/app/assets/database/bulk_ops.py index 9352cd65d..c7b75290a 100644 --- a/app/assets/database/bulk_ops.py +++ b/app/assets/database/bulk_ops.py @@ -92,14 +92,23 @@ def seed_from_paths_batch( session.execute(ins_asset, chunk) # try to claim AssetCacheState (file_path) - winners_by_path: set[str] = set() + # Insert with ON CONFLICT DO NOTHING, then query to find which paths were actually inserted ins_state = ( sqlite.insert(AssetCacheState) .on_conflict_do_nothing(index_elements=[AssetCacheState.file_path]) - .returning(AssetCacheState.file_path) ) for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)): - winners_by_path.update((session.execute(ins_state, chunk)).scalars().all()) + session.execute(ins_state, chunk) + + # Query to find which of our paths won (were actually inserted) + winners_by_path: set[str] = set() + for chunk in _iter_chunks(path_list, MAX_BIND_PARAMS): + result = session.execute( + sqlalchemy.select(AssetCacheState.file_path) + .where(AssetCacheState.file_path.in_(chunk)) + .where(AssetCacheState.asset_id.in_([path_to_asset[p] for p in chunk])) + ) + winners_by_path.update(result.scalars().all()) all_paths_set = set(path_list) losers_by_path = all_paths_set - winners_by_path @@ -112,16 +121,23 @@ def seed_from_paths_batch( return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)} # insert AssetInfo only for winners + # Insert with ON CONFLICT DO NOTHING, then query to find which were actually inserted winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path] ins_info = ( sqlite.insert(AssetInfo) .on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name]) - .returning(AssetInfo.id) ) - - inserted_info_ids: set[str] = set() for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)): - inserted_info_ids.update((session.execute(ins_info, chunk)).scalars().all()) + session.execute(ins_info, chunk) + + # Query to find which info rows were actually inserted (by matching our generated IDs) + all_info_ids = [row["id"] for row in winner_info_rows] + inserted_info_ids: set[str] = set() + for chunk in _iter_chunks(all_info_ids, MAX_BIND_PARAMS): + result = session.execute( + sqlalchemy.select(AssetInfo.id).where(AssetInfo.id.in_(chunk)) + ) + inserted_info_ids.update(result.scalars().all()) # build and insert tag + meta rows for the AssetInfo tag_rows: list[dict] = [] From 8af13b439bddaddb6d3b4f7c50b6391e88a10c66 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 12 Jan 2026 22:22:25 -0800 Subject: [PATCH 45/74] Update requirements.txt (#11841) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 43737056e..8650d28ec 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.36.13 +comfyui-frontend-package==1.36.14 comfyui-workflow-templates==0.8.4 comfyui-embedded-docs==0.4.0 torch From db9e6edfa1604be0b1f738b2f67495b46cee5a8c Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 13 Jan 2026 01:23:31 -0500 Subject: [PATCH 46/74] ComfyUI v0.9.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index df82ed4fc..09def2c70 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.8.2" +__version__ = "0.9.0" diff --git a/pyproject.toml b/pyproject.toml index 49f1a03fd..17aac8c3f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.8.2" +version = "0.9.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From 1dcbd9efaf16c74a3aff2770f46de5b4aaaf927e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 12 Jan 2026 22:42:07 -0800 Subject: [PATCH 47/74] Bump ltxav mem estimation a bit. (#11842) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index d44c0bc37..1bf54f13f 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -845,7 +845,7 @@ class LTXAV(LTXV): def __init__(self, unet_config): super().__init__(unet_config) - self.memory_usage_factor = 0.061 # TODO + self.memory_usage_factor = 0.077 # TODO def get_model(self, state_dict, prefix="", device=None): out = model_base.LTXAV(self, device=device) From 5ac13725331c1dfdf7aab977d4588b0a06a3debd Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 13 Jan 2026 01:44:06 -0500 Subject: [PATCH 48/74] ComfyUI v0.9.1 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 09def2c70..0c9871e35 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.9.0" +__version__ = "0.9.1" diff --git a/pyproject.toml b/pyproject.toml index 17aac8c3f..dc52218b4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.9.0" +version = "0.9.1" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From c543ad81c382c8450d2c8de62644c197c3c7416d Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 13 Jan 2026 18:30:13 +0200 Subject: [PATCH 49/74] fix(api-nodes-gemini): raise exception when no candidates due to safety block (#11848) --- comfy_api_nodes/nodes_gemini.py | 28 +++++++++++++++++++--------- 1 file changed, 19 insertions(+), 9 deletions(-) diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index e8ed7e797..35bbf0d2f 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -130,7 +130,7 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera Returns: List of response parts matching the requested type. """ - if response.candidates is None: + if not response.candidates: if response.promptFeedback and response.promptFeedback.blockReason: feedback = response.promptFeedback raise ValueError( @@ -141,14 +141,24 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera "try changing it to `IMAGE+TEXT` to view the model's reasoning and understand why image generation failed." ) parts = [] - for part in response.candidates[0].content.parts: - if part_type == "text" and part.text: - parts.append(part) - elif part.inlineData and part.inlineData.mimeType == part_type: - parts.append(part) - elif part.fileData and part.fileData.mimeType == part_type: - parts.append(part) - # Skip parts that don't match the requested type + blocked_reasons = [] + for candidate in response.candidates: + if candidate.finishReason and candidate.finishReason.upper() == "IMAGE_PROHIBITED_CONTENT": + blocked_reasons.append(candidate.finishReason) + continue + if candidate.content is None or candidate.content.parts is None: + continue + for part in candidate.content.parts: + if part_type == "text" and part.text: + parts.append(part) + elif part.inlineData and part.inlineData.mimeType == part_type: + parts.append(part) + elif part.fileData and part.fileData.mimeType == part_type: + parts.append(part) + + if not parts and blocked_reasons: + raise ValueError(f"Gemini API blocked the request. Reasons: {blocked_reasons}") + return parts From d9dc02a7d602a1918b9dabfc91890e6689f6f16d Mon Sep 17 00:00:00 2001 From: Acly Date: Tue, 13 Jan 2026 21:03:53 +0100 Subject: [PATCH 50/74] Support "lite" version of alibaba-pai Z-Image Controlnet (#11849) * reduced number of control layers (3) compared to full model --- comfy_extras/nodes_model_patch.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index 1355b3c93..f66d28fc9 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -244,6 +244,10 @@ class ModelPatchLoader: elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet sd = z_image_convert(sd) config = {} + if 'control_layers.4.adaLN_modulation.0.weight' not in sd: + config['n_control_layers'] = 3 + config['additional_in_dim'] = 17 + config['refiner_control'] = True if 'control_layers.14.adaLN_modulation.0.weight' in sd: config['n_control_layers'] = 15 config['additional_in_dim'] = 17 From e4b4fb34798a4710f670c81ae905ec24d58b6373 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Wed, 14 Jan 2026 00:37:21 +0200 Subject: [PATCH 51/74] Load metadata on VAELoader (#11846) Needed to load the proper LTX2 VAE if separated from checkpoint --- nodes.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/nodes.py b/nodes.py index 5a9d42d4a..90c5f2a6e 100644 --- a/nodes.py +++ b/nodes.py @@ -798,8 +798,8 @@ class VAELoader: vae_path = folder_paths.get_full_path_or_raise("vae_approx", vae_name) else: vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) - sd = comfy.utils.load_torch_file(vae_path) - vae = comfy.sd.VAE(sd=sd) + sd, metadata = comfy.utils.load_torch_file(vae_path, return_metadata=True) + vae = comfy.sd.VAE(sd=sd, metadata=metadata) vae.throw_exception_if_invalid() return (vae,) From 79f6bb5e4fca0c2fbd5d09511a65449ca69332a8 Mon Sep 17 00:00:00 2001 From: ric-yu Date: Tue, 13 Jan 2026 16:14:40 -0800 Subject: [PATCH 52/74] add blueprints dir for built-in blueprints (#11853) --- app/subgraph_manager.py | 80 +++++++++++++++++++++------------- blueprints/put_blueprints_here | 0 2 files changed, 50 insertions(+), 30 deletions(-) create mode 100644 blueprints/put_blueprints_here diff --git a/app/subgraph_manager.py b/app/subgraph_manager.py index dbe404541..6a8f586a4 100644 --- a/app/subgraph_manager.py +++ b/app/subgraph_manager.py @@ -10,6 +10,7 @@ import hashlib class Source: custom_node = "custom_node" + templates = "templates" class SubgraphEntry(TypedDict): source: str @@ -38,6 +39,18 @@ class CustomNodeSubgraphEntryInfo(TypedDict): class SubgraphManager: def __init__(self): self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None + self.cached_blueprint_subgraphs: dict[SubgraphEntry] | None = None + + def _create_entry(self, file: str, source: str, node_pack: str) -> tuple[str, SubgraphEntry]: + """Create a subgraph entry from a file path. Expects normalized path (forward slashes).""" + entry_id = hashlib.sha256(f"{source}{file}".encode()).hexdigest() + entry: SubgraphEntry = { + "source": source, + "name": os.path.splitext(os.path.basename(file))[0], + "path": file, + "info": {"node_pack": node_pack}, + } + return entry_id, entry async def load_entry_data(self, entry: SubgraphEntry): with open(entry['path'], 'r') as f: @@ -60,53 +73,60 @@ class SubgraphManager: return entries async def get_custom_node_subgraphs(self, loadedModules, force_reload=False): - # if not forced to reload and cached, return cache + """Load subgraphs from custom nodes.""" if not force_reload and self.cached_custom_node_subgraphs is not None: return self.cached_custom_node_subgraphs - # Load subgraphs from custom nodes - subfolder = "subgraphs" - subgraphs_dict: dict[SubgraphEntry] = {} + subgraphs_dict: dict[SubgraphEntry] = {} for folder in folder_paths.get_folder_paths("custom_nodes"): - pattern = os.path.join(folder, f"*/{subfolder}/*.json") - matched_files = glob.glob(pattern) - for file in matched_files: - # replace backslashes with forward slashes + pattern = os.path.join(folder, "*/subgraphs/*.json") + for file in glob.glob(pattern): file = file.replace('\\', '/') - info: CustomNodeSubgraphEntryInfo = { - "node_pack": "custom_nodes." + file.split('/')[-3] - } - source = Source.custom_node - # hash source + path to make sure id will be as unique as possible, but - # reproducible across backend reloads - id = hashlib.sha256(f"{source}{file}".encode()).hexdigest() - entry: SubgraphEntry = { - "source": Source.custom_node, - "name": os.path.splitext(os.path.basename(file))[0], - "path": file, - "info": info, - } - subgraphs_dict[id] = entry + node_pack = "custom_nodes." + file.split('/')[-3] + entry_id, entry = self._create_entry(file, Source.custom_node, node_pack) + subgraphs_dict[entry_id] = entry + self.cached_custom_node_subgraphs = subgraphs_dict return subgraphs_dict - async def get_custom_node_subgraph(self, id: str, loadedModules): - subgraphs = await self.get_custom_node_subgraphs(loadedModules) - entry: SubgraphEntry = subgraphs.get(id, None) - if entry is not None and entry.get('data', None) is None: + async def get_blueprint_subgraphs(self, force_reload=False): + """Load subgraphs from the blueprints directory.""" + if not force_reload and self.cached_blueprint_subgraphs is not None: + return self.cached_blueprint_subgraphs + + subgraphs_dict: dict[SubgraphEntry] = {} + blueprints_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'blueprints') + + if os.path.exists(blueprints_dir): + for file in glob.glob(os.path.join(blueprints_dir, "*.json")): + file = file.replace('\\', '/') + entry_id, entry = self._create_entry(file, Source.templates, "comfyui") + subgraphs_dict[entry_id] = entry + + self.cached_blueprint_subgraphs = subgraphs_dict + return subgraphs_dict + + async def get_all_subgraphs(self, loadedModules, force_reload=False): + """Get all subgraphs from all sources (custom nodes and blueprints).""" + custom_node_subgraphs = await self.get_custom_node_subgraphs(loadedModules, force_reload) + blueprint_subgraphs = await self.get_blueprint_subgraphs(force_reload) + return {**custom_node_subgraphs, **blueprint_subgraphs} + + async def get_subgraph(self, id: str, loadedModules): + """Get a specific subgraph by ID from any source.""" + entry = (await self.get_all_subgraphs(loadedModules)).get(id) + if entry is not None and entry.get('data') is None: await self.load_entry_data(entry) return entry def add_routes(self, routes, loadedModules): @routes.get("/global_subgraphs") async def get_global_subgraphs(request): - subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules) - # NOTE: we may want to include other sources of global subgraphs such as templates in the future; - # that's the reasoning for the current implementation + subgraphs_dict = await self.get_all_subgraphs(loadedModules) return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True)) @routes.get("/global_subgraphs/{id}") async def get_global_subgraph(request): id = request.match_info.get("id", None) - subgraph = await self.get_custom_node_subgraph(id, loadedModules) + subgraph = await self.get_subgraph(id, loadedModules) return web.json_response(await self.sanitize_entry(subgraph)) diff --git a/blueprints/put_blueprints_here b/blueprints/put_blueprints_here new file mode 100644 index 000000000..e69de29bb From 1419047fdbdf26b2311950c041a86fd998a2acbd Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 14 Jan 2026 02:18:28 +0200 Subject: [PATCH 53/74] [Api Nodes]: Improve Price Badge Declarations (#11582) * api nodes: price badges moved to nodes code * added price badges for 4 more node-packs * added price badges for 10 more node-packs * added new price badges for Omni STD mode * add support for autogrow groups * use full names for "widgets", "inputs" and "groups" * add strict typing for JSONata rules * add price badge for WanReferenceVideoApi node * add support for DynamicCombo * sync price badges changes (https://github.com/Comfy-Org/ComfyUI_frontend/pull/7900) * sync badges for Vidu2 nodes * fixed incorrect price for RecraftCrispUpscaleNode * fixed incorrect price badges for LTXV nodes * fixed price badge for MinimaxHailuoVideoNode * fixed price badges for PixVerse nodes --- comfy_api/latest/_io.py | 79 +++++++++- comfy_api_nodes/nodes_bfl.py | 44 ++++++ comfy_api_nodes/nodes_bytedance.py | 66 +++++++++ comfy_api_nodes/nodes_gemini.py | 40 ++++++ comfy_api_nodes/nodes_ideogram.py | 42 +++++- comfy_api_nodes/nodes_kling.py | 215 ++++++++++++++++++++++++++++ comfy_api_nodes/nodes_ltxv.py | 18 +++ comfy_api_nodes/nodes_luma.py | 76 ++++++++++ comfy_api_nodes/nodes_minimax.py | 20 +++ comfy_api_nodes/nodes_moonvalley.py | 12 ++ comfy_api_nodes/nodes_openai.py | 127 ++++++++++++++++ comfy_api_nodes/nodes_pixverse.py | 30 ++++ comfy_api_nodes/nodes_recraft.py | 32 +++++ comfy_api_nodes/nodes_rodin.py | 12 ++ comfy_api_nodes/nodes_runway.py | 15 ++ comfy_api_nodes/nodes_sora.py | 18 +++ comfy_api_nodes/nodes_stability.py | 31 ++++ comfy_api_nodes/nodes_tripo.py | 164 +++++++++++++++++++++ comfy_api_nodes/nodes_veo2.py | 42 ++++++ comfy_api_nodes/nodes_vidu.py | 100 +++++++++++++ comfy_api_nodes/nodes_wan.py | 43 ++++++ 21 files changed, 1221 insertions(+), 5 deletions(-) diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 50143ff53..e6a0d1821 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -1225,6 +1225,7 @@ class NodeInfoV1: deprecated: bool=None experimental: bool=None api_node: bool=None + price_badge: dict | None = None @dataclass class NodeInfoV3: @@ -1234,11 +1235,77 @@ class NodeInfoV3: name: str=None display_name: str=None description: str=None + python_module: Any = None category: str=None output_node: bool=None deprecated: bool=None experimental: bool=None api_node: bool=None + price_badge: dict | None = None + + +@dataclass +class PriceBadgeDepends: + widgets: list[str] = field(default_factory=list) + inputs: list[str] = field(default_factory=list) + input_groups: list[str] = field(default_factory=list) + + def validate(self) -> None: + if not isinstance(self.widgets, list) or any(not isinstance(x, str) for x in self.widgets): + raise ValueError("PriceBadgeDepends.widgets must be a list[str].") + if not isinstance(self.inputs, list) or any(not isinstance(x, str) for x in self.inputs): + raise ValueError("PriceBadgeDepends.inputs must be a list[str].") + if not isinstance(self.input_groups, list) or any(not isinstance(x, str) for x in self.input_groups): + raise ValueError("PriceBadgeDepends.input_groups must be a list[str].") + + def as_dict(self, schema_inputs: list["Input"]) -> dict[str, Any]: + # Build lookup: widget_id -> io_type + input_types: dict[str, str] = {} + for inp in schema_inputs: + all_inputs = inp.get_all() + input_types[inp.id] = inp.get_io_type() # First input is always the parent itself + for nested_inp in all_inputs[1:]: + # For DynamicCombo/DynamicSlot, nested inputs are prefixed with parent ID + # to match frontend naming convention (e.g., "should_texture.enable_pbr") + prefixed_id = f"{inp.id}.{nested_inp.id}" + input_types[prefixed_id] = nested_inp.get_io_type() + + # Enrich widgets with type information, raising error for unknown widgets + widgets_data: list[dict[str, str]] = [] + for w in self.widgets: + if w not in input_types: + raise ValueError( + f"PriceBadge depends_on.widgets references unknown widget '{w}'. " + f"Available widgets: {list(input_types.keys())}" + ) + widgets_data.append({"name": w, "type": input_types[w]}) + + return { + "widgets": widgets_data, + "inputs": self.inputs, + "input_groups": self.input_groups, + } + + +@dataclass +class PriceBadge: + expr: str + depends_on: PriceBadgeDepends = field(default_factory=PriceBadgeDepends) + engine: str = field(default="jsonata") + + def validate(self) -> None: + if self.engine != "jsonata": + raise ValueError(f"Unsupported PriceBadge.engine '{self.engine}'. Only 'jsonata' is supported.") + if not isinstance(self.expr, str) or not self.expr.strip(): + raise ValueError("PriceBadge.expr must be a non-empty string.") + self.depends_on.validate() + + def as_dict(self, schema_inputs: list["Input"]) -> dict[str, Any]: + return { + "engine": self.engine, + "depends_on": self.depends_on.as_dict(schema_inputs), + "expr": self.expr, + } @dataclass @@ -1284,6 +1351,8 @@ class Schema: """Flags a node as experimental, informing users that it may change or not work as expected.""" is_api_node: bool=False """Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview.""" + price_badge: PriceBadge | None = None + """Optional client-evaluated pricing badge declaration for this node.""" not_idempotent: bool=False """Flags a node as not idempotent; when True, the node will run and not reuse the cached outputs when identical inputs are provided on a different node in the graph.""" enable_expand: bool=False @@ -1314,6 +1383,8 @@ class Schema: input.validate() for output in self.outputs: output.validate() + if self.price_badge is not None: + self.price_badge.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" @@ -1387,7 +1458,8 @@ class Schema: deprecated=self.is_deprecated, experimental=self.is_experimental, api_node=self.is_api_node, - python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes") + python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"), + price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None, ) return info @@ -1419,7 +1491,8 @@ class Schema: deprecated=self.is_deprecated, experimental=self.is_experimental, api_node=self.is_api_node, - python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes") + python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"), + price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None, ) return info @@ -1971,4 +2044,6 @@ __all__ = [ "add_to_dict_v3", "V3Data", "ImageCompare", + "PriceBadgeDepends", + "PriceBadge", ] diff --git a/comfy_api_nodes/nodes_bfl.py b/comfy_api_nodes/nodes_bfl.py index ce077d6b3..76021ef7f 100644 --- a/comfy_api_nodes/nodes_bfl.py +++ b/comfy_api_nodes/nodes_bfl.py @@ -97,6 +97,9 @@ class FluxProUltraImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.06}""", + ), ) @classmethod @@ -352,6 +355,9 @@ class FluxProExpandNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.05}""", + ), ) @classmethod @@ -458,6 +464,9 @@ class FluxProFillNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.05}""", + ), ) @classmethod @@ -511,6 +520,21 @@ class Flux2ProImageNode(IO.ComfyNode): NODE_ID = "Flux2ProImageNode" DISPLAY_NAME = "Flux.2 [pro] Image" API_ENDPOINT = "/proxy/bfl/flux-2-pro/generate" + PRICE_BADGE_EXPR = """ + ( + $MP := 1024 * 1024; + $outMP := $max([1, $floor(((widgets.width * widgets.height) + $MP - 1) / $MP)]); + $outputCost := 0.03 + 0.015 * ($outMP - 1); + inputs.images.connected + ? { + "type":"range_usd", + "min_usd": $outputCost + 0.015, + "max_usd": $outputCost + 0.12, + "format": { "approximate": true } + } + : {"type":"usd","usd": $outputCost} + ) + """ @classmethod def define_schema(cls) -> IO.Schema: @@ -563,6 +587,10 @@ class Flux2ProImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["width", "height"], inputs=["images"]), + expr=cls.PRICE_BADGE_EXPR, + ), ) @classmethod @@ -623,6 +651,22 @@ class Flux2MaxImageNode(Flux2ProImageNode): NODE_ID = "Flux2MaxImageNode" DISPLAY_NAME = "Flux.2 [max] Image" API_ENDPOINT = "/proxy/bfl/flux-2-max/generate" + PRICE_BADGE_EXPR = """ + ( + $MP := 1024 * 1024; + $outMP := $max([1, $floor(((widgets.width * widgets.height) + $MP - 1) / $MP)]); + $outputCost := 0.07 + 0.03 * ($outMP - 1); + + inputs.images.connected + ? { + "type":"range_usd", + "min_usd": $outputCost + 0.03, + "max_usd": $outputCost + 0.24, + "format": { "approximate": true } + } + : {"type":"usd","usd": $outputCost} + ) + """ class BFLExtension(ComfyExtension): diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index d4a2cfae6..f09a4a0ed 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -126,6 +126,9 @@ class ByteDanceImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.03}""", + ), ) @classmethod @@ -367,6 +370,19 @@ class ByteDanceSeedreamNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model"]), + expr=""" + ( + $price := $contains(widgets.model, "seedream-4-5-251128") ? 0.04 : 0.03; + { + "type":"usd", + "usd": $price, + "format": { "suffix":" x images/Run", "approximate": true } + } + ) + """, + ), ) @classmethod @@ -522,6 +538,7 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -632,6 +649,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -754,6 +772,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -877,6 +896,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -946,6 +966,52 @@ def raise_if_text_params(prompt: str, text_params: list[str]) -> None: ) +PRICE_BADGE_VIDEO = IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]), + expr=""" + ( + $priceByModel := { + "seedance-1-0-pro": { + "480p":[0.23,0.24], + "720p":[0.51,0.56], + "1080p":[1.18,1.22] + }, + "seedance-1-0-pro-fast": { + "480p":[0.09,0.1], + "720p":[0.21,0.23], + "1080p":[0.47,0.49] + }, + "seedance-1-0-lite": { + "480p":[0.17,0.18], + "720p":[0.37,0.41], + "1080p":[0.85,0.88] + } + }; + $model := widgets.model; + $modelKey := + $contains($model, "seedance-1-0-pro-fast") ? "seedance-1-0-pro-fast" : + $contains($model, "seedance-1-0-pro") ? "seedance-1-0-pro" : + "seedance-1-0-lite"; + $resolution := widgets.resolution; + $resKey := + $contains($resolution, "1080") ? "1080p" : + $contains($resolution, "720") ? "720p" : + "480p"; + $modelPrices := $lookup($priceByModel, $modelKey); + $baseRange := $lookup($modelPrices, $resKey); + $min10s := $baseRange[0]; + $max10s := $baseRange[1]; + $scale := widgets.duration / 10; + $minCost := $min10s * $scale; + $maxCost := $max10s * $scale; + ($minCost = $maxCost) + ? {"type":"usd","usd": $minCost} + : {"type":"range_usd","min_usd": $minCost, "max_usd": $maxCost} + ) + """, +) + + class ByteDanceExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 35bbf0d2f..a2daea50a 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -319,6 +319,30 @@ class GeminiNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model"]), + expr=""" + ( + $m := widgets.model; + $contains($m, "gemini-2.5-flash") ? { + "type": "list_usd", + "usd": [0.0003, 0.0025], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens"} + } + : $contains($m, "gemini-2.5-pro") ? { + "type": "list_usd", + "usd": [0.00125, 0.01], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gemini-3-pro-preview") ? { + "type": "list_usd", + "usd": [0.002, 0.012], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : {"type":"text", "text":"Token-based"} + ) + """, + ), ) @classmethod @@ -580,6 +604,9 @@ class GeminiImage(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.039,"format":{"suffix":"/Image (1K)","approximate":true}}""", + ), ) @classmethod @@ -710,6 +737,19 @@ class GeminiImage2(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["resolution"]), + expr=""" + ( + $r := widgets.resolution; + ($contains($r,"1k") or $contains($r,"2k")) + ? {"type":"usd","usd":0.134,"format":{"suffix":"/Image","approximate":true}} + : $contains($r,"4k") + ? {"type":"usd","usd":0.24,"format":{"suffix":"/Image","approximate":true}} + : {"type":"text","text":"Token-based"} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_ideogram.py b/comfy_api_nodes/nodes_ideogram.py index 48f94e612..827b3523a 100644 --- a/comfy_api_nodes/nodes_ideogram.py +++ b/comfy_api_nodes/nodes_ideogram.py @@ -236,7 +236,6 @@ class IdeogramV1(IO.ComfyNode): display_name="Ideogram V1", category="api node/image/Ideogram", description="Generates images using the Ideogram V1 model.", - is_api_node=True, inputs=[ IO.String.Input( "prompt", @@ -298,6 +297,17 @@ class IdeogramV1(IO.ComfyNode): IO.Hidden.api_key_comfy_org, IO.Hidden.unique_id, ], + is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["num_images", "turbo"]), + expr=""" + ( + $n := widgets.num_images; + $base := (widgets.turbo = true) ? 0.0286 : 0.0858; + {"type":"usd","usd": $round($base * $n, 2)} + ) + """, + ), ) @classmethod @@ -351,7 +361,6 @@ class IdeogramV2(IO.ComfyNode): display_name="Ideogram V2", category="api node/image/Ideogram", description="Generates images using the Ideogram V2 model.", - is_api_node=True, inputs=[ IO.String.Input( "prompt", @@ -436,6 +445,17 @@ class IdeogramV2(IO.ComfyNode): IO.Hidden.api_key_comfy_org, IO.Hidden.unique_id, ], + is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["num_images", "turbo"]), + expr=""" + ( + $n := widgets.num_images; + $base := (widgets.turbo = true) ? 0.0715 : 0.1144; + {"type":"usd","usd": $round($base * $n, 2)} + ) + """, + ), ) @classmethod @@ -506,7 +526,6 @@ class IdeogramV3(IO.ComfyNode): category="api node/image/Ideogram", description="Generates images using the Ideogram V3 model. " "Supports both regular image generation from text prompts and image editing with mask.", - is_api_node=True, inputs=[ IO.String.Input( "prompt", @@ -591,6 +610,23 @@ class IdeogramV3(IO.ComfyNode): IO.Hidden.api_key_comfy_org, IO.Hidden.unique_id, ], + is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["rendering_speed", "num_images"], inputs=["character_image"]), + expr=""" + ( + $n := widgets.num_images; + $speed := widgets.rendering_speed; + $hasChar := inputs.character_image.connected; + $base := + $contains($speed,"quality") ? ($hasChar ? 0.286 : 0.1287) : + $contains($speed,"default") ? ($hasChar ? 0.2145 : 0.0858) : + $contains($speed,"turbo") ? ($hasChar ? 0.143 : 0.0429) : + 0.0858; + {"type":"usd","usd": $round($base * $n, 2)} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 01d9c34f5..05dde88b1 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -764,6 +764,33 @@ class KlingTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["mode"]), + expr=""" + ( + $m := widgets.mode; + $contains($m,"v2-5-turbo") + ? ($contains($m,"10") ? {"type":"usd","usd":0.7} : {"type":"usd","usd":0.35}) + : $contains($m,"v2-1-master") + ? ($contains($m,"10s") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4}) + : $contains($m,"v2-master") + ? ($contains($m,"10s") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4}) + : $contains($m,"v1-6") + ? ( + $contains($m,"pro") + ? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($m,"10s") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28}) + ) + : $contains($m,"v1") + ? ( + $contains($m,"pro") + ? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($m,"10s") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14}) + ) + : {"type":"usd","usd":0.14} + ) + """, + ), ) @classmethod @@ -818,6 +845,16 @@ class OmniProTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + expr=""" + ( + $mode := (widgets.resolution = "720p") ? "std" : "pro"; + $rates := {"std": 0.084, "pro": 0.112}; + {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} + ) + """, + ), ) @classmethod @@ -886,6 +923,16 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + expr=""" + ( + $mode := (widgets.resolution = "720p") ? "std" : "pro"; + $rates := {"std": 0.084, "pro": 0.112}; + {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} + ) + """, + ), ) @classmethod @@ -981,6 +1028,16 @@ class OmniProImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + expr=""" + ( + $mode := (widgets.resolution = "720p") ? "std" : "pro"; + $rates := {"std": 0.084, "pro": 0.112}; + {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} + ) + """, + ), ) @classmethod @@ -1056,6 +1113,16 @@ class OmniProVideoToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + expr=""" + ( + $mode := (widgets.resolution = "720p") ? "std" : "pro"; + $rates := {"std": 0.126, "pro": 0.168}; + {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} + ) + """, + ), ) @classmethod @@ -1142,6 +1209,16 @@ class OmniProEditVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["resolution"]), + expr=""" + ( + $mode := (widgets.resolution = "720p") ? "std" : "pro"; + $rates := {"std": 0.126, "pro": 0.168}; + {"type":"usd","usd": $lookup($rates, $mode), "format":{"suffix":"/second"}} + ) + """, + ), ) @classmethod @@ -1228,6 +1305,9 @@ class OmniProImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.028}""", + ), ) @classmethod @@ -1313,6 +1393,9 @@ class KlingCameraControlT2VNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.14}""", + ), ) @classmethod @@ -1375,6 +1458,33 @@ class KlingImage2VideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["mode", "model_name", "duration"]), + expr=""" + ( + $mode := widgets.mode; + $model := widgets.model_name; + $dur := widgets.duration; + $contains($model,"v2-5-turbo") + ? ($contains($dur,"10") ? {"type":"usd","usd":0.7} : {"type":"usd","usd":0.35}) + : ($contains($model,"v2-1-master") or $contains($model,"v2-master")) + ? ($contains($dur,"10") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4}) + : ($contains($model,"v2-1") or $contains($model,"v1-6") or $contains($model,"v1-5")) + ? ( + $contains($mode,"pro") + ? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($dur,"10") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28}) + ) + : $contains($model,"v1") + ? ( + $contains($mode,"pro") + ? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($dur,"10") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14}) + ) + : {"type":"usd","usd":0.14} + ) + """, + ), ) @classmethod @@ -1448,6 +1558,9 @@ class KlingCameraControlI2VNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.49}""", + ), ) @classmethod @@ -1518,6 +1631,33 @@ class KlingStartEndFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["mode"]), + expr=""" + ( + $m := widgets.mode; + $contains($m,"v2-5-turbo") + ? ($contains($m,"10") ? {"type":"usd","usd":0.7} : {"type":"usd","usd":0.35}) + : $contains($m,"v2-1") + ? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : $contains($m,"v2-master") + ? ($contains($m,"10s") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4}) + : $contains($m,"v1-6") + ? ( + $contains($m,"pro") + ? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($m,"10s") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28}) + ) + : $contains($m,"v1") + ? ( + $contains($m,"pro") + ? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($m,"10s") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14}) + ) + : {"type":"usd","usd":0.14} + ) + """, + ), ) @classmethod @@ -1583,6 +1723,9 @@ class KlingVideoExtendNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.28}""", + ), ) @classmethod @@ -1664,6 +1807,29 @@ class KlingDualCharacterVideoEffectNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["mode", "model_name", "duration"]), + expr=""" + ( + $mode := widgets.mode; + $model := widgets.model_name; + $dur := widgets.duration; + ($contains($model,"v1-6") or $contains($model,"v1-5")) + ? ( + $contains($mode,"pro") + ? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($dur,"10") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28}) + ) + : $contains($model,"v1") + ? ( + $contains($mode,"pro") + ? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49}) + : ($contains($dur,"10") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14}) + ) + : {"type":"usd","usd":0.14} + ) + """, + ), ) @classmethod @@ -1728,6 +1894,16 @@ class KlingSingleImageVideoEffectNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["effect_scene"]), + expr=""" + ( + ($contains(widgets.effect_scene,"dizzydizzy") or $contains(widgets.effect_scene,"bloombloom")) + ? {"type":"usd","usd":0.49} + : {"type":"usd","usd":0.28} + ) + """, + ), ) @classmethod @@ -1782,6 +1958,9 @@ class KlingLipSyncAudioToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.1,"format":{"approximate":true}}""", + ), ) @classmethod @@ -1842,6 +2021,9 @@ class KlingLipSyncTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.1,"format":{"approximate":true}}""", + ), ) @classmethod @@ -1892,6 +2074,9 @@ class KlingVirtualTryOnNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.7}""", + ), ) @classmethod @@ -1991,6 +2176,19 @@ class KlingImageGenerationNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model_name", "n"], inputs=["image"]), + expr=""" + ( + $m := widgets.model_name; + $base := + $contains($m,"kling-v1-5") + ? (inputs.image.connected ? 0.028 : 0.014) + : ($contains($m,"kling-v1") ? 0.0035 : 0.014); + {"type":"usd","usd": $base * widgets.n} + ) + """, + ), ) @classmethod @@ -2074,6 +2272,10 @@ class TextToVideoWithAudio(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "generate_audio"]), + expr="""{"type":"usd","usd": 0.07 * widgets.duration * (widgets.generate_audio ? 2 : 1)}""", + ), ) @classmethod @@ -2138,6 +2340,10 @@ class ImageToVideoWithAudio(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "generate_audio"]), + expr="""{"type":"usd","usd": 0.07 * widgets.duration * (widgets.generate_audio ? 2 : 1)}""", + ), ) @classmethod @@ -2218,6 +2424,15 @@ class MotionControl(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["mode"]), + expr=""" + ( + $prices := {"std": 0.07, "pro": 0.112}; + {"type":"usd","usd": $lookup($prices, widgets.mode), "format":{"suffix":"/second"}} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_ltxv.py b/comfy_api_nodes/nodes_ltxv.py index 7e61560dc..c6424af92 100644 --- a/comfy_api_nodes/nodes_ltxv.py +++ b/comfy_api_nodes/nodes_ltxv.py @@ -28,6 +28,22 @@ class ExecuteTaskRequest(BaseModel): image_uri: str | None = Field(None) +PRICE_BADGE = IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]), + expr=""" + ( + $prices := { + "ltx-2 (pro)": {"1920x1080":0.06,"2560x1440":0.12,"3840x2160":0.24}, + "ltx-2 (fast)": {"1920x1080":0.04,"2560x1440":0.08,"3840x2160":0.16} + }; + $modelPrices := $lookup($prices, $lowercase(widgets.model)); + $pps := $lookup($modelPrices, widgets.resolution); + {"type":"usd","usd": $pps * widgets.duration} + ) + """, +) + + class TextToVideoNode(IO.ComfyNode): @classmethod def define_schema(cls): @@ -69,6 +85,7 @@ class TextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE, ) @classmethod @@ -145,6 +162,7 @@ class ImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE, ) @classmethod diff --git a/comfy_api_nodes/nodes_luma.py b/comfy_api_nodes/nodes_luma.py index 894f2b08c..95cb442e5 100644 --- a/comfy_api_nodes/nodes_luma.py +++ b/comfy_api_nodes/nodes_luma.py @@ -189,6 +189,19 @@ class LumaImageGenerationNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model"]), + expr=""" + ( + $m := widgets.model; + $contains($m,"photon-flash-1") + ? {"type":"usd","usd":0.0027} + : $contains($m,"photon-1") + ? {"type":"usd","usd":0.0104} + : {"type":"usd","usd":0.0246} + ) + """, + ), ) @classmethod @@ -303,6 +316,19 @@ class LumaImageModifyNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model"]), + expr=""" + ( + $m := widgets.model; + $contains($m,"photon-flash-1") + ? {"type":"usd","usd":0.0027} + : $contains($m,"photon-1") + ? {"type":"usd","usd":0.0104} + : {"type":"usd","usd":0.0246} + ) + """, + ), ) @classmethod @@ -395,6 +421,7 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -505,6 +532,8 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, + ) @classmethod @@ -568,6 +597,53 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode): return LumaKeyframes(frame0=frame0, frame1=frame1) +PRICE_BADGE_VIDEO = IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "resolution", "duration"]), + expr=""" + ( + $p := { + "ray-flash-2": { + "5s": {"4k":3.13,"1080p":0.79,"720p":0.34,"540p":0.2}, + "9s": {"4k":5.65,"1080p":1.42,"720p":0.61,"540p":0.36} + }, + "ray-2": { + "5s": {"4k":9.11,"1080p":2.27,"720p":1.02,"540p":0.57}, + "9s": {"4k":16.4,"1080p":4.1,"720p":1.83,"540p":1.03} + } + }; + + $m := widgets.model; + $d := widgets.duration; + $r := widgets.resolution; + + $modelKey := + $contains($m,"ray-flash-2") ? "ray-flash-2" : + $contains($m,"ray-2") ? "ray-2" : + $contains($m,"ray-1-6") ? "ray-1-6" : + "other"; + + $durKey := $contains($d,"5s") ? "5s" : $contains($d,"9s") ? "9s" : ""; + $resKey := + $contains($r,"4k") ? "4k" : + $contains($r,"1080p") ? "1080p" : + $contains($r,"720p") ? "720p" : + $contains($r,"540p") ? "540p" : ""; + + $modelPrices := $lookup($p, $modelKey); + $durPrices := $lookup($modelPrices, $durKey); + $v := $lookup($durPrices, $resKey); + + $price := + ($modelKey = "ray-1-6") ? 0.5 : + ($modelKey = "other") ? 0.79 : + ($exists($v) ? $v : 0.79); + + {"type":"usd","usd": $price} + ) + """, +) + + class LumaExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: diff --git a/comfy_api_nodes/nodes_minimax.py b/comfy_api_nodes/nodes_minimax.py index 05cbb700f..43a15d50d 100644 --- a/comfy_api_nodes/nodes_minimax.py +++ b/comfy_api_nodes/nodes_minimax.py @@ -134,6 +134,9 @@ class MinimaxTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.43}""", + ), ) @classmethod @@ -197,6 +200,9 @@ class MinimaxImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.43}""", + ), ) @classmethod @@ -340,6 +346,20 @@ class MinimaxHailuoVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["resolution", "duration"]), + expr=""" + ( + $prices := { + "768p": {"6": 0.28, "10": 0.56}, + "1080p": {"6": 0.49} + }; + $resPrices := $lookup($prices, $lowercase(widgets.resolution)); + $price := $lookup($resPrices, $string(widgets.duration)); + {"type":"usd","usd": $price ? $price : 0.43} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_moonvalley.py b/comfy_api_nodes/nodes_moonvalley.py index 2771e4790..769b171b7 100644 --- a/comfy_api_nodes/nodes_moonvalley.py +++ b/comfy_api_nodes/nodes_moonvalley.py @@ -233,6 +233,10 @@ class MoonvalleyImg2VideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(), + expr="""{"type":"usd","usd": 1.5}""", + ), ) @classmethod @@ -351,6 +355,10 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(), + expr="""{"type":"usd","usd": 2.25}""", + ), ) @classmethod @@ -471,6 +479,10 @@ class MoonvalleyTxt2VideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(), + expr="""{"type":"usd","usd": 1.5}""", + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_openai.py b/comfy_api_nodes/nodes_openai.py index a6205a34f..2f144c5c3 100644 --- a/comfy_api_nodes/nodes_openai.py +++ b/comfy_api_nodes/nodes_openai.py @@ -160,6 +160,23 @@ class OpenAIDalle2(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["size", "n"]), + expr=""" + ( + $size := widgets.size; + $nRaw := widgets.n; + $n := ($nRaw != null and $nRaw != 0) ? $nRaw : 1; + + $base := + $contains($size, "256x256") ? 0.016 : + $contains($size, "512x512") ? 0.018 : + 0.02; + + {"type":"usd","usd": $round($base * $n, 3)} + ) + """, + ), ) @classmethod @@ -287,6 +304,25 @@ class OpenAIDalle3(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["size", "quality"]), + expr=""" + ( + $size := widgets.size; + $q := widgets.quality; + $hd := $contains($q, "hd"); + + $price := + $contains($size, "1024x1024") + ? ($hd ? 0.08 : 0.04) + : (($contains($size, "1792x1024") or $contains($size, "1024x1792")) + ? ($hd ? 0.12 : 0.08) + : 0.04); + + {"type":"usd","usd": $price} + ) + """, + ), ) @classmethod @@ -411,6 +447,28 @@ class OpenAIGPTImage1(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["quality", "n"]), + expr=""" + ( + $ranges := { + "low": [0.011, 0.02], + "medium": [0.046, 0.07], + "high": [0.167, 0.3] + }; + $range := $lookup($ranges, widgets.quality); + $n := widgets.n; + ($n = 1) + ? {"type":"range_usd","min_usd": $range[0], "max_usd": $range[1]} + : { + "type":"range_usd", + "min_usd": $range[0], + "max_usd": $range[1], + "format": { "suffix": " x " & $string($n) & "/Run" } + } + ) + """, + ), ) @classmethod @@ -566,6 +624,75 @@ class OpenAIChatNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model"]), + expr=""" + ( + $m := widgets.model; + $contains($m, "o4-mini") ? { + "type": "list_usd", + "usd": [0.0011, 0.0044], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "o1-pro") ? { + "type": "list_usd", + "usd": [0.15, 0.6], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "o1") ? { + "type": "list_usd", + "usd": [0.015, 0.06], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "o3-mini") ? { + "type": "list_usd", + "usd": [0.0011, 0.0044], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "o3") ? { + "type": "list_usd", + "usd": [0.01, 0.04], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-4o") ? { + "type": "list_usd", + "usd": [0.0025, 0.01], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-4.1-nano") ? { + "type": "list_usd", + "usd": [0.0001, 0.0004], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-4.1-mini") ? { + "type": "list_usd", + "usd": [0.0004, 0.0016], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-4.1") ? { + "type": "list_usd", + "usd": [0.002, 0.008], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-5-nano") ? { + "type": "list_usd", + "usd": [0.00005, 0.0004], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-5-mini") ? { + "type": "list_usd", + "usd": [0.00025, 0.002], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : $contains($m, "gpt-5") ? { + "type": "list_usd", + "usd": [0.00125, 0.01], + "format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" } + } + : {"type": "text", "text": "Token-based"} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_pixverse.py b/comfy_api_nodes/nodes_pixverse.py index 6e1686af0..86ddb3ab9 100644 --- a/comfy_api_nodes/nodes_pixverse.py +++ b/comfy_api_nodes/nodes_pixverse.py @@ -128,6 +128,7 @@ class PixverseTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -242,6 +243,7 @@ class PixverseImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -355,6 +357,7 @@ class PixverseTransitionVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=PRICE_BADGE_VIDEO, ) @classmethod @@ -416,6 +419,33 @@ class PixverseTransitionVideoNode(IO.ComfyNode): return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url)) +PRICE_BADGE_VIDEO = IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration_seconds", "quality", "motion_mode"]), + expr=""" + ( + $prices := { + "5": { + "1080p": {"normal": 1.2, "fast": 1.2}, + "720p": {"normal": 0.6, "fast": 1.2}, + "540p": {"normal": 0.45, "fast": 0.9}, + "360p": {"normal": 0.45, "fast": 0.9} + }, + "8": { + "1080p": {"normal": 1.2, "fast": 1.2}, + "720p": {"normal": 1.2, "fast": 1.2}, + "540p": {"normal": 0.9, "fast": 1.2}, + "360p": {"normal": 0.9, "fast": 1.2} + } + }; + $durPrices := $lookup($prices, $string(widgets.duration_seconds)); + $qualityPrices := $lookup($durPrices, widgets.quality); + $price := $lookup($qualityPrices, widgets.motion_mode); + {"type":"usd","usd": $price ? $price : 0.9} + ) + """, +) + + class PixVerseExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: diff --git a/comfy_api_nodes/nodes_recraft.py b/comfy_api_nodes/nodes_recraft.py index e3440b946..05dc151ad 100644 --- a/comfy_api_nodes/nodes_recraft.py +++ b/comfy_api_nodes/nodes_recraft.py @@ -378,6 +378,10 @@ class RecraftTextToImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["n"]), + expr="""{"type":"usd","usd": $round(0.04 * widgets.n, 2)}""", + ), ) @classmethod @@ -490,6 +494,10 @@ class RecraftImageToImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["n"]), + expr="""{"type":"usd","usd": $round(0.04 * widgets.n, 2)}""", + ), ) @classmethod @@ -591,6 +599,10 @@ class RecraftImageInpaintingNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["n"]), + expr="""{"type":"usd","usd": $round(0.04 * widgets.n, 2)}""", + ), ) @classmethod @@ -692,6 +704,10 @@ class RecraftTextToVectorNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["n"]), + expr="""{"type":"usd","usd": $round(0.08 * widgets.n, 2)}""", + ), ) @classmethod @@ -759,6 +775,10 @@ class RecraftVectorizeImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(), + expr="""{"type":"usd","usd": 0.01}""", + ), ) @classmethod @@ -817,6 +837,9 @@ class RecraftReplaceBackgroundNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.04}""", + ), ) @classmethod @@ -883,6 +906,9 @@ class RecraftRemoveBackgroundNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.01}""", + ), ) @classmethod @@ -929,6 +955,9 @@ class RecraftCrispUpscaleNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.004}""", + ), ) @classmethod @@ -972,6 +1001,9 @@ class RecraftCreativeUpscaleNode(RecraftCrispUpscaleNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.25}""", + ), ) diff --git a/comfy_api_nodes/nodes_rodin.py b/comfy_api_nodes/nodes_rodin.py index e60e7a6d6..b4420cb93 100644 --- a/comfy_api_nodes/nodes_rodin.py +++ b/comfy_api_nodes/nodes_rodin.py @@ -241,6 +241,9 @@ class Rodin3D_Regular(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -294,6 +297,9 @@ class Rodin3D_Detail(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -347,6 +353,9 @@ class Rodin3D_Smooth(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -406,6 +415,9 @@ class Rodin3D_Sketch(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_runway.py b/comfy_api_nodes/nodes_runway.py index 3c55039c9..d19fdb365 100644 --- a/comfy_api_nodes/nodes_runway.py +++ b/comfy_api_nodes/nodes_runway.py @@ -184,6 +184,10 @@ class RunwayImageToVideoNodeGen3a(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration"]), + expr="""{"type":"usd","usd": 0.0715 * widgets.duration}""", + ), ) @classmethod @@ -274,6 +278,10 @@ class RunwayImageToVideoNodeGen4(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration"]), + expr="""{"type":"usd","usd": 0.0715 * widgets.duration}""", + ), ) @classmethod @@ -372,6 +380,10 @@ class RunwayFirstLastFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration"]), + expr="""{"type":"usd","usd": 0.0715 * widgets.duration}""", + ), ) @classmethod @@ -457,6 +469,9 @@ class RunwayTextToImageNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.11}""", + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_sora.py b/comfy_api_nodes/nodes_sora.py index 92b225d40..87e663845 100644 --- a/comfy_api_nodes/nodes_sora.py +++ b/comfy_api_nodes/nodes_sora.py @@ -89,6 +89,24 @@ class OpenAIVideoSora2(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "size", "duration"]), + expr=""" + ( + $m := widgets.model; + $size := widgets.size; + $dur := widgets.duration; + $isPro := $contains($m, "sora-2-pro"); + $isSora2 := $contains($m, "sora-2"); + $isProSize := ($size = "1024x1792" or $size = "1792x1024"); + $perSec := + $isPro ? ($isProSize ? 0.5 : 0.3) : + $isSora2 ? 0.1 : + ($isProSize ? 0.5 : 0.1); + {"type":"usd","usd": $round($perSec * $dur, 2)} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_stability.py b/comfy_api_nodes/nodes_stability.py index bb7ceed78..5c48c1f1e 100644 --- a/comfy_api_nodes/nodes_stability.py +++ b/comfy_api_nodes/nodes_stability.py @@ -127,6 +127,9 @@ class StabilityStableImageUltraNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.08}""", + ), ) @classmethod @@ -264,6 +267,16 @@ class StabilityStableImageSD_3_5Node(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model"]), + expr=""" + ( + $contains(widgets.model,"large") + ? {"type":"usd","usd":0.065} + : {"type":"usd","usd":0.035} + ) + """, + ), ) @classmethod @@ -382,6 +395,9 @@ class StabilityUpscaleConservativeNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.25}""", + ), ) @classmethod @@ -486,6 +502,9 @@ class StabilityUpscaleCreativeNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.25}""", + ), ) @classmethod @@ -566,6 +585,9 @@ class StabilityUpscaleFastNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.01}""", + ), ) @classmethod @@ -648,6 +670,9 @@ class StabilityTextToAudio(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.2}""", + ), ) @classmethod @@ -732,6 +757,9 @@ class StabilityAudioToAudio(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.2}""", + ), ) @classmethod @@ -828,6 +856,9 @@ class StabilityAudioInpaint(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.2}""", + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_tripo.py b/comfy_api_nodes/nodes_tripo.py index e72f8e96a..aa790143d 100644 --- a/comfy_api_nodes/nodes_tripo.py +++ b/comfy_api_nodes/nodes_tripo.py @@ -117,6 +117,38 @@ class TripoTextToModelNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends( + widgets=[ + "model_version", + "style", + "texture", + "pbr", + "quad", + "texture_quality", + "geometry_quality", + ], + ), + expr=""" + ( + $isV14 := $contains(widgets.model_version,"v1.4"); + $style := widgets.style; + $hasStyle := ($style != "" and $style != "none"); + $withTexture := widgets.texture or widgets.pbr; + $isHdTexture := (widgets.texture_quality = "detailed"); + $isDetailedGeometry := (widgets.geometry_quality = "detailed"); + $baseCredits := + $isV14 ? 20 : ($withTexture ? 20 : 10); + $credits := + $baseCredits + + ($hasStyle ? 5 : 0) + + (widgets.quad ? 5 : 0) + + ($isHdTexture ? 10 : 0) + + ($isDetailedGeometry ? 20 : 0); + {"type":"usd","usd": $round($credits * 0.01, 2)} + ) + """, + ), ) @classmethod @@ -210,6 +242,38 @@ class TripoImageToModelNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends( + widgets=[ + "model_version", + "style", + "texture", + "pbr", + "quad", + "texture_quality", + "geometry_quality", + ], + ), + expr=""" + ( + $isV14 := $contains(widgets.model_version,"v1.4"); + $style := widgets.style; + $hasStyle := ($style != "" and $style != "none"); + $withTexture := widgets.texture or widgets.pbr; + $isHdTexture := (widgets.texture_quality = "detailed"); + $isDetailedGeometry := (widgets.geometry_quality = "detailed"); + $baseCredits := + $isV14 ? 30 : ($withTexture ? 30 : 20); + $credits := + $baseCredits + + ($hasStyle ? 5 : 0) + + (widgets.quad ? 5 : 0) + + ($isHdTexture ? 10 : 0) + + ($isDetailedGeometry ? 20 : 0); + {"type":"usd","usd": $round($credits * 0.01, 2)} + ) + """, + ), ) @classmethod @@ -314,6 +378,34 @@ class TripoMultiviewToModelNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends( + widgets=[ + "model_version", + "texture", + "pbr", + "quad", + "texture_quality", + "geometry_quality", + ], + ), + expr=""" + ( + $isV14 := $contains(widgets.model_version,"v1.4"); + $withTexture := widgets.texture or widgets.pbr; + $isHdTexture := (widgets.texture_quality = "detailed"); + $isDetailedGeometry := (widgets.geometry_quality = "detailed"); + $baseCredits := + $isV14 ? 30 : ($withTexture ? 30 : 20); + $credits := + $baseCredits + + (widgets.quad ? 5 : 0) + + ($isHdTexture ? 10 : 0) + + ($isDetailedGeometry ? 20 : 0); + {"type":"usd","usd": $round($credits * 0.01, 2)} + ) + """, + ), ) @classmethod @@ -405,6 +497,15 @@ class TripoTextureNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["texture_quality"]), + expr=""" + ( + $tq := widgets.texture_quality; + {"type":"usd","usd": ($contains($tq,"detailed") ? 0.2 : 0.1)} + ) + """, + ), ) @classmethod @@ -456,6 +557,9 @@ class TripoRefineNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.3}""", + ), ) @classmethod @@ -489,6 +593,9 @@ class TripoRigNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.25}""", + ), ) @classmethod @@ -545,6 +652,9 @@ class TripoRetargetNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.1}""", + ), ) @classmethod @@ -638,6 +748,60 @@ class TripoConversionNode(IO.ComfyNode): ], is_api_node=True, is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends( + widgets=[ + "quad", + "face_limit", + "texture_size", + "texture_format", + "force_symmetry", + "flatten_bottom", + "flatten_bottom_threshold", + "pivot_to_center_bottom", + "scale_factor", + "with_animation", + "pack_uv", + "bake", + "part_names", + "fbx_preset", + "export_vertex_colors", + "export_orientation", + "animate_in_place", + ], + ), + expr=""" + ( + $face := (widgets.face_limit != null) ? widgets.face_limit : -1; + $texSize := (widgets.texture_size != null) ? widgets.texture_size : 4096; + $flatThresh := (widgets.flatten_bottom_threshold != null) ? widgets.flatten_bottom_threshold : 0; + $scale := (widgets.scale_factor != null) ? widgets.scale_factor : 1; + $texFmt := (widgets.texture_format != "" ? widgets.texture_format : "jpeg"); + $part := widgets.part_names; + $fbx := (widgets.fbx_preset != "" ? widgets.fbx_preset : "blender"); + $orient := (widgets.export_orientation != "" ? widgets.export_orientation : "default"); + $advanced := + widgets.quad or + widgets.force_symmetry or + widgets.flatten_bottom or + widgets.pivot_to_center_bottom or + widgets.with_animation or + widgets.pack_uv or + widgets.bake or + widgets.export_vertex_colors or + widgets.animate_in_place or + ($face != -1) or + ($texSize != 4096) or + ($flatThresh != 0) or + ($scale != 1) or + ($texFmt != "jpeg") or + ($part != "") or + ($fbx != "blender") or + ($orient != "default"); + {"type":"usd","usd": ($advanced ? 0.1 : 0.05)} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_veo2.py b/comfy_api_nodes/nodes_veo2.py index 13a6bfd91..c14d6ad68 100644 --- a/comfy_api_nodes/nodes_veo2.py +++ b/comfy_api_nodes/nodes_veo2.py @@ -122,6 +122,10 @@ class VeoVideoGenerationNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration_seconds"]), + expr="""{"type":"usd","usd": 0.5 * widgets.duration_seconds}""", + ), ) @classmethod @@ -347,6 +351,20 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "generate_audio"]), + expr=""" + ( + $m := widgets.model; + $a := widgets.generate_audio; + ($contains($m,"veo-3.0-fast-generate-001") or $contains($m,"veo-3.1-fast-generate")) + ? {"type":"usd","usd": ($a ? 1.2 : 0.8)} + : ($contains($m,"veo-3.0-generate-001") or $contains($m,"veo-3.1-generate")) + ? {"type":"usd","usd": ($a ? 3.2 : 1.6)} + : {"type":"range_usd","min_usd":0.8,"max_usd":3.2} + ) + """, + ), ) @@ -420,6 +438,30 @@ class Veo3FirstLastFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "generate_audio", "duration"]), + expr=""" + ( + $prices := { + "veo-3.1-fast-generate": { "audio": 0.15, "no_audio": 0.10 }, + "veo-3.1-generate": { "audio": 0.40, "no_audio": 0.20 } + }; + $m := widgets.model; + $ga := (widgets.generate_audio = "true"); + $seconds := widgets.duration; + $modelKey := + $contains($m, "veo-3.1-fast-generate") ? "veo-3.1-fast-generate" : + $contains($m, "veo-3.1-generate") ? "veo-3.1-generate" : + ""; + $audioKey := $ga ? "audio" : "no_audio"; + $modelPrices := $lookup($prices, $modelKey); + $pps := $lookup($modelPrices, $audioKey); + ($pps != null) + ? {"type":"usd","usd": $pps * $seconds} + : {"type":"range_usd","min_usd": 0.4, "max_usd": 3.2} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_vidu.py b/comfy_api_nodes/nodes_vidu.py index 9d94ae7ad..8edb02f39 100644 --- a/comfy_api_nodes/nodes_vidu.py +++ b/comfy_api_nodes/nodes_vidu.py @@ -121,6 +121,9 @@ class ViduTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -214,6 +217,9 @@ class ViduImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -317,6 +323,9 @@ class ViduReferenceVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -426,6 +435,9 @@ class ViduStartEndToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), ) @classmethod @@ -507,6 +519,17 @@ class Vidu2TextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + expr=""" + ( + $is1080 := widgets.resolution = "1080p"; + $base := $is1080 ? 0.1 : 0.075; + $perSec := $is1080 ? 0.05 : 0.025; + {"type":"usd","usd": $base + $perSec * (widgets.duration - 1)} + ) + """, + ), ) @classmethod @@ -594,6 +617,39 @@ class Vidu2ImageToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]), + expr=""" + ( + $m := widgets.model; + $d := widgets.duration; + $is1080 := widgets.resolution = "1080p"; + $contains($m, "pro-fast") + ? ( + $base := $is1080 ? 0.08 : 0.04; + $perSec := $is1080 ? 0.02 : 0.01; + {"type":"usd","usd": $base + $perSec * ($d - 1)} + ) + : $contains($m, "pro") + ? ( + $base := $is1080 ? 0.275 : 0.075; + $perSec := $is1080 ? 0.075 : 0.05; + {"type":"usd","usd": $base + $perSec * ($d - 1)} + ) + : $contains($m, "turbo") + ? ( + $is1080 + ? {"type":"usd","usd": 0.175 + 0.05 * ($d - 1)} + : ( + $d <= 1 ? {"type":"usd","usd": 0.04} + : $d <= 2 ? {"type":"usd","usd": 0.05} + : {"type":"usd","usd": 0.05 + 0.05 * ($d - 2)} + ) + ) + : {"type":"usd","usd": 0.04} + ) + """, + ), ) @classmethod @@ -698,6 +754,18 @@ class Vidu2ReferenceVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["audio", "duration", "resolution"]), + expr=""" + ( + $is1080 := widgets.resolution = "1080p"; + $base := $is1080 ? 0.375 : 0.125; + $perSec := $is1080 ? 0.05 : 0.025; + $audioCost := widgets.audio = true ? 0.075 : 0; + {"type":"usd","usd": $base + $perSec * (widgets.duration - 1) + $audioCost} + ) + """, + ), ) @classmethod @@ -804,6 +872,38 @@ class Vidu2StartEndToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]), + expr=""" + ( + $m := widgets.model; + $d := widgets.duration; + $is1080 := widgets.resolution = "1080p"; + $contains($m, "pro-fast") + ? ( + $base := $is1080 ? 0.08 : 0.04; + $perSec := $is1080 ? 0.02 : 0.01; + {"type":"usd","usd": $base + $perSec * ($d - 1)} + ) + : $contains($m, "pro") + ? ( + $base := $is1080 ? 0.275 : 0.075; + $perSec := $is1080 ? 0.075 : 0.05; + {"type":"usd","usd": $base + $perSec * ($d - 1)} + ) + : $contains($m, "turbo") + ? ( + $is1080 + ? {"type":"usd","usd": 0.175 + 0.05 * ($d - 1)} + : ( + $d <= 2 ? {"type":"usd","usd": 0.05} + : {"type":"usd","usd": 0.05 + 0.05 * ($d - 2)} + ) + ) + : {"type":"usd","usd": 0.04} + ) + """, + ), ) @classmethod diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 3e04786a9..a1355d4f1 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -244,6 +244,9 @@ class WanTextToImageApi(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.03}""", + ), ) @classmethod @@ -363,6 +366,9 @@ class WanImageToImageApi(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.03}""", + ), ) @classmethod @@ -520,6 +526,17 @@ class WanTextToVideoApi(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "size"]), + expr=""" + ( + $ppsTable := { "480p": 0.05, "720p": 0.1, "1080p": 0.15 }; + $resKey := $substringBefore(widgets.size, ":"); + $pps := $lookup($ppsTable, $resKey); + { "type": "usd", "usd": $round($pps * widgets.duration, 2) } + ) + """, + ), ) @classmethod @@ -681,6 +698,16 @@ class WanImageToVideoApi(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + expr=""" + ( + $ppsTable := { "480p": 0.05, "720p": 0.1, "1080p": 0.15 }; + $pps := $lookup($ppsTable, widgets.resolution); + { "type": "usd", "usd": $round($pps * widgets.duration, 2) } + ) + """, + ), ) @classmethod @@ -828,6 +855,22 @@ class WanReferenceVideoApi(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["size", "duration"]), + expr=""" + ( + $rate := $contains(widgets.size, "1080p") ? 0.15 : 0.10; + $inputMin := 2 * $rate; + $inputMax := 5 * $rate; + $outputPrice := widgets.duration * $rate; + { + "type": "range_usd", + "min_usd": $inputMin + $outputPrice, + "max_usd": $inputMax + $outputPrice + } + ) + """, + ), ) @classmethod From 15b312de7a74a836fa45b989a7697895b01e0cbf Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 13 Jan 2026 16:23:58 -0800 Subject: [PATCH 54/74] Optimize nvfp4 lora applying. (#11854) --- comfy/float.py | 12 ++---------- 1 file changed, 2 insertions(+), 10 deletions(-) diff --git a/comfy/float.py b/comfy/float.py index c806af76b..1a6070bff 100644 --- a/comfy/float.py +++ b/comfy/float.py @@ -165,20 +165,12 @@ def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): block_scale = max_abs / F4_E2M1_MAX scaled_block_scales = block_scale / per_tensor_scale.to(block_scale.dtype) scaled_block_scales_fp8 = torch.clamp(scaled_block_scales, max=F8_E4M3_MAX).to(torch.float8_e4m3fn) - total_scale = per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype) - - # Handle zero blocks (from padding): avoid 0/0 NaN - zero_scale_mask = (total_scale == 0) - total_scale_safe = torch.where(zero_scale_mask, torch.ones_like(total_scale), total_scale) - - x = x / total_scale_safe.unsqueeze(-1) + x /= (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1) generator = torch.Generator(device=x.device) generator.manual_seed(seed) - x = torch.where(zero_scale_mask.unsqueeze(-1), torch.zeros_like(x), x) - - x = x.view(orig_shape) + x = x.view(orig_shape).nan_to_num() data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator) blocked_scales = to_blocked(scaled_block_scales_fp8, flatten=False) From eff2b9d412932aa7d49e6302cdf6e7cf24808b6f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 13 Jan 2026 16:37:19 -0800 Subject: [PATCH 55/74] Optimize nvfp4 lora applying. (#11856) --- comfy/float.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/comfy/float.py b/comfy/float.py index 1a6070bff..8c303bea0 100644 --- a/comfy/float.py +++ b/comfy/float.py @@ -161,10 +161,7 @@ def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): block_size = 16 x = x.reshape(orig_shape[0], -1, block_size) - max_abs = torch.amax(torch.abs(x), dim=-1) - block_scale = max_abs / F4_E2M1_MAX - scaled_block_scales = block_scale / per_tensor_scale.to(block_scale.dtype) - scaled_block_scales_fp8 = torch.clamp(scaled_block_scales, max=F8_E4M3_MAX).to(torch.float8_e4m3fn) + scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn) x /= (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1) generator = torch.Generator(device=x.device) @@ -172,6 +169,5 @@ def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): x = x.view(orig_shape).nan_to_num() data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator) - blocked_scales = to_blocked(scaled_block_scales_fp8, flatten=False) return data_lp, blocked_scales From 469dd9c16ad88765ffe4e7bfa57dd80faafbaddf Mon Sep 17 00:00:00 2001 From: nomadoor <124905471+nomadoor@users.noreply.github.com> Date: Wed, 14 Jan 2026 09:48:10 +0900 Subject: [PATCH 56/74] Adds crop to multiple mode to ResizeImageMaskNode. (#11838) * Add crop-to-multiple resize mode * Make scale-to-multiple shape handling explicit --- comfy_extras/nodes_post_processing.py | 44 +++++++++++++++++++++++++++ 1 file changed, 44 insertions(+) diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 01afa13a1..0433bbda2 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -254,6 +254,7 @@ class ResizeType(str, Enum): SCALE_HEIGHT = "scale height" SCALE_TOTAL_PIXELS = "scale total pixels" MATCH_SIZE = "match size" + SCALE_TO_MULTIPLE = "scale to multiple" def is_image(input: torch.Tensor) -> bool: # images have 4 dimensions: [batch, height, width, channels] @@ -363,6 +364,43 @@ def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str input = finalize_image_mask_input(input, is_type_image) return input +def scale_to_multiple_cover(input: torch.Tensor, multiple: int, scale_method: str) -> torch.Tensor: + if multiple <= 1: + return input + is_type_image = is_image(input) + if is_type_image: + _, height, width, _ = input.shape + else: + _, height, width = input.shape + target_w = (width // multiple) * multiple + target_h = (height // multiple) * multiple + if target_w == 0 or target_h == 0: + return input + if target_w == width and target_h == height: + return input + s_w = target_w / width + s_h = target_h / height + if s_w >= s_h: + scaled_w = target_w + scaled_h = int(math.ceil(height * s_w)) + if scaled_h < target_h: + scaled_h = target_h + else: + scaled_h = target_h + scaled_w = int(math.ceil(width * s_h)) + if scaled_w < target_w: + scaled_w = target_w + input = init_image_mask_input(input, is_type_image) + input = comfy.utils.common_upscale(input, scaled_w, scaled_h, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + x0 = (scaled_w - target_w) // 2 + y0 = (scaled_h - target_h) // 2 + x1 = x0 + target_w + y1 = y0 + target_h + if is_type_image: + return input[:, y0:y1, x0:x1, :] + return input[:, y0:y1, x0:x1] + class ResizeImageMaskNode(io.ComfyNode): scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] @@ -378,6 +416,7 @@ class ResizeImageMaskNode(io.ComfyNode): longer_size: int shorter_size: int megapixels: float + multiple: int @classmethod def define_schema(cls): @@ -417,6 +456,9 @@ class ResizeImageMaskNode(io.ComfyNode): io.MultiType.Input("match", [io.Image, io.Mask]), crop_combo, ]), + io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ + io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1), + ]), ]), io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), ], @@ -442,6 +484,8 @@ class ResizeImageMaskNode(io.ComfyNode): return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method)) elif selected_type == ResizeType.MATCH_SIZE: return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"])) + elif selected_type == ResizeType.SCALE_TO_MULTIPLE: + return io.NodeOutput(scale_to_multiple_cover(input, resize_type["multiple"], scale_method)) raise ValueError(f"Unsupported resize type: {selected_type}") def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None: From 7eb959ce934da914523b455f9a6e7e0662690325 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Tue, 13 Jan 2026 18:03:16 -0800 Subject: [PATCH 57/74] fix: update ComfyUI repo reference to Comfy-Org/ComfyUI (#11858) --- .github/workflows/test-launch.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/test-launch.yml b/.github/workflows/test-launch.yml index ef0d3f123..581c0474b 100644 --- a/.github/workflows/test-launch.yml +++ b/.github/workflows/test-launch.yml @@ -13,7 +13,7 @@ jobs: - name: Checkout ComfyUI uses: actions/checkout@v4 with: - repository: "comfyanonymous/ComfyUI" + repository: "Comfy-Org/ComfyUI" path: "ComfyUI" - uses: actions/setup-python@v4 with: From c9196f355ef5832daf55c4bbe8c6279dec509331 Mon Sep 17 00:00:00 2001 From: nomadoor <124905471+nomadoor@users.noreply.github.com> Date: Wed, 14 Jan 2026 11:25:09 +0900 Subject: [PATCH 58/74] Fix scale_shorter_dimension portrait check (#11862) --- comfy_extras/nodes_post_processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 0433bbda2..2e559c35c 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -329,7 +329,7 @@ def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method if height < width: width = round((width / height) * shorter_size) height = shorter_size - elif width > height: + elif width < height: height = round((height / width) * shorter_size) width = shorter_size else: From ac4d8ea9b32f56410860dccdb30ae50a1029d6fd Mon Sep 17 00:00:00 2001 From: Johnpaul Chiwetelu <49923152+Myestery@users.noreply.github.com> Date: Wed, 14 Jan 2026 04:39:22 +0100 Subject: [PATCH 59/74] feat: add CI container version bump automation (#11692) * feat: add CI container version bump automation Adds a workflow that triggers on releases to create PRs in the comfyui-ci-container repo, updating the ComfyUI version in the Dockerfile. Supports both release events and manual workflow dispatch for testing. * feat: add CI container version bump automation Adds a workflow that triggers on releases to create PRs in the comfyui-ci-container repo, updating the ComfyUI version in the Dockerfile. Supports both release events and manual workflow dispatch for testing. * ci: update CI container repository owner * refactor: rename `update-ci-container.yaml` workflow to `update-ci-container.yml` * Remove post-merge instructions from the CI container update workflow. --- .github/workflows/update-ci-container.yml | 59 +++++++++++++++++++++++ 1 file changed, 59 insertions(+) create mode 100644 .github/workflows/update-ci-container.yml diff --git a/.github/workflows/update-ci-container.yml b/.github/workflows/update-ci-container.yml new file mode 100644 index 000000000..f7972e056 --- /dev/null +++ b/.github/workflows/update-ci-container.yml @@ -0,0 +1,59 @@ +name: "CI: Update CI Container" + +on: + release: + types: [published] + workflow_dispatch: + inputs: + version: + description: 'ComfyUI version (e.g., v0.7.0)' + required: true + type: string + +jobs: + update-ci-container: + runs-on: ubuntu-latest + # Skip pre-releases unless manually triggered + if: github.event_name == 'workflow_dispatch' || !github.event.release.prerelease + steps: + - name: Get version + id: version + run: | + if [ "${{ github.event_name }}" = "release" ]; then + VERSION="${{ github.event.release.tag_name }}" + else + VERSION="${{ inputs.version }}" + fi + echo "version=$VERSION" >> $GITHUB_OUTPUT + + - name: Checkout comfyui-ci-container + uses: actions/checkout@v4 + with: + repository: comfy-org/comfyui-ci-container + token: ${{ secrets.CI_CONTAINER_PAT }} + + - name: Check current version + id: current + run: | + CURRENT=$(grep -oP 'ARG COMFYUI_VERSION=\K.*' Dockerfile || echo "unknown") + echo "current_version=$CURRENT" >> $GITHUB_OUTPUT + + - name: Update Dockerfile + run: | + VERSION="${{ steps.version.outputs.version }}" + sed -i "s/^ARG COMFYUI_VERSION=.*/ARG COMFYUI_VERSION=${VERSION}/" Dockerfile + + - name: Create Pull Request + id: create-pr + uses: peter-evans/create-pull-request@v7 + with: + token: ${{ secrets.CI_CONTAINER_PAT }} + branch: automation/comfyui-${{ steps.version.outputs.version }} + title: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}" + body: | + Updates ComfyUI version from `${{ steps.current.outputs.current_version }}` to `${{ steps.version.outputs.version }}` + + **Triggered by:** ${{ github.event_name == 'release' && format('[Release {0}]({1})', github.event.release.tag_name, github.event.release.html_url) || 'Manual workflow dispatch' }} + + labels: automation + commit-message: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}" From 712cca36a13db93a9fa1fde9b7b5f9a5b961209a Mon Sep 17 00:00:00 2001 From: Silver <65376327+silveroxides@users.noreply.github.com> Date: Wed, 14 Jan 2026 04:41:44 +0100 Subject: [PATCH 60/74] feat: throttle ProgressBar updates to reduce WebSocket flooding (#11504) --- comfy/utils.py | 31 ++++++++++++++++++++++++++++++- 1 file changed, 30 insertions(+), 1 deletion(-) diff --git a/comfy/utils.py b/comfy/utils.py index ffa98c9b1..fac13f128 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -30,6 +30,7 @@ from torch.nn.functional import interpolate from einops import rearrange from comfy.cli_args import args import json +import time MMAP_TORCH_FILES = args.mmap_torch_files DISABLE_MMAP = args.disable_mmap @@ -1097,6 +1098,10 @@ def set_progress_bar_global_hook(function): global PROGRESS_BAR_HOOK PROGRESS_BAR_HOOK = function +# Throttle settings for progress bar updates to reduce WebSocket flooding +PROGRESS_THROTTLE_MIN_INTERVAL = 0.1 # 100ms minimum between updates +PROGRESS_THROTTLE_MIN_PERCENT = 0.5 # 0.5% minimum progress change + class ProgressBar: def __init__(self, total, node_id=None): global PROGRESS_BAR_HOOK @@ -1104,6 +1109,8 @@ class ProgressBar: self.current = 0 self.hook = PROGRESS_BAR_HOOK self.node_id = node_id + self._last_update_time = 0.0 + self._last_sent_value = -1 def update_absolute(self, value, total=None, preview=None): if total is not None: @@ -1112,7 +1119,29 @@ class ProgressBar: value = self.total self.current = value if self.hook is not None: - self.hook(self.current, self.total, preview, node_id=self.node_id) + current_time = time.perf_counter() + is_first = (self._last_sent_value < 0) + is_final = (value >= self.total) + has_preview = (preview is not None) + + # Always send immediately for previews, first update, or final update + if has_preview or is_first or is_final: + self.hook(self.current, self.total, preview, node_id=self.node_id) + self._last_update_time = current_time + self._last_sent_value = value + return + + # Apply throttling for regular progress updates + if self.total > 0: + percent_changed = ((value - max(0, self._last_sent_value)) / self.total) * 100 + else: + percent_changed = 100 + time_elapsed = current_time - self._last_update_time + + if time_elapsed >= PROGRESS_THROTTLE_MIN_INTERVAL and percent_changed >= PROGRESS_THROTTLE_MIN_PERCENT: + self.hook(self.current, self.total, preview, node_id=self.node_id) + self._last_update_time = current_time + self._last_sent_value = value def update(self, value): self.update_absolute(self.current + value) From 6165c38cb58c40b15ade879b80051b6c9148587f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 13 Jan 2026 21:49:38 -0800 Subject: [PATCH 61/74] Optimize nvfp4 lora applying. (#11866) This changes results a bit but it also speeds up things a lot. --- comfy/float.py | 56 ++++++++++++++++++++++++++++++++------- comfy/quant_ops.py | 2 +- comfy/supported_models.py | 2 +- 3 files changed, 49 insertions(+), 11 deletions(-) diff --git a/comfy/float.py b/comfy/float.py index 8c303bea0..88c47cd80 100644 --- a/comfy/float.py +++ b/comfy/float.py @@ -137,10 +137,44 @@ def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor: return rearranged.reshape(padded_rows, padded_cols) -def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): +def stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator): F4_E2M1_MAX = 6.0 F8_E4M3_MAX = 448.0 + orig_shape = x.shape + + block_size = 16 + + x = x.reshape(orig_shape[0], -1, block_size) + scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn) + x = x / (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1) + + x = x.view(orig_shape).nan_to_num() + data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator) + return data_lp, scaled_block_scales_fp8 + + +def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): + def roundup(x: int, multiple: int) -> int: + """Round up x to the nearest multiple.""" + return ((x + multiple - 1) // multiple) * multiple + + generator = torch.Generator(device=x.device) + generator.manual_seed(seed) + + # Handle padding + if pad_16x: + rows, cols = x.shape + padded_rows = roundup(rows, 16) + padded_cols = roundup(cols, 16) + if padded_rows != rows or padded_cols != cols: + x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows)) + + x, blocked_scaled = stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator) + return x, to_blocked(blocked_scaled, flatten=False) + + +def stochastic_round_quantize_nvfp4_by_block(x, per_tensor_scale, pad_16x, seed=0, block_size=4096 * 4096): def roundup(x: int, multiple: int) -> int: """Round up x to the nearest multiple.""" return ((x + multiple - 1) // multiple) * multiple @@ -158,16 +192,20 @@ def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): # what we want to produce. If we pad here, we want the padded output. orig_shape = x.shape - block_size = 16 + orig_shape = list(orig_shape) - x = x.reshape(orig_shape[0], -1, block_size) - scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn) - x /= (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1) + output_fp4 = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 2], dtype=torch.uint8, device=x.device) + output_block = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 16], dtype=torch.float8_e4m3fn, device=x.device) generator = torch.Generator(device=x.device) generator.manual_seed(seed) - x = x.view(orig_shape).nan_to_num() - data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator) - blocked_scales = to_blocked(scaled_block_scales_fp8, flatten=False) - return data_lp, blocked_scales + num_slices = max(1, (x.numel() / block_size)) + slice_size = max(1, (round(x.shape[0] / num_slices))) + + for i in range(0, x.shape[0], slice_size): + fp4, block = stochastic_round_quantize_nvfp4_block(x[i: i + slice_size], per_tensor_scale, generator=generator) + output_fp4[i:i + slice_size].copy_(fp4) + output_block[i:i + slice_size].copy_(block) + + return output_fp4, to_blocked(output_block, flatten=False) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 7a61203c3..15a4f457b 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -104,7 +104,7 @@ class TensorCoreNVFP4Layout(_CKNvfp4Layout): needs_padding = padded_shape != orig_shape if stochastic_rounding > 0: - qdata, block_scale = comfy.float.stochastic_round_quantize_nvfp4(tensor, scale, pad_16x=needs_padding, seed=stochastic_rounding) + qdata, block_scale = comfy.float.stochastic_round_quantize_nvfp4_by_block(tensor, scale, pad_16x=needs_padding, seed=stochastic_rounding) else: qdata, block_scale = ck.quantize_nvfp4(tensor, scale, pad_16x=needs_padding) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 1bf54f13f..2c4c6b8fc 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1042,7 +1042,7 @@ class ZImage(Lumina2): "shift": 3.0, } - memory_usage_factor = 2.0 + memory_usage_factor = 2.8 supported_inference_dtypes = [torch.bfloat16, torch.float32] From d1504404662dfce6e401422701c2a7e24057b1b5 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 14 Jan 2026 10:54:50 -0800 Subject: [PATCH 62/74] Fix VAELoader (#11880) --- nodes.py | 1 + 1 file changed, 1 insertion(+) diff --git a/nodes.py b/nodes.py index 90c5f2a6e..aa8572446 100644 --- a/nodes.py +++ b/nodes.py @@ -788,6 +788,7 @@ class VAELoader: #TODO: scale factor? def load_vae(self, vae_name): + metadata = None if vae_name == "pixel_space": sd = {} sd["pixel_space_vae"] = torch.tensor(1.0) From 07f2462eae7fa2daa34971dd1b15fd525686e958 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 14 Jan 2026 21:25:38 +0200 Subject: [PATCH 63/74] feat(api-nodes): add Meshy 3D nodes (#11843) * feat(api-nodes): add Meshy 3D nodes * rebased, added JSONata price badges --- comfy_api_nodes/apis/meshy.py | 160 +++++ comfy_api_nodes/nodes_meshy.py | 790 +++++++++++++++++++++++++ comfy_api_nodes/util/upload_helpers.py | 23 +- nodes.py | 1 + 4 files changed, 969 insertions(+), 5 deletions(-) create mode 100644 comfy_api_nodes/apis/meshy.py create mode 100644 comfy_api_nodes/nodes_meshy.py diff --git a/comfy_api_nodes/apis/meshy.py b/comfy_api_nodes/apis/meshy.py new file mode 100644 index 000000000..be46d0d58 --- /dev/null +++ b/comfy_api_nodes/apis/meshy.py @@ -0,0 +1,160 @@ +from typing import TypedDict + +from pydantic import BaseModel, Field + +from comfy_api.latest import Input + + +class InputShouldRemesh(TypedDict): + should_remesh: str + topology: str + target_polycount: int + + +class InputShouldTexture(TypedDict): + should_texture: str + enable_pbr: bool + texture_prompt: str + texture_image: Input.Image | None + + +class MeshyTaskResponse(BaseModel): + result: str = Field(...) + + +class MeshyTextToModelRequest(BaseModel): + mode: str = Field("preview") + prompt: str = Field(..., max_length=600) + art_style: str = Field(..., description="'realistic' or 'sculpture'") + ai_model: str = Field(...) + topology: str | None = Field(..., description="'quad' or 'triangle'") + target_polycount: int | None = Field(..., ge=100, le=300000) + should_remesh: bool = Field( + True, + description="False returns the original mesh, ignoring topology and polycount.", + ) + symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'") + pose_mode: str = Field(...) + seed: int = Field(...) + moderation: bool = Field(False) + + +class MeshyRefineTask(BaseModel): + mode: str = Field("refine") + preview_task_id: str = Field(...) + enable_pbr: bool | None = Field(...) + texture_prompt: str | None = Field(...) + texture_image_url: str | None = Field(...) + ai_model: str = Field(...) + moderation: bool = Field(False) + + +class MeshyImageToModelRequest(BaseModel): + image_url: str = Field(...) + ai_model: str = Field(...) + topology: str | None = Field(..., description="'quad' or 'triangle'") + target_polycount: int | None = Field(..., ge=100, le=300000) + symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'") + should_remesh: bool = Field( + True, + description="False returns the original mesh, ignoring topology and polycount.", + ) + should_texture: bool = Field(...) + enable_pbr: bool | None = Field(...) + pose_mode: str = Field(...) + texture_prompt: str | None = Field(None, max_length=600) + texture_image_url: str | None = Field(None) + seed: int = Field(...) + moderation: bool = Field(False) + + +class MeshyMultiImageToModelRequest(BaseModel): + image_urls: list[str] = Field(...) + ai_model: str = Field(...) + topology: str | None = Field(..., description="'quad' or 'triangle'") + target_polycount: int | None = Field(..., ge=100, le=300000) + symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'") + should_remesh: bool = Field( + True, + description="False returns the original mesh, ignoring topology and polycount.", + ) + should_texture: bool = Field(...) + enable_pbr: bool | None = Field(...) + pose_mode: str = Field(...) + texture_prompt: str | None = Field(None, max_length=600) + texture_image_url: str | None = Field(None) + seed: int = Field(...) + moderation: bool = Field(False) + + +class MeshyRiggingRequest(BaseModel): + input_task_id: str = Field(...) + height_meters: float = Field(...) + texture_image_url: str | None = Field(...) + + +class MeshyAnimationRequest(BaseModel): + rig_task_id: str = Field(...) + action_id: int = Field(...) + + +class MeshyTextureRequest(BaseModel): + input_task_id: str = Field(...) + ai_model: str = Field(...) + enable_original_uv: bool = Field(...) + enable_pbr: bool = Field(...) + text_style_prompt: str | None = Field(...) + image_style_url: str | None = Field(...) + + +class MeshyModelsUrls(BaseModel): + glb: str = Field("") + + +class MeshyRiggedModelsUrls(BaseModel): + rigged_character_glb_url: str = Field("") + + +class MeshyAnimatedModelsUrls(BaseModel): + animation_glb_url: str = Field("") + + +class MeshyResultTextureUrls(BaseModel): + base_color: str = Field(...) + metallic: str | None = Field(None) + normal: str | None = Field(None) + roughness: str | None = Field(None) + + +class MeshyTaskError(BaseModel): + message: str | None = Field(None) + + +class MeshyModelResult(BaseModel): + id: str = Field(...) + type: str = Field(...) + model_urls: MeshyModelsUrls = Field(MeshyModelsUrls()) + thumbnail_url: str = Field(...) + video_url: str | None = Field(None) + status: str = Field(...) + progress: int = Field(0) + texture_urls: list[MeshyResultTextureUrls] | None = Field([]) + task_error: MeshyTaskError | None = Field(None) + + +class MeshyRiggedResult(BaseModel): + id: str = Field(...) + type: str = Field(...) + status: str = Field(...) + progress: int = Field(0) + result: MeshyRiggedModelsUrls = Field(MeshyRiggedModelsUrls()) + task_error: MeshyTaskError | None = Field(None) + + +class MeshyAnimationResult(BaseModel): + id: str = Field(...) + type: str = Field(...) + status: str = Field(...) + progress: int = Field(0) + result: MeshyAnimatedModelsUrls = Field(MeshyAnimatedModelsUrls()) + task_error: MeshyTaskError | None = Field(None) diff --git a/comfy_api_nodes/nodes_meshy.py b/comfy_api_nodes/nodes_meshy.py new file mode 100644 index 000000000..740607983 --- /dev/null +++ b/comfy_api_nodes/nodes_meshy.py @@ -0,0 +1,790 @@ +import os + +from typing_extensions import override + +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.apis.meshy import ( + InputShouldRemesh, + InputShouldTexture, + MeshyAnimationRequest, + MeshyAnimationResult, + MeshyImageToModelRequest, + MeshyModelResult, + MeshyMultiImageToModelRequest, + MeshyRefineTask, + MeshyRiggedResult, + MeshyRiggingRequest, + MeshyTaskResponse, + MeshyTextToModelRequest, + MeshyTextureRequest, +) +from comfy_api_nodes.util import ( + ApiEndpoint, + download_url_to_bytesio, + poll_op, + sync_op, + upload_images_to_comfyapi, + validate_string, +) +from folder_paths import get_output_directory + + +class MeshyTextToModelNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyTextToModelNode", + display_name="Meshy: Text to Model", + category="api node/3d/Meshy", + inputs=[ + IO.Combo.Input("model", options=["latest"]), + IO.String.Input("prompt", multiline=True, default=""), + IO.Combo.Input("style", options=["realistic", "sculpture"]), + IO.DynamicCombo.Input( + "should_remesh", + options=[ + IO.DynamicCombo.Option( + "true", + [ + IO.Combo.Input("topology", options=["triangle", "quad"]), + IO.Int.Input( + "target_polycount", + default=300000, + min=100, + max=300000, + display_mode=IO.NumberDisplay.number, + ), + ], + ), + IO.DynamicCombo.Option("false", []), + ], + tooltip="When set to false, returns an unprocessed triangular mesh.", + ), + IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]), + IO.Combo.Input( + "pose_mode", + options=["", "A-pose", "T-pose"], + tooltip="Specify the pose mode for the generated model.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.8}""", + ), + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + style: str, + should_remesh: InputShouldRemesh, + symmetry_mode: str, + pose_mode: str, + seed: int, + ) -> IO.NodeOutput: + validate_string(prompt, field_name="prompt", min_length=1, max_length=600) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyTextToModelRequest( + prompt=prompt, + art_style=style, + ai_model=model, + topology=should_remesh.get("topology", None), + target_polycount=should_remesh.get("target_polycount", None), + should_remesh=should_remesh["should_remesh"] == "true", + symmetry_mode=symmetry_mode, + pose_mode=pose_mode.lower(), + seed=seed, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"), + response_model=MeshyModelResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file)) + return IO.NodeOutput(model_file, response.result) + + +class MeshyRefineNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyRefineNode", + display_name="Meshy: Refine Draft Model", + category="api node/3d/Meshy", + description="Refine a previously created draft model.", + inputs=[ + IO.Combo.Input("model", options=["latest"]), + IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"), + IO.Boolean.Input( + "enable_pbr", + default=False, + tooltip="Generate PBR Maps (metallic, roughness, normal) in addition to the base color. " + "Note: this should be set to false when using Sculpture style, " + "as Sculpture style generates its own set of PBR maps.", + ), + IO.String.Input( + "texture_prompt", + default="", + multiline=True, + tooltip="Provide a text prompt to guide the texturing process. " + "Maximum 600 characters. Cannot be used at the same time as 'texture_image'.", + ), + IO.Image.Input( + "texture_image", + tooltip="Only one of 'texture_image' or 'texture_prompt' may be used at the same time.", + optional=True, + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), + ) + + @classmethod + async def execute( + cls, + model: str, + meshy_task_id: str, + enable_pbr: bool, + texture_prompt: str, + texture_image: Input.Image | None = None, + ) -> IO.NodeOutput: + if texture_prompt and texture_image is not None: + raise ValueError("texture_prompt and texture_image cannot be used at the same time") + texture_image_url = None + if texture_prompt: + validate_string(texture_prompt, field_name="texture_prompt", max_length=600) + if texture_image is not None: + texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0] + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyRefineTask( + preview_task_id=meshy_task_id, + enable_pbr=enable_pbr, + texture_prompt=texture_prompt if texture_prompt else None, + texture_image_url=texture_image_url, + ai_model=model, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"), + response_model=MeshyModelResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file)) + return IO.NodeOutput(model_file, response.result) + + +class MeshyImageToModelNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyImageToModelNode", + display_name="Meshy: Image to Model", + category="api node/3d/Meshy", + inputs=[ + IO.Combo.Input("model", options=["latest"]), + IO.Image.Input("image"), + IO.DynamicCombo.Input( + "should_remesh", + options=[ + IO.DynamicCombo.Option( + "true", + [ + IO.Combo.Input("topology", options=["triangle", "quad"]), + IO.Int.Input( + "target_polycount", + default=300000, + min=100, + max=300000, + display_mode=IO.NumberDisplay.number, + ), + ], + ), + IO.DynamicCombo.Option("false", []), + ], + tooltip="When set to false, returns an unprocessed triangular mesh.", + ), + IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]), + IO.DynamicCombo.Input( + "should_texture", + options=[ + IO.DynamicCombo.Option( + "true", + [ + IO.Boolean.Input( + "enable_pbr", + default=False, + tooltip="Generate PBR Maps (metallic, roughness, normal) " + "in addition to the base color.", + ), + IO.String.Input( + "texture_prompt", + default="", + multiline=True, + tooltip="Provide a text prompt to guide the texturing process. " + "Maximum 600 characters. Cannot be used at the same time as 'texture_image'.", + ), + IO.Image.Input( + "texture_image", + tooltip="Only one of 'texture_image' or 'texture_prompt' " + "may be used at the same time.", + optional=True, + ), + ], + ), + IO.DynamicCombo.Option("false", []), + ], + tooltip="Determines whether textures are generated. " + "Setting it to false skips the texture phase and returns a mesh without textures.", + ), + IO.Combo.Input( + "pose_mode", + options=["", "A-pose", "T-pose"], + tooltip="Specify the pose mode for the generated model.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]), + expr=""" + ( + $prices := {"true": 1.2, "false": 0.8}; + {"type":"usd","usd": $lookup($prices, widgets.should_texture)} + ) + """, + ), + ) + + @classmethod + async def execute( + cls, + model: str, + image: Input.Image, + should_remesh: InputShouldRemesh, + symmetry_mode: str, + should_texture: InputShouldTexture, + pose_mode: str, + seed: int, + ) -> IO.NodeOutput: + texture = should_texture["should_texture"] == "true" + texture_image_url = texture_prompt = None + if texture: + if should_texture["texture_prompt"] and should_texture["texture_image"] is not None: + raise ValueError("texture_prompt and texture_image cannot be used at the same time") + if should_texture["texture_prompt"]: + validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600) + texture_prompt = should_texture["texture_prompt"] + if should_texture["texture_image"] is not None: + texture_image_url = ( + await upload_images_to_comfyapi( + cls, should_texture["texture_image"], wait_label="Uploading texture" + ) + )[0] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/meshy/openapi/v1/image-to-3d", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyImageToModelRequest( + image_url=(await upload_images_to_comfyapi(cls, image, wait_label="Uploading base image"))[0], + ai_model=model, + topology=should_remesh.get("topology", None), + target_polycount=should_remesh.get("target_polycount", None), + symmetry_mode=symmetry_mode, + should_remesh=should_remesh["should_remesh"] == "true", + should_texture=texture, + enable_pbr=should_texture.get("enable_pbr", None), + pose_mode=pose_mode.lower(), + texture_prompt=texture_prompt, + texture_image_url=texture_image_url, + seed=seed, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v1/image-to-3d/{response.result}"), + response_model=MeshyModelResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file)) + return IO.NodeOutput(model_file, response.result) + + +class MeshyMultiImageToModelNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyMultiImageToModelNode", + display_name="Meshy: Multi-Image to Model", + category="api node/3d/Meshy", + inputs=[ + IO.Combo.Input("model", options=["latest"]), + IO.Autogrow.Input( + "images", + template=IO.Autogrow.TemplatePrefix(IO.Image.Input("image"), prefix="image", min=2, max=4), + ), + IO.DynamicCombo.Input( + "should_remesh", + options=[ + IO.DynamicCombo.Option( + "true", + [ + IO.Combo.Input("topology", options=["triangle", "quad"]), + IO.Int.Input( + "target_polycount", + default=300000, + min=100, + max=300000, + display_mode=IO.NumberDisplay.number, + ), + ], + ), + IO.DynamicCombo.Option("false", []), + ], + tooltip="When set to false, returns an unprocessed triangular mesh.", + ), + IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]), + IO.DynamicCombo.Input( + "should_texture", + options=[ + IO.DynamicCombo.Option( + "true", + [ + IO.Boolean.Input( + "enable_pbr", + default=False, + tooltip="Generate PBR Maps (metallic, roughness, normal) " + "in addition to the base color.", + ), + IO.String.Input( + "texture_prompt", + default="", + multiline=True, + tooltip="Provide a text prompt to guide the texturing process. " + "Maximum 600 characters. Cannot be used at the same time as 'texture_image'.", + ), + IO.Image.Input( + "texture_image", + tooltip="Only one of 'texture_image' or 'texture_prompt' " + "may be used at the same time.", + optional=True, + ), + ], + ), + IO.DynamicCombo.Option("false", []), + ], + tooltip="Determines whether textures are generated. " + "Setting it to false skips the texture phase and returns a mesh without textures.", + ), + IO.Combo.Input( + "pose_mode", + options=["", "A-pose", "T-pose"], + tooltip="Specify the pose mode for the generated model.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]), + expr=""" + ( + $prices := {"true": 0.6, "false": 0.2}; + {"type":"usd","usd": $lookup($prices, widgets.should_texture)} + ) + """, + ), + ) + + @classmethod + async def execute( + cls, + model: str, + images: IO.Autogrow.Type, + should_remesh: InputShouldRemesh, + symmetry_mode: str, + should_texture: InputShouldTexture, + pose_mode: str, + seed: int, + ) -> IO.NodeOutput: + texture = should_texture["should_texture"] == "true" + texture_image_url = texture_prompt = None + if texture: + if should_texture["texture_prompt"] and should_texture["texture_image"] is not None: + raise ValueError("texture_prompt and texture_image cannot be used at the same time") + if should_texture["texture_prompt"]: + validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600) + texture_prompt = should_texture["texture_prompt"] + if should_texture["texture_image"] is not None: + texture_image_url = ( + await upload_images_to_comfyapi( + cls, should_texture["texture_image"], wait_label="Uploading texture" + ) + )[0] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/meshy/openapi/v1/multi-image-to-3d", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyMultiImageToModelRequest( + image_urls=await upload_images_to_comfyapi( + cls, list(images.values()), wait_label="Uploading base images" + ), + ai_model=model, + topology=should_remesh.get("topology", None), + target_polycount=should_remesh.get("target_polycount", None), + symmetry_mode=symmetry_mode, + should_remesh=should_remesh["should_remesh"] == "true", + should_texture=texture, + enable_pbr=should_texture.get("enable_pbr", None), + pose_mode=pose_mode.lower(), + texture_prompt=texture_prompt, + texture_image_url=texture_image_url, + seed=seed, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v1/multi-image-to-3d/{response.result}"), + response_model=MeshyModelResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file)) + return IO.NodeOutput(model_file, response.result) + + +class MeshyRigModelNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyRigModelNode", + display_name="Meshy: Rig Model", + category="api node/3d/Meshy", + description="Provides a rigged character in standard formats. " + "Auto-rigging is currently not suitable for untextured meshes, non-humanoid assets, " + "or humanoid assets with unclear limb and body structure.", + inputs=[ + IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"), + IO.Float.Input( + "height_meters", + min=0.1, + max=15.0, + default=1.7, + tooltip="The approximate height of the character model in meters. " + "This aids in scaling and rigging accuracy.", + ), + IO.Image.Input( + "texture_image", + tooltip="The model's UV-unwrapped base color texture image.", + optional=True, + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MESHY_RIGGED_TASK_ID").Output(display_name="rig_task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.2}""", + ), + ) + + @classmethod + async def execute( + cls, + meshy_task_id: str, + height_meters: float, + texture_image: Input.Image | None = None, + ) -> IO.NodeOutput: + texture_image_url = None + if texture_image is not None: + texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0] + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/rigging", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyRiggingRequest( + input_task_id=meshy_task_id, + height_meters=height_meters, + texture_image_url=texture_image_url, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v1/rigging/{response.result}"), + response_model=MeshyRiggedResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio( + result.result.rigged_character_glb_url, os.path.join(get_output_directory(), model_file) + ) + return IO.NodeOutput(model_file, response.result) + + +class MeshyAnimateModelNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyAnimateModelNode", + display_name="Meshy: Animate Model", + category="api node/3d/Meshy", + description="Apply a specific animation action to a previously rigged character.", + inputs=[ + IO.Custom("MESHY_RIGGED_TASK_ID").Input("rig_task_id"), + IO.Int.Input( + "action_id", + default=0, + min=0, + max=696, + tooltip="Visit https://docs.meshy.ai/en/api/animation-library for a list of available values.", + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.12}""", + ), + ) + + @classmethod + async def execute( + cls, + rig_task_id: str, + action_id: int, + ) -> IO.NodeOutput: + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/animations", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyAnimationRequest( + rig_task_id=rig_task_id, + action_id=action_id, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v1/animations/{response.result}"), + response_model=MeshyAnimationResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio(result.result.animation_glb_url, os.path.join(get_output_directory(), model_file)) + return IO.NodeOutput(model_file, response.result) + + +class MeshyTextureNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MeshyTextureNode", + display_name="Meshy: Texture Model", + category="api node/3d/Meshy", + inputs=[ + IO.Combo.Input("model", options=["latest"]), + IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"), + IO.Boolean.Input( + "enable_original_uv", + default=True, + tooltip="Use the original UV of the model instead of generating new UVs. " + "When enabled, Meshy preserves existing textures from the uploaded model. " + "If the model has no original UV, the quality of the output might not be as good.", + ), + IO.Boolean.Input("pbr", default=False), + IO.String.Input( + "text_style_prompt", + default="", + multiline=True, + tooltip="Describe your desired texture style of the object using text. Maximum 600 characters." + "Maximum 600 characters. Cannot be used at the same time as 'image_style'.", + ), + IO.Image.Input( + "image_style", + optional=True, + tooltip="A 2d image to guide the texturing process. " + "Can not be used at the same time with 'text_style_prompt'.", + ), + ], + outputs=[ + IO.String.Output(display_name="model_file"), + IO.Custom("MODEL_TASK_ID").Output(display_name="meshy_task_id"), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + is_output_node=True, + price_badge=IO.PriceBadge( + expr="""{"type":"usd","usd":0.4}""", + ), + ) + + @classmethod + async def execute( + cls, + model: str, + meshy_task_id: str, + enable_original_uv: bool, + pbr: bool, + text_style_prompt: str, + image_style: Input.Image | None = None, + ) -> IO.NodeOutput: + if text_style_prompt and image_style is not None: + raise ValueError("text_style_prompt and image_style cannot be used at the same time") + if not text_style_prompt and image_style is None: + raise ValueError("Either text_style_prompt or image_style is required") + image_style_url = None + if image_style is not None: + image_style_url = (await upload_images_to_comfyapi(cls, image_style, wait_label="Uploading style"))[0] + response = await sync_op( + cls, + endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/retexture", method="POST"), + response_model=MeshyTaskResponse, + data=MeshyTextureRequest( + input_task_id=meshy_task_id, + ai_model=model, + enable_original_uv=enable_original_uv, + enable_pbr=pbr, + text_style_prompt=text_style_prompt if text_style_prompt else None, + image_style_url=image_style_url, + ), + ) + result = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/meshy/openapi/v1/retexture/{response.result}"), + response_model=MeshyModelResult, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + ) + model_file = f"meshy_model_{response.result}.glb" + await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file)) + return IO.NodeOutput(model_file, response.result) + + +class MeshyExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + MeshyTextToModelNode, + MeshyRefineNode, + MeshyImageToModelNode, + MeshyMultiImageToModelNode, + MeshyRigModelNode, + MeshyAnimateModelNode, + MeshyTextureNode, + ] + + +async def comfy_entrypoint() -> MeshyExtension: + return MeshyExtension() diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index cea0d1203..2794be35c 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -43,7 +43,7 @@ class UploadResponse(BaseModel): async def upload_images_to_comfyapi( cls: type[IO.ComfyNode], - image: torch.Tensor, + image: torch.Tensor | list[torch.Tensor], *, max_images: int = 8, mime_type: str | None = None, @@ -55,15 +55,28 @@ async def upload_images_to_comfyapi( Uploads images to ComfyUI API and returns download URLs. To upload multiple images, stack them in the batch dimension first. """ + tensors: list[torch.Tensor] = [] + if isinstance(image, list): + for img in image: + is_batch = len(img.shape) > 3 + if is_batch: + tensors.extend(img[i] for i in range(img.shape[0])) + else: + tensors.append(img) + else: + is_batch = len(image.shape) > 3 + if is_batch: + tensors.extend(image[i] for i in range(image.shape[0])) + else: + tensors.append(image) + # if batched, try to upload each file if max_images is greater than 0 download_urls: list[str] = [] - is_batch = len(image.shape) > 3 - batch_len = image.shape[0] if is_batch else 1 - num_to_upload = min(batch_len, max_images) + num_to_upload = min(len(tensors), max_images) batch_start_ts = time.monotonic() for idx in range(num_to_upload): - tensor = image[idx] if is_batch else image + tensor = tensors[idx] img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type) effective_label = wait_label diff --git a/nodes.py b/nodes.py index aa8572446..f19d5fd1c 100644 --- a/nodes.py +++ b/nodes.py @@ -2401,6 +2401,7 @@ async def init_builtin_api_nodes(): "nodes_sora.py", "nodes_topaz.py", "nodes_tripo.py", + "nodes_meshy.py", "nodes_moonvalley.py", "nodes_rodin.py", "nodes_gemini.py", From 80441eb15e807aa280fb462cbb43d14191344ba4 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 14 Jan 2026 14:53:16 -0800 Subject: [PATCH 64/74] utils: fix lanczos grayscale upscaling (#11873) --- comfy/utils.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy/utils.py b/comfy/utils.py index fac13f128..2e33a4258 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -929,7 +929,9 @@ def bislerp(samples, width, height): return result.to(orig_dtype) def lanczos(samples, width, height): - images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] + #the below API is strict and expects grayscale to be squeezed + samples = samples.squeeze(1) if samples.shape[1] == 1 else samples.movedim(1, -1) + images = [Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] result = torch.stack(images) From be518db5a7daa6010fb1c312c0832b9833a71d10 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Thu, 15 Jan 2026 00:54:04 +0200 Subject: [PATCH 65/74] Remove extraneous clip missing warnings when loading LTX2 embeddings_connector weights (#11874) --- comfy/text_encoders/lt.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 776e25e97..c33c77db7 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -118,8 +118,9 @@ class LTXAVTEModel(torch.nn.Module): sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True) if len(sdo) == 0: sdo = sd - - return self.load_state_dict(sdo, strict=False) + missing, unexpected = self.load_state_dict(sdo, strict=False) + missing = [k for k in missing if not k.startswith("gemma3_12b.")] # filter out keys that belong to the main gemma model + return (missing, unexpected) def memory_estimation_function(self, token_weight_pairs, device=None): constant = 6.0 From 3b832231bb81024d80bbe31b7d7e51e07b633beb Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 15 Jan 2026 07:33:15 -0800 Subject: [PATCH 66/74] Flux2 Klein support. (#11890) --- comfy/sd.py | 15 +++++++-- comfy/text_encoders/flux.py | 59 +++++++++++++++++++++++++++++++++++- comfy/text_encoders/llama.py | 31 +++++++++++++++++++ 3 files changed, 102 insertions(+), 3 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index b689c0dfc..77700dfd3 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -1014,6 +1014,7 @@ class CLIPType(Enum): KANDINSKY5 = 22 KANDINSKY5_IMAGE = 23 NEWBIE = 24 + FLUX2 = 25 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -1046,6 +1047,7 @@ class TEModel(Enum): QWEN3_2B = 17 GEMMA_3_12B = 18 JINA_CLIP_2 = 19 + QWEN3_8B = 20 def detect_te_model(sd): @@ -1089,6 +1091,8 @@ def detect_te_model(sd): return TEModel.QWEN3_4B elif weight.shape[0] == 2048: return TEModel.QWEN3_2B + elif weight.shape[0] == 4096: + return TEModel.QWEN3_8B if weight.shape[0] == 5120: if "model.layers.39.post_attention_layernorm.weight" in sd: return TEModel.MISTRAL3_24B @@ -1214,11 +1218,18 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None) elif te_model == TEModel.QWEN3_4B: - clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) - clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer + if clip_type == CLIPType.FLUX or clip_type == CLIPType.FLUX2: + clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_4b") + clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer + else: + clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer elif te_model == TEModel.QWEN3_2B: clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer + elif te_model == TEModel.QWEN3_8B: + clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_8b") + clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer8B elif te_model == TEModel.JINA_CLIP_2: clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index 21d93d757..4075afca4 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -3,7 +3,7 @@ import comfy.text_encoders.t5 import comfy.text_encoders.sd3_clip import comfy.text_encoders.llama import comfy.model_management -from transformers import T5TokenizerFast, LlamaTokenizerFast +from transformers import T5TokenizerFast, LlamaTokenizerFast, Qwen2Tokenizer import torch import os import json @@ -172,3 +172,60 @@ def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False): model_options["num_layers"] = 30 super().__init__(device=device, dtype=dtype, model_options=model_options) return Flux2TEModel_ + +class Qwen3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data) + +class Qwen3Tokenizer8B(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data) + +class KleinTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_4b"): + if name == "qwen3_4b": + tokenizer = Qwen3Tokenizer + elif name == "qwen3_8b": + tokenizer = Qwen3Tokenizer8B + + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name=name, tokenizer=tokenizer) + self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n\n\n\n\n" + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + +class KleinTokenizer8B(KleinTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_8b"): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name=name) + +class Qwen3_4BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer=[9, 18, 27], layer_idx=None, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + +class Qwen3_8BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer=[9, 18, 27], layer_idx=None, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_8B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + +def klein_te(dtype_llama=None, llama_quantization_metadata=None, model_type="qwen3_4b"): + if model_type == "qwen3_4b": + model = Qwen3_4BModel + elif model_type == "qwen3_8b": + model = Qwen3_8BModel + + class Flux2TEModel_(Flux2TEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + if dtype_llama is not None: + dtype = dtype_llama + super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model) + return Flux2TEModel_ diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index 76731576b..331a30f61 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -99,6 +99,28 @@ class Qwen3_4BConfig: rope_scale = None final_norm: bool = True +@dataclass +class Qwen3_8BConfig: + vocab_size: int = 151936 + hidden_size: int = 4096 + intermediate_size: int = 12288 + num_hidden_layers: int = 36 + num_attention_heads: int = 32 + num_key_value_heads: int = 8 + max_position_embeddings: int = 40960 + rms_norm_eps: float = 1e-6 + rope_theta: float = 1000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + rope_scale = None + final_norm: bool = True + @dataclass class Ovis25_2BConfig: vocab_size: int = 151936 @@ -628,6 +650,15 @@ class Qwen3_4B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Qwen3_8B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Qwen3_8BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Ovis25_2B(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() From 8f40b43e0204d5b9780f3e9618e140e929e80594 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Thu, 15 Jan 2026 10:57:35 -0500 Subject: [PATCH 67/74] ComfyUI v0.9.2 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 0c9871e35..dbb57b4e5 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.9.1" +__version__ = "0.9.2" diff --git a/pyproject.toml b/pyproject.toml index dc52218b4..9ea73da05 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.9.1" +version = "0.9.2" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From 12918a5f789d11c7d3c9d9f732891337740fe96f Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Fri, 16 Jan 2026 03:08:21 +0800 Subject: [PATCH 68/74] chore: update workflow templates to v0.8.7 (#11896) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8650d28ec..624cd067b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.36.14 -comfyui-workflow-templates==0.8.4 +comfyui-workflow-templates==0.8.7 comfyui-embedded-docs==0.4.0 torch torchsde From 6125b3a5e7215bf01874e402525552a7f5657a41 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Fri, 16 Jan 2026 05:12:13 +0800 Subject: [PATCH 69/74] Update workflow templates to v0.8.10 (#11899) * chore: update workflow templates to v0.8.9 * Update requirements.txt --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 624cd067b..996701550 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.36.14 -comfyui-workflow-templates==0.8.7 +comfyui-workflow-templates==0.8.10 comfyui-embedded-docs==0.4.0 torch torchsde From 4c816d5c698dafaa31f8fc2c08ab1d81f9bc3239 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 15 Jan 2026 17:06:40 -0800 Subject: [PATCH 70/74] Adjust memory usage factor calculation for flux2 klein. (#11900) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 2c4c6b8fc..c8a7f6efb 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -763,7 +763,7 @@ class Flux2(Flux): def __init__(self, unet_config): super().__init__(unet_config) - self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36 + self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * (unet_config['hidden_size'] / 2604) def get_model(self, state_dict, prefix="", device=None): out = model_base.Flux2(self, device=device) From 732b707397922dbbec5ed04ecca3c773c878c64e Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Thu, 15 Jan 2026 20:15:15 -0800 Subject: [PATCH 71/74] Added try-except around seed_assets call in get_object_info with a logging statement (#11901) --- server.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/server.py b/server.py index da2baefd4..04a577488 100644 --- a/server.py +++ b/server.py @@ -686,7 +686,10 @@ class PromptServer(): @routes.get("/object_info") async def get_object_info(request): - seed_assets(["models"]) + try: + seed_assets(["models"]) + except Exception as e: + logging.error(f"Failed to seed assets: {e}") with folder_paths.cache_helper: out = {} for x in nodes.NODE_CLASS_MAPPINGS: From 9125613b53fc6af219d5a3db1d5b202ccc3f41b3 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 16 Jan 2026 08:09:07 +0200 Subject: [PATCH 72/74] feat(api-nodes): extend ByteDance nodes with seedance-1-5-pro model (#11871) --- comfy_api_nodes/apis/bytedance_api.py | 7 ++ comfy_api_nodes/nodes_bytedance.py | 104 +++++++++++++++++++++++--- 2 files changed, 101 insertions(+), 10 deletions(-) diff --git a/comfy_api_nodes/apis/bytedance_api.py b/comfy_api_nodes/apis/bytedance_api.py index b8c2f618b..400648cca 100644 --- a/comfy_api_nodes/apis/bytedance_api.py +++ b/comfy_api_nodes/apis/bytedance_api.py @@ -65,11 +65,13 @@ class TaskImageContent(BaseModel): class Text2VideoTaskCreationRequest(BaseModel): model: str = Field(...) content: list[TaskTextContent] = Field(..., min_length=1) + generate_audio: bool | None = Field(...) class Image2VideoTaskCreationRequest(BaseModel): model: str = Field(...) content: list[TaskTextContent | TaskImageContent] = Field(..., min_length=2) + generate_audio: bool | None = Field(...) class TaskCreationResponse(BaseModel): @@ -141,4 +143,9 @@ VIDEO_TASKS_EXECUTION_TIME = { "720p": 65, "1080p": 100, }, + "seedance-1-5-pro-251215": { + "480p": 80, + "720p": 100, + "1080p": 150, + }, } diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index f09a4a0ed..9cb1ca004 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -477,7 +477,12 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"], + options=[ + "seedance-1-5-pro-251215", + "seedance-1-0-pro-250528", + "seedance-1-0-lite-t2v-250428", + "seedance-1-0-pro-fast-251015", + ], default="seedance-1-0-pro-fast-251015", ), IO.String.Input( @@ -528,6 +533,12 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), + IO.Boolean.Input( + "generate_audio", + default=False, + tooltip="This parameter is ignored for any model except seedance-1-5-pro.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -552,7 +563,10 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): seed: int, camera_fixed: bool, watermark: bool, + generate_audio: bool = False, ) -> IO.NodeOutput: + if model == "seedance-1-5-pro-251215" and duration < 4: + raise ValueError("Minimum supported duration for Seedance 1.5 Pro is 4 seconds.") validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) @@ -567,7 +581,11 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): ) return await process_video_task( cls, - payload=Text2VideoTaskCreationRequest(model=model, content=[TaskTextContent(text=prompt)]), + payload=Text2VideoTaskCreationRequest( + model=model, + content=[TaskTextContent(text=prompt)], + generate_audio=generate_audio if model == "seedance-1-5-pro-251215" else None, + ), estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) @@ -584,7 +602,12 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"], + options=[ + "seedance-1-5-pro-251215", + "seedance-1-0-pro-250528", + "seedance-1-0-lite-i2v-250428", + "seedance-1-0-pro-fast-251015", + ], default="seedance-1-0-pro-fast-251015", ), IO.String.Input( @@ -639,6 +662,12 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), + IO.Boolean.Input( + "generate_audio", + default=False, + tooltip="This parameter is ignored for any model except seedance-1-5-pro.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -664,7 +693,10 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): seed: int, camera_fixed: bool, watermark: bool, + generate_audio: bool = False, ) -> IO.NodeOutput: + if model == "seedance-1-5-pro-251215" and duration < 4: + raise ValueError("Minimum supported duration for Seedance 1.5 Pro is 4 seconds.") validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000) @@ -686,6 +718,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): payload=Image2VideoTaskCreationRequest( model=model, content=[TaskTextContent(text=prompt), TaskImageContent(image_url=TaskImageContentUrl(url=image_url))], + generate_audio=generate_audio if model == "seedance-1-5-pro-251215" else None, ), estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) @@ -703,7 +736,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"], + options=["seedance-1-5-pro-251215", "seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"], default="seedance-1-0-lite-i2v-250428", ), IO.String.Input( @@ -762,6 +795,12 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), + IO.Boolean.Input( + "generate_audio", + default=False, + tooltip="This parameter is ignored for any model except seedance-1-5-pro.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -788,7 +827,10 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): seed: int, camera_fixed: bool, watermark: bool, + generate_audio: bool = False, ) -> IO.NodeOutput: + if model == "seedance-1-5-pro-251215" and duration < 4: + raise ValueError("Minimum supported duration for Seedance 1.5 Pro is 4 seconds.") validate_string(prompt, strip_whitespace=True, min_length=1) raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) for i in (first_frame, last_frame): @@ -821,6 +863,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[0])), role="first_frame"), TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[1])), role="last_frame"), ], + generate_audio=generate_audio if model == "seedance-1-5-pro-251215" else None, ), estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), ) @@ -896,7 +939,41 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, - price_badge=PRICE_BADGE_VIDEO, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]), + expr=""" + ( + $priceByModel := { + "seedance-1-0-pro": { + "480p":[0.23,0.24], + "720p":[0.51,0.56] + }, + "seedance-1-0-lite": { + "480p":[0.17,0.18], + "720p":[0.37,0.41] + } + }; + $model := widgets.model; + $modelKey := + $contains($model, "seedance-1-0-pro") ? "seedance-1-0-pro" : + "seedance-1-0-lite"; + $resolution := widgets.resolution; + $resKey := + $contains($resolution, "720") ? "720p" : + "480p"; + $modelPrices := $lookup($priceByModel, $modelKey); + $baseRange := $lookup($modelPrices, $resKey); + $min10s := $baseRange[0]; + $max10s := $baseRange[1]; + $scale := widgets.duration / 10; + $minCost := $min10s * $scale; + $maxCost := $max10s * $scale; + ($minCost = $maxCost) + ? {"type":"usd","usd": $minCost} + : {"type":"range_usd","min_usd": $minCost, "max_usd": $maxCost} + ) + """, + ), ) @classmethod @@ -967,10 +1044,15 @@ def raise_if_text_params(prompt: str, text_params: list[str]) -> None: PRICE_BADGE_VIDEO = IO.PriceBadge( - depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]), + depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution", "generate_audio"]), expr=""" ( $priceByModel := { + "seedance-1-5-pro": { + "480p":[0.12,0.12], + "720p":[0.26,0.26], + "1080p":[0.58,0.59] + }, "seedance-1-0-pro": { "480p":[0.23,0.24], "720p":[0.51,0.56], @@ -989,6 +1071,7 @@ PRICE_BADGE_VIDEO = IO.PriceBadge( }; $model := widgets.model; $modelKey := + $contains($model, "seedance-1-5-pro") ? "seedance-1-5-pro" : $contains($model, "seedance-1-0-pro-fast") ? "seedance-1-0-pro-fast" : $contains($model, "seedance-1-0-pro") ? "seedance-1-0-pro" : "seedance-1-0-lite"; @@ -1002,11 +1085,12 @@ PRICE_BADGE_VIDEO = IO.PriceBadge( $min10s := $baseRange[0]; $max10s := $baseRange[1]; $scale := widgets.duration / 10; - $minCost := $min10s * $scale; - $maxCost := $max10s * $scale; + $audioMultiplier := ($modelKey = "seedance-1-5-pro" and widgets.generate_audio) ? 2 : 1; + $minCost := $min10s * $scale * $audioMultiplier; + $maxCost := $max10s * $scale * $audioMultiplier; ($minCost = $maxCost) - ? {"type":"usd","usd": $minCost} - : {"type":"range_usd","min_usd": $minCost, "max_usd": $maxCost} + ? {"type":"usd","usd": $minCost, "format": { "approximate": true }} + : {"type":"range_usd","min_usd": $minCost, "max_usd": $maxCost, "format": { "approximate": true }} ) """, ) From 0c6b36c6ac1c34515cdf28f777a63074cd6d563d Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Sat, 17 Jan 2026 06:22:50 +0800 Subject: [PATCH 73/74] chore: update workflow templates to v0.8.11 (#11918) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 996701550..3876274f9 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.36.14 -comfyui-workflow-templates==0.8.10 +comfyui-workflow-templates==0.8.11 comfyui-embedded-docs==0.4.0 torch torchsde From 7ac999bf3069b06648a749212f59237080a75591 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 16 Jan 2026 20:02:28 -0800 Subject: [PATCH 74/74] Add image sizes to clip vision outputs. (#11923) --- comfy/clip_vision.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 66f2a9d9c..b28bf636c 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -66,6 +66,7 @@ class ClipVisionModel(): outputs = Output() outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) + outputs["image_sizes"] = [pixel_values.shape[1:]] * pixel_values.shape[0] if self.return_all_hidden_states: all_hs = out[1].to(comfy.model_management.intermediate_device()) outputs["penultimate_hidden_states"] = all_hs[:, -2]