From 48e5ea1dfd23a9cb5d118d7af661b026d66743bc Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 7 Jan 2026 15:39:20 -0800 Subject: [PATCH 01/32] model_patcher: Remove confusing load stat (#11710) If the loader passes 1e32 as the usable memory size, it means force the full load. This happens with CPU loads and a few other misc cases. Removing the confusing number and just leave the other details. --- comfy/model_patcher.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 93d26c690..4528814ad 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -790,11 +790,12 @@ class ModelPatcher: for param in params: self.pin_weight_to_device("{}.{}".format(n, param)) + usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else "" if lowvram_counter > 0: - logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) + logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) self.model.model_lowvram = True else: - logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) + logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load)) self.model.model_lowvram = False if full_load: self.model.to(device_to) From 1c705f7bfb0fb59f6213dfb85ec5d5dc2ce4300e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Thu, 8 Jan 2026 01:39:59 +0200 Subject: [PATCH 02/32] Add device selection for LTXAVTextEncoderLoader (#11700) --- comfy_extras/nodes_lt_audio.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py index 26b0160d2..1966fd1bf 100644 --- a/comfy_extras/nodes_lt_audio.py +++ b/comfy_extras/nodes_lt_audio.py @@ -185,6 +185,10 @@ class LTXAVTextEncoderLoader(io.ComfyNode): io.Combo.Input( "ckpt_name", options=folder_paths.get_filename_list("checkpoints"), + ), + io.Combo.Input( + "device", + options=["default", "cpu"], ) ], outputs=[io.Clip.Output()], @@ -197,7 +201,11 @@ class LTXAVTextEncoderLoader(io.ComfyNode): clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder) clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) - clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) + model_options = {} + if device == "cpu": + model_options["load_device"] = model_options["offload_device"] = torch.device("cpu") + + clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options) return io.NodeOutput(clip) From 34751fe9f9ade0c715768202c19211dc0c72e760 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 16:12:15 -0800 Subject: [PATCH 03/32] Lower ltxv text encoder vram use. (#11713) --- comfy/text_encoders/lt.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 130ebaeae..dc0694e0e 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -98,10 +98,13 @@ class LTXAVTEModel(torch.nn.Module): out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs) out_device = out.device + if comfy.model_management.should_use_bf16(self.execution_device): + out = out.to(device=self.execution_device, dtype=torch.bfloat16) out = out.movedim(1, -1).to(self.execution_device) out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6) out = out.reshape((out.shape[0], out.shape[1], -1)) out = self.text_embedding_projection(out) + out = out.float() out_vid = self.video_embeddings_connector(out)[0] out_audio = self.audio_embeddings_connector(out)[0] out = torch.concat((out_vid, out_audio), dim=-1) From 007b87e7ac29e55ce0ad2c436f5ae68f3a078080 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 16:48:47 -0800 Subject: [PATCH 04/32] Bump required comfy-kitchen version. (#11714) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index bc8346bcf..13e95afa0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.3 +comfy-kitchen>=0.2.5 #non essential dependencies: kornia>=0.7.1 From 3cd19e99c10a25cf6e6b51b82e3c16c501733b8c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 17:04:56 -0800 Subject: [PATCH 05/32] Increase ltxav mem estimation by a bit. (#11715) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index ee9a79001..d44c0bc37 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -845,7 +845,7 @@ class LTXAV(LTXV): def __init__(self, unet_config): super().__init__(unet_config) - self.memory_usage_factor = 0.055 # TODO + self.memory_usage_factor = 0.061 # TODO def get_model(self, state_dict, prefix="", device=None): out = model_base.LTXAV(self, device=device) From 25bc1b5b57d61930d6ab60d8cf7e9241d26e4fe9 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 17:11:22 -0800 Subject: [PATCH 06/32] Add memory estimation function to ltxav text encoder. (#11716) --- comfy/sd.py | 11 +++++++---- comfy/text_encoders/lt.py | 8 ++++++++ 2 files changed, 15 insertions(+), 4 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index 32157e18b..efde3839c 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -218,7 +218,7 @@ class CLIP: if unprojected: self.cond_stage_model.set_clip_options({"projected_pooled": False}) - self.load_model() + self.load_model(tokens) self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) all_hooks.reset() self.patcher.patch_hooks(None) @@ -266,7 +266,7 @@ class CLIP: if return_pooled == "unprojected": self.cond_stage_model.set_clip_options({"projected_pooled": False}) - self.load_model() + self.load_model(tokens) self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) o = self.cond_stage_model.encode_token_weights(tokens) cond, pooled = o[:2] @@ -299,8 +299,11 @@ class CLIP: sd_clip[k] = sd_tokenizer[k] return sd_clip - def load_model(self): - model_management.load_model_gpu(self.patcher) + def load_model(self, tokens={}): + memory_used = 0 + if hasattr(self.cond_stage_model, "memory_estimation_function"): + memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) return self.patcher def get_key_patches(self): diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index dc0694e0e..776e25e97 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -121,6 +121,14 @@ class LTXAVTEModel(torch.nn.Module): return self.load_state_dict(sdo, strict=False) + def memory_estimation_function(self, token_weight_pairs, device=None): + constant = 6.0 + if comfy.model_management.should_use_bf16(device): + constant /= 2.0 + + token_weight_pairs = token_weight_pairs.get("gemma3_12b", []) + num_tokens = sum(map(lambda a: len(a), token_weight_pairs)) + return num_tokens * constant * 1024 * 1024 def ltxav_te(dtype_llama=None, llama_quantization_metadata=None): class LTXAVTEModel_(LTXAVTEModel): From b6c79a648a013f477f514f61580d1a06220b15eb Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 7 Jan 2026 18:01:16 -0800 Subject: [PATCH 07/32] ops: Fix offloading with FP8MM performance (#11697) This logic was checking comfy_cast_weights, and going straight to to the forward_comfy_cast_weights implementation without attempting to downscale input to fp8 in the event comfy_cast_weights is set. The main reason comfy_cast_weights would be set would be for async offload, which is not a good reason to nix FP8MM. So instead, and together the underlying exclusions for FP8MM which are: * having a weight_function (usually LowVramPatch) * force_cast_weights (compute dtype override) * the weight is not Quantized * the input is already quantized * the model or layer has MM explictily disabled. If you get past all of those exclusions, quantize the input tensor. Then hand the new input, quantized or not off to forward_comfy_cast_weights to handle it. If the weight is offloaded but input is quantized you will get an offloaded MM8. --- comfy/model_patcher.py | 1 + comfy/ops.py | 30 +++++++++++++++--------------- 2 files changed, 16 insertions(+), 15 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 4528814ad..f6b80a40f 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -718,6 +718,7 @@ class ModelPatcher: continue cast_weight = self.force_cast_weights + m.comfy_force_cast_weights = self.force_cast_weights if lowvram_weight: if hasattr(m, "comfy_cast_weights"): m.weight_function = [] diff --git a/comfy/ops.py b/comfy/ops.py index cd536e22d..8156c42ff 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -654,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec run_every_op() input_shape = input.shape - tensor_3d = input.ndim == 3 - - if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: - return self.forward_comfy_cast_weights(input, *args, **kwargs) + reshaped_3d = False if (getattr(self, 'layout_type', None) is not None and - not isinstance(input, QuantizedTensor)): + not isinstance(input, QuantizedTensor) and not self._full_precision_mm and + not getattr(self, 'comfy_force_cast_weights', False) and + len(self.weight_function) == 0 and len(self.bias_function) == 0): # Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others) - if tensor_3d: - input = input.reshape(-1, input_shape[2]) + input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input - if input.ndim != 2: - # Fall back to comfy_cast_weights for non-2D tensors - return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs) + # Fall back to non-quantized for non-2D tensors + if input_reshaped.ndim == 2: + reshaped_3d = input.ndim == 3 + # dtype is now implicit in the layout class + scale = getattr(self, 'input_scale', None) + if scale is not None: + scale = comfy.model_management.cast_to_device(scale, input.device, None) + input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale) - # dtype is now implicit in the layout class - input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None)) - - output = self._forward(input, self.weight, self.bias) + output = self.forward_comfy_cast_weights(input) # Reshape output back to 3D if input was 3D - if tensor_3d: + if reshaped_3d: output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0])) return output From 21e842508733809354a7b04944b2995ed1169370 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 18:07:26 -0800 Subject: [PATCH 08/32] Add warning for old pytorch. (#11718) --- comfy/quant_ops.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 5a17bc6f5..8324be42a 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -19,6 +19,7 @@ try: cuda_version = tuple(map(int, str(torch.version.cuda).split('.'))) if cuda_version < (13,): ck.registry.disable("cuda") + logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.") ck.registry.disable("triton") for k, v in ck.list_backends().items(): From fcd9a236b091bd4e77b177134ddfcf7d7dbd71fd Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 8 Jan 2026 10:22:23 +0800 Subject: [PATCH 09/32] Update template to 0.7.69 (#11719) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 13e95afa0..49567ad61 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.67 +comfyui-workflow-templates==0.7.69 comfyui-embedded-docs==0.3.1 torch torchsde From ac12f77bed7bbbaf20289533bf7c0bff275e4a41 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 7 Jan 2026 22:10:08 -0500 Subject: [PATCH 10/32] ComfyUI version v0.8.1 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 750673f08..4eb6070fe 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.8.0" +__version__ = "0.8.1" diff --git a/pyproject.toml b/pyproject.toml index 951c2c978..0037abd6c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.8.0" +version = "0.8.1" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From 50d6e1caf401bf72dca1e9df7e194e722e1bd98b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 20:07:05 -0800 Subject: [PATCH 11/32] Tweak ltxv vae mem estimation. (#11722) --- comfy/sd.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index efde3839c..5a7221620 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -479,8 +479,8 @@ class VAE: self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config) self.latent_channels = 128 self.latent_dim = 3 - self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) - self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (1200 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (80 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32) self.upscale_index_formula = (8, 32, 32) self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32) From 2e9d51680a90bca9cc375ba7767f7bf3ed27d563 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 7 Jan 2026 23:50:02 -0500 Subject: [PATCH 12/32] ComfyUI version v0.8.2 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 4eb6070fe..df82ed4fc 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.8.1" +__version__ = "0.8.2" diff --git a/pyproject.toml b/pyproject.toml index 0037abd6c..49f1a03fd 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.8.1" +version = "0.8.2" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From a60b7b86c54ea1498e9c5a5c3d6018c0714654d9 Mon Sep 17 00:00:00 2001 From: Yoland Yan <4950057+yoland68@users.noreply.github.com> Date: Wed, 7 Jan 2026 21:41:57 -0800 Subject: [PATCH 13/32] Revert "Force sequential execution in CI test jobs (#11687)" (#11725) This reverts commit ce0000c4f2a7dba12324585dddb784b43e3cd3d0. --- .github/workflows/test-ci.yml | 2 -- 1 file changed, 2 deletions(-) diff --git a/.github/workflows/test-ci.yml b/.github/workflows/test-ci.yml index 63df2dc3a..adfc5dd32 100644 --- a/.github/workflows/test-ci.yml +++ b/.github/workflows/test-ci.yml @@ -20,7 +20,6 @@ jobs: test-stable: strategy: fail-fast: false - max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux, windows] # os: [macos, linux] @@ -75,7 +74,6 @@ jobs: test-unix-nightly: strategy: fail-fast: false - max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux] os: [linux] From 5943fbf457d78becbb924a74780e0efc68505a17 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Fri, 9 Jan 2026 01:15:42 +0900 Subject: [PATCH 14/32] bump comfyui_manager version to the 4.0.5 (#11732) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index 6585b0c19..bea6d4927 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.4 +comfyui_manager==4.0.5 From 0f11869d55c7a459371b8114b1345e55a0274723 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 8 Jan 2026 14:16:58 -0800 Subject: [PATCH 15/32] Better detection if AMD torch compiled with efficient attention. (#11745) --- comfy/model_management.py | 15 +++++++++++++-- 1 file changed, 13 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 928282092..e5de4a5b5 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -22,7 +22,6 @@ from enum import Enum from comfy.cli_args import args, PerformanceFeature import torch import sys -import importlib import platform import weakref import gc @@ -349,10 +348,22 @@ try: except: rocm_version = (6, -1) + def aotriton_supported(gpu_arch): + path = torch.__path__[0] + path = os.path.join(os.path.join(path, "lib"), "aotriton.images") + gfx = set(map(lambda a: a[4:], filter(lambda a: a.startswith("amd-gfx"), os.listdir(path)))) + if gpu_arch in gfx: + return True + if "{}x".format(gpu_arch[:-1]) in gfx: + return True + if "{}xx".format(gpu_arch[:-2]) in gfx: + return True + return False + logging.info("AMD arch: {}".format(arch)) logging.info("ROCm version: {}".format(rocm_version)) if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: - if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not. + if aotriton_supported(arch): # AMD efficient attention implementation depends on aotriton. if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950 ENABLE_PYTORCH_ATTENTION = True From 1a206564487d672561d83ce3eb007517bf018995 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 8 Jan 2026 14:23:59 -0800 Subject: [PATCH 16/32] Fix import issue. (#11746) --- comfy/ldm/hunyuan_video/upsampler.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index d9e76922f..51b6d1da8 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -3,8 +3,8 @@ import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm -import model_management -import model_patcher +import comfy.model_management +import comfy.model_patcher class SRResidualCausalBlock3D(nn.Module): def __init__(self, channels: int): @@ -103,13 +103,13 @@ UPSAMPLERS = { class HunyuanVideo15SRModel(): def __init__(self, model_type, config): - self.load_device = model_management.vae_device() - offload_device = model_management.vae_offload_device() - self.dtype = model_management.vae_dtype(self.load_device) + self.load_device = comfy.model_management.vae_device() + offload_device = comfy.model_management.vae_offload_device() + self.dtype = comfy.model_management.vae_dtype(self.load_device) self.model_class = UPSAMPLERS.get(model_type) self.model = self.model_class(**config).eval() - self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) def load_sd(self, sd): return self.model.load_state_dict(sd, strict=True) @@ -118,5 +118,5 @@ class HunyuanVideo15SRModel(): return self.model.state_dict() def resample_latent(self, latent): - model_management.load_model_gpu(self.patcher) + comfy.model_management.load_model_gpu(self.patcher) return self.model(latent.to(self.load_device)) From 027042db6811c875562296f0a6b797c89d59e426 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Fri, 9 Jan 2026 05:14:06 +0200 Subject: [PATCH 17/32] Add node: JoinAudioChannels (#11728) --- comfy_extras/nodes_audio.py | 53 +++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 94ad5e8a8..15b3aa401 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -399,6 +399,58 @@ class SplitAudioChannels(IO.ComfyNode): separate = execute # TODO: remove +class JoinAudioChannels(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="JoinAudioChannels", + display_name="Join Audio Channels", + description="Joins left and right mono audio channels into a stereo audio.", + category="audio", + inputs=[ + IO.Audio.Input("audio_left"), + IO.Audio.Input("audio_right"), + ], + outputs=[ + IO.Audio.Output(display_name="audio"), + ], + ) + + @classmethod + def execute(cls, audio_left, audio_right) -> IO.NodeOutput: + waveform_left = audio_left["waveform"] + sample_rate_left = audio_left["sample_rate"] + waveform_right = audio_right["waveform"] + sample_rate_right = audio_right["sample_rate"] + + if waveform_left.shape[1] != 1 or waveform_right.shape[1] != 1: + raise ValueError("AudioJoin: Both input audios must be mono.") + + # Handle different sample rates by resampling to the higher rate + waveform_left, waveform_right, output_sample_rate = match_audio_sample_rates( + waveform_left, sample_rate_left, waveform_right, sample_rate_right + ) + + # Handle different lengths by trimming to the shorter length + length_left = waveform_left.shape[-1] + length_right = waveform_right.shape[-1] + + if length_left != length_right: + min_length = min(length_left, length_right) + if length_left > min_length: + logging.info(f"JoinAudioChannels: Trimming left channel from {length_left} to {min_length} samples.") + waveform_left = waveform_left[..., :min_length] + if length_right > min_length: + logging.info(f"JoinAudioChannels: Trimming right channel from {length_right} to {min_length} samples.") + waveform_right = waveform_right[..., :min_length] + + # Join the channels into stereo + left_channel = waveform_left[..., 0:1, :] + right_channel = waveform_right[..., 0:1, :] + stereo_waveform = torch.cat([left_channel, right_channel], dim=1) + + return IO.NodeOutput({"waveform": stereo_waveform, "sample_rate": output_sample_rate}) + def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): if sample_rate_1 != sample_rate_2: @@ -616,6 +668,7 @@ class AudioExtension(ComfyExtension): RecordAudio, TrimAudioDuration, SplitAudioChannels, + JoinAudioChannels, AudioConcat, AudioMerge, AudioAdjustVolume, From b48d6a83d4f7012a1b6f6f41e66b0ac3f3253b8a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 8 Jan 2026 19:15:50 -0800 Subject: [PATCH 18/32] Fix csp error in frontend when forcing offline. (#11749) --- server.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/server.py b/server.py index 70c8b5e3b..4db3347cb 100644 --- a/server.py +++ b/server.py @@ -184,7 +184,7 @@ def create_block_external_middleware(): else: response = await handler(request) - response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';" + response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self' data:; frame-src 'self'; object-src 'self';" return response return block_external_middleware From 114fc73685129bf4e8ddced432247fe67dc6fbff Mon Sep 17 00:00:00 2001 From: Comfy Org PR Bot Date: Fri, 9 Jan 2026 12:16:15 +0900 Subject: [PATCH 19/32] Bump comfyui-frontend-package to 1.36.13 (#11645) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 49567ad61..7686a5f8a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.35.9 +comfyui-frontend-package==1.36.13 comfyui-workflow-templates==0.7.69 comfyui-embedded-docs==0.3.1 torch From 1dc3da631423b776669a6a9128bb1aeaf5592c55 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Thu, 8 Jan 2026 19:21:51 -0800 Subject: [PATCH 20/32] Add most basic Asset support for models (#11315) * Brought over minimal elements from PR 10045 to reproduce seed_assets and register_assets_system without adding anything to the DB or server routes yet, for now making everything sync (can introduce async once everything is cleaned up and brought over) * Added db script to insert assets stuff, cleaned up some code; assets (models) now get added/rescanned * Added support for 5 http endpoints for assets * Replaced Optional with | None in schemas_in.py and schemas_out.py * Remove two routes that will not be relevant yet in this PR: HEAD /api/assets/hash/ and PUT /api/assets//preview * Remove some functions the two deleted endpoints were using * Don't show assets scan message upon calling /object_info endpoint * removed unsued import to satisfy ruff * Simplified hashing function tpye hint and _hash_file_obj * Satisfied ruff --- alembic_db/versions/0001_assets.py | 174 +++++++++++++++++++ app/assets/api/routes.py | 102 +++++++++++ app/assets/api/schemas_in.py | 94 ++++++++++ app/assets/api/schemas_out.py | 60 +++++++ app/assets/database/bulk_ops.py | 188 ++++++++++++++++++++ app/assets/database/models.py | 233 +++++++++++++++++++++++++ app/assets/database/queries.py | 267 +++++++++++++++++++++++++++++ app/assets/database/tags.py | 62 +++++++ app/assets/hashing.py | 75 ++++++++ app/assets/helpers.py | 216 +++++++++++++++++++++++ app/assets/manager.py | 123 +++++++++++++ app/assets/scanner.py | 229 +++++++++++++++++++++++++ app/database/models.py | 25 ++- comfy/cli_args.py | 1 + main.py | 3 + server.py | 4 + 16 files changed, 1847 insertions(+), 9 deletions(-) create mode 100644 alembic_db/versions/0001_assets.py create mode 100644 app/assets/api/routes.py create mode 100644 app/assets/api/schemas_in.py create mode 100644 app/assets/api/schemas_out.py create mode 100644 app/assets/database/bulk_ops.py create mode 100644 app/assets/database/models.py create mode 100644 app/assets/database/queries.py create mode 100644 app/assets/database/tags.py create mode 100644 app/assets/hashing.py create mode 100644 app/assets/helpers.py create mode 100644 app/assets/manager.py create mode 100644 app/assets/scanner.py diff --git a/alembic_db/versions/0001_assets.py b/alembic_db/versions/0001_assets.py new file mode 100644 index 000000000..1e10b94dc --- /dev/null +++ b/alembic_db/versions/0001_assets.py @@ -0,0 +1,174 @@ +""" +Initial assets schema +Revision ID: 0001_assets +Revises: None +Create Date: 2025-12-10 00:00:00 +""" + +from alembic import op +import sqlalchemy as sa + +revision = "0001_assets" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade() -> None: + # ASSETS: content identity + op.create_table( + "assets", + sa.Column("id", sa.String(length=36), primary_key=True), + sa.Column("hash", sa.String(length=256), nullable=True), + sa.Column("size_bytes", sa.BigInteger(), nullable=False, server_default="0"), + sa.Column("mime_type", sa.String(length=255), nullable=True), + sa.Column("created_at", sa.DateTime(timezone=False), nullable=False), + sa.CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"), + ) + op.create_index("uq_assets_hash", "assets", ["hash"], unique=True) + op.create_index("ix_assets_mime_type", "assets", ["mime_type"]) + + # ASSETS_INFO: user-visible references + op.create_table( + "assets_info", + sa.Column("id", sa.String(length=36), primary_key=True), + sa.Column("owner_id", sa.String(length=128), nullable=False, server_default=""), + sa.Column("name", sa.String(length=512), nullable=False), + sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False), + sa.Column("preview_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="SET NULL"), nullable=True), + sa.Column("user_metadata", sa.JSON(), nullable=True), + sa.Column("created_at", sa.DateTime(timezone=False), nullable=False), + sa.Column("updated_at", sa.DateTime(timezone=False), nullable=False), + sa.Column("last_access_time", sa.DateTime(timezone=False), nullable=False), + sa.UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"), + ) + op.create_index("ix_assets_info_owner_id", "assets_info", ["owner_id"]) + op.create_index("ix_assets_info_asset_id", "assets_info", ["asset_id"]) + op.create_index("ix_assets_info_name", "assets_info", ["name"]) + op.create_index("ix_assets_info_created_at", "assets_info", ["created_at"]) + op.create_index("ix_assets_info_last_access_time", "assets_info", ["last_access_time"]) + op.create_index("ix_assets_info_owner_name", "assets_info", ["owner_id", "name"]) + + # TAGS: normalized tag vocabulary + op.create_table( + "tags", + sa.Column("name", sa.String(length=512), primary_key=True), + sa.Column("tag_type", sa.String(length=32), nullable=False, server_default="user"), + sa.CheckConstraint("name = lower(name)", name="ck_tags_lowercase"), + ) + op.create_index("ix_tags_tag_type", "tags", ["tag_type"]) + + # ASSET_INFO_TAGS: many-to-many for tags on AssetInfo + op.create_table( + "asset_info_tags", + sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False), + sa.Column("tag_name", sa.String(length=512), sa.ForeignKey("tags.name", ondelete="RESTRICT"), nullable=False), + sa.Column("origin", sa.String(length=32), nullable=False, server_default="manual"), + sa.Column("added_at", sa.DateTime(timezone=False), nullable=False), + sa.PrimaryKeyConstraint("asset_info_id", "tag_name", name="pk_asset_info_tags"), + ) + op.create_index("ix_asset_info_tags_tag_name", "asset_info_tags", ["tag_name"]) + op.create_index("ix_asset_info_tags_asset_info_id", "asset_info_tags", ["asset_info_id"]) + + # ASSET_CACHE_STATE: N:1 local cache rows per Asset + op.create_table( + "asset_cache_state", + sa.Column("id", sa.Integer(), primary_key=True, autoincrement=True), + sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="CASCADE"), nullable=False), + sa.Column("file_path", sa.Text(), nullable=False), # absolute local path to cached file + sa.Column("mtime_ns", sa.BigInteger(), nullable=True), + sa.Column("needs_verify", sa.Boolean(), nullable=False, server_default=sa.text("false")), + sa.CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"), + sa.UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"), + ) + op.create_index("ix_asset_cache_state_file_path", "asset_cache_state", ["file_path"]) + op.create_index("ix_asset_cache_state_asset_id", "asset_cache_state", ["asset_id"]) + + # ASSET_INFO_META: typed KV projection of user_metadata for filtering/sorting + op.create_table( + "asset_info_meta", + sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False), + sa.Column("key", sa.String(length=256), nullable=False), + sa.Column("ordinal", sa.Integer(), nullable=False, server_default="0"), + sa.Column("val_str", sa.String(length=2048), nullable=True), + sa.Column("val_num", sa.Numeric(38, 10), nullable=True), + sa.Column("val_bool", sa.Boolean(), nullable=True), + sa.Column("val_json", sa.JSON(), nullable=True), + sa.PrimaryKeyConstraint("asset_info_id", "key", "ordinal", name="pk_asset_info_meta"), + ) + op.create_index("ix_asset_info_meta_key", "asset_info_meta", ["key"]) + op.create_index("ix_asset_info_meta_key_val_str", "asset_info_meta", ["key", "val_str"]) + op.create_index("ix_asset_info_meta_key_val_num", "asset_info_meta", ["key", "val_num"]) + op.create_index("ix_asset_info_meta_key_val_bool", "asset_info_meta", ["key", "val_bool"]) + + # Tags vocabulary + tags_table = sa.table( + "tags", + sa.column("name", sa.String(length=512)), + sa.column("tag_type", sa.String()), + ) + op.bulk_insert( + tags_table, + [ + {"name": "models", "tag_type": "system"}, + {"name": "input", "tag_type": "system"}, + {"name": "output", "tag_type": "system"}, + + {"name": "configs", "tag_type": "system"}, + {"name": "checkpoints", "tag_type": "system"}, + {"name": "loras", "tag_type": "system"}, + {"name": "vae", "tag_type": "system"}, + {"name": "text_encoders", "tag_type": "system"}, + {"name": "diffusion_models", "tag_type": "system"}, + {"name": "clip_vision", "tag_type": "system"}, + {"name": "style_models", "tag_type": "system"}, + {"name": "embeddings", "tag_type": "system"}, + {"name": "diffusers", "tag_type": "system"}, + {"name": "vae_approx", "tag_type": "system"}, + {"name": "controlnet", "tag_type": "system"}, + {"name": "gligen", "tag_type": "system"}, + {"name": "upscale_models", "tag_type": "system"}, + {"name": "hypernetworks", "tag_type": "system"}, + {"name": "photomaker", "tag_type": "system"}, + {"name": "classifiers", "tag_type": "system"}, + + {"name": "encoder", "tag_type": "system"}, + {"name": "decoder", "tag_type": "system"}, + + {"name": "missing", "tag_type": "system"}, + {"name": "rescan", "tag_type": "system"}, + ], + ) + + +def downgrade() -> None: + op.drop_index("ix_asset_info_meta_key_val_bool", table_name="asset_info_meta") + op.drop_index("ix_asset_info_meta_key_val_num", table_name="asset_info_meta") + op.drop_index("ix_asset_info_meta_key_val_str", table_name="asset_info_meta") + op.drop_index("ix_asset_info_meta_key", table_name="asset_info_meta") + op.drop_table("asset_info_meta") + + op.drop_index("ix_asset_cache_state_asset_id", table_name="asset_cache_state") + op.drop_index("ix_asset_cache_state_file_path", table_name="asset_cache_state") + op.drop_constraint("uq_asset_cache_state_file_path", table_name="asset_cache_state") + op.drop_table("asset_cache_state") + + op.drop_index("ix_asset_info_tags_asset_info_id", table_name="asset_info_tags") + op.drop_index("ix_asset_info_tags_tag_name", table_name="asset_info_tags") + op.drop_table("asset_info_tags") + + op.drop_index("ix_tags_tag_type", table_name="tags") + op.drop_table("tags") + + op.drop_constraint("uq_assets_info_asset_owner_name", table_name="assets_info") + op.drop_index("ix_assets_info_owner_name", table_name="assets_info") + op.drop_index("ix_assets_info_last_access_time", table_name="assets_info") + op.drop_index("ix_assets_info_created_at", table_name="assets_info") + op.drop_index("ix_assets_info_name", table_name="assets_info") + op.drop_index("ix_assets_info_asset_id", table_name="assets_info") + op.drop_index("ix_assets_info_owner_id", table_name="assets_info") + op.drop_table("assets_info") + + op.drop_index("uq_assets_hash", table_name="assets") + op.drop_index("ix_assets_mime_type", table_name="assets") + op.drop_table("assets") diff --git a/app/assets/api/routes.py b/app/assets/api/routes.py new file mode 100644 index 000000000..30e87a898 --- /dev/null +++ b/app/assets/api/routes.py @@ -0,0 +1,102 @@ +import logging +import uuid +from aiohttp import web + +from pydantic import ValidationError + +import app.assets.manager as manager +from app import user_manager +from app.assets.api import schemas_in +from app.assets.helpers import get_query_dict + +ROUTES = web.RouteTableDef() +USER_MANAGER: user_manager.UserManager | None = None + +# UUID regex (canonical hyphenated form, case-insensitive) +UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}" + +def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None: + global USER_MANAGER + USER_MANAGER = user_manager_instance + app.add_routes(ROUTES) + +def _error_response(status: int, code: str, message: str, details: dict | None = None) -> web.Response: + return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status) + + +def _validation_error_response(code: str, ve: ValidationError) -> web.Response: + return _error_response(400, code, "Validation failed.", {"errors": ve.json()}) + + +@ROUTES.get("/api/assets") +async def list_assets(request: web.Request) -> web.Response: + """ + GET request to list assets. + """ + query_dict = get_query_dict(request) + try: + q = schemas_in.ListAssetsQuery.model_validate(query_dict) + except ValidationError as ve: + return _validation_error_response("INVALID_QUERY", ve) + + payload = manager.list_assets( + include_tags=q.include_tags, + exclude_tags=q.exclude_tags, + name_contains=q.name_contains, + metadata_filter=q.metadata_filter, + limit=q.limit, + offset=q.offset, + sort=q.sort, + order=q.order, + owner_id=USER_MANAGER.get_request_user_id(request), + ) + return web.json_response(payload.model_dump(mode="json")) + + +@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}") +async def get_asset(request: web.Request) -> web.Response: + """ + GET request to get an asset's info as JSON. + """ + asset_info_id = str(uuid.UUID(request.match_info["id"])) + try: + result = manager.get_asset( + asset_info_id=asset_info_id, + owner_id=USER_MANAGER.get_request_user_id(request), + ) + except ValueError as e: + return _error_response(404, "ASSET_NOT_FOUND", str(e), {"id": asset_info_id}) + except Exception: + logging.exception( + "get_asset failed for asset_info_id=%s, owner_id=%s", + asset_info_id, + USER_MANAGER.get_request_user_id(request), + ) + return _error_response(500, "INTERNAL", "Unexpected server error.") + return web.json_response(result.model_dump(mode="json"), status=200) + + +@ROUTES.get("/api/tags") +async def get_tags(request: web.Request) -> web.Response: + """ + GET request to list all tags based on query parameters. + """ + query_map = dict(request.rel_url.query) + + try: + query = schemas_in.TagsListQuery.model_validate(query_map) + except ValidationError as e: + return web.json_response( + {"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": e.errors()}}, + status=400, + ) + + result = manager.list_tags( + prefix=query.prefix, + limit=query.limit, + offset=query.offset, + order=query.order, + include_zero=query.include_zero, + owner_id=USER_MANAGER.get_request_user_id(request), + ) + return web.json_response(result.model_dump(mode="json")) diff --git a/app/assets/api/schemas_in.py b/app/assets/api/schemas_in.py new file mode 100644 index 000000000..200b41aef --- /dev/null +++ b/app/assets/api/schemas_in.py @@ -0,0 +1,94 @@ +import json +import uuid +from typing import Any, Literal + +from pydantic import ( + BaseModel, + ConfigDict, + Field, + conint, + field_validator, +) + + +class ListAssetsQuery(BaseModel): + include_tags: list[str] = Field(default_factory=list) + exclude_tags: list[str] = Field(default_factory=list) + name_contains: str | None = None + + # Accept either a JSON string (query param) or a dict + metadata_filter: dict[str, Any] | None = None + + limit: conint(ge=1, le=500) = 20 + offset: conint(ge=0) = 0 + + sort: Literal["name", "created_at", "updated_at", "size", "last_access_time"] = "created_at" + order: Literal["asc", "desc"] = "desc" + + @field_validator("include_tags", "exclude_tags", mode="before") + @classmethod + def _split_csv_tags(cls, v): + # Accept "a,b,c" or ["a","b"] (we are liberal in what we accept) + if v is None: + return [] + if isinstance(v, str): + return [t.strip() for t in v.split(",") if t.strip()] + if isinstance(v, list): + out: list[str] = [] + for item in v: + if isinstance(item, str): + out.extend([t.strip() for t in item.split(",") if t.strip()]) + return out + return v + + @field_validator("metadata_filter", mode="before") + @classmethod + def _parse_metadata_json(cls, v): + if v is None or isinstance(v, dict): + return v + if isinstance(v, str) and v.strip(): + try: + parsed = json.loads(v) + except Exception as e: + raise ValueError(f"metadata_filter must be JSON: {e}") from e + if not isinstance(parsed, dict): + raise ValueError("metadata_filter must be a JSON object") + return parsed + return None + + +class TagsListQuery(BaseModel): + model_config = ConfigDict(extra="ignore", str_strip_whitespace=True) + + prefix: str | None = Field(None, min_length=1, max_length=256) + limit: int = Field(100, ge=1, le=1000) + offset: int = Field(0, ge=0, le=10_000_000) + order: Literal["count_desc", "name_asc"] = "count_desc" + include_zero: bool = True + + @field_validator("prefix") + @classmethod + def normalize_prefix(cls, v: str | None) -> str | None: + if v is None: + return v + v = v.strip() + return v.lower() or None + + +class SetPreviewBody(BaseModel): + """Set or clear the preview for an AssetInfo. Provide an Asset.id or null.""" + preview_id: str | None = None + + @field_validator("preview_id", mode="before") + @classmethod + def _norm_uuid(cls, v): + if v is None: + return None + s = str(v).strip() + if not s: + return None + try: + uuid.UUID(s) + except Exception: + raise ValueError("preview_id must be a UUID") + return s diff --git a/app/assets/api/schemas_out.py b/app/assets/api/schemas_out.py new file mode 100644 index 000000000..9f8184f20 --- /dev/null +++ b/app/assets/api/schemas_out.py @@ -0,0 +1,60 @@ +from datetime import datetime +from typing import Any + +from pydantic import BaseModel, ConfigDict, Field, field_serializer + + +class AssetSummary(BaseModel): + id: str + name: str + asset_hash: str | None = None + size: int | None = None + mime_type: str | None = None + tags: list[str] = Field(default_factory=list) + preview_url: str | None = None + created_at: datetime | None = None + updated_at: datetime | None = None + last_access_time: datetime | None = None + + model_config = ConfigDict(from_attributes=True) + + @field_serializer("created_at", "updated_at", "last_access_time") + def _ser_dt(self, v: datetime | None, _info): + return v.isoformat() if v else None + + +class AssetsList(BaseModel): + assets: list[AssetSummary] + total: int + has_more: bool + + +class AssetDetail(BaseModel): + id: str + name: str + asset_hash: str | None = None + size: int | None = None + mime_type: str | None = None + tags: list[str] = Field(default_factory=list) + user_metadata: dict[str, Any] = Field(default_factory=dict) + preview_id: str | None = None + created_at: datetime | None = None + last_access_time: datetime | None = None + + model_config = ConfigDict(from_attributes=True) + + @field_serializer("created_at", "last_access_time") + def _ser_dt(self, v: datetime | None, _info): + return v.isoformat() if v else None + + +class TagUsage(BaseModel): + name: str + count: int + type: str + + +class TagsList(BaseModel): + tags: list[TagUsage] = Field(default_factory=list) + total: int + has_more: bool diff --git a/app/assets/database/bulk_ops.py b/app/assets/database/bulk_ops.py new file mode 100644 index 000000000..9352cd65d --- /dev/null +++ b/app/assets/database/bulk_ops.py @@ -0,0 +1,188 @@ +import os +import uuid +import sqlalchemy +from typing import Iterable +from sqlalchemy.orm import Session +from sqlalchemy.dialects import sqlite + +from app.assets.helpers import utcnow +from app.assets.database.models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, AssetInfoMeta + +MAX_BIND_PARAMS = 800 + +def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]: + if not rows: + return [] + rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row)) + for i in range(0, len(rows), rows_per_stmt): + yield rows[i:i + rows_per_stmt] + +def _iter_chunks(seq, n: int): + for i in range(0, len(seq), n): + yield seq[i:i + n] + +def _rows_per_stmt(cols: int) -> int: + return max(1, MAX_BIND_PARAMS // max(1, cols)) + + +def seed_from_paths_batch( + session: Session, + *, + specs: list[dict], + owner_id: str = "", +) -> dict: + """Each spec is a dict with keys: + - abs_path: str + - size_bytes: int + - mtime_ns: int + - info_name: str + - tags: list[str] + - fname: Optional[str] + """ + if not specs: + return {"inserted_infos": 0, "won_states": 0, "lost_states": 0} + + now = utcnow() + asset_rows: list[dict] = [] + state_rows: list[dict] = [] + path_to_asset: dict[str, str] = {} + asset_to_info: dict[str, dict] = {} # asset_id -> prepared info row + path_list: list[str] = [] + + for sp in specs: + ap = os.path.abspath(sp["abs_path"]) + aid = str(uuid.uuid4()) + iid = str(uuid.uuid4()) + path_list.append(ap) + path_to_asset[ap] = aid + + asset_rows.append( + { + "id": aid, + "hash": None, + "size_bytes": sp["size_bytes"], + "mime_type": None, + "created_at": now, + } + ) + state_rows.append( + { + "asset_id": aid, + "file_path": ap, + "mtime_ns": sp["mtime_ns"], + } + ) + asset_to_info[aid] = { + "id": iid, + "owner_id": owner_id, + "name": sp["info_name"], + "asset_id": aid, + "preview_id": None, + "user_metadata": {"filename": sp["fname"]} if sp["fname"] else None, + "created_at": now, + "updated_at": now, + "last_access_time": now, + "_tags": sp["tags"], + "_filename": sp["fname"], + } + + # insert all seed Assets (hash=NULL) + ins_asset = sqlite.insert(Asset) + for chunk in _iter_chunks(asset_rows, _rows_per_stmt(5)): + session.execute(ins_asset, chunk) + + # try to claim AssetCacheState (file_path) + winners_by_path: set[str] = set() + ins_state = ( + sqlite.insert(AssetCacheState) + .on_conflict_do_nothing(index_elements=[AssetCacheState.file_path]) + .returning(AssetCacheState.file_path) + ) + for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)): + winners_by_path.update((session.execute(ins_state, chunk)).scalars().all()) + + all_paths_set = set(path_list) + losers_by_path = all_paths_set - winners_by_path + lost_assets = [path_to_asset[p] for p in losers_by_path] + if lost_assets: # losers get their Asset removed + for id_chunk in _iter_chunks(lost_assets, MAX_BIND_PARAMS): + session.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(id_chunk))) + + if not winners_by_path: + return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)} + + # insert AssetInfo only for winners + winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path] + ins_info = ( + sqlite.insert(AssetInfo) + .on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name]) + .returning(AssetInfo.id) + ) + + inserted_info_ids: set[str] = set() + for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)): + inserted_info_ids.update((session.execute(ins_info, chunk)).scalars().all()) + + # build and insert tag + meta rows for the AssetInfo + tag_rows: list[dict] = [] + meta_rows: list[dict] = [] + if inserted_info_ids: + for row in winner_info_rows: + iid = row["id"] + if iid not in inserted_info_ids: + continue + for t in row["_tags"]: + tag_rows.append({ + "asset_info_id": iid, + "tag_name": t, + "origin": "automatic", + "added_at": now, + }) + if row["_filename"]: + meta_rows.append( + { + "asset_info_id": iid, + "key": "filename", + "ordinal": 0, + "val_str": row["_filename"], + "val_num": None, + "val_bool": None, + "val_json": None, + } + ) + + bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS) + return { + "inserted_infos": len(inserted_info_ids), + "won_states": len(winners_by_path), + "lost_states": len(losers_by_path), + } + + +def bulk_insert_tags_and_meta( + session: Session, + *, + tag_rows: list[dict], + meta_rows: list[dict], + max_bind_params: int, +) -> None: + """Batch insert into asset_info_tags and asset_info_meta with ON CONFLICT DO NOTHING. + - tag_rows keys: asset_info_id, tag_name, origin, added_at + - meta_rows keys: asset_info_id, key, ordinal, val_str, val_num, val_bool, val_json + """ + if tag_rows: + ins_links = ( + sqlite.insert(AssetInfoTag) + .on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name]) + ) + for chunk in _chunk_rows(tag_rows, cols_per_row=4, max_bind_params=max_bind_params): + session.execute(ins_links, chunk) + if meta_rows: + ins_meta = ( + sqlite.insert(AssetInfoMeta) + .on_conflict_do_nothing( + index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal] + ) + ) + for chunk in _chunk_rows(meta_rows, cols_per_row=7, max_bind_params=max_bind_params): + session.execute(ins_meta, chunk) diff --git a/app/assets/database/models.py b/app/assets/database/models.py new file mode 100644 index 000000000..3cd28f68b --- /dev/null +++ b/app/assets/database/models.py @@ -0,0 +1,233 @@ +from __future__ import annotations + +import uuid +from datetime import datetime + +from typing import Any +from sqlalchemy import ( + JSON, + BigInteger, + Boolean, + CheckConstraint, + DateTime, + ForeignKey, + Index, + Integer, + Numeric, + String, + Text, + UniqueConstraint, +) +from sqlalchemy.orm import Mapped, foreign, mapped_column, relationship + +from app.assets.helpers import utcnow +from app.database.models import to_dict, Base + + +class Asset(Base): + __tablename__ = "assets" + + id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4())) + hash: Mapped[str | None] = mapped_column(String(256), nullable=True) + size_bytes: Mapped[int] = mapped_column(BigInteger, nullable=False, default=0) + mime_type: Mapped[str | None] = mapped_column(String(255)) + created_at: Mapped[datetime] = mapped_column( + DateTime(timezone=False), nullable=False, default=utcnow + ) + + infos: Mapped[list[AssetInfo]] = relationship( + "AssetInfo", + back_populates="asset", + primaryjoin=lambda: Asset.id == foreign(AssetInfo.asset_id), + foreign_keys=lambda: [AssetInfo.asset_id], + cascade="all,delete-orphan", + passive_deletes=True, + ) + + preview_of: Mapped[list[AssetInfo]] = relationship( + "AssetInfo", + back_populates="preview_asset", + primaryjoin=lambda: Asset.id == foreign(AssetInfo.preview_id), + foreign_keys=lambda: [AssetInfo.preview_id], + viewonly=True, + ) + + cache_states: Mapped[list[AssetCacheState]] = relationship( + back_populates="asset", + cascade="all, delete-orphan", + passive_deletes=True, + ) + + __table_args__ = ( + Index("uq_assets_hash", "hash", unique=True), + Index("ix_assets_mime_type", "mime_type"), + CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"), + ) + + def to_dict(self, include_none: bool = False) -> dict[str, Any]: + return to_dict(self, include_none=include_none) + + def __repr__(self) -> str: + return f"" + + +class AssetCacheState(Base): + __tablename__ = "asset_cache_state" + + id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True) + asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="CASCADE"), nullable=False) + file_path: Mapped[str] = mapped_column(Text, nullable=False) + mtime_ns: Mapped[int | None] = mapped_column(BigInteger, nullable=True) + needs_verify: Mapped[bool] = mapped_column(Boolean, nullable=False, default=False) + + asset: Mapped[Asset] = relationship(back_populates="cache_states") + + __table_args__ = ( + Index("ix_asset_cache_state_file_path", "file_path"), + Index("ix_asset_cache_state_asset_id", "asset_id"), + CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"), + UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"), + ) + + def to_dict(self, include_none: bool = False) -> dict[str, Any]: + return to_dict(self, include_none=include_none) + + def __repr__(self) -> str: + return f"" + + +class AssetInfo(Base): + __tablename__ = "assets_info" + + id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4())) + owner_id: Mapped[str] = mapped_column(String(128), nullable=False, default="") + name: Mapped[str] = mapped_column(String(512), nullable=False) + asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False) + preview_id: Mapped[str | None] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL")) + user_metadata: Mapped[dict[str, Any] | None] = mapped_column(JSON(none_as_null=True)) + created_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow) + updated_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow) + last_access_time: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow) + + asset: Mapped[Asset] = relationship( + "Asset", + back_populates="infos", + foreign_keys=[asset_id], + lazy="selectin", + ) + preview_asset: Mapped[Asset | None] = relationship( + "Asset", + back_populates="preview_of", + foreign_keys=[preview_id], + ) + + metadata_entries: Mapped[list[AssetInfoMeta]] = relationship( + back_populates="asset_info", + cascade="all,delete-orphan", + passive_deletes=True, + ) + + tag_links: Mapped[list[AssetInfoTag]] = relationship( + back_populates="asset_info", + cascade="all,delete-orphan", + passive_deletes=True, + overlaps="tags,asset_infos", + ) + + tags: Mapped[list[Tag]] = relationship( + secondary="asset_info_tags", + back_populates="asset_infos", + lazy="selectin", + viewonly=True, + overlaps="tag_links,asset_info_links,asset_infos,tag", + ) + + __table_args__ = ( + UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"), + Index("ix_assets_info_owner_name", "owner_id", "name"), + Index("ix_assets_info_owner_id", "owner_id"), + Index("ix_assets_info_asset_id", "asset_id"), + Index("ix_assets_info_name", "name"), + Index("ix_assets_info_created_at", "created_at"), + Index("ix_assets_info_last_access_time", "last_access_time"), + ) + + def to_dict(self, include_none: bool = False) -> dict[str, Any]: + data = to_dict(self, include_none=include_none) + data["tags"] = [t.name for t in self.tags] + return data + + def __repr__(self) -> str: + return f"" + + +class AssetInfoMeta(Base): + __tablename__ = "asset_info_meta" + + asset_info_id: Mapped[str] = mapped_column( + String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True + ) + key: Mapped[str] = mapped_column(String(256), primary_key=True) + ordinal: Mapped[int] = mapped_column(Integer, primary_key=True, default=0) + + val_str: Mapped[str | None] = mapped_column(String(2048), nullable=True) + val_num: Mapped[float | None] = mapped_column(Numeric(38, 10), nullable=True) + val_bool: Mapped[bool | None] = mapped_column(Boolean, nullable=True) + val_json: Mapped[Any | None] = mapped_column(JSON(none_as_null=True), nullable=True) + + asset_info: Mapped[AssetInfo] = relationship(back_populates="metadata_entries") + + __table_args__ = ( + Index("ix_asset_info_meta_key", "key"), + Index("ix_asset_info_meta_key_val_str", "key", "val_str"), + Index("ix_asset_info_meta_key_val_num", "key", "val_num"), + Index("ix_asset_info_meta_key_val_bool", "key", "val_bool"), + ) + + +class AssetInfoTag(Base): + __tablename__ = "asset_info_tags" + + asset_info_id: Mapped[str] = mapped_column( + String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True + ) + tag_name: Mapped[str] = mapped_column( + String(512), ForeignKey("tags.name", ondelete="RESTRICT"), primary_key=True + ) + origin: Mapped[str] = mapped_column(String(32), nullable=False, default="manual") + added_at: Mapped[datetime] = mapped_column( + DateTime(timezone=False), nullable=False, default=utcnow + ) + + asset_info: Mapped[AssetInfo] = relationship(back_populates="tag_links") + tag: Mapped[Tag] = relationship(back_populates="asset_info_links") + + __table_args__ = ( + Index("ix_asset_info_tags_tag_name", "tag_name"), + Index("ix_asset_info_tags_asset_info_id", "asset_info_id"), + ) + + +class Tag(Base): + __tablename__ = "tags" + + name: Mapped[str] = mapped_column(String(512), primary_key=True) + tag_type: Mapped[str] = mapped_column(String(32), nullable=False, default="user") + + asset_info_links: Mapped[list[AssetInfoTag]] = relationship( + back_populates="tag", + overlaps="asset_infos,tags", + ) + asset_infos: Mapped[list[AssetInfo]] = relationship( + secondary="asset_info_tags", + back_populates="tags", + viewonly=True, + overlaps="asset_info_links,tag_links,tags,asset_info", + ) + + __table_args__ = ( + Index("ix_tags_tag_type", "tag_type"), + ) + + def __repr__(self) -> str: + return f"" diff --git a/app/assets/database/queries.py b/app/assets/database/queries.py new file mode 100644 index 000000000..0824c0c2f --- /dev/null +++ b/app/assets/database/queries.py @@ -0,0 +1,267 @@ +import sqlalchemy as sa +from collections import defaultdict +from sqlalchemy import select, exists, func +from sqlalchemy.orm import Session, contains_eager, noload +from app.assets.database.models import Asset, AssetInfo, AssetInfoMeta, AssetInfoTag, Tag +from app.assets.helpers import escape_like_prefix, normalize_tags +from typing import Sequence + + +def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement: + """Build owner visibility predicate for reads. Owner-less rows are visible to everyone.""" + owner_id = (owner_id or "").strip() + if owner_id == "": + return AssetInfo.owner_id == "" + return AssetInfo.owner_id.in_(["", owner_id]) + + +def apply_tag_filters( + stmt: sa.sql.Select, + include_tags: Sequence[str] | None = None, + exclude_tags: Sequence[str] | None = None, +) -> sa.sql.Select: + """include_tags: every tag must be present; exclude_tags: none may be present.""" + include_tags = normalize_tags(include_tags) + exclude_tags = normalize_tags(exclude_tags) + + if include_tags: + for tag_name in include_tags: + stmt = stmt.where( + exists().where( + (AssetInfoTag.asset_info_id == AssetInfo.id) + & (AssetInfoTag.tag_name == tag_name) + ) + ) + + if exclude_tags: + stmt = stmt.where( + ~exists().where( + (AssetInfoTag.asset_info_id == AssetInfo.id) + & (AssetInfoTag.tag_name.in_(exclude_tags)) + ) + ) + return stmt + +def apply_metadata_filter( + stmt: sa.sql.Select, + metadata_filter: dict | None = None, +) -> sa.sql.Select: + """Apply filters using asset_info_meta projection table.""" + if not metadata_filter: + return stmt + + def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement: + return sa.exists().where( + AssetInfoMeta.asset_info_id == AssetInfo.id, + AssetInfoMeta.key == key, + *preds, + ) + + def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement: + if value is None: + no_row_for_key = sa.not_( + sa.exists().where( + AssetInfoMeta.asset_info_id == AssetInfo.id, + AssetInfoMeta.key == key, + ) + ) + null_row = _exists_for_pred( + key, + AssetInfoMeta.val_json.is_(None), + AssetInfoMeta.val_str.is_(None), + AssetInfoMeta.val_num.is_(None), + AssetInfoMeta.val_bool.is_(None), + ) + return sa.or_(no_row_for_key, null_row) + + if isinstance(value, bool): + return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value)) + if isinstance(value, (int, float)): + from decimal import Decimal + num = value if isinstance(value, Decimal) else Decimal(str(value)) + return _exists_for_pred(key, AssetInfoMeta.val_num == num) + if isinstance(value, str): + return _exists_for_pred(key, AssetInfoMeta.val_str == value) + return _exists_for_pred(key, AssetInfoMeta.val_json == value) + + for k, v in metadata_filter.items(): + if isinstance(v, list): + ors = [_exists_clause_for_value(k, elem) for elem in v] + if ors: + stmt = stmt.where(sa.or_(*ors)) + else: + stmt = stmt.where(_exists_clause_for_value(k, v)) + return stmt + + +def asset_exists_by_hash(session: Session, asset_hash: str) -> bool: + """ + Check if an asset with a given hash exists in database. + """ + row = ( + session.execute( + select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1) + ) + ).first() + return row is not None + +def get_asset_info_by_id(session: Session, asset_info_id: str) -> AssetInfo | None: + return session.get(AssetInfo, asset_info_id) + +def list_asset_infos_page( + session: Session, + owner_id: str = "", + include_tags: Sequence[str] | None = None, + exclude_tags: Sequence[str] | None = None, + name_contains: str | None = None, + metadata_filter: dict | None = None, + limit: int = 20, + offset: int = 0, + sort: str = "created_at", + order: str = "desc", +) -> tuple[list[AssetInfo], dict[str, list[str]], int]: + base = ( + select(AssetInfo) + .join(Asset, Asset.id == AssetInfo.asset_id) + .options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags)) + .where(visible_owner_clause(owner_id)) + ) + + if name_contains: + escaped, esc = escape_like_prefix(name_contains) + base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc)) + + base = apply_tag_filters(base, include_tags, exclude_tags) + base = apply_metadata_filter(base, metadata_filter) + + sort = (sort or "created_at").lower() + order = (order or "desc").lower() + sort_map = { + "name": AssetInfo.name, + "created_at": AssetInfo.created_at, + "updated_at": AssetInfo.updated_at, + "last_access_time": AssetInfo.last_access_time, + "size": Asset.size_bytes, + } + sort_col = sort_map.get(sort, AssetInfo.created_at) + sort_exp = sort_col.desc() if order == "desc" else sort_col.asc() + + base = base.order_by(sort_exp).limit(limit).offset(offset) + + count_stmt = ( + select(sa.func.count()) + .select_from(AssetInfo) + .join(Asset, Asset.id == AssetInfo.asset_id) + .where(visible_owner_clause(owner_id)) + ) + if name_contains: + escaped, esc = escape_like_prefix(name_contains) + count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc)) + count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags) + count_stmt = apply_metadata_filter(count_stmt, metadata_filter) + + total = int((session.execute(count_stmt)).scalar_one() or 0) + + infos = (session.execute(base)).unique().scalars().all() + + id_list: list[str] = [i.id for i in infos] + tag_map: dict[str, list[str]] = defaultdict(list) + if id_list: + rows = session.execute( + select(AssetInfoTag.asset_info_id, Tag.name) + .join(Tag, Tag.name == AssetInfoTag.tag_name) + .where(AssetInfoTag.asset_info_id.in_(id_list)) + ) + for aid, tag_name in rows.all(): + tag_map[aid].append(tag_name) + + return infos, tag_map, total + +def fetch_asset_info_asset_and_tags( + session: Session, + asset_info_id: str, + owner_id: str = "", +) -> tuple[AssetInfo, Asset, list[str]] | None: + stmt = ( + select(AssetInfo, Asset, Tag.name) + .join(Asset, Asset.id == AssetInfo.asset_id) + .join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True) + .join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True) + .where( + AssetInfo.id == asset_info_id, + visible_owner_clause(owner_id), + ) + .options(noload(AssetInfo.tags)) + .order_by(Tag.name.asc()) + ) + + rows = (session.execute(stmt)).all() + if not rows: + return None + + first_info, first_asset, _ = rows[0] + tags: list[str] = [] + seen: set[str] = set() + for _info, _asset, tag_name in rows: + if tag_name and tag_name not in seen: + seen.add(tag_name) + tags.append(tag_name) + return first_info, first_asset, tags + +def list_tags_with_usage( + session: Session, + prefix: str | None = None, + limit: int = 100, + offset: int = 0, + include_zero: bool = True, + order: str = "count_desc", + owner_id: str = "", +) -> tuple[list[tuple[str, str, int]], int]: + counts_sq = ( + select( + AssetInfoTag.tag_name.label("tag_name"), + func.count(AssetInfoTag.asset_info_id).label("cnt"), + ) + .select_from(AssetInfoTag) + .join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id) + .where(visible_owner_clause(owner_id)) + .group_by(AssetInfoTag.tag_name) + .subquery() + ) + + q = ( + select( + Tag.name, + Tag.tag_type, + func.coalesce(counts_sq.c.cnt, 0).label("count"), + ) + .select_from(Tag) + .join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True) + ) + + if prefix: + escaped, esc = escape_like_prefix(prefix.strip().lower()) + q = q.where(Tag.name.like(escaped + "%", escape=esc)) + + if not include_zero: + q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0) + + if order == "name_asc": + q = q.order_by(Tag.name.asc()) + else: + q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc()) + + total_q = select(func.count()).select_from(Tag) + if prefix: + escaped, esc = escape_like_prefix(prefix.strip().lower()) + total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc)) + if not include_zero: + total_q = total_q.where( + Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name)) + ) + + rows = (session.execute(q.limit(limit).offset(offset))).all() + total = (session.execute(total_q)).scalar_one() + + rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows] + return rows_norm, int(total or 0) diff --git a/app/assets/database/tags.py b/app/assets/database/tags.py new file mode 100644 index 000000000..3ab6497c2 --- /dev/null +++ b/app/assets/database/tags.py @@ -0,0 +1,62 @@ +from typing import Iterable + +import sqlalchemy +from sqlalchemy.orm import Session +from sqlalchemy.dialects import sqlite + +from app.assets.helpers import normalize_tags, utcnow +from app.assets.database.models import Tag, AssetInfoTag, AssetInfo + + +def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None: + wanted = normalize_tags(list(names)) + if not wanted: + return + rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))] + ins = ( + sqlite.insert(Tag) + .values(rows) + .on_conflict_do_nothing(index_elements=[Tag.name]) + ) + return session.execute(ins) + +def add_missing_tag_for_asset_id( + session: Session, + *, + asset_id: str, + origin: str = "automatic", +) -> None: + select_rows = ( + sqlalchemy.select( + AssetInfo.id.label("asset_info_id"), + sqlalchemy.literal("missing").label("tag_name"), + sqlalchemy.literal(origin).label("origin"), + sqlalchemy.literal(utcnow()).label("added_at"), + ) + .where(AssetInfo.asset_id == asset_id) + .where( + sqlalchemy.not_( + sqlalchemy.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing")) + ) + ) + ) + session.execute( + sqlite.insert(AssetInfoTag) + .from_select( + ["asset_info_id", "tag_name", "origin", "added_at"], + select_rows, + ) + .on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name]) + ) + +def remove_missing_tag_for_asset_id( + session: Session, + *, + asset_id: str, +) -> None: + session.execute( + sqlalchemy.delete(AssetInfoTag).where( + AssetInfoTag.asset_info_id.in_(sqlalchemy.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)), + AssetInfoTag.tag_name == "missing", + ) + ) diff --git a/app/assets/hashing.py b/app/assets/hashing.py new file mode 100644 index 000000000..4b72084b9 --- /dev/null +++ b/app/assets/hashing.py @@ -0,0 +1,75 @@ +from blake3 import blake3 +from typing import IO +import os +import asyncio + + +DEFAULT_CHUNK = 8 * 1024 *1024 # 8MB + +# NOTE: this allows hashing different representations of a file-like object +def blake3_hash( + fp: str | IO[bytes], + chunk_size: int = DEFAULT_CHUNK, +) -> str: + """ + Returns a BLAKE3 hex digest for ``fp``, which may be: + - a filename (str/bytes) or PathLike + - an open binary file object + If ``fp`` is a file object, it must be opened in **binary** mode and support + ``read``, ``seek``, and ``tell``. The function will seek to the start before + reading and will attempt to restore the original position afterward. + """ + # duck typing to check if input is a file-like object + if hasattr(fp, "read"): + return _hash_file_obj(fp, chunk_size) + + with open(os.fspath(fp), "rb") as f: + return _hash_file_obj(f, chunk_size) + + +async def blake3_hash_async( + fp: str | IO[bytes], + chunk_size: int = DEFAULT_CHUNK, +) -> str: + """Async wrapper for ``blake3_hash_sync``. + Uses a worker thread so the event loop remains responsive. + """ + # If it is a path, open inside the worker thread to keep I/O off the loop. + if hasattr(fp, "read"): + return await asyncio.to_thread(blake3_hash, fp, chunk_size) + + def _worker() -> str: + with open(os.fspath(fp), "rb") as f: + return _hash_file_obj(f, chunk_size) + + return await asyncio.to_thread(_worker) + + +def _hash_file_obj(file_obj: IO, chunk_size: int = DEFAULT_CHUNK) -> str: + """ + Hash an already-open binary file object by streaming in chunks. + - Seeks to the beginning before reading (if supported). + - Restores the original position afterward (if tell/seek are supported). + """ + if chunk_size <= 0: + chunk_size = DEFAULT_CHUNK + + # in case file object is already open and not at the beginning, track so can be restored after hashing + orig_pos = file_obj.tell() + + try: + # seek to the beginning before reading + if orig_pos != 0: + file_obj.seek(0) + + h = blake3() + while True: + chunk = file_obj.read(chunk_size) + if not chunk: + break + h.update(chunk) + return h.hexdigest() + finally: + # restore original position in file object, if needed + if orig_pos != 0: + file_obj.seek(orig_pos) diff --git a/app/assets/helpers.py b/app/assets/helpers.py new file mode 100644 index 000000000..6755d0e56 --- /dev/null +++ b/app/assets/helpers.py @@ -0,0 +1,216 @@ +import contextlib +import os +from aiohttp import web +from datetime import datetime, timezone +from pathlib import Path +from typing import Literal, Any + +import folder_paths + + +RootType = Literal["models", "input", "output"] +ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output") + +def get_query_dict(request: web.Request) -> dict[str, Any]: + """ + Gets a dictionary of query parameters from the request. + + 'request.query' is a MultiMapping[str], needs to be converted to a dictionary to be validated by Pydantic. + """ + query_dict = { + key: request.query.getall(key) if len(request.query.getall(key)) > 1 else request.query.get(key) + for key in request.query.keys() + } + return query_dict + +def list_tree(base_dir: str) -> list[str]: + out: list[str] = [] + base_abs = os.path.abspath(base_dir) + if not os.path.isdir(base_abs): + return out + for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False): + for name in filenames: + out.append(os.path.abspath(os.path.join(dirpath, name))) + return out + +def prefixes_for_root(root: RootType) -> list[str]: + if root == "models": + bases: list[str] = [] + for _bucket, paths in get_comfy_models_folders(): + bases.extend(paths) + return [os.path.abspath(p) for p in bases] + if root == "input": + return [os.path.abspath(folder_paths.get_input_directory())] + if root == "output": + return [os.path.abspath(folder_paths.get_output_directory())] + return [] + +def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]: + """Escapes %, _ and the escape char itself in a LIKE prefix. + Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like(). + """ + s = s.replace(escape, escape + escape) # escape the escape char first + s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards + return s, escape + +def fast_asset_file_check( + *, + mtime_db: int | None, + size_db: int | None, + stat_result: os.stat_result, +) -> bool: + if mtime_db is None: + return False + actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000)) + if int(mtime_db) != int(actual_mtime_ns): + return False + sz = int(size_db or 0) + if sz > 0: + return int(stat_result.st_size) == sz + return True + +def utcnow() -> datetime: + """Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC.""" + return datetime.now(timezone.utc).replace(tzinfo=None) + +def get_comfy_models_folders() -> list[tuple[str, list[str]]]: + """Build a list of (folder_name, base_paths[]) categories that are configured for model locations. + + We trust `folder_paths.folder_names_and_paths` and include a category if + *any* of its base paths lies under the Comfy `models_dir`. + """ + targets: list[tuple[str, list[str]]] = [] + models_root = os.path.abspath(folder_paths.models_dir) + for name, (paths, _exts) in folder_paths.folder_names_and_paths.items(): + if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths): + targets.append((name, paths)) + return targets + +def compute_relative_filename(file_path: str) -> str | None: + """ + Return the model's path relative to the last well-known folder (the model category), + using forward slashes, eg: + /.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors" + /.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors" + + For non-model paths, returns None. + NOTE: this is a temporary helper, used only for initializing metadata["filename"] field. + """ + try: + root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path) + except ValueError: + return None + + p = Path(rel_path) + parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)] + if not parts: + return None + + if root_category == "models": + # parts[0] is the category ("checkpoints", "vae", etc) – drop it + inside = parts[1:] if len(parts) > 1 else [parts[0]] + return "/".join(inside) + return "/".join(parts) # input/output: keep all parts + + +def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]: + """Given an absolute or relative file path, determine which root category the path belongs to: + - 'input' if the file resides under `folder_paths.get_input_directory()` + - 'output' if the file resides under `folder_paths.get_output_directory()` + - 'models' if the file resides under any base path of categories returned by `get_comfy_models_folders()` + + Returns: + (root_category, relative_path_inside_that_root) + For 'models', the relative path is prefixed with the category name: + e.g. ('models', 'vae/test/sub/ae.safetensors') + + Raises: + ValueError: if the path does not belong to input, output, or configured model bases. + """ + fp_abs = os.path.abspath(file_path) + + def _is_within(child: str, parent: str) -> bool: + try: + return os.path.commonpath([child, parent]) == parent + except Exception: + return False + + def _rel(child: str, parent: str) -> str: + return os.path.relpath(os.path.join(os.sep, os.path.relpath(child, parent)), os.sep) + + # 1) input + input_base = os.path.abspath(folder_paths.get_input_directory()) + if _is_within(fp_abs, input_base): + return "input", _rel(fp_abs, input_base) + + # 2) output + output_base = os.path.abspath(folder_paths.get_output_directory()) + if _is_within(fp_abs, output_base): + return "output", _rel(fp_abs, output_base) + + # 3) models (check deepest matching base to avoid ambiguity) + best: tuple[int, str, str] | None = None # (base_len, bucket, rel_inside_bucket) + for bucket, bases in get_comfy_models_folders(): + for b in bases: + base_abs = os.path.abspath(b) + if not _is_within(fp_abs, base_abs): + continue + cand = (len(base_abs), bucket, _rel(fp_abs, base_abs)) + if best is None or cand[0] > best[0]: + best = cand + + if best is not None: + _, bucket, rel_inside = best + combined = os.path.join(bucket, rel_inside) + return "models", os.path.relpath(os.path.join(os.sep, combined), os.sep) + + raise ValueError(f"Path is not within input, output, or configured model bases: {file_path}") + +def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]: + """Return a tuple (name, tags) derived from a filesystem path. + + Semantics: + - Root category is determined by `get_relative_to_root_category_path_of_asset`. + - The returned `name` is the base filename with extension from the relative path. + - The returned `tags` are: + [root_category] + parent folders of the relative path (in order) + For 'models', this means: + file '/.../ModelsDir/vae/test_tag/ae.safetensors' + -> root_category='models', some_path='vae/test_tag/ae.safetensors' + -> name='ae.safetensors', tags=['models', 'vae', 'test_tag'] + + Raises: + ValueError: if the path does not belong to input, output, or configured model bases. + """ + root_category, some_path = get_relative_to_root_category_path_of_asset(file_path) + p = Path(some_path) + parent_parts = [part for part in p.parent.parts if part not in (".", "..", p.anchor)] + return p.name, list(dict.fromkeys(normalize_tags([root_category, *parent_parts]))) + +def normalize_tags(tags: list[str] | None) -> list[str]: + """ + Normalize a list of tags by: + - Stripping whitespace and converting to lowercase. + - Removing duplicates. + """ + return [t.strip().lower() for t in (tags or []) if (t or "").strip()] + +def collect_models_files() -> list[str]: + out: list[str] = [] + for folder_name, bases in get_comfy_models_folders(): + rel_files = folder_paths.get_filename_list(folder_name) or [] + for rel_path in rel_files: + abs_path = folder_paths.get_full_path(folder_name, rel_path) + if not abs_path: + continue + abs_path = os.path.abspath(abs_path) + allowed = False + for b in bases: + base_abs = os.path.abspath(b) + with contextlib.suppress(Exception): + if os.path.commonpath([abs_path, base_abs]) == base_abs: + allowed = True + break + if allowed: + out.append(abs_path) + return out diff --git a/app/assets/manager.py b/app/assets/manager.py new file mode 100644 index 000000000..6425e7aa2 --- /dev/null +++ b/app/assets/manager.py @@ -0,0 +1,123 @@ +from typing import Sequence + +from app.database.db import create_session +from app.assets.api import schemas_out +from app.assets.database.queries import ( + asset_exists_by_hash, + fetch_asset_info_asset_and_tags, + list_asset_infos_page, + list_tags_with_usage, +) + + +def _safe_sort_field(requested: str | None) -> str: + if not requested: + return "created_at" + v = requested.lower() + if v in {"name", "created_at", "updated_at", "size", "last_access_time"}: + return v + return "created_at" + + +def asset_exists(asset_hash: str) -> bool: + with create_session() as session: + return asset_exists_by_hash(session, asset_hash=asset_hash) + +def list_assets( + include_tags: Sequence[str] | None = None, + exclude_tags: Sequence[str] | None = None, + name_contains: str | None = None, + metadata_filter: dict | None = None, + limit: int = 20, + offset: int = 0, + sort: str = "created_at", + order: str = "desc", + owner_id: str = "", +) -> schemas_out.AssetsList: + sort = _safe_sort_field(sort) + order = "desc" if (order or "desc").lower() not in {"asc", "desc"} else order.lower() + + with create_session() as session: + infos, tag_map, total = list_asset_infos_page( + session, + owner_id=owner_id, + include_tags=include_tags, + exclude_tags=exclude_tags, + name_contains=name_contains, + metadata_filter=metadata_filter, + limit=limit, + offset=offset, + sort=sort, + order=order, + ) + + summaries: list[schemas_out.AssetSummary] = [] + for info in infos: + asset = info.asset + tags = tag_map.get(info.id, []) + summaries.append( + schemas_out.AssetSummary( + id=info.id, + name=info.name, + asset_hash=asset.hash if asset else None, + size=int(asset.size_bytes) if asset else None, + mime_type=asset.mime_type if asset else None, + tags=tags, + preview_url=f"/api/assets/{info.id}/content", + created_at=info.created_at, + updated_at=info.updated_at, + last_access_time=info.last_access_time, + ) + ) + + return schemas_out.AssetsList( + assets=summaries, + total=total, + has_more=(offset + len(summaries)) < total, + ) + +def get_asset(asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail: + with create_session() as session: + res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id) + if not res: + raise ValueError(f"AssetInfo {asset_info_id} not found") + info, asset, tag_names = res + preview_id = info.preview_id + + return schemas_out.AssetDetail( + id=info.id, + name=info.name, + asset_hash=asset.hash if asset else None, + size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None, + mime_type=asset.mime_type if asset else None, + tags=tag_names, + user_metadata=info.user_metadata or {}, + preview_id=preview_id, + created_at=info.created_at, + last_access_time=info.last_access_time, + ) + +def list_tags( + prefix: str | None = None, + limit: int = 100, + offset: int = 0, + order: str = "count_desc", + include_zero: bool = True, + owner_id: str = "", +) -> schemas_out.TagsList: + limit = max(1, min(1000, limit)) + offset = max(0, offset) + + with create_session() as session: + rows, total = list_tags_with_usage( + session, + prefix=prefix, + limit=limit, + offset=offset, + include_zero=include_zero, + order=order, + owner_id=owner_id, + ) + + tags = [schemas_out.TagUsage(name=name, count=count, type=tag_type) for (name, tag_type, count) in rows] + return schemas_out.TagsList(tags=tags, total=total, has_more=(offset + len(tags)) < total) diff --git a/app/assets/scanner.py b/app/assets/scanner.py new file mode 100644 index 000000000..a16e41d94 --- /dev/null +++ b/app/assets/scanner.py @@ -0,0 +1,229 @@ +import contextlib +import time +import logging +import os +import sqlalchemy + +import folder_paths +from app.database.db import create_session, dependencies_available +from app.assets.helpers import ( + collect_models_files, compute_relative_filename, fast_asset_file_check, get_name_and_tags_from_asset_path, + list_tree,prefixes_for_root, escape_like_prefix, + RootType +) +from app.assets.database.tags import add_missing_tag_for_asset_id, ensure_tags_exist, remove_missing_tag_for_asset_id +from app.assets.database.bulk_ops import seed_from_paths_batch +from app.assets.database.models import Asset, AssetCacheState, AssetInfo + + +def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> None: + """ + Scan the given roots and seed the assets into the database. + """ + if not dependencies_available(): + if enable_logging: + logging.warning("Database dependencies not available, skipping assets scan") + return + t_start = time.perf_counter() + created = 0 + skipped_existing = 0 + paths: list[str] = [] + try: + existing_paths: set[str] = set() + for r in roots: + try: + survivors: set[str] = _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True) + if survivors: + existing_paths.update(survivors) + except Exception as e: + logging.exception("fast DB scan failed for %s: %s", r, e) + + if "models" in roots: + paths.extend(collect_models_files()) + if "input" in roots: + paths.extend(list_tree(folder_paths.get_input_directory())) + if "output" in roots: + paths.extend(list_tree(folder_paths.get_output_directory())) + + specs: list[dict] = [] + tag_pool: set[str] = set() + for p in paths: + abs_p = os.path.abspath(p) + if abs_p in existing_paths: + skipped_existing += 1 + continue + try: + stat_p = os.stat(abs_p, follow_symlinks=False) + except OSError: + continue + # skip empty files + if not stat_p.st_size: + continue + name, tags = get_name_and_tags_from_asset_path(abs_p) + specs.append( + { + "abs_path": abs_p, + "size_bytes": stat_p.st_size, + "mtime_ns": getattr(stat_p, "st_mtime_ns", int(stat_p.st_mtime * 1_000_000_000)), + "info_name": name, + "tags": tags, + "fname": compute_relative_filename(abs_p), + } + ) + for t in tags: + tag_pool.add(t) + # if no file specs, nothing to do + if not specs: + return + with create_session() as sess: + if tag_pool: + ensure_tags_exist(sess, tag_pool, tag_type="user") + + result = seed_from_paths_batch(sess, specs=specs, owner_id="") + created += result["inserted_infos"] + sess.commit() + finally: + if enable_logging: + logging.info( + "Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)", + roots, + time.perf_counter() - t_start, + created, + skipped_existing, + len(paths), + ) + + +def _fast_db_consistency_pass( + root: RootType, + *, + collect_existing_paths: bool = False, + update_missing_tags: bool = False, +) -> set[str] | None: + """Fast DB+FS pass for a root: + - Toggle needs_verify per state using fast check + - For hashed assets with at least one fast-ok state in this root: delete stale missing states + - For seed assets with all states missing: delete Asset and its AssetInfos + - Optionally add/remove 'missing' tags based on fast-ok in this root + - Optionally return surviving absolute paths + """ + prefixes = prefixes_for_root(root) + if not prefixes: + return set() if collect_existing_paths else None + + conds = [] + for p in prefixes: + base = os.path.abspath(p) + if not base.endswith(os.sep): + base += os.sep + escaped, esc = escape_like_prefix(base) + conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc)) + + with create_session() as sess: + rows = ( + sess.execute( + sqlalchemy.select( + AssetCacheState.id, + AssetCacheState.file_path, + AssetCacheState.mtime_ns, + AssetCacheState.needs_verify, + AssetCacheState.asset_id, + Asset.hash, + Asset.size_bytes, + ) + .join(Asset, Asset.id == AssetCacheState.asset_id) + .where(sqlalchemy.or_(*conds)) + .order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc()) + ) + ).all() + + by_asset: dict[str, dict] = {} + for sid, fp, mtime_db, needs_verify, aid, a_hash, a_size in rows: + acc = by_asset.get(aid) + if acc is None: + acc = {"hash": a_hash, "size_db": int(a_size or 0), "states": []} + by_asset[aid] = acc + + fast_ok = False + try: + exists = True + fast_ok = fast_asset_file_check( + mtime_db=mtime_db, + size_db=acc["size_db"], + stat_result=os.stat(fp, follow_symlinks=True), + ) + except FileNotFoundError: + exists = False + except OSError: + exists = False + + acc["states"].append({ + "sid": sid, + "fp": fp, + "exists": exists, + "fast_ok": fast_ok, + "needs_verify": bool(needs_verify), + }) + + to_set_verify: list[int] = [] + to_clear_verify: list[int] = [] + stale_state_ids: list[int] = [] + survivors: set[str] = set() + + for aid, acc in by_asset.items(): + a_hash = acc["hash"] + states = acc["states"] + any_fast_ok = any(s["fast_ok"] for s in states) + all_missing = all(not s["exists"] for s in states) + + for s in states: + if not s["exists"]: + continue + if s["fast_ok"] and s["needs_verify"]: + to_clear_verify.append(s["sid"]) + if not s["fast_ok"] and not s["needs_verify"]: + to_set_verify.append(s["sid"]) + + if a_hash is None: + if states and all_missing: # remove seed Asset completely, if no valid AssetCache exists + sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id == aid)) + asset = sess.get(Asset, aid) + if asset: + sess.delete(asset) + else: + for s in states: + if s["exists"]: + survivors.add(os.path.abspath(s["fp"])) + continue + + if any_fast_ok: # if Asset has at least one valid AssetCache record, remove any invalid AssetCache records + for s in states: + if not s["exists"]: + stale_state_ids.append(s["sid"]) + if update_missing_tags: + with contextlib.suppress(Exception): + remove_missing_tag_for_asset_id(sess, asset_id=aid) + elif update_missing_tags: + with contextlib.suppress(Exception): + add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic") + + for s in states: + if s["exists"]: + survivors.add(os.path.abspath(s["fp"])) + + if stale_state_ids: + sess.execute(sqlalchemy.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids))) + if to_set_verify: + sess.execute( + sqlalchemy.update(AssetCacheState) + .where(AssetCacheState.id.in_(to_set_verify)) + .values(needs_verify=True) + ) + if to_clear_verify: + sess.execute( + sqlalchemy.update(AssetCacheState) + .where(AssetCacheState.id.in_(to_clear_verify)) + .values(needs_verify=False) + ) + sess.commit() + return survivors if collect_existing_paths else None diff --git a/app/database/models.py b/app/database/models.py index 6facfb8f2..e7572677a 100644 --- a/app/database/models.py +++ b/app/database/models.py @@ -1,14 +1,21 @@ -from sqlalchemy.orm import declarative_base +from typing import Any +from datetime import datetime +from sqlalchemy.orm import DeclarativeBase -Base = declarative_base() +class Base(DeclarativeBase): + pass - -def to_dict(obj): +def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]: fields = obj.__table__.columns.keys() - return { - field: (val.to_dict() if hasattr(val, "to_dict") else val) - for field in fields - if (val := getattr(obj, field)) - } + out: dict[str, Any] = {} + for field in fields: + val = getattr(obj, field) + if val is None and not include_none: + continue + if isinstance(val, datetime): + out[field] = val.isoformat() + else: + out[field] = val + return out # TODO: Define models here diff --git a/comfy/cli_args.py b/comfy/cli_args.py index dae9a895d..1716c3de7 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -231,6 +231,7 @@ database_default_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db") ) parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.") +parser.add_argument("--disable-assets-autoscan", action="store_true", help="Disable asset scanning on startup for database synchronization.") if comfy.options.args_parsing: args = parser.parse_args() diff --git a/main.py b/main.py index 0e07a95da..37b06c1fa 100644 --- a/main.py +++ b/main.py @@ -7,6 +7,7 @@ import folder_paths import time from comfy.cli_args import args from app.logger import setup_logger +from app.assets.scanner import seed_assets import itertools import utils.extra_config import logging @@ -324,6 +325,8 @@ def setup_database(): from app.database.db import init_db, dependencies_available if dependencies_available(): init_db() + if not args.disable_assets_autoscan: + seed_assets(["models"], enable_logging=True) except Exception as e: logging.error(f"Failed to initialize database. Please ensure you have installed the latest requirements. If the error persists, please report this as in future the database will be required: {e}") diff --git a/server.py b/server.py index 4db3347cb..da2baefd4 100644 --- a/server.py +++ b/server.py @@ -33,6 +33,8 @@ import node_helpers from comfyui_version import __version__ from app.frontend_management import FrontendManager, parse_version from comfy_api.internal import _ComfyNodeInternal +from app.assets.scanner import seed_assets +from app.assets.api.routes import register_assets_system from app.user_manager import UserManager from app.model_manager import ModelFileManager @@ -235,6 +237,7 @@ class PromptServer(): else args.front_end_root ) logging.info(f"[Prompt Server] web root: {self.web_root}") + register_assets_system(self.app, self.user_manager) routes = web.RouteTableDef() self.routes = routes self.last_node_id = None @@ -683,6 +686,7 @@ class PromptServer(): @routes.get("/object_info") async def get_object_info(request): + seed_assets(["models"]) with folder_paths.cache_helper: out = {} for x in nodes.NODE_CLASS_MAPPINGS: From 6207f86c18d2cf2d70ab059987b62d4b38466e77 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 8 Jan 2026 20:34:48 -0800 Subject: [PATCH 21/32] Fix VAEEncodeForInpaint to support WAN VAE tuple downscale_ratio (#11572) Use vae.spacial_compression_encode() instead of directly accessing downscale_ratio to handle both standard VAEs (int) and WAN VAEs (tuple). Addresses reviewer feedback on PR #11259. Co-authored-by: ChrisFab16 --- nodes.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/nodes.py b/nodes.py index 56b74ebe3..1aa391f4a 100644 --- a/nodes.py +++ b/nodes.py @@ -378,14 +378,15 @@ class VAEEncodeForInpaint: CATEGORY = "latent/inpaint" def encode(self, vae, pixels, mask, grow_mask_by=6): - x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio - y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio + downscale_ratio = vae.spacial_compression_encode() + x = (pixels.shape[1] // downscale_ratio) * downscale_ratio + y = (pixels.shape[2] // downscale_ratio) * downscale_ratio mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear") pixels = pixels.clone() if pixels.shape[1] != x or pixels.shape[2] != y: - x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2 - y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2 + x_offset = (pixels.shape[1] % downscale_ratio) // 2 + y_offset = (pixels.shape[2] % downscale_ratio) // 2 pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:] mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset] From 4609fcd26081156eef921bd9f43726f670ee6f51 Mon Sep 17 00:00:00 2001 From: Terry Jia Date: Fri, 9 Jan 2026 00:31:19 -0500 Subject: [PATCH 22/32] add node - image compare (#11343) --- comfy_api/latest/_io.py | 13 +++++++ comfy_extras/nodes_image_compare.py | 53 +++++++++++++++++++++++++++++ nodes.py | 1 + 3 files changed, 67 insertions(+) create mode 100644 comfy_extras/nodes_image_compare.py diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 764fa8b2b..50143ff53 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -1113,6 +1113,18 @@ class DynamicSlot(ComfyTypeI): out_dict[input_type][finalized_id] = value out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) +@comfytype(io_type="IMAGECOMPARE") +class ImageCompare(ComfyTypeI): + Type = dict + + class Input(WidgetInput): + def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, + socketless: bool=True): + super().__init__(id, display_name, optional, tooltip, None, None, socketless) + + def as_dict(self): + return super().as_dict() + DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {} def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]): DYNAMIC_INPUT_LOOKUP[io_type] = func @@ -1958,4 +1970,5 @@ __all__ = [ "add_to_dict_v1", "add_to_dict_v3", "V3Data", + "ImageCompare", ] diff --git a/comfy_extras/nodes_image_compare.py b/comfy_extras/nodes_image_compare.py new file mode 100644 index 000000000..8e9f809e6 --- /dev/null +++ b/comfy_extras/nodes_image_compare.py @@ -0,0 +1,53 @@ +import nodes + +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension + + +class ImageCompare(IO.ComfyNode): + """Compares two images with a slider interface.""" + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="ImageCompare", + display_name="Image Compare", + description="Compares two images side by side with a slider.", + category="image", + is_experimental=True, + is_output_node=True, + inputs=[ + IO.Image.Input("image_a", optional=True), + IO.Image.Input("image_b", optional=True), + IO.ImageCompare.Input("compare_view"), + ], + outputs=[], + ) + + @classmethod + def execute(cls, image_a=None, image_b=None, compare_view=None) -> IO.NodeOutput: + result = {"a_images": [], "b_images": []} + + preview_node = nodes.PreviewImage() + + if image_a is not None and len(image_a) > 0: + saved = preview_node.save_images(image_a, "comfy.compare.a") + result["a_images"] = saved["ui"]["images"] + + if image_b is not None and len(image_b) > 0: + saved = preview_node.save_images(image_b, "comfy.compare.b") + result["b_images"] = saved["ui"]["images"] + + return IO.NodeOutput(ui=result) + + +class ImageCompareExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + ImageCompare, + ] + + +async def comfy_entrypoint() -> ImageCompareExtension: + return ImageCompareExtension() diff --git a/nodes.py b/nodes.py index 1aa391f4a..5a9d42d4a 100644 --- a/nodes.py +++ b/nodes.py @@ -2370,6 +2370,7 @@ async def init_builtin_extra_nodes(): "nodes_nop.py", "nodes_kandinsky5.py", "nodes_wanmove.py", + "nodes_image_compare.py", ] import_failed = [] From 04c49a29b493f3f9037b83cec45f6369b5c4816b Mon Sep 17 00:00:00 2001 From: ric-yu Date: Thu, 8 Jan 2026 21:57:36 -0800 Subject: [PATCH 23/32] feat: add cancelled filter to /jobs (#11680) --- comfy_execution/jobs.py | 31 +++++++++++++++++------------ tests/execution/test_jobs.py | 38 +++++++++++++++++++++++++++++++++++- 2 files changed, 55 insertions(+), 14 deletions(-) diff --git a/comfy_execution/jobs.py b/comfy_execution/jobs.py index 59fb49357..97fd803b8 100644 --- a/comfy_execution/jobs.py +++ b/comfy_execution/jobs.py @@ -14,8 +14,9 @@ class JobStatus: IN_PROGRESS = 'in_progress' COMPLETED = 'completed' FAILED = 'failed' + CANCELLED = 'cancelled' - ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED] + ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED, CANCELLED] # Media types that can be previewed in the frontend @@ -94,12 +95,6 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: status_info = history_item.get('status', {}) status_str = status_info.get('status_str') if status_info else None - if status_str == 'success': - status = JobStatus.COMPLETED - elif status_str == 'error': - status = JobStatus.FAILED - else: - status = JobStatus.COMPLETED outputs = history_item.get('outputs', {}) outputs_count, preview_output = get_outputs_summary(outputs) @@ -107,6 +102,7 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: execution_error = None execution_start_time = None execution_end_time = None + was_interrupted = False if status_info: messages = status_info.get('messages', []) for entry in messages: @@ -119,6 +115,15 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: execution_end_time = event_data.get('timestamp') if event_name == 'execution_error': execution_error = event_data + elif event_name == 'execution_interrupted': + was_interrupted = True + + if status_str == 'success': + status = JobStatus.COMPLETED + elif status_str == 'error': + status = JobStatus.CANCELLED if was_interrupted else JobStatus.FAILED + else: + status = JobStatus.COMPLETED job = prune_dict({ 'id': prompt_id, @@ -268,13 +273,13 @@ def get_all_jobs( for item in queued: jobs.append(normalize_queue_item(item, JobStatus.PENDING)) - include_completed = JobStatus.COMPLETED in status_filter - include_failed = JobStatus.FAILED in status_filter - if include_completed or include_failed: + history_statuses = {JobStatus.COMPLETED, JobStatus.FAILED, JobStatus.CANCELLED} + requested_history_statuses = history_statuses & set(status_filter) + if requested_history_statuses: for prompt_id, history_item in history.items(): - is_failed = history_item.get('status', {}).get('status_str') == 'error' - if (is_failed and include_failed) or (not is_failed and include_completed): - jobs.append(normalize_history_item(prompt_id, history_item)) + job = normalize_history_item(prompt_id, history_item) + if job.get('status') in requested_history_statuses: + jobs.append(job) if workflow_id: jobs = [j for j in jobs if j.get('workflow_id') == workflow_id] diff --git a/tests/execution/test_jobs.py b/tests/execution/test_jobs.py index 918c8080a..4d2f9ed36 100644 --- a/tests/execution/test_jobs.py +++ b/tests/execution/test_jobs.py @@ -19,6 +19,7 @@ class TestJobStatus: assert JobStatus.IN_PROGRESS == 'in_progress' assert JobStatus.COMPLETED == 'completed' assert JobStatus.FAILED == 'failed' + assert JobStatus.CANCELLED == 'cancelled' def test_all_contains_all_statuses(self): """ALL should contain all status values.""" @@ -26,7 +27,8 @@ class TestJobStatus: assert JobStatus.IN_PROGRESS in JobStatus.ALL assert JobStatus.COMPLETED in JobStatus.ALL assert JobStatus.FAILED in JobStatus.ALL - assert len(JobStatus.ALL) == 4 + assert JobStatus.CANCELLED in JobStatus.ALL + assert len(JobStatus.ALL) == 5 class TestIsPreviewable: @@ -336,6 +338,40 @@ class TestNormalizeHistoryItem: assert job['execution_error']['node_type'] == 'KSampler' assert job['execution_error']['exception_message'] == 'CUDA out of memory' + def test_cancelled_job(self): + """Cancelled/interrupted history item should have cancelled status.""" + history_item = { + 'prompt': ( + 5, + 'prompt-cancelled', + {'nodes': {}}, + {'create_time': 1234567890000}, + ['node1'], + ), + 'status': { + 'status_str': 'error', + 'completed': False, + 'messages': [ + ('execution_start', {'prompt_id': 'prompt-cancelled', 'timestamp': 1234567890500}), + ('execution_interrupted', { + 'prompt_id': 'prompt-cancelled', + 'node_id': '5', + 'node_type': 'KSampler', + 'executed': ['1', '2', '3'], + 'timestamp': 1234567891000, + }) + ] + }, + 'outputs': {}, + } + + job = normalize_history_item('prompt-cancelled', history_item) + assert job['status'] == 'cancelled' + assert job['execution_start_time'] == 1234567890500 + assert job['execution_end_time'] == 1234567891000 + # Cancelled jobs should not have execution_error set + assert 'execution_error' not in job + def test_include_outputs(self): """When include_outputs=True, should include full output data.""" history_item = { From ec0a832acb25fbe53bd4fc25d286a9ee442a3bcf Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Thu, 8 Jan 2026 22:49:12 -0800 Subject: [PATCH 24/32] Add workaround for hacky nodepack(s) that edit folder_names_and_paths to have values with tuples of more than 2. Other things could potentially break with those nodepack(s), so I will hunt for the guilty nodepack(s) now. (#11755) --- app/assets/helpers.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/app/assets/helpers.py b/app/assets/helpers.py index 6755d0e56..08b465b5a 100644 --- a/app/assets/helpers.py +++ b/app/assets/helpers.py @@ -81,7 +81,8 @@ def get_comfy_models_folders() -> list[tuple[str, list[str]]]: """ targets: list[tuple[str, list[str]]] = [] models_root = os.path.abspath(folder_paths.models_dir) - for name, (paths, _exts) in folder_paths.folder_names_and_paths.items(): + for name, values in folder_paths.folder_names_and_paths.items(): + paths, _exts = values[0], values[1] # NOTE: this prevents nodepacks that hackily edit folder_... from breaking ComfyUI if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths): targets.append((name, paths)) return targets From bd0e6825e84606e0706bbb5645e9ea1f4ad8154d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 9 Jan 2026 11:21:06 -0800 Subject: [PATCH 25/32] Be less strict when loading mixed ops weights. (#11769) --- comfy/ops.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/ops.py b/comfy/ops.py index 8156c42ff..1cf22f0cc 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -546,7 +546,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec weight_key = f"{prefix}weight" weight = state_dict.pop(weight_key, None) if weight is None: - raise ValueError(f"Missing weight for layer {layer_name}") + logging.warning(f"Missing weight for layer {layer_name}") + return manually_loaded_keys = [weight_key] From 4484b93d615059012d3a5ce91d1dbbb0cbaa2d76 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 9 Jan 2026 22:25:56 +0200 Subject: [PATCH 26/32] fix(api-nodes): do not downscale the input image for Topaz Enhance (#11768) --- comfy_api_nodes/nodes_topaz.py | 7 ++++--- comfy_api_nodes/util/upload_helpers.py | 3 ++- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py index b04575ad8..9dc5f45bc 100644 --- a/comfy_api_nodes/nodes_topaz.py +++ b/comfy_api_nodes/nodes_topaz.py @@ -2,7 +2,6 @@ import builtins from io import BytesIO import aiohttp -import torch from typing_extensions import override from comfy_api.latest import IO, ComfyExtension, Input @@ -138,7 +137,7 @@ class TopazImageEnhance(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str = "", subject_detection: str = "All", face_enhancement: bool = True, @@ -153,7 +152,9 @@ class TopazImageEnhance(IO.ComfyNode): ) -> IO.NodeOutput: if get_number_of_images(image) != 1: raise ValueError("Only one input image is supported.") - download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png") + download_url = await upload_images_to_comfyapi( + cls, image, max_images=1, mime_type="image/png", total_pixels=4096*4096 + ) initial_response = await sync_op( cls, ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"), diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index f1ed7fe9c..2535a0884 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -49,6 +49,7 @@ async def upload_images_to_comfyapi( mime_type: str | None = None, wait_label: str | None = "Uploading", show_batch_index: bool = True, + total_pixels: int = 2048 * 2048, ) -> list[str]: """ Uploads images to ComfyUI API and returns download URLs. @@ -63,7 +64,7 @@ async def upload_images_to_comfyapi( for idx in range(num_to_upload): tensor = image[idx] if is_batch else image - img_io = tensor_to_bytesio(tensor, mime_type=mime_type) + img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type) effective_label = wait_label if wait_label and show_batch_index and num_to_upload > 1: From 393d2880ddc6e57c0fa3b878bb50fa2901bd57e6 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 9 Jan 2026 22:59:38 +0200 Subject: [PATCH 27/32] feat(api-nodes): added nodes for Vidu2 (#11760) --- comfy_api_nodes/apis/vidu.py | 41 +++ comfy_api_nodes/nodes_vidu.py | 588 +++++++++++++++++++++++++--------- 2 files changed, 482 insertions(+), 147 deletions(-) create mode 100644 comfy_api_nodes/apis/vidu.py diff --git a/comfy_api_nodes/apis/vidu.py b/comfy_api_nodes/apis/vidu.py new file mode 100644 index 000000000..a9bb6f7ce --- /dev/null +++ b/comfy_api_nodes/apis/vidu.py @@ -0,0 +1,41 @@ +from pydantic import BaseModel, Field + + +class SubjectReference(BaseModel): + id: str = Field(...) + images: list[str] = Field(...) + + +class TaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(..., max_length=2000) + duration: int = Field(...) + seed: int = Field(..., ge=0, le=2147483647) + aspect_ratio: str | None = Field(None) + resolution: str | None = Field(None) + movement_amplitude: str | None = Field(None) + images: list[str] | None = Field(None, description="Base64 encoded string or image URL") + subjects: list[SubjectReference] | None = Field(None) + bgm: bool | None = Field(None) + audio: bool | None = Field(None) + + +class TaskCreationResponse(BaseModel): + task_id: str = Field(...) + state: str = Field(...) + created_at: str = Field(...) + code: int | None = Field(None, description="Error code") + + +class TaskResult(BaseModel): + id: str = Field(..., description="Creation id") + url: str = Field(..., description="The URL of the generated results, valid for one hour") + cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour") + + +class TaskStatusResponse(BaseModel): + state: str = Field(...) + err_code: str | None = Field(None) + progress: float | None = Field(None) + credits: int | None = Field(None) + creations: list[TaskResult] = Field(..., description="Generated results") diff --git a/comfy_api_nodes/nodes_vidu.py b/comfy_api_nodes/nodes_vidu.py index 7a679f0d9..9d94ae7ad 100644 --- a/comfy_api_nodes/nodes_vidu.py +++ b/comfy_api_nodes/nodes_vidu.py @@ -1,12 +1,13 @@ -import logging -from enum import Enum -from typing import Literal, Optional, TypeVar - -import torch -from pydantic import BaseModel, Field from typing_extensions import override -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.apis.vidu import ( + SubjectReference, + TaskCreationRequest, + TaskCreationResponse, + TaskResult, + TaskStatusResponse, +) from comfy_api_nodes.util import ( ApiEndpoint, download_url_to_video_output, @@ -17,6 +18,7 @@ from comfy_api_nodes.util import ( validate_image_aspect_ratio, validate_image_dimensions, validate_images_aspect_ratio_closeness, + validate_string, ) VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video" @@ -25,98 +27,33 @@ VIDU_REFERENCE_VIDEO = "/proxy/vidu/reference2video" VIDU_START_END_VIDEO = "/proxy/vidu/start-end2video" VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations" -R = TypeVar("R") - - -class VideoModelName(str, Enum): - vidu_q1 = "viduq1" - - -class AspectRatio(str, Enum): - r_16_9 = "16:9" - r_9_16 = "9:16" - r_1_1 = "1:1" - - -class Resolution(str, Enum): - r_1080p = "1080p" - - -class MovementAmplitude(str, Enum): - auto = "auto" - small = "small" - medium = "medium" - large = "large" - - -class TaskCreationRequest(BaseModel): - model: VideoModelName = VideoModelName.vidu_q1 - prompt: Optional[str] = Field(None, max_length=1500) - duration: Optional[Literal[5]] = 5 - seed: Optional[int] = Field(0, ge=0, le=2147483647) - aspect_ratio: Optional[AspectRatio] = AspectRatio.r_16_9 - resolution: Optional[Resolution] = Resolution.r_1080p - movement_amplitude: Optional[MovementAmplitude] = MovementAmplitude.auto - images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL") - - -class TaskCreationResponse(BaseModel): - task_id: str = Field(...) - state: str = Field(...) - created_at: str = Field(...) - code: Optional[int] = Field(None, description="Error code") - - -class TaskResult(BaseModel): - id: str = Field(..., description="Creation id") - url: str = Field(..., description="The URL of the generated results, valid for one hour") - cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour") - - -class TaskStatusResponse(BaseModel): - state: str = Field(...) - err_code: Optional[str] = Field(None) - creations: list[TaskResult] = Field(..., description="Generated results") - - -def get_video_url_from_response(response) -> Optional[str]: - if response.creations: - return response.creations[0].url - return None - - -def get_video_from_response(response) -> TaskResult: - if not response.creations: - error_msg = f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}" - logging.info(error_msg) - raise RuntimeError(error_msg) - logging.info("Vidu task %s succeeded. Video URL: %s", response.creations[0].id, response.creations[0].url) - return response.creations[0] - async def execute_task( cls: type[IO.ComfyNode], vidu_endpoint: str, payload: TaskCreationRequest, - estimated_duration: int, -) -> R: - response = await sync_op( +) -> list[TaskResult]: + task_creation_response = await sync_op( cls, endpoint=ApiEndpoint(path=vidu_endpoint, method="POST"), response_model=TaskCreationResponse, data=payload, ) - if response.state == "failed": - error_msg = f"Vidu request failed. Code: {response.code}" - logging.error(error_msg) - raise RuntimeError(error_msg) - return await poll_op( + if task_creation_response.state == "failed": + raise RuntimeError(f"Vidu request failed. Code: {task_creation_response.code}") + response = await poll_op( cls, - ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % response.task_id), + ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % task_creation_response.task_id), response_model=TaskStatusResponse, status_extractor=lambda r: r.state, - estimated_duration=estimated_duration, + progress_extractor=lambda r: r.progress, + max_poll_attempts=320, ) + if not response.creations: + raise RuntimeError( + f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}" + ) + return response.creations class ViduTextToVideoNode(IO.ComfyNode): @@ -127,14 +64,9 @@ class ViduTextToVideoNode(IO.ComfyNode): node_id="ViduTextToVideoNode", display_name="Vidu Text To Video Generation", category="api node/video/Vidu", - description="Generate video from text prompt", + description="Generate video from a text prompt", inputs=[ - IO.Combo.Input( - "model", - options=VideoModelName, - default=VideoModelName.vidu_q1, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.String.Input( "prompt", multiline=True, @@ -163,22 +95,19 @@ class ViduTextToVideoNode(IO.ComfyNode): ), IO.Combo.Input( "aspect_ratio", - options=AspectRatio, - default=AspectRatio.r_16_9, + options=["16:9", "9:16", "1:1"], tooltip="The aspect ratio of the output video", optional=True, ), IO.Combo.Input( "resolution", - options=Resolution, - default=Resolution.r_1080p, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=MovementAmplitude, - default=MovementAmplitude.auto, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -208,7 +137,7 @@ class ViduTextToVideoNode(IO.ComfyNode): if not prompt: raise ValueError("The prompt field is required and cannot be empty.") payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -216,8 +145,8 @@ class ViduTextToVideoNode(IO.ComfyNode): resolution=resolution, movement_amplitude=movement_amplitude, ) - results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload, 320) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduImageToVideoNode(IO.ComfyNode): @@ -230,12 +159,7 @@ class ViduImageToVideoNode(IO.ComfyNode): category="api node/video/Vidu", description="Generate video from image and optional prompt", inputs=[ - IO.Combo.Input( - "model", - options=VideoModelName, - default=VideoModelName.vidu_q1, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.Image.Input( "image", tooltip="An image to be used as the start frame of the generated video", @@ -270,15 +194,13 @@ class ViduImageToVideoNode(IO.ComfyNode): ), IO.Combo.Input( "resolution", - options=Resolution, - default=Resolution.r_1080p, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=MovementAmplitude, - default=MovementAmplitude.auto.value, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -298,7 +220,7 @@ class ViduImageToVideoNode(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, duration: int, seed: int, @@ -309,7 +231,7 @@ class ViduImageToVideoNode(IO.ComfyNode): raise ValueError("Only one input image is allowed.") validate_image_aspect_ratio(image, (1, 4), (4, 1)) payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -322,8 +244,8 @@ class ViduImageToVideoNode(IO.ComfyNode): max_images=1, mime_type="image/png", ) - results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload, 120) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduReferenceVideoNode(IO.ComfyNode): @@ -334,14 +256,9 @@ class ViduReferenceVideoNode(IO.ComfyNode): node_id="ViduReferenceVideoNode", display_name="Vidu Reference To Video Generation", category="api node/video/Vidu", - description="Generate video from multiple images and prompt", + description="Generate video from multiple images and a prompt", inputs=[ - IO.Combo.Input( - "model", - options=VideoModelName, - default=VideoModelName.vidu_q1, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.Image.Input( "images", tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).", @@ -374,22 +291,19 @@ class ViduReferenceVideoNode(IO.ComfyNode): ), IO.Combo.Input( "aspect_ratio", - options=AspectRatio, - default=AspectRatio.r_16_9, + options=["16:9", "9:16", "1:1"], tooltip="The aspect ratio of the output video", optional=True, ), IO.Combo.Input( "resolution", - options=[model.value for model in Resolution], - default=Resolution.r_1080p.value, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=[model.value for model in MovementAmplitude], - default=MovementAmplitude.auto.value, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -409,7 +323,7 @@ class ViduReferenceVideoNode(IO.ComfyNode): async def execute( cls, model: str, - images: torch.Tensor, + images: Input.Image, prompt: str, duration: int, seed: int, @@ -426,7 +340,7 @@ class ViduReferenceVideoNode(IO.ComfyNode): validate_image_aspect_ratio(image, (1, 4), (4, 1)) validate_image_dimensions(image, min_width=128, min_height=128) payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -440,8 +354,8 @@ class ViduReferenceVideoNode(IO.ComfyNode): max_images=7, mime_type="image/png", ) - results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload, 120) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduStartEndToVideoNode(IO.ComfyNode): @@ -454,12 +368,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode): category="api node/video/Vidu", description="Generate a video from start and end frames and a prompt", inputs=[ - IO.Combo.Input( - "model", - options=[model.value for model in VideoModelName], - default=VideoModelName.vidu_q1.value, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"), IO.Image.Input( "first_frame", tooltip="Start frame", @@ -497,15 +406,13 @@ class ViduStartEndToVideoNode(IO.ComfyNode): ), IO.Combo.Input( "resolution", - options=[model.value for model in Resolution], - default=Resolution.r_1080p.value, + options=["1080p"], tooltip="Supported values may vary by model & duration", optional=True, ), IO.Combo.Input( "movement_amplitude", - options=[model.value for model in MovementAmplitude], - default=MovementAmplitude.auto.value, + options=["auto", "small", "medium", "large"], tooltip="The movement amplitude of objects in the frame", optional=True, ), @@ -525,8 +432,8 @@ class ViduStartEndToVideoNode(IO.ComfyNode): async def execute( cls, model: str, - first_frame: torch.Tensor, - end_frame: torch.Tensor, + first_frame: Input.Image, + end_frame: Input.Image, prompt: str, duration: int, seed: int, @@ -535,7 +442,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode): ) -> IO.NodeOutput: validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False) payload = TaskCreationRequest( - model_name=model, + model=model, prompt=prompt, duration=duration, seed=seed, @@ -546,8 +453,391 @@ class ViduStartEndToVideoNode(IO.ComfyNode): (await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0] for frame in (first_frame, end_frame) ] - results = await execute_task(cls, VIDU_START_END_VIDEO, payload, 96) - return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url)) + results = await execute_task(cls, VIDU_START_END_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2TextToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2TextToVideoNode", + display_name="Vidu2 Text-to-Video Generation", + category="api node/video/Vidu", + description="Generate video from a text prompt", + inputs=[ + IO.Combo.Input("model", options=["viduq2"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A textual description for video generation, with a maximum length of 2000 characters.", + ), + IO.Int.Input( + "duration", + default=5, + min=1, + max=10, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "3:4", "4:3", "1:1"]), + IO.Combo.Input("resolution", options=["720p", "1080p"]), + IO.Boolean.Input( + "background_music", + default=False, + tooltip="Whether to add background music to the generated video.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + duration: int, + seed: int, + aspect_ratio: str, + resolution: str, + background_music: bool, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2000) + results = await execute_task( + cls, + VIDU_TEXT_TO_VIDEO, + TaskCreationRequest( + model=model, + prompt=prompt, + duration=duration, + seed=seed, + aspect_ratio=aspect_ratio, + resolution=resolution, + bgm=background_music, + ), + ) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2ImageToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2ImageToVideoNode", + display_name="Vidu2 Image-to-Video Generation", + category="api node/video/Vidu", + description="Generate a video from an image and an optional prompt.", + inputs=[ + IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]), + IO.Image.Input( + "image", + tooltip="An image to be used as the start frame of the generated video.", + ), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="An optional text prompt for video generation (max 2000 characters).", + ), + IO.Int.Input( + "duration", + default=5, + min=1, + max=10, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input( + "resolution", + options=["720p", "1080p"], + ), + IO.Combo.Input( + "movement_amplitude", + options=["auto", "small", "medium", "large"], + tooltip="The movement amplitude of objects in the frame.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + image: Input.Image, + prompt: str, + duration: int, + seed: int, + resolution: str, + movement_amplitude: str, + ) -> IO.NodeOutput: + if get_number_of_images(image) > 1: + raise ValueError("Only one input image is allowed.") + validate_image_aspect_ratio(image, (1, 4), (4, 1)) + validate_string(prompt, max_length=2000) + results = await execute_task( + cls, + VIDU_IMAGE_TO_VIDEO, + TaskCreationRequest( + model=model, + prompt=prompt, + duration=duration, + seed=seed, + resolution=resolution, + movement_amplitude=movement_amplitude, + images=await upload_images_to_comfyapi( + cls, + image, + max_images=1, + mime_type="image/png", + ), + ), + ) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2ReferenceVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2ReferenceVideoNode", + display_name="Vidu2 Reference-to-Video Generation", + category="api node/video/Vidu", + description="Generate a video from multiple reference images and a prompt.", + inputs=[ + IO.Combo.Input("model", options=["viduq2"]), + IO.Autogrow.Input( + "subjects", + template=IO.Autogrow.TemplateNames( + IO.Image.Input("reference_images"), + names=["subject1", "subject2", "subject3"], + min=1, + ), + tooltip="For each subject, provide up to 3 reference images (7 images total across all subjects). " + "Reference them in prompts via @subject{subject_id}.", + ), + IO.String.Input( + "prompt", + multiline=True, + tooltip="When enabled, the video will include generated speech and background music " + "based on the prompt.", + ), + IO.Boolean.Input( + "audio", + default=False, + tooltip="When enabled video will contain generated speech and background music based on the prompt.", + ), + IO.Int.Input( + "duration", + default=5, + min=1, + max=10, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "4:3", "3:4", "1:1"]), + IO.Combo.Input("resolution", options=["720p"]), + IO.Combo.Input( + "movement_amplitude", + options=["auto", "small", "medium", "large"], + tooltip="The movement amplitude of objects in the frame.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + subjects: IO.Autogrow.Type, + prompt: str, + audio: bool, + duration: int, + seed: int, + aspect_ratio: str, + resolution: str, + movement_amplitude: str, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2000) + total_images = 0 + for i in subjects: + if get_number_of_images(subjects[i]) > 3: + raise ValueError("Maximum number of images per subject is 3.") + for im in subjects[i]: + total_images += 1 + validate_image_aspect_ratio(im, (1, 4), (4, 1)) + validate_image_dimensions(im, min_width=128, min_height=128) + if total_images > 7: + raise ValueError("Too many reference images; the maximum allowed is 7.") + subjects_param: list[SubjectReference] = [] + for i in subjects: + subjects_param.append( + SubjectReference( + id=i, + images=await upload_images_to_comfyapi( + cls, + subjects[i], + max_images=3, + mime_type="image/png", + wait_label=f"Uploading reference images for {i}", + ), + ), + ) + payload = TaskCreationRequest( + model=model, + prompt=prompt, + audio=audio, + duration=duration, + seed=seed, + aspect_ratio=aspect_ratio, + resolution=resolution, + movement_amplitude=movement_amplitude, + subjects=subjects_param, + ) + results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) + + +class Vidu2StartEndToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Vidu2StartEndToVideoNode", + display_name="Vidu2 Start/End Frame-to-Video Generation", + category="api node/video/Vidu", + description="Generate a video from a start frame, an end frame, and a prompt.", + inputs=[ + IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]), + IO.Image.Input("first_frame"), + IO.Image.Input("end_frame"), + IO.String.Input( + "prompt", + multiline=True, + tooltip="Prompt description (max 2000 characters).", + ), + IO.Int.Input( + "duration", + default=5, + min=2, + max=8, + step=1, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=1, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input("resolution", options=["720p", "1080p"]), + IO.Combo.Input( + "movement_amplitude", + options=["auto", "small", "medium", "large"], + tooltip="The movement amplitude of objects in the frame.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + first_frame: Input.Image, + end_frame: Input.Image, + prompt: str, + duration: int, + seed: int, + resolution: str, + movement_amplitude: str, + ) -> IO.NodeOutput: + validate_string(prompt, max_length=2000) + if get_number_of_images(first_frame) > 1: + raise ValueError("Only one input image is allowed for `first_frame`.") + if get_number_of_images(end_frame) > 1: + raise ValueError("Only one input image is allowed for `end_frame`.") + validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False) + payload = TaskCreationRequest( + model=model, + prompt=prompt, + duration=duration, + seed=seed, + resolution=resolution, + movement_amplitude=movement_amplitude, + images=[ + (await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0] + for frame in (first_frame, end_frame) + ], + ) + results = await execute_task(cls, VIDU_START_END_VIDEO, payload) + return IO.NodeOutput(await download_url_to_video_output(results[0].url)) class ViduExtension(ComfyExtension): @@ -558,6 +848,10 @@ class ViduExtension(ComfyExtension): ViduImageToVideoNode, ViduReferenceVideoNode, ViduStartEndToVideoNode, + Vidu2TextToVideoNode, + Vidu2ImageToVideoNode, + Vidu2ReferenceVideoNode, + Vidu2StartEndToVideoNode, ] From 153bc524bf9db76d723289f6420f418f63966972 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Sat, 10 Jan 2026 14:29:30 +0800 Subject: [PATCH 28/32] chore: update embedded docs to v0.4.0 (#11776) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 7686a5f8a..6c1cd86d2 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ comfyui-frontend-package==1.36.13 comfyui-workflow-templates==0.7.69 -comfyui-embedded-docs==0.3.1 +comfyui-embedded-docs==0.4.0 torch torchsde torchvision From dc202a2e51bf7a6cd00e606b2d2941bc223f2ad2 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 9 Jan 2026 23:03:57 -0800 Subject: [PATCH 29/32] Properly save mixed ops. (#11772) --- comfy/ops.py | 26 ++++++++++++------- .../comfy_quant/test_mixed_precision.py | 6 ++--- 2 files changed, 20 insertions(+), 12 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 1cf22f0cc..9c0b54ff4 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -625,21 +625,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec missing_keys.remove(key) def state_dict(self, *args, destination=None, prefix="", **kwargs): - sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) - if isinstance(self.weight, QuantizedTensor): - layout_cls = self.weight._layout_cls + if destination is not None: + sd = destination + else: + sd = {} - # Check if it's any FP8 variant (E4M3 or E5M2) - if layout_cls in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"): - sd["{}weight_scale".format(prefix)] = self.weight._params.scale - elif layout_cls == "TensorCoreNVFP4Layout": - sd["{}weight_scale_2".format(prefix)] = self.weight._params.scale - sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale + if self.bias is not None: + sd["{}bias".format(prefix)] = self.bias + + if isinstance(self.weight, QuantizedTensor): + sd_out = self.weight.state_dict("{}weight".format(prefix)) + for k in sd_out: + sd[k] = sd_out[k] quant_conf = {"format": self.quant_format} if self._full_precision_mm_config: quant_conf["full_precision_matrix_mult"] = True sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8) + + input_scale = getattr(self, 'input_scale', None) + if input_scale is not None: + sd["{}input_scale".format(prefix)] = input_scale + else: + sd["{}weight".format(prefix)] = self.weight return sd def _forward(self, input, weight, bias): diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index 7b2eac940..7c740491d 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -153,9 +153,9 @@ class TestMixedPrecisionOps(unittest.TestCase): state_dict2 = model.state_dict() # Verify layer1.weight is a QuantizedTensor with scale preserved - self.assertIsInstance(state_dict2["layer1.weight"], QuantizedTensor) - self.assertEqual(state_dict2["layer1.weight"]._params.scale.item(), 3.0) - self.assertEqual(state_dict2["layer1.weight"]._layout_cls, "TensorCoreFP8E4M3Layout") + self.assertTrue(torch.equal(state_dict2["layer1.weight"].view(torch.uint8), fp8_weight.view(torch.uint8))) + self.assertEqual(state_dict2["layer1.weight_scale"].item(), 3.0) + self.assertEqual(model.layer1.weight._layout_cls, "TensorCoreFP8E4M3Layout") # Verify non-quantized layers are standard tensors self.assertNotIsInstance(state_dict2["layer2.weight"], QuantizedTensor) From 6e4b1f9d00306fe14d7ca5adf2c7468d631b23d5 Mon Sep 17 00:00:00 2001 From: DELUXA Date: Sat, 10 Jan 2026 23:51:05 +0200 Subject: [PATCH 30/32] pythorch_attn_by_def_on_gfx1200 (#11793) --- comfy/model_management.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index e5de4a5b5..9d39be7b2 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -368,7 +368,7 @@ try: if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950 ENABLE_PYTORCH_ATTENTION = True if rocm_version >= (7, 0): - if any((a in arch) for a in ["gfx1201"]): + if any((a in arch) for a in ["gfx1200", "gfx1201"]): ENABLE_PYTORCH_ATTENTION = True if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4): if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0 From cd912963f17c9ae00ec12e1869293edb78720831 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 10 Jan 2026 14:31:31 -0800 Subject: [PATCH 31/32] Fix issue with t5 text encoder in fp4. (#11794) --- comfy/model_detection.py | 2 ++ comfy/sd.py | 4 ++-- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 0853b3aec..aff5a50b9 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -237,6 +237,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): else: dit_config["vec_in_dim"] = None + dit_config["num_heads"] = dit_config["hidden_size"] // sum(dit_config["axes_dim"]) + dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma diff --git a/comfy/sd.py b/comfy/sd.py index 5a7221620..b689c0dfc 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -1059,9 +1059,9 @@ def detect_te_model(sd): return TEModel.JINA_CLIP_2 if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd: weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"] - if weight.shape[-1] == 4096: + if weight.shape[0] == 10240: return TEModel.T5_XXL - elif weight.shape[-1] == 2048: + elif weight.shape[0] == 5120: return TEModel.T5_XL if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd: return TEModel.T5_XXL_OLD From 2f642d5d9b48ad7cad13bbdd5f8adcf506f565a7 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 10 Jan 2026 14:40:42 -0800 Subject: [PATCH 32/32] Fix chroma fp8 te being treated as fp16. (#11795) --- comfy/text_encoders/cosmos.py | 2 +- comfy/text_encoders/genmo.py | 2 +- comfy/text_encoders/pixart_t5.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy/text_encoders/cosmos.py b/comfy/text_encoders/cosmos.py index 448381fa9..f4b40ac68 100644 --- a/comfy/text_encoders/cosmos.py +++ b/comfy/text_encoders/cosmos.py @@ -36,7 +36,7 @@ def te(dtype_t5=None, t5_quantization_metadata=None): if t5_quantization_metadata is not None: model_options = model_options.copy() model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata - if dtype is None: + if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return CosmosTEModel_ diff --git a/comfy/text_encoders/genmo.py b/comfy/text_encoders/genmo.py index 5daea8135..2d7a3fbce 100644 --- a/comfy/text_encoders/genmo.py +++ b/comfy/text_encoders/genmo.py @@ -32,7 +32,7 @@ def mochi_te(dtype_t5=None, t5_quantization_metadata=None): if t5_quantization_metadata is not None: model_options = model_options.copy() model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata - if dtype is None: + if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return MochiTEModel_ diff --git a/comfy/text_encoders/pixart_t5.py b/comfy/text_encoders/pixart_t5.py index e5e5f18be..51c6e50c7 100644 --- a/comfy/text_encoders/pixart_t5.py +++ b/comfy/text_encoders/pixart_t5.py @@ -36,7 +36,7 @@ def pixart_te(dtype_t5=None, t5_quantization_metadata=None): if t5_quantization_metadata is not None: model_options = model_options.copy() model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata - if dtype is None: + if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return PixArtTEModel_