From 76eb1d72c3e5bef51d6ca8a26bf996972d3f6d1a Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Sep 2025 00:10:49 +0300 Subject: [PATCH] convert nodes_rebatch.py to V3 schema (#9945) --- comfy_extras/nodes_rebatch.py | 97 ++++++++++++++++++++--------------- 1 file changed, 56 insertions(+), 41 deletions(-) diff --git a/comfy_extras/nodes_rebatch.py b/comfy_extras/nodes_rebatch.py index e29cb9ed1..5f4e82aef 100644 --- a/comfy_extras/nodes_rebatch.py +++ b/comfy_extras/nodes_rebatch.py @@ -1,18 +1,25 @@ +from typing_extensions import override import torch -class LatentRebatch: +from comfy_api.latest import ComfyExtension, io + + +class LatentRebatch(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "latents": ("LATENT",), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("LATENT",) - INPUT_IS_LIST = True - OUTPUT_IS_LIST = (True, ) - - FUNCTION = "rebatch" - - CATEGORY = "latent/batch" + def define_schema(cls): + return io.Schema( + node_id="RebatchLatents", + display_name="Rebatch Latents", + category="latent/batch", + is_input_list=True, + inputs=[ + io.Latent.Input("latents"), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(is_output_list=True), + ], + ) @staticmethod def get_batch(latents, list_ind, offset): @@ -53,7 +60,8 @@ class LatentRebatch: result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)] return result - def rebatch(self, latents, batch_size): + @classmethod + def execute(cls, latents, batch_size): batch_size = batch_size[0] output_list = [] @@ -63,24 +71,24 @@ class LatentRebatch: for i in range(len(latents)): # fetch new entry of list #samples, masks, indices = self.get_batch(latents, i) - next_batch = self.get_batch(latents, i, processed) + next_batch = cls.get_batch(latents, i, processed) processed += len(next_batch[2]) # set to current if current is None if current_batch[0] is None: current_batch = next_batch # add previous to list if dimensions do not match elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]: - sliced, _ = self.slice_batch(current_batch, 1, batch_size) + sliced, _ = cls.slice_batch(current_batch, 1, batch_size) output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]}) current_batch = next_batch # cat if everything checks out else: - current_batch = self.cat_batch(current_batch, next_batch) + current_batch = cls.cat_batch(current_batch, next_batch) # add to list if dimensions gone above target batch size if current_batch[0].shape[0] > batch_size: num = current_batch[0].shape[0] // batch_size - sliced, remainder = self.slice_batch(current_batch, num, batch_size) + sliced, remainder = cls.slice_batch(current_batch, num, batch_size) for i in range(num): output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]}) @@ -89,7 +97,7 @@ class LatentRebatch: #add remainder if current_batch[0] is not None: - sliced, _ = self.slice_batch(current_batch, 1, batch_size) + sliced, _ = cls.slice_batch(current_batch, 1, batch_size) output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]}) #get rid of empty masks @@ -97,23 +105,27 @@ class LatentRebatch: if s['noise_mask'].mean() == 1.0: del s['noise_mask'] - return (output_list,) + return io.NodeOutput(output_list) -class ImageRebatch: +class ImageRebatch(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "images": ("IMAGE",), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - INPUT_IS_LIST = True - OUTPUT_IS_LIST = (True, ) + def define_schema(cls): + return io.Schema( + node_id="RebatchImages", + display_name="Rebatch Images", + category="image/batch", + is_input_list=True, + inputs=[ + io.Image.Input("images"), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Image.Output(is_output_list=True), + ], + ) - FUNCTION = "rebatch" - - CATEGORY = "image/batch" - - def rebatch(self, images, batch_size): + @classmethod + def execute(cls, images, batch_size): batch_size = batch_size[0] output_list = [] @@ -125,14 +137,17 @@ class ImageRebatch: for i in range(0, len(all_images), batch_size): output_list.append(torch.cat(all_images[i:i+batch_size], dim=0)) - return (output_list,) + return io.NodeOutput(output_list) -NODE_CLASS_MAPPINGS = { - "RebatchLatents": LatentRebatch, - "RebatchImages": ImageRebatch, -} -NODE_DISPLAY_NAME_MAPPINGS = { - "RebatchLatents": "Rebatch Latents", - "RebatchImages": "Rebatch Images", -} +class RebatchExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + LatentRebatch, + ImageRebatch, + ] + + +async def comfy_entrypoint() -> RebatchExtension: + return RebatchExtension()