mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-22 20:30:25 +08:00
Merge branch 'comfyanonymous:master' into refactor/execution
This commit is contained in:
commit
78d0eada8f
@ -1,4 +1,4 @@
|
|||||||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor
|
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils
|
||||||
from .utils import load_torch_file, transformers_convert
|
from .utils import load_torch_file, transformers_convert
|
||||||
import os
|
import os
|
||||||
import torch
|
import torch
|
||||||
@ -6,7 +6,8 @@ import torch
|
|||||||
class ClipVisionModel():
|
class ClipVisionModel():
|
||||||
def __init__(self, json_config):
|
def __init__(self, json_config):
|
||||||
config = CLIPVisionConfig.from_json_file(json_config)
|
config = CLIPVisionConfig.from_json_file(json_config)
|
||||||
self.model = CLIPVisionModelWithProjection(config)
|
with modeling_utils.no_init_weights():
|
||||||
|
self.model = CLIPVisionModelWithProjection(config)
|
||||||
self.processor = CLIPImageProcessor(crop_size=224,
|
self.processor = CLIPImageProcessor(crop_size=224,
|
||||||
do_center_crop=True,
|
do_center_crop=True,
|
||||||
do_convert_rgb=True,
|
do_convert_rgb=True,
|
||||||
|
|||||||
@ -10,6 +10,7 @@ from .diffusionmodules.util import checkpoint
|
|||||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||||
|
|
||||||
from comfy import model_management
|
from comfy import model_management
|
||||||
|
import comfy.ops
|
||||||
|
|
||||||
from . import tomesd
|
from . import tomesd
|
||||||
|
|
||||||
@ -52,7 +53,7 @@ def init_(tensor):
|
|||||||
class GEGLU(nn.Module):
|
class GEGLU(nn.Module):
|
||||||
def __init__(self, dim_in, dim_out):
|
def __init__(self, dim_in, dim_out):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
self.proj = comfy.ops.Linear(dim_in, dim_out * 2)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||||
@ -65,14 +66,14 @@ class FeedForward(nn.Module):
|
|||||||
inner_dim = int(dim * mult)
|
inner_dim = int(dim * mult)
|
||||||
dim_out = default(dim_out, dim)
|
dim_out = default(dim_out, dim)
|
||||||
project_in = nn.Sequential(
|
project_in = nn.Sequential(
|
||||||
nn.Linear(dim, inner_dim),
|
comfy.ops.Linear(dim, inner_dim),
|
||||||
nn.GELU()
|
nn.GELU()
|
||||||
) if not glu else GEGLU(dim, inner_dim)
|
) if not glu else GEGLU(dim, inner_dim)
|
||||||
|
|
||||||
self.net = nn.Sequential(
|
self.net = nn.Sequential(
|
||||||
project_in,
|
project_in,
|
||||||
nn.Dropout(dropout),
|
nn.Dropout(dropout),
|
||||||
nn.Linear(inner_dim, dim_out)
|
comfy.ops.Linear(inner_dim, dim_out)
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@ -154,12 +155,12 @@ class CrossAttentionBirchSan(nn.Module):
|
|||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
|
|
||||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
|
||||||
self.to_out = nn.Sequential(
|
self.to_out = nn.Sequential(
|
||||||
nn.Linear(inner_dim, query_dim),
|
comfy.ops.Linear(inner_dim, query_dim),
|
||||||
nn.Dropout(dropout)
|
nn.Dropout(dropout)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -251,12 +252,12 @@ class CrossAttentionDoggettx(nn.Module):
|
|||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
|
|
||||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
|
||||||
self.to_out = nn.Sequential(
|
self.to_out = nn.Sequential(
|
||||||
nn.Linear(inner_dim, query_dim),
|
comfy.ops.Linear(inner_dim, query_dim),
|
||||||
nn.Dropout(dropout)
|
nn.Dropout(dropout)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -349,12 +350,12 @@ class CrossAttention(nn.Module):
|
|||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
|
|
||||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
|
||||||
self.to_out = nn.Sequential(
|
self.to_out = nn.Sequential(
|
||||||
nn.Linear(inner_dim, query_dim),
|
comfy.ops.Linear(inner_dim, query_dim),
|
||||||
nn.Dropout(dropout)
|
nn.Dropout(dropout)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -407,11 +408,11 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|||||||
self.heads = heads
|
self.heads = heads
|
||||||
self.dim_head = dim_head
|
self.dim_head = dim_head
|
||||||
|
|
||||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
|
||||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||||
self.attention_op: Optional[Any] = None
|
self.attention_op: Optional[Any] = None
|
||||||
|
|
||||||
def forward(self, x, context=None, value=None, mask=None):
|
def forward(self, x, context=None, value=None, mask=None):
|
||||||
@ -456,11 +457,11 @@ class CrossAttentionPytorch(nn.Module):
|
|||||||
self.heads = heads
|
self.heads = heads
|
||||||
self.dim_head = dim_head
|
self.dim_head = dim_head
|
||||||
|
|
||||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
|
||||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||||
self.attention_op: Optional[Any] = None
|
self.attention_op: Optional[Any] = None
|
||||||
|
|
||||||
def forward(self, x, context=None, value=None, mask=None):
|
def forward(self, x, context=None, value=None, mask=None):
|
||||||
@ -601,7 +602,7 @@ class SpatialTransformer(nn.Module):
|
|||||||
stride=1,
|
stride=1,
|
||||||
padding=0)
|
padding=0)
|
||||||
else:
|
else:
|
||||||
self.proj_in = nn.Linear(in_channels, inner_dim)
|
self.proj_in = comfy.ops.Linear(in_channels, inner_dim)
|
||||||
|
|
||||||
self.transformer_blocks = nn.ModuleList(
|
self.transformer_blocks = nn.ModuleList(
|
||||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
||||||
@ -609,13 +610,12 @@ class SpatialTransformer(nn.Module):
|
|||||||
for d in range(depth)]
|
for d in range(depth)]
|
||||||
)
|
)
|
||||||
if not use_linear:
|
if not use_linear:
|
||||||
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
self.proj_out = nn.Conv2d(inner_dim,in_channels,
|
||||||
in_channels,
|
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=0))
|
padding=0)
|
||||||
else:
|
else:
|
||||||
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
self.proj_out = comfy.ops.Linear(in_channels, inner_dim)
|
||||||
self.use_linear = use_linear
|
self.use_linear = use_linear
|
||||||
|
|
||||||
def forward(self, x, context=None, transformer_options={}):
|
def forward(self, x, context=None, transformer_options={}):
|
||||||
|
|||||||
17
comfy/ops.py
Normal file
17
comfy/ops.py
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
class Linear(torch.nn.Module):
|
||||||
|
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||||
|
device=None, dtype=None) -> None:
|
||||||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||||
|
super().__init__()
|
||||||
|
self.in_features = in_features
|
||||||
|
self.out_features = out_features
|
||||||
|
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
|
||||||
|
if bias:
|
||||||
|
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs))
|
||||||
|
else:
|
||||||
|
self.register_parameter('bias', None)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
return torch.nn.functional.linear(input, self.weight, self.bias)
|
||||||
@ -273,7 +273,8 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|||||||
max_total_area = model_management.maximum_batch_area()
|
max_total_area = model_management.maximum_batch_area()
|
||||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
|
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
|
||||||
if "sampler_cfg_function" in model_options:
|
if "sampler_cfg_function" in model_options:
|
||||||
return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
|
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
|
||||||
|
return model_options["sampler_cfg_function"](args)
|
||||||
else:
|
else:
|
||||||
return uncond + (cond - uncond) * cond_scale
|
return uncond + (cond - uncond) * cond_scale
|
||||||
|
|
||||||
|
|||||||
11
comfy/sd.py
11
comfy/sd.py
@ -1,6 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import contextlib
|
import contextlib
|
||||||
import copy
|
import copy
|
||||||
|
import inspect
|
||||||
|
|
||||||
from . import sd1_clip
|
from . import sd1_clip
|
||||||
from . import sd2_clip
|
from . import sd2_clip
|
||||||
@ -313,8 +314,10 @@ class ModelPatcher:
|
|||||||
self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}
|
self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}
|
||||||
|
|
||||||
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
||||||
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
||||||
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
||||||
|
else:
|
||||||
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
||||||
|
|
||||||
def set_model_patch(self, patch, name):
|
def set_model_patch(self, patch, name):
|
||||||
to = self.model_options["transformer_options"]
|
to = self.model_options["transformer_options"]
|
||||||
@ -1152,9 +1155,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|||||||
else:
|
else:
|
||||||
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
||||||
|
|
||||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
|
||||||
|
|
||||||
if fp16:
|
if fp16:
|
||||||
model = model.half()
|
model = model.half()
|
||||||
|
|
||||||
|
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||||
|
|
||||||
return (ModelPatcher(model), clip, vae, clipvision)
|
return (ModelPatcher(model), clip, vae, clipvision)
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
|
||||||
import torch
|
import torch
|
||||||
import traceback
|
import traceback
|
||||||
import zipfile
|
import zipfile
|
||||||
@ -38,7 +38,8 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||||||
if textmodel_json_config is None:
|
if textmodel_json_config is None:
|
||||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||||
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
||||||
self.transformer = CLIPTextModel(config)
|
with modeling_utils.no_init_weights():
|
||||||
|
self.transformer = CLIPTextModel(config)
|
||||||
|
|
||||||
self.device = device
|
self.device = device
|
||||||
self.max_length = max_length
|
self.max_length = max_length
|
||||||
|
|||||||
@ -310,7 +310,6 @@ class PromptExecutor:
|
|||||||
else:
|
else:
|
||||||
self.server.client_id = None
|
self.server.client_id = None
|
||||||
|
|
||||||
execution_start_time = time.perf_counter()
|
|
||||||
if self.server.client_id is not None:
|
if self.server.client_id is not None:
|
||||||
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
|
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
|
||||||
|
|
||||||
@ -358,12 +357,7 @@ class PromptExecutor:
|
|||||||
for x in executed:
|
for x in executed:
|
||||||
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
||||||
self.server.last_node_id = None
|
self.server.last_node_id = None
|
||||||
if self.server.client_id is not None:
|
|
||||||
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
|
|
||||||
|
|
||||||
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
|
||||||
gc.collect()
|
|
||||||
comfy.model_management.soft_empty_cache()
|
|
||||||
|
|
||||||
|
|
||||||
def validate_inputs(prompt, item, validated):
|
def validate_inputs(prompt, item, validated):
|
||||||
|
|||||||
13
main.py
13
main.py
@ -3,6 +3,8 @@ import itertools
|
|||||||
import os
|
import os
|
||||||
import shutil
|
import shutil
|
||||||
import threading
|
import threading
|
||||||
|
import gc
|
||||||
|
import time
|
||||||
|
|
||||||
from comfy.cli_args import args
|
from comfy.cli_args import args
|
||||||
import comfy.utils
|
import comfy.utils
|
||||||
@ -29,15 +31,22 @@ import folder_paths
|
|||||||
import server
|
import server
|
||||||
from server import BinaryEventTypes
|
from server import BinaryEventTypes
|
||||||
from nodes import init_custom_nodes
|
from nodes import init_custom_nodes
|
||||||
|
import comfy.model_management
|
||||||
|
|
||||||
def prompt_worker(q, server):
|
def prompt_worker(q, server):
|
||||||
e = worklist_execution.PromptExecutor(server)
|
e = worklist_execution.PromptExecutor(server)
|
||||||
while True:
|
while True:
|
||||||
item, item_id = q.get()
|
item, item_id = q.get()
|
||||||
e.execute(item[2], item[1], item[3], item[4])
|
execution_start_time = time.perf_counter()
|
||||||
|
prompt_id = item[1]
|
||||||
|
e.execute(item[2], prompt_id, item[3], item[4])
|
||||||
q.task_done(item_id, e.outputs_ui)
|
q.task_done(item_id, e.outputs_ui)
|
||||||
|
if server.client_id is not None:
|
||||||
|
server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id)
|
||||||
|
|
||||||
|
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
||||||
|
gc.collect()
|
||||||
|
comfy.model_management.soft_empty_cache()
|
||||||
|
|
||||||
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
||||||
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
||||||
|
|||||||
@ -1,6 +1,5 @@
|
|||||||
import { app } from "/scripts/app.js";
|
import {app} from "/scripts/app.js";
|
||||||
import { $el } from "/scripts/ui.js";
|
import {$el} from "/scripts/ui.js";
|
||||||
import { api } from "/scripts/api.js";
|
|
||||||
|
|
||||||
// Manage color palettes
|
// Manage color palettes
|
||||||
|
|
||||||
@ -24,6 +23,8 @@ const colorPalettes = {
|
|||||||
"TAESD": "#DCC274", // cheesecake
|
"TAESD": "#DCC274", // cheesecake
|
||||||
},
|
},
|
||||||
"litegraph_base": {
|
"litegraph_base": {
|
||||||
|
"BACKGROUND_IMAGE": "",
|
||||||
|
"CLEAR_BACKGROUND_COLOR": "#222",
|
||||||
"NODE_TITLE_COLOR": "#999",
|
"NODE_TITLE_COLOR": "#999",
|
||||||
"NODE_SELECTED_TITLE_COLOR": "#FFF",
|
"NODE_SELECTED_TITLE_COLOR": "#FFF",
|
||||||
"NODE_TEXT_SIZE": 14,
|
"NODE_TEXT_SIZE": 14,
|
||||||
@ -77,6 +78,8 @@ const colorPalettes = {
|
|||||||
"VAE": "#FF7043", // deep orange
|
"VAE": "#FF7043", // deep orange
|
||||||
},
|
},
|
||||||
"litegraph_base": {
|
"litegraph_base": {
|
||||||
|
"BACKGROUND_IMAGE": "",
|
||||||
|
"CLEAR_BACKGROUND_COLOR": "lightgray",
|
||||||
"NODE_TITLE_COLOR": "#222",
|
"NODE_TITLE_COLOR": "#222",
|
||||||
"NODE_SELECTED_TITLE_COLOR": "#000",
|
"NODE_SELECTED_TITLE_COLOR": "#000",
|
||||||
"NODE_TEXT_SIZE": 14,
|
"NODE_TEXT_SIZE": 14,
|
||||||
@ -191,7 +194,7 @@ app.registerExtension({
|
|||||||
const nodeData = defs[nodeId];
|
const nodeData = defs[nodeId];
|
||||||
|
|
||||||
var inputs = nodeData["input"]["required"];
|
var inputs = nodeData["input"]["required"];
|
||||||
if (nodeData["input"]["optional"] != undefined){
|
if (nodeData["input"]["optional"] != undefined) {
|
||||||
inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"])
|
inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"])
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -232,12 +235,9 @@ app.registerExtension({
|
|||||||
"id": "my_color_palette_unique_id",
|
"id": "my_color_palette_unique_id",
|
||||||
"name": "My Color Palette",
|
"name": "My Color Palette",
|
||||||
"colors": {
|
"colors": {
|
||||||
"node_slot": {
|
"node_slot": {},
|
||||||
},
|
"litegraph_base": {},
|
||||||
"litegraph_base": {
|
"comfy_base": {}
|
||||||
},
|
|
||||||
"comfy_base": {
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -266,7 +266,7 @@ app.registerExtension({
|
|||||||
};
|
};
|
||||||
|
|
||||||
const addCustomColorPalette = async (colorPalette) => {
|
const addCustomColorPalette = async (colorPalette) => {
|
||||||
if (typeof(colorPalette) !== "object") {
|
if (typeof (colorPalette) !== "object") {
|
||||||
app.ui.dialog.show("Invalid color palette");
|
app.ui.dialog.show("Invalid color palette");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -286,7 +286,7 @@ app.registerExtension({
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (colorPalette.colors.node_slot && typeof(colorPalette.colors.node_slot) !== "object") {
|
if (colorPalette.colors.node_slot && typeof (colorPalette.colors.node_slot) !== "object") {
|
||||||
app.ui.dialog.show("Invalid color palette colors.node_slot");
|
app.ui.dialog.show("Invalid color palette colors.node_slot");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -301,7 +301,11 @@ app.registerExtension({
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
els.select.append($el("option", { textContent: colorPalette.name + " (custom)", value: "custom_" + colorPalette.id, selected: true }));
|
els.select.append($el("option", {
|
||||||
|
textContent: colorPalette.name + " (custom)",
|
||||||
|
value: "custom_" + colorPalette.id,
|
||||||
|
selected: true
|
||||||
|
}));
|
||||||
|
|
||||||
setColorPalette("custom_" + colorPalette.id);
|
setColorPalette("custom_" + colorPalette.id);
|
||||||
await loadColorPalette(colorPalette);
|
await loadColorPalette(colorPalette);
|
||||||
@ -350,7 +354,7 @@ app.registerExtension({
|
|||||||
if (colorPalette.colors.comfy_base) {
|
if (colorPalette.colors.comfy_base) {
|
||||||
const rootStyle = document.documentElement.style;
|
const rootStyle = document.documentElement.style;
|
||||||
for (const key in colorPalette.colors.comfy_base) {
|
for (const key in colorPalette.colors.comfy_base) {
|
||||||
rootStyle.setProperty('--' + key, colorPalette.colors.comfy_base[key]);
|
rootStyle.setProperty('--' + key, colorPalette.colors.comfy_base[key]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
app.canvas.draw(true, true);
|
app.canvas.draw(true, true);
|
||||||
@ -380,7 +384,7 @@ app.registerExtension({
|
|||||||
const fileInput = $el("input", {
|
const fileInput = $el("input", {
|
||||||
type: "file",
|
type: "file",
|
||||||
accept: ".json",
|
accept: ".json",
|
||||||
style: { display: "none" },
|
style: {display: "none"},
|
||||||
parent: document.body,
|
parent: document.body,
|
||||||
onchange: () => {
|
onchange: () => {
|
||||||
let file = fileInput.files[0];
|
let file = fileInput.files[0];
|
||||||
@ -403,17 +407,25 @@ app.registerExtension({
|
|||||||
|
|
||||||
for (const c in colorPalettes) {
|
for (const c in colorPalettes) {
|
||||||
const colorPalette = colorPalettes[c];
|
const colorPalette = colorPalettes[c];
|
||||||
options.push($el("option", { textContent: colorPalette.name, value: colorPalette.id, selected: colorPalette.id === value }));
|
options.push($el("option", {
|
||||||
|
textContent: colorPalette.name,
|
||||||
|
value: colorPalette.id,
|
||||||
|
selected: colorPalette.id === value
|
||||||
|
}));
|
||||||
}
|
}
|
||||||
|
|
||||||
let customColorPalettes = getCustomColorPalettes();
|
let customColorPalettes = getCustomColorPalettes();
|
||||||
for (const c in customColorPalettes) {
|
for (const c in customColorPalettes) {
|
||||||
const colorPalette = customColorPalettes[c];
|
const colorPalette = customColorPalettes[c];
|
||||||
options.push($el("option", { textContent: colorPalette.name + " (custom)", value: "custom_" + colorPalette.id, selected: "custom_" + colorPalette.id === value }));
|
options.push($el("option", {
|
||||||
|
textContent: colorPalette.name + " (custom)",
|
||||||
|
value: "custom_" + colorPalette.id,
|
||||||
|
selected: "custom_" + colorPalette.id === value
|
||||||
|
}));
|
||||||
}
|
}
|
||||||
|
|
||||||
return $el("div", [
|
return $el("div", [
|
||||||
$el("label", { textContent: name || id }, [
|
$el("label", {textContent: name || id}, [
|
||||||
els.select = $el("select", {
|
els.select = $el("select", {
|
||||||
onchange: (e) => {
|
onchange: (e) => {
|
||||||
setter(e.target.value);
|
setter(e.target.value);
|
||||||
@ -427,12 +439,12 @@ app.registerExtension({
|
|||||||
const colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId);
|
const colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId);
|
||||||
const colorPalette = await completeColorPalette(getColorPalette(colorPaletteId));
|
const colorPalette = await completeColorPalette(getColorPalette(colorPaletteId));
|
||||||
const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string
|
const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string
|
||||||
const blob = new Blob([json], { type: "application/json" });
|
const blob = new Blob([json], {type: "application/json"});
|
||||||
const url = URL.createObjectURL(blob);
|
const url = URL.createObjectURL(blob);
|
||||||
const a = $el("a", {
|
const a = $el("a", {
|
||||||
href: url,
|
href: url,
|
||||||
download: colorPaletteId + ".json",
|
download: colorPaletteId + ".json",
|
||||||
style: { display: "none" },
|
style: {display: "none"},
|
||||||
parent: document.body,
|
parent: document.body,
|
||||||
});
|
});
|
||||||
a.click();
|
a.click();
|
||||||
@ -455,12 +467,12 @@ app.registerExtension({
|
|||||||
onclick: async () => {
|
onclick: async () => {
|
||||||
const colorPalette = await getColorPaletteTemplate();
|
const colorPalette = await getColorPaletteTemplate();
|
||||||
const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string
|
const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string
|
||||||
const blob = new Blob([json], { type: "application/json" });
|
const blob = new Blob([json], {type: "application/json"});
|
||||||
const url = URL.createObjectURL(blob);
|
const url = URL.createObjectURL(blob);
|
||||||
const a = $el("a", {
|
const a = $el("a", {
|
||||||
href: url,
|
href: url,
|
||||||
download: "color_palette.json",
|
download: "color_palette.json",
|
||||||
style: { display: "none" },
|
style: {display: "none"},
|
||||||
parent: document.body,
|
parent: document.body,
|
||||||
});
|
});
|
||||||
a.click();
|
a.click();
|
||||||
@ -496,15 +508,25 @@ app.registerExtension({
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (colorPalettes[value]) {
|
let palette = colorPalettes[value];
|
||||||
await loadColorPalette(colorPalettes[value]);
|
if (palette) {
|
||||||
|
await loadColorPalette(palette);
|
||||||
} else if (value.startsWith("custom_")) {
|
} else if (value.startsWith("custom_")) {
|
||||||
value = value.substr(7);
|
value = value.substr(7);
|
||||||
let customColorPalettes = getCustomColorPalettes();
|
let customColorPalettes = getCustomColorPalettes();
|
||||||
if (customColorPalettes[value]) {
|
if (customColorPalettes[value]) {
|
||||||
|
palette = customColorPalettes[value];
|
||||||
await loadColorPalette(customColorPalettes[value]);
|
await loadColorPalette(customColorPalettes[value]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
let {BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR} = palette.colors.litegraph_base;
|
||||||
|
if (BACKGROUND_IMAGE === undefined || CLEAR_BACKGROUND_COLOR === undefined) {
|
||||||
|
const base = colorPalettes["dark"].colors.litegraph_base;
|
||||||
|
BACKGROUND_IMAGE = base.BACKGROUND_IMAGE;
|
||||||
|
CLEAR_BACKGROUND_COLOR = base.CLEAR_BACKGROUND_COLOR;
|
||||||
|
}
|
||||||
|
app.canvas.updateBackground(BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR);
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
},
|
},
|
||||||
|
|||||||
@ -7,6 +7,7 @@
|
|||||||
<link rel="stylesheet" type="text/css" href="lib/litegraph.css" />
|
<link rel="stylesheet" type="text/css" href="lib/litegraph.css" />
|
||||||
<link rel="stylesheet" type="text/css" href="style.css" />
|
<link rel="stylesheet" type="text/css" href="style.css" />
|
||||||
<script type="text/javascript" src="lib/litegraph.core.js"></script>
|
<script type="text/javascript" src="lib/litegraph.core.js"></script>
|
||||||
|
<script type="text/javascript" src="lib/litegraph.extensions.js" defer></script>
|
||||||
<script type="module">
|
<script type="module">
|
||||||
import { app } from "/scripts/app.js";
|
import { app } from "/scripts/app.js";
|
||||||
await app.setup();
|
await app.setup();
|
||||||
|
|||||||
21
web/lib/litegraph.extensions.js
Normal file
21
web/lib/litegraph.extensions.js
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
/**
|
||||||
|
* Changes the background color of the canvas.
|
||||||
|
*
|
||||||
|
* @method updateBackground
|
||||||
|
* @param {image} String
|
||||||
|
* @param {clearBackgroundColor} String
|
||||||
|
* @
|
||||||
|
*/
|
||||||
|
LGraphCanvas.prototype.updateBackground = function (image, clearBackgroundColor) {
|
||||||
|
this._bg_img = new Image();
|
||||||
|
this._bg_img.name = image;
|
||||||
|
this._bg_img.src = image;
|
||||||
|
this._bg_img.onload = () => {
|
||||||
|
this.draw(true, true);
|
||||||
|
};
|
||||||
|
this.background_image = image;
|
||||||
|
|
||||||
|
this.clear_background = true;
|
||||||
|
this.clear_background_color = clearBackgroundColor;
|
||||||
|
this._pattern = null
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue
Block a user