mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
7c1b295153
2
.github/PULL_REQUEST_TEMPLATE/api-node.md
vendored
2
.github/PULL_REQUEST_TEMPLATE/api-node.md
vendored
@ -18,4 +18,4 @@ If **Need pricing update**:
|
||||
- [ ] **QA not required**
|
||||
|
||||
### Comms
|
||||
- [ ] Informed **@Kosinkadink**
|
||||
- [ ] Informed **Kosinkadink**
|
||||
|
||||
2
.github/workflows/api-node-template.yml
vendored
2
.github/workflows/api-node-template.yml
vendored
@ -2,7 +2,7 @@ name: Append API Node PR template
|
||||
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, reopened, synchronize, edited, ready_for_review]
|
||||
types: [opened, reopened, synchronize, ready_for_review]
|
||||
paths:
|
||||
- 'comfy_api_nodes/**' # only run if these files changed
|
||||
|
||||
|
||||
17
.github/workflows/release-stable-all.yml
vendored
17
.github/workflows/release-stable-all.yml
vendored
@ -43,6 +43,23 @@ jobs:
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_nvidia_cu126:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA cu126"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu126"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: "_cu126"
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_amd_rocm:
|
||||
permissions:
|
||||
contents: "write"
|
||||
|
||||
@ -11,13 +11,13 @@ if TYPE_CHECKING:
|
||||
|
||||
def easycache_forward_wrapper(executor, *args, **kwargs):
|
||||
# get values from args
|
||||
x: torch.Tensor = args[0]
|
||||
transformer_options: dict[str] = args[-1]
|
||||
if not isinstance(transformer_options, dict):
|
||||
transformer_options = kwargs.get("transformer_options")
|
||||
if not transformer_options:
|
||||
transformer_options = args[-2]
|
||||
easycache: EasyCacheHolder = transformer_options["easycache"]
|
||||
x: torch.Tensor = args[0][:, :easycache.output_channels]
|
||||
sigmas = transformer_options["sigmas"]
|
||||
uuids = transformer_options["uuids"]
|
||||
if sigmas is not None and easycache.is_past_end_timestep(sigmas):
|
||||
@ -82,13 +82,13 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
|
||||
|
||||
def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
|
||||
# get values from args
|
||||
x: torch.Tensor = args[0]
|
||||
timestep: float = args[1]
|
||||
model_options: dict[str] = args[2]
|
||||
easycache: LazyCacheHolder = model_options["transformer_options"]["easycache"]
|
||||
if easycache.is_past_end_timestep(timestep):
|
||||
return executor(*args, **kwargs)
|
||||
# prepare next x_prev
|
||||
x: torch.Tensor = args[0][:, :easycache.output_channels]
|
||||
next_x_prev = x
|
||||
input_change = None
|
||||
do_easycache = easycache.should_do_easycache(timestep)
|
||||
@ -173,7 +173,7 @@ def easycache_sample_wrapper(executor, *args, **kwargs):
|
||||
|
||||
|
||||
class EasyCacheHolder:
|
||||
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False):
|
||||
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False, output_channels: int=None):
|
||||
self.name = "EasyCache"
|
||||
self.reuse_threshold = reuse_threshold
|
||||
self.start_percent = start_percent
|
||||
@ -202,6 +202,7 @@ class EasyCacheHolder:
|
||||
self.allow_mismatch = True
|
||||
self.cut_from_start = True
|
||||
self.state_metadata = None
|
||||
self.output_channels = output_channels
|
||||
|
||||
def is_past_end_timestep(self, timestep: float) -> bool:
|
||||
return not (timestep[0] > self.end_t).item()
|
||||
@ -264,7 +265,7 @@ class EasyCacheHolder:
|
||||
else:
|
||||
slicing.append(slice(None))
|
||||
batch_slice = batch_slice + slicing
|
||||
x[batch_slice] += self.uuid_cache_diffs[uuid].to(x.device)
|
||||
x[tuple(batch_slice)] += self.uuid_cache_diffs[uuid].to(x.device)
|
||||
return x
|
||||
|
||||
def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor, uuids: list[UUID]):
|
||||
@ -283,7 +284,7 @@ class EasyCacheHolder:
|
||||
else:
|
||||
slicing.append(slice(None))
|
||||
skip_dim = False
|
||||
x = x[slicing]
|
||||
x = x[tuple(slicing)]
|
||||
diff = output - x
|
||||
batch_offset = diff.shape[0] // len(uuids)
|
||||
for i, uuid in enumerate(uuids):
|
||||
@ -323,7 +324,7 @@ class EasyCacheHolder:
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
return EasyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose)
|
||||
return EasyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose, output_channels=self.output_channels)
|
||||
|
||||
|
||||
class EasyCacheNode(io.ComfyNode):
|
||||
@ -350,7 +351,7 @@ class EasyCacheNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
|
||||
model = model.clone()
|
||||
model.model_options["transformer_options"]["easycache"] = EasyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose)
|
||||
model.model_options["transformer_options"]["easycache"] = EasyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose, output_channels=model.model.latent_format.latent_channels)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "easycache", easycache_sample_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, "easycache", easycache_calc_cond_batch_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, "easycache", easycache_forward_wrapper)
|
||||
@ -358,7 +359,7 @@ class EasyCacheNode(io.ComfyNode):
|
||||
|
||||
|
||||
class LazyCacheHolder:
|
||||
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False):
|
||||
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False, output_channels: int=None):
|
||||
self.name = "LazyCache"
|
||||
self.reuse_threshold = reuse_threshold
|
||||
self.start_percent = start_percent
|
||||
@ -382,6 +383,7 @@ class LazyCacheHolder:
|
||||
self.approx_output_change_rates = []
|
||||
self.total_steps_skipped = 0
|
||||
self.state_metadata = None
|
||||
self.output_channels = output_channels
|
||||
|
||||
def has_cache_diff(self) -> bool:
|
||||
return self.cache_diff is not None
|
||||
@ -456,7 +458,7 @@ class LazyCacheHolder:
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
return LazyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose)
|
||||
return LazyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose, output_channels=self.output_channels)
|
||||
|
||||
class LazyCacheNode(io.ComfyNode):
|
||||
@classmethod
|
||||
@ -482,7 +484,7 @@ class LazyCacheNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
|
||||
model = model.clone()
|
||||
model.model_options["transformer_options"]["easycache"] = LazyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose)
|
||||
model.model_options["transformer_options"]["easycache"] = LazyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose, output_channels=model.model.latent_format.latent_channels)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "lazycache", easycache_sample_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, "lazycache", lazycache_predict_noise_wrapper)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
39
comfy_extras/nodes_nop.py
Normal file
39
comfy_extras/nodes_nop.py
Normal file
@ -0,0 +1,39 @@
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
from typing_extensions import override
|
||||
# If you write a node that is so useless that it breaks ComfyUI it will be featured in this exclusive list
|
||||
|
||||
# "native" block swap nodes are placebo at best and break the ComfyUI memory management system.
|
||||
# They are also considered harmful because instead of users reporting issues with the built in
|
||||
# memory management they install these stupid nodes and complain even harder. Now it completely
|
||||
# breaks with some of the new ComfyUI memory optimizations so I have made the decision to NOP it
|
||||
# out of all workflows.
|
||||
class wanBlockSwap(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="wanBlockSwap",
|
||||
category="",
|
||||
description="NOP",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model) -> io.NodeOutput:
|
||||
return io.NodeOutput(model)
|
||||
|
||||
|
||||
class NopExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
wanBlockSwap
|
||||
]
|
||||
|
||||
async def comfy_entrypoint() -> NopExtension:
|
||||
return NopExtension()
|
||||
1
nodes.py
1
nodes.py
@ -2330,6 +2330,7 @@ async def init_builtin_extra_nodes():
|
||||
"nodes_easycache.py",
|
||||
"nodes_audio_encoder.py",
|
||||
"nodes_rope.py",
|
||||
"nodes_nop.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
|
||||
@ -24,7 +24,7 @@ lint.select = [
|
||||
exclude = ["*.ipynb", "**/generated/*.pyi"]
|
||||
|
||||
[tool.pylint]
|
||||
master.py-version = "3.9"
|
||||
master.py-version = "3.10"
|
||||
master.extension-pkg-allow-list = [
|
||||
"pydantic",
|
||||
]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user