Merge branch 'comfyanonymous:master' into feature/blockweights

This commit is contained in:
Dr.Lt.Data 2023-05-07 09:45:40 +09:00 committed by GitHub
commit 7d57dba939
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 17 additions and 4 deletions

View File

@ -56,6 +56,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
| Q | Toggle visibility of the queue |
| H | Toggle visibility of history |
| R | Refresh graph |
| Double-Click LMB | Open node quick search palette |
Ctrl can also be replaced with Cmd instead for MacOS users

View File

@ -275,8 +275,17 @@ def xformers_enabled_vae():
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if torch.version.cuda: #pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled
@ -312,7 +321,12 @@ def maximum_batch_area():
return 0
memory_free = get_free_memory() / (1024 * 1024)
area = ((memory_free - 1024) * 0.9) / (0.6)
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: this needs to be tweaked
area = 20 * memory_free
else:
#TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
area = ((memory_free - 1024) * 0.9) / (0.6)
return int(max(area, 0))
def cpu_mode():

View File

@ -105,15 +105,13 @@ class ConditioningSetArea:
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
def append(self, conditioning, width, height, x, y, strength):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
n[1]['strength'] = strength
n[1]['set_area_to_bounds'] = False
n[1]['min_sigma'] = min_sigma
n[1]['max_sigma'] = max_sigma
c.append(n)
return (c, )