From 8376ff6831b145eadc3339e1901ffe02386ab86a Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 20 Dec 2025 03:41:56 +0900 Subject: [PATCH 01/52] bump comfyui_manager version to the 4.0.3b7 (#11422) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index 5ef0d3a1d..2300f0c70 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b5 +comfyui_manager==4.0.3b7 From cc4ddba1b68abdc64ef5a701fd0571fcf2faf98d Mon Sep 17 00:00:00 2001 From: BradPepersAMD Date: Fri, 19 Dec 2025 15:01:50 -0700 Subject: [PATCH 02/52] Allow enabling use of MIOpen by setting COMFYUI_ENABLE_MIOPEN=1 as an env var (#11366) --- comfy/model_management.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 40717b1e4..1889ab0ac 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -26,6 +26,7 @@ import importlib import platform import weakref import gc +import os class VRAMState(Enum): DISABLED = 0 #No vram present: no need to move models to vram @@ -333,13 +334,15 @@ except: SUPPORT_FP8_OPS = args.supports_fp8_compute AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"] +AMD_ENABLE_MIOPEN_ENV = 'COMFYUI_ENABLE_MIOPEN' try: if is_amd(): arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)): - torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD - logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.") + if os.getenv(AMD_ENABLE_MIOPEN_ENV) != '1': + torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD + logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.") try: rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2])) From 809ce687493db84f6743639adf9b600753b6188e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 16:59:25 -0800 Subject: [PATCH 03/52] Support nested tensor denoise masks. (#11431) --- comfy/samplers.py | 21 ++++++++++++++++++--- 1 file changed, 18 insertions(+), 3 deletions(-) diff --git a/comfy/samplers.py b/comfy/samplers.py index 8340d376c..1989ef107 100755 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -984,9 +984,6 @@ class CFGGuider: self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options) device = self.model_patcher.load_device - if denoise_mask is not None: - denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) - noise = noise.to(device) latent_image = latent_image.to(device) sigmas = sigmas.to(device) @@ -1013,6 +1010,24 @@ class CFGGuider: else: latent_shapes = [latent_image.shape] + if denoise_mask is not None: + if denoise_mask.is_nested: + denoise_masks = denoise_mask.unbind() + denoise_masks = denoise_masks[:len(latent_shapes)] + else: + denoise_masks = [denoise_mask] + + for i in range(len(denoise_masks), len(latent_shapes)): + denoise_masks.append(torch.ones(latent_shapes[i])) + + for i in range(len(denoise_masks)): + denoise_masks[i] = comfy.sampler_helpers.prepare_mask(denoise_masks[i], latent_shapes[i], self.model_patcher.load_device) + + if len(denoise_masks) > 1: + denoise_mask, _ = comfy.utils.pack_latents(denoise_masks) + else: + denoise_mask = denoise_masks[0] + self.conds = {} for k in self.original_conds: self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) From 514c24d756997c3131c57aa21578a09429096eca Mon Sep 17 00:00:00 2001 From: drozbay <17261091+drozbay@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:22:45 -0700 Subject: [PATCH 04/52] Fix error from logging line (#11423) Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 2979b3ca1..1e0f86026 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -143,7 +143,7 @@ class IndexListContextHandler(ContextHandlerABC): # if multiple conds, split based on primary region if self.split_conds_to_windows and len(cond_in) > 1: region = window.get_region_index(len(cond_in)) - logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}") + logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}") cond_in = [cond_in[region]] # cond object is a list containing a dict - outer list is irrelevant, so just loop through it for actual_cond in cond_in: From 0aa7fa464efc4ecc35a145048c06d325c75fbf2b Mon Sep 17 00:00:00 2001 From: woctordho Date: Sat, 20 Dec 2025 13:16:46 +0800 Subject: [PATCH 05/52] Implement sliding attention in Gemma3 (#11409) --- comfy/text_encoders/llama.py | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index 0d07ac8c6..ed29e014d 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -3,7 +3,6 @@ import torch.nn as nn from dataclasses import dataclass from typing import Optional, Any import math -import logging from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management @@ -177,7 +176,7 @@ class Gemma3_4B_Config: num_key_value_heads: int = 4 max_position_embeddings: int = 131072 rms_norm_eps: float = 1e-6 - rope_theta = [10000.0, 1000000.0] + rope_theta = [1000000.0, 10000.0] transformer_type: str = "gemma3" head_dim = 256 rms_norm_add = True @@ -186,8 +185,8 @@ class Gemma3_4B_Config: rope_dims = None q_norm = "gemma3" k_norm = "gemma3" - sliding_attention = [False, False, False, False, False, 1024] - rope_scale = [1.0, 8.0] + sliding_attention = [1024, 1024, 1024, 1024, 1024, False] + rope_scale = [8.0, 1.0] final_norm: bool = True class RMSNorm(nn.Module): @@ -370,7 +369,7 @@ class TransformerBlockGemma2(nn.Module): self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) - if config.sliding_attention is not None: # TODO: implement. (Not that necessary since models are trained on less than 1024 tokens) + if config.sliding_attention is not None: self.sliding_attention = config.sliding_attention[index % len(config.sliding_attention)] else: self.sliding_attention = False @@ -387,7 +386,12 @@ class TransformerBlockGemma2(nn.Module): if self.transformer_type == 'gemma3': if self.sliding_attention: if x.shape[1] > self.sliding_attention: - logging.warning("Warning: sliding attention not implemented, results may be incorrect") + sliding_mask = torch.full((x.shape[1], x.shape[1]), float("-inf"), device=x.device, dtype=x.dtype) + sliding_mask.tril_(diagonal=-self.sliding_attention) + if attention_mask is not None: + attention_mask = attention_mask + sliding_mask + else: + attention_mask = sliding_mask freqs_cis = freqs_cis[1] else: freqs_cis = freqs_cis[0] From 3ab9748903a8ee51f62ae8d3eeebc1f98847f4bd Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:19:47 -0800 Subject: [PATCH 06/52] Disable prompt weights on newbie te. (#11434) --- comfy/sd1_clip.py | 6 ++++-- comfy/text_encoders/lumina2.py | 2 +- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 962948dae..c512ca5d0 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -466,7 +466,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No return embed_out class SDTokenizer: - def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, tokenizer_data={}, tokenizer_args={}): + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}): if tokenizer_path is None: tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args) @@ -513,6 +513,8 @@ class SDTokenizer: self.embedding_size = embedding_size self.embedding_key = embedding_key + self.disable_weights = disable_weights + def _try_get_embedding(self, embedding_name:str): ''' Takes a potential embedding name and tries to retrieve it. @@ -547,7 +549,7 @@ class SDTokenizer: min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding) text = escape_important(text) - if kwargs.get("disable_weights", False): + if kwargs.get("disable_weights", self.disable_weights): parsed_weights = [(text, 1.0)] else: parsed_weights = token_weights(text, 1.0) diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index 7a6cfdab2..f82883ba1 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -14,7 +14,7 @@ class Gemma2BTokenizer(sd1_clip.SDTokenizer): class Gemma3_4BTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer = tokenizer_data.get("spiece_model", None) - super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) + super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, disable_weights=True, tokenizer_data=tokenizer_data) def state_dict(self): return {"spiece_model": self.tokenizer.serialize_model()} From 767ee30f217e72797df6b018417234bf8b3f7b69 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:22:17 -0800 Subject: [PATCH 07/52] ZImageFunControlNet: Fix mask concatenation in --gpu-only (#11421) This operation trades in latents which in --gpu-only may be out of the GPU The two VAE results will follow the --gpu-only defined behaviour so follow the inpaint image device when calculating the mask in this path. --- comfy_extras/nodes_model_patch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index 2a0cfcf18..1355b3c93 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -348,7 +348,7 @@ class ZImageControlPatch: if self.mask is None: mask_ = torch.zeros_like(inpaint_image_latent)[:, :1] else: - mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center") + mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True).to(device=inpaint_image_latent.device), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center") if latent_image is None: latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(torch.ones_like(inpaint_image) * 0.5)) From 31e961736a476851e2579d5d9202ed4177a71720 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:23:51 -0800 Subject: [PATCH 08/52] Fix issue with batches and newbie. (#11435) --- comfy/ldm/lumina/model.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 5628e2ba3..e80b1c138 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -625,7 +625,7 @@ class NextDiT(nn.Module): if pooled is not None: pooled = self.clip_text_pooled_proj(pooled) else: - pooled = torch.zeros((1, self.clip_text_dim), device=x.device, dtype=x.dtype) + pooled = torch.zeros((x.shape[0], self.clip_text_dim), device=x.device, dtype=x.dtype) adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1)) From 4c432c11ed6f83466b8ff02569872925753a3c44 Mon Sep 17 00:00:00 2001 From: woctordho Date: Sat, 20 Dec 2025 13:57:22 +0800 Subject: [PATCH 09/52] Implement Jina CLIP v2 and NewBie dual CLIP (#11415) * Implement Jina CLIP v2 * Support quantized Gemma in NewBie dual CLIP --- comfy/model_base.py | 2 +- comfy/model_detection.py | 3 +- comfy/sd.py | 20 +++ comfy/text_encoders/jina_clip_2.py | 219 +++++++++++++++++++++++++++++ comfy/text_encoders/newbie.py | 62 ++++++++ nodes.py | 4 +- 6 files changed, 306 insertions(+), 4 deletions(-) create mode 100644 comfy/text_encoders/jina_clip_2.py create mode 100644 comfy/text_encoders/newbie.py diff --git a/comfy/model_base.py b/comfy/model_base.py index 6b8a8454d..c4f3c0639 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1110,7 +1110,7 @@ class Lumina2(BaseModel): if 'num_tokens' not in out: out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1]) - clip_text_pooled = kwargs["pooled_output"] # Newbie + clip_text_pooled = kwargs.get("pooled_output", None) # NewBie if clip_text_pooled is not None: out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 84fd409fd..539e296ed 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -430,8 +430,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["rope_theta"] = 10000.0 dit_config["ffn_dim_multiplier"] = 4.0 ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None) - if ctd_weight is not None: + if ctd_weight is not None: # NewBie dit_config["clip_text_dim"] = ctd_weight.shape[0] + # NewBie also sets axes_lens = [1024, 512, 512] but it's not used in ComfyUI elif dit_config["dim"] == 3840: # Z image dit_config["n_heads"] = 30 dit_config["n_kv_heads"] = 30 diff --git a/comfy/sd.py b/comfy/sd.py index c2a9728f3..7de7dd9c6 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -55,6 +55,8 @@ import comfy.text_encoders.hunyuan_image import comfy.text_encoders.z_image import comfy.text_encoders.ovis import comfy.text_encoders.kandinsky5 +import comfy.text_encoders.jina_clip_2 +import comfy.text_encoders.newbie import comfy.model_patcher import comfy.lora @@ -1008,6 +1010,7 @@ class CLIPType(Enum): OVIS = 21 KANDINSKY5 = 22 KANDINSKY5_IMAGE = 23 + NEWBIE = 24 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -1038,6 +1041,7 @@ class TEModel(Enum): MISTRAL3_24B_PRUNED_FLUX2 = 15 QWEN3_4B = 16 QWEN3_2B = 17 + JINA_CLIP_2 = 18 def detect_te_model(sd): @@ -1047,6 +1051,8 @@ def detect_te_model(sd): return TEModel.CLIP_H if "text_model.encoder.layers.0.mlp.fc1.weight" in sd: return TEModel.CLIP_L + if "model.encoder.layers.0.mixer.Wqkv.weight" in sd: + return TEModel.JINA_CLIP_2 if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd: weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"] if weight.shape[-1] == 4096: @@ -1207,6 +1213,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif te_model == TEModel.QWEN3_2B: clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer + elif te_model == TEModel.JINA_CLIP_2: + clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper + clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper else: # clip_l if clip_type == CLIPType.SD3: @@ -1262,6 +1271,17 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.KANDINSKY5_IMAGE: clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage + elif clip_type == CLIPType.NEWBIE: + clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer + if "model.layers.0.self_attn.q_norm.weight" in clip_data[0]: + clip_data_gemma = clip_data[0] + clip_data_jina = clip_data[1] + else: + clip_data_gemma = clip_data[1] + clip_data_jina = clip_data[0] + tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None) + tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None) else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer diff --git a/comfy/text_encoders/jina_clip_2.py b/comfy/text_encoders/jina_clip_2.py new file mode 100644 index 000000000..0cffb6d16 --- /dev/null +++ b/comfy/text_encoders/jina_clip_2.py @@ -0,0 +1,219 @@ +# Jina CLIP v2 and Jina Embeddings v3 both use their modified XLM-RoBERTa architecture. Reference implementation: +# Jina CLIP v2 (both text and vision): https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/modeling_clip.py +# Jina XLM-RoBERTa (text only): http://huggingface.co/jinaai/xlm-roberta-flash-implementation/blob/2b6bc3f30750b3a9648fe9b63448c09920efe9be/modeling_xlm_roberta.py + +from dataclasses import dataclass + +import torch +from torch import nn as nn +from torch.nn import functional as F + +import comfy.model_management +import comfy.ops +from comfy import sd1_clip +from .spiece_tokenizer import SPieceTokenizer + +class JinaClip2Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer = tokenizer_data.get("spiece_model", None) + # The official NewBie uses max_length=8000, but Jina Embeddings v3 actually supports 8192 + super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='jina_clip_2', tokenizer_class=SPieceTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=False, max_length=8192, min_length=1, pad_token=1, end_token=2, tokenizer_args={"add_bos": True, "add_eos": True}, tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"spiece_model": self.tokenizer.serialize_model()} + +class JinaClip2TokenizerWrapper(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=JinaClip2Tokenizer, name="jina_clip_2") + +# https://huggingface.co/jinaai/jina-embeddings-v3/blob/343dbf534c76fe845f304fa5c2d1fd87e1e78918/config.json +@dataclass +class XLMRobertaConfig: + vocab_size: int = 250002 + type_vocab_size: int = 1 + hidden_size: int = 1024 + num_hidden_layers: int = 24 + num_attention_heads: int = 16 + rotary_emb_base: float = 20000.0 + intermediate_size: int = 4096 + hidden_act: str = "gelu" + hidden_dropout_prob: float = 0.1 + attention_probs_dropout_prob: float = 0.1 + layer_norm_eps: float = 1e-05 + bos_token_id: int = 0 + eos_token_id: int = 2 + pad_token_id: int = 1 + +class XLMRobertaEmbeddings(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + embed_dim = config.hidden_size + self.word_embeddings = ops.Embedding(config.vocab_size, embed_dim, padding_idx=config.pad_token_id, device=device, dtype=dtype) + self.token_type_embeddings = ops.Embedding(config.type_vocab_size, embed_dim, device=device, dtype=dtype) + + def forward(self, input_ids=None, embeddings=None): + if input_ids is not None and embeddings is None: + embeddings = self.word_embeddings(input_ids) + + if embeddings is not None: + token_type_ids = torch.zeros(embeddings.shape[1], device=embeddings.device, dtype=torch.int32) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings = embeddings + token_type_embeddings + return embeddings + +class RotaryEmbedding(nn.Module): + def __init__(self, dim, base, device=None): + super().__init__() + inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self._seq_len_cached = 0 + self._cos_cached = None + self._sin_cached = None + + def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): + if seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype: + self._seq_len_cached = seqlen + t = torch.arange(seqlen, device=device, dtype=torch.float32) + freqs = torch.outer(t, self.inv_freq.to(device=t.device)) + emb = torch.cat((freqs, freqs), dim=-1) + self._cos_cached = emb.cos().to(dtype) + self._sin_cached = emb.sin().to(dtype) + + def forward(self, q, k): + batch, seqlen, heads, head_dim = q.shape + self._update_cos_sin_cache(seqlen, device=q.device, dtype=q.dtype) + + cos = self._cos_cached[:seqlen].view(1, seqlen, 1, head_dim) + sin = self._sin_cached[:seqlen].view(1, seqlen, 1, head_dim) + + def rotate_half(x): + size = x.shape[-1] // 2 + x1, x2 = x[..., :size], x[..., size:] + return torch.cat((-x2, x1), dim=-1) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + +class MHA(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = embed_dim // config.num_attention_heads + + self.rotary_emb = RotaryEmbedding(self.head_dim, config.rotary_emb_base, device=device) + self.Wqkv = ops.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype) + self.out_proj = ops.Linear(embed_dim, embed_dim, device=device, dtype=dtype) + + def forward(self, x, mask=None, optimized_attention=None): + qkv = self.Wqkv(x) + batch_size, seq_len, _ = qkv.shape + qkv = qkv.view(batch_size, seq_len, 3, self.num_heads, self.head_dim) + q, k, v = qkv.unbind(2) + + q, k = self.rotary_emb(q, k) + + # NHD -> HND + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + + out = optimized_attention(q, k, v, heads=self.num_heads, mask=mask, skip_reshape=True) + return self.out_proj(out) + +class MLP(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.fc1 = ops.Linear(config.hidden_size, config.intermediate_size, device=device, dtype=dtype) + self.activation = F.gelu + self.fc2 = ops.Linear(config.intermediate_size, config.hidden_size, device=device, dtype=dtype) + + def forward(self, x): + x = self.fc1(x) + x = self.activation(x) + x = self.fc2(x) + return x + +class Block(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.mixer = MHA(config, device=device, dtype=dtype, ops=ops) + self.dropout1 = nn.Dropout(config.hidden_dropout_prob) + self.norm1 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) + self.dropout2 = nn.Dropout(config.hidden_dropout_prob) + self.norm2 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + + def forward(self, hidden_states, mask=None, optimized_attention=None): + mixer_out = self.mixer(hidden_states, mask=mask, optimized_attention=optimized_attention) + hidden_states = self.norm1(self.dropout1(mixer_out) + hidden_states) + mlp_out = self.mlp(hidden_states) + hidden_states = self.norm2(self.dropout2(mlp_out) + hidden_states) + return hidden_states + +class XLMRobertaEncoder(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.layers = nn.ModuleList([Block(config, device=device, dtype=dtype, ops=ops) for _ in range(config.num_hidden_layers)]) + + def forward(self, hidden_states, attention_mask=None): + optimized_attention = comfy.ldm.modules.attention.optimized_attention_for_device(hidden_states.device, mask=attention_mask is not None, small_input=True) + for layer in self.layers: + hidden_states = layer(hidden_states, mask=attention_mask, optimized_attention=optimized_attention) + return hidden_states + +class XLMRobertaModel_(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.embeddings = XLMRobertaEmbeddings(config, device=device, dtype=dtype, ops=ops) + self.emb_ln = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + self.emb_drop = nn.Dropout(config.hidden_dropout_prob) + self.encoder = XLMRobertaEncoder(config, device=device, dtype=dtype, ops=ops) + + def forward(self, input_ids, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]): + x = self.embeddings(input_ids=input_ids, embeddings=embeds) + x = self.emb_ln(x) + x = self.emb_drop(x) + + mask = None + if attention_mask is not None: + mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, 1, attention_mask.shape[-1])) + mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max) + + sequence_output = self.encoder(x, attention_mask=mask) + + # Mean pool, see https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/hf_model.py + pooled_output = None + if attention_mask is None: + pooled_output = sequence_output.mean(dim=1) + else: + attention_mask = attention_mask.to(sequence_output.dtype) + pooled_output = (sequence_output * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=-1, keepdim=True) + + # Intermediate output is not yet implemented, use None for placeholder + return sequence_output, None, pooled_output + +class XLMRobertaModel(nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.config = XLMRobertaConfig(**config_dict) + self.model = XLMRobertaModel_(self.config, device=device, dtype=dtype, ops=operations) + self.num_layers = self.config.num_hidden_layers + + def get_input_embeddings(self): + return self.model.embeddings.word_embeddings + + def set_input_embeddings(self, embeddings): + self.model.embeddings.word_embeddings = embeddings + + def forward(self, *args, **kwargs): + return self.model(*args, **kwargs) + +class JinaClip2TextModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, textmodel_json_config={}, model_class=XLMRobertaModel, special_tokens={"start": 0, "end": 2, "pad": 1}, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) + +class JinaClip2TextModelWrapper(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, clip_model=JinaClip2TextModel, name="jina_clip_2", model_options=model_options) diff --git a/comfy/text_encoders/newbie.py b/comfy/text_encoders/newbie.py new file mode 100644 index 000000000..31904462b --- /dev/null +++ b/comfy/text_encoders/newbie.py @@ -0,0 +1,62 @@ +import torch + +import comfy.model_management +import comfy.text_encoders.jina_clip_2 +import comfy.text_encoders.lumina2 + +class NewBieTokenizer: + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.gemma = comfy.text_encoders.lumina2.Gemma3_4BTokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["gemma_spiece_model"]}) + self.jina = comfy.text_encoders.jina_clip_2.JinaClip2Tokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["jina_spiece_model"]}) + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + out = {} + out["gemma"] = self.gemma.tokenize_with_weights(text, return_word_ids, **kwargs) + out["jina"] = self.jina.tokenize_with_weights(text, return_word_ids, **kwargs) + return out + + def untokenize(self, token_weight_pair): + raise NotImplementedError + + def state_dict(self): + return {} + +class NewBieTEModel(torch.nn.Module): + def __init__(self, dtype_gemma=None, device="cpu", dtype=None, model_options={}): + super().__init__() + dtype_gemma = comfy.model_management.pick_weight_dtype(dtype_gemma, dtype, device) + self.gemma = comfy.text_encoders.lumina2.Gemma3_4BModel(device=device, dtype=dtype_gemma, model_options=model_options) + self.jina = comfy.text_encoders.jina_clip_2.JinaClip2TextModel(device=device, dtype=dtype, model_options=model_options) + self.dtypes = {dtype, dtype_gemma} + + def set_clip_options(self, options): + self.gemma.set_clip_options(options) + self.jina.set_clip_options(options) + + def reset_clip_options(self): + self.gemma.reset_clip_options() + self.jina.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_gemma = token_weight_pairs["gemma"] + token_weight_pairs_jina = token_weight_pairs["jina"] + + gemma_out, gemma_pooled, gemma_extra = self.gemma.encode_token_weights(token_weight_pairs_gemma) + jina_out, jina_pooled, jina_extra = self.jina.encode_token_weights(token_weight_pairs_jina) + + return gemma_out, jina_pooled, gemma_extra + + def load_sd(self, sd): + if "model.layers.0.self_attn.q_norm.weight" in sd: + return self.gemma.load_sd(sd) + else: + return self.jina.load_sd(sd) + +def te(dtype_llama=None, llama_quantization_metadata=None): + class NewBieTEModel_(NewBieTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(dtype_gemma=dtype_llama, device=device, dtype=dtype, model_options=model_options) + return NewBieTEModel_ diff --git a/nodes.py b/nodes.py index b13ceb578..7d83ecb21 100644 --- a/nodes.py +++ b/nodes.py @@ -970,7 +970,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "newbie"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -980,7 +980,7 @@ class DualCLIPLoader: CATEGORY = "advanced/loaders" - DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small" + DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small\nnewbie: gemma-3-4b-it, jina clip v2" def load_clip(self, clip_name1, clip_name2, type, device="default"): clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION) From fb478f679a2998c4f2e955bcb895cc4c55f119a4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 22:02:43 -0800 Subject: [PATCH 10/52] Only apply gemma quant config to gemma model for newbie. (#11436) --- comfy/text_encoders/lumina2.py | 5 +++++ comfy/text_encoders/newbie.py | 2 +- 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index f82883ba1..b29a7cc87 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -33,6 +33,11 @@ class Gemma2_2BModel(sd1_clip.SDClipModel): class Gemma3_4BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) class LuminaModel(sd1_clip.SD1ClipModel): diff --git a/comfy/text_encoders/newbie.py b/comfy/text_encoders/newbie.py index 31904462b..db2324576 100644 --- a/comfy/text_encoders/newbie.py +++ b/comfy/text_encoders/newbie.py @@ -57,6 +57,6 @@ def te(dtype_llama=None, llama_quantization_metadata=None): def __init__(self, device="cpu", dtype=None, model_options={}): if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["quantization_metadata"] = llama_quantization_metadata + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(dtype_gemma=dtype_llama, device=device, dtype=dtype, model_options=model_options) return NewBieTEModel_ From 0899012ad60db23cbc5990d164fbd22195bafcb2 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 20 Dec 2025 08:24:37 +0200 Subject: [PATCH 11/52] chore(api-nodes): by default set Watermark generation to False (#11437) --- comfy_api_nodes/apis/bytedance_api.py | 6 +++--- comfy_api_nodes/nodes_bytedance.py | 16 ++++++++-------- comfy_api_nodes/nodes_wan.py | 24 ++++++++++++------------ 3 files changed, 23 insertions(+), 23 deletions(-) diff --git a/comfy_api_nodes/apis/bytedance_api.py b/comfy_api_nodes/apis/bytedance_api.py index 77cd76f9b..b8c2f618b 100644 --- a/comfy_api_nodes/apis/bytedance_api.py +++ b/comfy_api_nodes/apis/bytedance_api.py @@ -10,7 +10,7 @@ class Text2ImageTaskCreationRequest(BaseModel): size: str | None = Field(None) seed: int | None = Field(0, ge=0, le=2147483647) guidance_scale: float | None = Field(..., ge=1.0, le=10.0) - watermark: bool | None = Field(True) + watermark: bool | None = Field(False) class Image2ImageTaskCreationRequest(BaseModel): @@ -21,7 +21,7 @@ class Image2ImageTaskCreationRequest(BaseModel): size: str | None = Field("adaptive") seed: int | None = Field(..., ge=0, le=2147483647) guidance_scale: float | None = Field(..., ge=1.0, le=10.0) - watermark: bool | None = Field(True) + watermark: bool | None = Field(False) class Seedream4Options(BaseModel): @@ -37,7 +37,7 @@ class Seedream4TaskCreationRequest(BaseModel): seed: int = Field(..., ge=0, le=2147483647) sequential_image_generation: str = Field("disabled") sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) - watermark: bool = Field(True) + watermark: bool = Field(False) class ImageTaskCreationResponse(BaseModel): diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index 57c0218d0..636cc1265 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -112,7 +112,7 @@ class ByteDanceImageNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the image', optional=True, ), @@ -215,7 +215,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the image', optional=True, ), @@ -346,7 +346,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the image.', optional=True, ), @@ -380,7 +380,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): sequential_image_generation: str = "disabled", max_images: int = 1, seed: int = 0, - watermark: bool = True, + watermark: bool = False, fail_on_partial: bool = True, ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) @@ -507,7 +507,7 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), @@ -617,7 +617,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), @@ -739,7 +739,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), @@ -862,7 +862,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 17b680e13..1675fd863 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -46,14 +46,14 @@ class Txt2ImageParametersField(BaseModel): n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) class Image2ImageParametersField(BaseModel): size: str | None = Field(None) n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) - watermark: bool = Field(True) + watermark: bool = Field(False) class Text2VideoParametersField(BaseModel): @@ -61,7 +61,7 @@ class Text2VideoParametersField(BaseModel): seed: int = Field(..., ge=0, le=2147483647) duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) audio: bool = Field(False, description="Whether to generate audio automatically.") shot_type: str = Field("single") @@ -71,7 +71,7 @@ class Image2VideoParametersField(BaseModel): seed: int = Field(..., ge=0, le=2147483647) duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) audio: bool = Field(False, description="Whether to generate audio automatically.") shot_type: str = Field("single") @@ -208,7 +208,7 @@ class WanTextToImageApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -234,7 +234,7 @@ class WanTextToImageApi(IO.ComfyNode): height: int = 1024, seed: int = 0, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, ): initial_response = await sync_op( cls, @@ -327,7 +327,7 @@ class WanImageToImageApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -353,7 +353,7 @@ class WanImageToImageApi(IO.ComfyNode): # width: int = 1024, # height: int = 1024, seed: int = 0, - watermark: bool = True, + watermark: bool = False, ): n_images = get_number_of_images(image) if n_images not in (1, 2): @@ -476,7 +476,7 @@ class WanTextToVideoApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -512,7 +512,7 @@ class WanTextToVideoApi(IO.ComfyNode): seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, shot_type: str = "single", ): if "480p" in size and model == "wan2.6-t2v": @@ -637,7 +637,7 @@ class WanImageToVideoApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -674,7 +674,7 @@ class WanImageToVideoApi(IO.ComfyNode): seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, shot_type: str = "single", ): if get_number_of_images(image) != 1: From bbb11e26081977474eec72ce36d12ec778b5a9ea Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 20 Dec 2025 18:48:28 +0200 Subject: [PATCH 12/52] fix(api-nodes): Topaz 4k video upscaling (#11438) --- comfy_api_nodes/nodes_topaz.py | 35 +++++++++++++++++++++++++++------- 1 file changed, 28 insertions(+), 7 deletions(-) diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py index f522756e5..b04575ad8 100644 --- a/comfy_api_nodes/nodes_topaz.py +++ b/comfy_api_nodes/nodes_topaz.py @@ -23,10 +23,6 @@ UPSCALER_MODELS_MAP = { "Starlight (Astra) Fast": "slf-1", "Starlight (Astra) Creative": "slc-1", } -UPSCALER_VALUES_MAP = { - "FullHD (1080p)": 1920, - "4K (2160p)": 3840, -} class TopazImageEnhance(IO.ComfyNode): @@ -214,7 +210,7 @@ class TopazVideoEnhance(IO.ComfyNode): IO.Video.Input("video"), IO.Boolean.Input("upscaler_enabled", default=True), IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())), - IO.Combo.Input("upscaler_resolution", options=list(UPSCALER_VALUES_MAP.keys())), + IO.Combo.Input("upscaler_resolution", options=["FullHD (1080p)", "4K (2160p)"]), IO.Combo.Input( "upscaler_creativity", options=["low", "middle", "high"], @@ -306,8 +302,33 @@ class TopazVideoEnhance(IO.ComfyNode): target_frame_rate = src_frame_rate filters = [] if upscaler_enabled: - target_width = UPSCALER_VALUES_MAP[upscaler_resolution] - target_height = UPSCALER_VALUES_MAP[upscaler_resolution] + if "1080p" in upscaler_resolution: + target_pixel_p = 1080 + max_long_side = 1920 + else: + target_pixel_p = 2160 + max_long_side = 3840 + ar = src_width / src_height + if src_width >= src_height: + # Landscape or Square; Attempt to set height to target (e.g., 2160), calculate width + target_height = target_pixel_p + target_width = int(target_height * ar) + # Check if width exceeds standard bounds (for ultra-wide e.g., 21:9 ARs) + if target_width > max_long_side: + target_width = max_long_side + target_height = int(target_width / ar) + else: + # Portrait; Attempt to set width to target (e.g., 2160), calculate height + target_width = target_pixel_p + target_height = int(target_width / ar) + # Check if height exceeds standard bounds + if target_height > max_long_side: + target_height = max_long_side + target_width = int(target_height * ar) + if target_width % 2 != 0: + target_width += 1 + if target_height % 2 != 0: + target_height += 1 filters.append( topaz_api.VideoEnhancementFilter( model=UPSCALER_MODELS_MAP[upscaler_model], From 807538fe6c66bca8c91edbad14414fb4e109cbde Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 20 Dec 2025 17:02:02 -0800 Subject: [PATCH 13/52] Core release process. (#11447) --- README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/README.md b/README.md index bae955b1b..b0f62695b 100644 --- a/README.md +++ b/README.md @@ -119,6 +119,9 @@ ComfyUI follows a weekly release cycle targeting Monday but this regularly chang 1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)** - Releases a new stable version (e.g., v0.7.0) roughly every week. + - Starting from v0.4.0 patch versions will be used for fixes backported onto the current stable release. + - Minor versions will be used for releases off the master branch. + - Patch versions may still be used for releases on the master branch in cases where a backport would not make sense. - Commits outside of the stable release tags may be very unstable and break many custom nodes. - Serves as the foundation for the desktop release From 91bf6b6aa3d5134c1569375a34ff483d3e32e03f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 21 Dec 2025 16:59:40 -0800 Subject: [PATCH 14/52] Add node to create empty latents for qwen image layered model. (#11460) --- comfy_extras/nodes_qwen.py | 29 ++++++++++++++++++++++++++++- 1 file changed, 28 insertions(+), 1 deletion(-) diff --git a/comfy_extras/nodes_qwen.py b/comfy_extras/nodes_qwen.py index 525239ae5..fde8fac9a 100644 --- a/comfy_extras/nodes_qwen.py +++ b/comfy_extras/nodes_qwen.py @@ -3,7 +3,9 @@ import comfy.utils import math from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +import comfy.model_management +import torch +import nodes class TextEncodeQwenImageEdit(io.ComfyNode): @classmethod @@ -104,12 +106,37 @@ class TextEncodeQwenImageEditPlus(io.ComfyNode): return io.NodeOutput(conditioning) +class EmptyQwenImageLayeredLatentImage(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="EmptyQwenImageLayeredLatentImage", + display_name="Empty Qwen Image Layered Latent", + category="latent/qwen", + inputs=[ + io.Int.Input("width", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("layers", default=3, min=0, max=nodes.MAX_RESOLUTION, step=1), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, width, height, layers, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, layers + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) + + class QwenExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ TextEncodeQwenImageEdit, TextEncodeQwenImageEditPlus, + EmptyQwenImageLayeredLatentImage, ] From c176b214cc768d41892add4d4f51c5c5627cbf7b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 22 Dec 2025 08:44:49 +0200 Subject: [PATCH 15/52] extend possible duration range for Kling O1 StartEndFrame node (#11451) --- comfy_api_nodes/nodes_kling.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 1a6364fa0..5294b10d4 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -858,7 +858,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): tooltip="A text prompt describing the video content. " "This can include both positive and negative descriptions.", ), - IO.Combo.Input("duration", options=["5", "10"]), + IO.Int.Input("duration", default=5, min=3, max=10, display_mode=IO.NumberDisplay.slider), IO.Image.Input("first_frame"), IO.Image.Input( "end_frame", @@ -897,6 +897,10 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): validate_string(prompt, min_length=1, max_length=2500) if end_frame is not None and reference_images is not None: raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") + if duration not in (5, 10) and end_frame is None and reference_images is None: + raise ValueError( + "Duration is only supported for 5 or 10 seconds if there is no end frame or reference images." + ) validate_image_dimensions(first_frame, min_width=300, min_height=300) validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) image_list: list[OmniParamImage] = [ From eb0e10aec449eed2bbcda82ae5b56070e61ed86f Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 23 Dec 2025 05:02:41 +0800 Subject: [PATCH 16/52] Update workflow templates to v0.7.62 (#11467) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 54696395f..b41dbe1d7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.34.9 -comfyui-workflow-templates==0.7.60 +comfyui-workflow-templates==0.7.62 comfyui-embedded-docs==0.3.1 torch torchsde From 33aa808713f7c36cd9476c53b8b67c745e9bc107 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 22 Dec 2025 13:43:24 -0800 Subject: [PATCH 17/52] Make denoised output on custom sampler nodes work with nested tensors. (#11471) --- comfy_extras/nodes_custom_sampler.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 7ee4caac1..993889d9d 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -760,8 +760,12 @@ class SamplerCustom(io.ComfyNode): out = latent.copy() out["samples"] = samples if "x0" in x0_output: + x0_out = model.model.process_latent_out(x0_output["x0"].cpu()) + if samples.is_nested: + latent_shapes = [x.shape for x in samples.unbind()] + x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes)) out_denoised = latent.copy() - out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) + out_denoised["samples"] = x0_out else: out_denoised = out return io.NodeOutput(out, out_denoised) @@ -948,8 +952,12 @@ class SamplerCustomAdvanced(io.ComfyNode): out = latent.copy() out["samples"] = samples if "x0" in x0_output: + x0_out = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) + if samples.is_nested: + latent_shapes = [x.shape for x in samples.unbind()] + x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes)) out_denoised = latent.copy() - out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) + out_denoised["samples"] = x0_out else: out_denoised = out return io.NodeOutput(out, out_denoised) From f4f44bb8073d02597aca61193fec6143292a0b88 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 23 Dec 2025 22:10:27 +0200 Subject: [PATCH 18/52] api-nodes: use new custom endpoint for Nano Banana (#11311) --- comfy_api_nodes/apis/gemini_api.py | 1 + comfy_api_nodes/nodes_gemini.py | 24 +++++++++++++++--------- 2 files changed, 16 insertions(+), 9 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index f8edc38c9..d81337dae 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -133,6 +133,7 @@ class GeminiImageGenerateContentRequest(BaseModel): systemInstruction: GeminiSystemInstructionContent | None = Field(None) tools: list[GeminiTool] | None = Field(None) videoMetadata: GeminiVideoMetadata | None = Field(None) + uploadImagesToStorage: bool = Field(True) class GeminiGenerateContentRequest(BaseModel): diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index ad0f4b4d1..e8ed7e797 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -34,6 +34,7 @@ from comfy_api_nodes.util import ( ApiEndpoint, audio_to_base64_string, bytesio_to_image_tensor, + download_url_to_image_tensor, get_number_of_images, sync_op, tensor_to_base64_string, @@ -141,9 +142,11 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera ) parts = [] for part in response.candidates[0].content.parts: - if part_type == "text" and hasattr(part, "text") and part.text: + if part_type == "text" and part.text: parts.append(part) - elif hasattr(part, "inlineData") and part.inlineData and part.inlineData.mimeType == part_type: + elif part.inlineData and part.inlineData.mimeType == part_type: + parts.append(part) + elif part.fileData and part.fileData.mimeType == part_type: parts.append(part) # Skip parts that don't match the requested type return parts @@ -163,12 +166,15 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str: return "\n".join([part.text for part in parts]) -def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image: +async def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image: image_tensors: list[Input.Image] = [] parts = get_parts_by_type(response, "image/png") for part in parts: - image_data = base64.b64decode(part.inlineData.data) - returned_image = bytesio_to_image_tensor(BytesIO(image_data)) + if part.inlineData: + image_data = base64.b64decode(part.inlineData.data) + returned_image = bytesio_to_image_tensor(BytesIO(image_data)) + else: + returned_image = await download_url_to_image_tensor(part.fileData.fileUri) image_tensors.append(returned_image) if len(image_tensors) == 0: return torch.zeros((1, 1024, 1024, 4)) @@ -596,7 +602,7 @@ class GeminiImage(IO.ComfyNode): response = await sync_op( cls, - endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), + ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"), data=GeminiImageGenerateContentRequest( contents=[ GeminiContent(role=GeminiRole.user, parts=parts), @@ -610,7 +616,7 @@ class GeminiImage(IO.ComfyNode): response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, ) - return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response)) + return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response)) class GeminiImage2(IO.ComfyNode): @@ -729,7 +735,7 @@ class GeminiImage2(IO.ComfyNode): response = await sync_op( cls, - ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), + ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"), data=GeminiImageGenerateContentRequest( contents=[ GeminiContent(role=GeminiRole.user, parts=parts), @@ -743,7 +749,7 @@ class GeminiImage2(IO.ComfyNode): response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, ) - return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response)) + return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response)) class GeminiExtension(ComfyExtension): From 22ff1bbfcb532a294b200a90270b772a339d334e Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Wed, 24 Dec 2025 09:48:45 +0800 Subject: [PATCH 19/52] chore: update workflow templates to v0.7.63 (#11482) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index b41dbe1d7..59ac599c1 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.34.9 -comfyui-workflow-templates==0.7.62 +comfyui-workflow-templates==0.7.63 comfyui-embedded-docs==0.3.1 torch torchsde From e4c61d75555036fa28b6bb34e5fd67b007c9f391 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 23 Dec 2025 20:50:02 -0500 Subject: [PATCH 20/52] ComfyUI v0.6.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index b45309198..1f28e2407 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.5.1" +__version__ = "0.6.0" diff --git a/pyproject.toml b/pyproject.toml index 3a6960811..35a268bd1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.5.1" +version = "0.6.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 650e716dda0a966a083f0efe299f3e83336f920e Mon Sep 17 00:00:00 2001 From: Comfy Org PR Bot Date: Wed, 24 Dec 2025 14:29:41 +0900 Subject: [PATCH 21/52] Bump comfyui-frontend-package to 1.35.9 (#11470) Co-authored-by: github-actions[bot] --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 59ac599c1..84b1882aa 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.34.9 +comfyui-frontend-package==1.35.9 comfyui-workflow-templates==0.7.63 comfyui-embedded-docs==0.3.1 torch From 4f067b07fb33cc1b61d91aec73ca968ba7d9c29a Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 25 Dec 2025 07:54:21 +0800 Subject: [PATCH 22/52] chore: update workflow templates to v0.7.64 (#11496) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 84b1882aa..8b670b813 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.63 +comfyui-workflow-templates==0.7.64 comfyui-embedded-docs==0.3.1 torch torchsde From 532e2850794c7b497174a0a42ac0cb1fe5b62499 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 24 Dec 2025 16:09:37 -0800 Subject: [PATCH 23/52] Add a ManualSigmas node. (#11499) Can be used to manually set the sigmas for a model. This node accepts a list of integer and floating point numbers separated with any non numeric character. --- comfy_extras/nodes_custom_sampler.py | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 993889d9d..f19adf4b9 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -9,6 +9,7 @@ import comfy.utils import node_helpers from typing_extensions import override from comfy_api.latest import ComfyExtension, io +import re class BasicScheduler(io.ComfyNode): @@ -1013,6 +1014,25 @@ class AddNoise(io.ComfyNode): add_noise = execute +class ManualSigmas(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ManualSigmas", + category="_for_testing/custom_sampling", + is_experimental=True, + inputs=[ + io.String.Input("sigmas", default="1, 0.5", multiline=False) + ], + outputs=[io.Sigmas.Output()] + ) + + @classmethod + def execute(cls, sigmas) -> io.NodeOutput: + sigmas = re.findall(r"[-+]?(?:\d*\.*\d+)", sigmas) + sigmas = [float(i) for i in sigmas] + sigmas = torch.FloatTensor(sigmas) + return io.NodeOutput(sigmas) class CustomSamplersExtension(ComfyExtension): @override @@ -1052,6 +1072,7 @@ class CustomSamplersExtension(ComfyExtension): DisableNoise, AddNoise, SamplerCustomAdvanced, + ManualSigmas, ] From d9a76cf66e3fc6b0047692a07bc1d24f20e16e20 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 25 Dec 2025 20:46:51 -0800 Subject: [PATCH 24/52] Specify in readme that we only support pytorch 2.4 and up. (#11512) --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index b0f62695b..6d09758c0 100644 --- a/README.md +++ b/README.md @@ -212,6 +212,8 @@ Python 3.14 works but you may encounter issues with the torch compile node. The Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12 +torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old. + ### Instructions: Git clone this repo. From 16fb6849d296259fd2bf106a6f894650d9a12072 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 27 Dec 2025 08:55:59 +0900 Subject: [PATCH 25/52] bump comfyui_manager version to the 4.0.4 (#11521) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index 2300f0c70..6585b0c19 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b7 +comfyui_manager==4.0.4 From 1e4e342f54386ea4179b273c24b37bd8cbde8f37 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 26 Dec 2025 19:03:01 -0800 Subject: [PATCH 26/52] Fix noise with ancestral samplers when inferencing on cpu. (#11528) --- comfy/k_diffusion/sampling.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 1ba9edad7..0949dee44 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -74,6 +74,9 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.): def default_noise_sampler(x, seed=None): if seed is not None: + if x.device == torch.device("cpu"): + seed += 1 + generator = torch.Generator(device=x.device) generator.manual_seed(seed) else: From 865568b7fc5fd2a5f626b22a40c363b0a5f0b399 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:16:21 +0200 Subject: [PATCH 27/52] feat(api-nodes): add Kling Motion Control node (#11493) --- comfy_api_nodes/apis/kling_api.py | 9 ++++ comfy_api_nodes/nodes_kling.py | 87 +++++++++++++++++++++++++++++++ 2 files changed, 96 insertions(+) diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py index 80a758466..bf54ede3e 100644 --- a/comfy_api_nodes/apis/kling_api.py +++ b/comfy_api_nodes/apis/kling_api.py @@ -102,3 +102,12 @@ class ImageToVideoWithAudioRequest(BaseModel): prompt: str = Field(...) mode: str = Field("pro") sound: str = Field(..., description="'on' or 'off'") + + +class MotionControlRequest(BaseModel): + prompt: str = Field(...) + image_url: str = Field(...) + video_url: str = Field(...) + keep_original_sound: str = Field(...) + character_orientation: str = Field(...) + mode: str = Field(..., description="'pro' or 'std'") diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 5294b10d4..58259e029 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -51,6 +51,7 @@ from comfy_api_nodes.apis import ( ) from comfy_api_nodes.apis.kling_api import ( ImageToVideoWithAudioRequest, + MotionControlRequest, OmniImageParamImage, OmniParamImage, OmniParamVideo, @@ -2163,6 +2164,91 @@ class ImageToVideoWithAudio(IO.ComfyNode): return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) +class MotionControl(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingMotionControl", + display_name="Kling Motion Control", + category="api node/video/Kling", + inputs=[ + IO.String.Input("prompt", multiline=True), + IO.Image.Input("reference_image"), + IO.Video.Input( + "reference_video", + tooltip="Motion reference video used to drive movement/expression.\n" + "Duration limits depend on character_orientation:\n" + " - image: 3–10s (max 10s)\n" + " - video: 3–30s (max 30s)", + ), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Combo.Input( + "character_orientation", + options=["video", "image"], + tooltip="Controls where the character's facing/orientation comes from.\n" + "video: movements, expressions, camera moves, and orientation " + "follow the motion reference video (other details via prompt).\n" + "image: movements and expressions still follow the motion reference video, " + "but the character orientation matches the reference image (camera/other details via prompt).", + ), + IO.Combo.Input("mode", options=["pro", "std"]), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + reference_image: Input.Image, + reference_video: Input.Video, + keep_original_sound: bool, + character_orientation: str, + mode: str, + ) -> IO.NodeOutput: + validate_string(prompt, max_length=2500) + validate_image_dimensions(reference_image, min_width=340, min_height=340) + validate_image_aspect_ratio(reference_image, (1, 2.5), (2.5, 1)) + if character_orientation == "image": + validate_video_duration(reference_video, min_duration=3, max_duration=10) + else: + validate_video_duration(reference_video, min_duration=3, max_duration=30) + validate_video_dimensions(reference_video, min_width=340, min_height=340, max_width=3850, max_height=3850) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/motion-control", method="POST"), + response_model=TaskStatusResponse, + data=MotionControlRequest( + prompt=prompt, + image_url=(await upload_images_to_comfyapi(cls, reference_image))[0], + video_url=await upload_video_to_comfyapi(cls, reference_video), + keep_original_sound="yes" if keep_original_sound else "no", + character_orientation=character_orientation, + mode=mode, + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/motion-control/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + class KlingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -2188,6 +2274,7 @@ class KlingExtension(ComfyExtension): OmniProImageNode, TextToVideoWithAudio, ImageToVideoWithAudio, + MotionControl, ] From eff4ea0b625e851d641b8f6532ff7afe2df16b9d Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:39:02 +0200 Subject: [PATCH 28/52] [V3] converted nodes_images.py to V3 schema (#11206) * converted nodes_images.py to V3 schema * fix test --- comfy_api/latest/_io.py | 5 +- comfy_api/latest/_util/__init__.py | 2 + comfy_api/latest/_util/image_types.py | 18 + comfy_extras/nodes_images.py | 683 +++++++++--------- .../comfy_extras_test/image_stitch_test.py | 2 +- 5 files changed, 351 insertions(+), 359 deletions(-) create mode 100644 comfy_api/latest/_util/image_types.py diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 4b14e5ded..ba0b95498 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -28,9 +28,8 @@ from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classpr prune_dict, shallow_clone_class) from ._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker -from ._util import MESH, VOXEL +from ._util import MESH, VOXEL, SVG as _SVG -# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference class FolderType(str, Enum): input = "input" @@ -656,7 +655,7 @@ class Video(ComfyTypeIO): @comfytype(io_type="SVG") class SVG(ComfyTypeIO): - Type = Any # TODO: SVG class is defined in comfy_extras/nodes_images.py, causing circular reference; should be moved to somewhere else before referenced directly in v3 + Type = _SVG @comfytype(io_type="LORA_MODEL") class LoraModel(ComfyTypeIO): diff --git a/comfy_api/latest/_util/__init__.py b/comfy_api/latest/_util/__init__.py index fc5431dda..6313eb01b 100644 --- a/comfy_api/latest/_util/__init__.py +++ b/comfy_api/latest/_util/__init__.py @@ -1,5 +1,6 @@ from .video_types import VideoContainer, VideoCodec, VideoComponents from .geometry_types import VOXEL, MESH +from .image_types import SVG __all__ = [ # Utility Types @@ -8,4 +9,5 @@ __all__ = [ "VideoComponents", "VOXEL", "MESH", + "SVG", ] diff --git a/comfy_api/latest/_util/image_types.py b/comfy_api/latest/_util/image_types.py new file mode 100644 index 000000000..f031ed426 --- /dev/null +++ b/comfy_api/latest/_util/image_types.py @@ -0,0 +1,18 @@ +from io import BytesIO + + +class SVG: + """Stores SVG representations via a list of BytesIO objects.""" + + def __init__(self, data: list[BytesIO]): + self.data = data + + def combine(self, other: 'SVG') -> 'SVG': + return SVG(self.data + other.data) + + @staticmethod + def combine_all(svgs: list['SVG']) -> 'SVG': + all_svgs_list: list[BytesIO] = [] + for svg_item in svgs: + all_svgs_list.extend(svg_item.data) + return SVG(all_svgs_list) diff --git a/comfy_extras/nodes_images.py b/comfy_extras/nodes_images.py index 392aea32c..ce21caade 100644 --- a/comfy_extras/nodes_images.py +++ b/comfy_extras/nodes_images.py @@ -2,280 +2,231 @@ from __future__ import annotations import nodes import folder_paths -from comfy.cli_args import args -from PIL import Image -from PIL.PngImagePlugin import PngInfo - -import numpy as np import json import os import re -from io import BytesIO -from inspect import cleandoc import torch import comfy.utils -from comfy.comfy_types import FileLocator, IO from server import PromptServer +from comfy_api.latest import ComfyExtension, IO, UI +from typing_extensions import override + +SVG = IO.SVG.Type # TODO: temporary solution for backward compatibility, will be removed later. MAX_RESOLUTION = nodes.MAX_RESOLUTION -class ImageCrop: +class ImageCrop(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "crop" + def define_schema(cls): + return IO.Schema( + node_id="ImageCrop", + display_name="Image Crop", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def crop(self, image, width, height, x, y): + @classmethod + def execute(cls, image, width, height, x, y) -> IO.NodeOutput: x = min(x, image.shape[2] - 1) y = min(y, image.shape[1] - 1) to_x = width + x to_y = height + y img = image[:,y:to_y, x:to_x, :] - return (img,) + return IO.NodeOutput(img) -class RepeatImageBatch: + crop = execute # TODO: remove + + +class RepeatImageBatch(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "amount": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "repeat" + def define_schema(cls): + return IO.Schema( + node_id="RepeatImageBatch", + category="image/batch", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("amount", default=1, min=1, max=4096), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/batch" - - def repeat(self, image, amount): + @classmethod + def execute(cls, image, amount) -> IO.NodeOutput: s = image.repeat((amount, 1,1,1)) - return (s,) + return IO.NodeOutput(s) -class ImageFromBatch: + repeat = execute # TODO: remove + + +class ImageFromBatch(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}), - "length": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "frombatch" + def define_schema(cls): + return IO.Schema( + node_id="ImageFromBatch", + category="image/batch", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("batch_index", default=0, min=0, max=4095), + IO.Int.Input("length", default=1, min=1, max=4096), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/batch" - - def frombatch(self, image, batch_index, length): + @classmethod + def execute(cls, image, batch_index, length) -> IO.NodeOutput: s_in = image batch_index = min(s_in.shape[0] - 1, batch_index) length = min(s_in.shape[0] - batch_index, length) s = s_in[batch_index:batch_index + length].clone() - return (s,) + return IO.NodeOutput(s) + + frombatch = execute # TODO: remove -class ImageAddNoise: +class ImageAddNoise(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}), - "strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "repeat" + def define_schema(cls): + return IO.Schema( + node_id="ImageAddNoise", + category="image", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="The random seed used for creating the noise.", + ), + IO.Float.Input("strength", default=0.5, min=0.0, max=1.0, step=0.01), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image" - - def repeat(self, image, seed, strength): + @classmethod + def execute(cls, image, seed, strength) -> IO.NodeOutput: generator = torch.manual_seed(seed) s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0) - return (s,) + return IO.NodeOutput(s) -class SaveAnimatedWEBP: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" + repeat = execute # TODO: remove - methods = {"default": 4, "fastest": 0, "slowest": 6} - @classmethod - def INPUT_TYPES(s): - return {"required": - {"images": ("IMAGE", ), - "filename_prefix": ("STRING", {"default": "ComfyUI"}), - "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), - "lossless": ("BOOLEAN", {"default": True}), - "quality": ("INT", {"default": 80, "min": 0, "max": 100}), - "method": (list(s.methods.keys()),), - # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - RETURN_TYPES = () - FUNCTION = "save_images" - - OUTPUT_NODE = True - - CATEGORY = "image/animation" - - def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): - method = self.methods.get(method) - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) - results: list[FileLocator] = [] - pil_images = [] - for image in images: - i = 255. * image.cpu().numpy() - img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) - pil_images.append(img) - - metadata = pil_images[0].getexif() - if not args.disable_metadata: - if prompt is not None: - metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) - if extra_pnginfo is not None: - inital_exif = 0x010f - for x in extra_pnginfo: - metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) - inital_exif -= 1 - - if num_frames == 0: - num_frames = len(pil_images) - - c = len(pil_images) - for i in range(0, c, num_frames): - file = f"{filename}_{counter:05}_.webp" - pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - counter += 1 - - animated = num_frames != 1 - return { "ui": { "images": results, "animated": (animated,) } } - -class SaveAnimatedPNG: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAnimatedWEBP(IO.ComfyNode): + COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6} @classmethod - def INPUT_TYPES(s): - return {"required": - {"images": ("IMAGE", ), - "filename_prefix": ("STRING", {"default": "ComfyUI"}), - "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), - "compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def define_schema(cls): + return IO.Schema( + node_id="SaveAnimatedWEBP", + category="image/animation", + inputs=[ + IO.Image.Input("images"), + IO.String.Input("filename_prefix", default="ComfyUI"), + IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01), + IO.Boolean.Input("lossless", default=True), + IO.Int.Input("quality", default=80, min=0, max=100), + IO.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())), + # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) - RETURN_TYPES = () - FUNCTION = "save_images" + @classmethod + def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.ImageSaveHelper.get_save_animated_webp_ui( + images=images, + filename_prefix=filename_prefix, + cls=cls, + fps=fps, + lossless=lossless, + quality=quality, + method=cls.COMPRESS_METHODS.get(method) + ) + ) - OUTPUT_NODE = True - - CATEGORY = "image/animation" - - def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) - results = list() - pil_images = [] - for image in images: - i = 255. * image.cpu().numpy() - img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) - pil_images.append(img) - - metadata = None - if not args.disable_metadata: - metadata = PngInfo() - if prompt is not None: - metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) - - file = f"{filename}_{counter:05}_.png" - pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - - return { "ui": { "images": results, "animated": (True,)} } - -class SVG: - """ - Stores SVG representations via a list of BytesIO objects. - """ - def __init__(self, data: list[BytesIO]): - self.data = data - - def combine(self, other: 'SVG') -> 'SVG': - return SVG(self.data + other.data) - - @staticmethod - def combine_all(svgs: list['SVG']) -> 'SVG': - all_svgs_list: list[BytesIO] = [] - for svg_item in svgs: - all_svgs_list.extend(svg_item.data) - return SVG(all_svgs_list) + save_images = execute # TODO: remove -class ImageStitch: +class SaveAnimatedPNG(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAnimatedPNG", + category="image/animation", + inputs=[ + IO.Image.Input("images"), + IO.String.Input("filename_prefix", default="ComfyUI"), + IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01), + IO.Int.Input("compress_level", default=4, min=0, max=9), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) + + @classmethod + def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.ImageSaveHelper.get_save_animated_png_ui( + images=images, + filename_prefix=filename_prefix, + cls=cls, + fps=fps, + compress_level=compress_level, + ) + ) + + save_images = execute # TODO: remove + + +class ImageStitch(IO.ComfyNode): """Upstreamed from https://github.com/kijai/ComfyUI-KJNodes""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image1": ("IMAGE",), - "direction": (["right", "down", "left", "up"], {"default": "right"}), - "match_image_size": ("BOOLEAN", {"default": True}), - "spacing_width": ( - "INT", - {"default": 0, "min": 0, "max": 1024, "step": 2}, - ), - "spacing_color": ( - ["white", "black", "red", "green", "blue"], - {"default": "white"}, - ), - }, - "optional": { - "image2": ("IMAGE",), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="ImageStitch", + display_name="Image Stitch", + description="Stitches image2 to image1 in the specified direction.\n" + "If image2 is not provided, returns image1 unchanged.\n" + "Optional spacing can be added between images.", + category="image/transform", + inputs=[ + IO.Image.Input("image1"), + IO.Combo.Input("direction", options=["right", "down", "left", "up"], default="right"), + IO.Boolean.Input("match_image_size", default=True), + IO.Int.Input("spacing_width", default=0, min=0, max=1024, step=2), + IO.Combo.Input("spacing_color", options=["white", "black", "red", "green", "blue"], default="white"), + IO.Image.Input("image2", optional=True), + ], + outputs=[IO.Image.Output()], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "stitch" - CATEGORY = "image/transform" - DESCRIPTION = """ -Stitches image2 to image1 in the specified direction. -If image2 is not provided, returns image1 unchanged. -Optional spacing can be added between images. -""" - - def stitch( - self, + @classmethod + def execute( + cls, image1, direction, match_image_size, spacing_width, spacing_color, image2=None, - ): + ) -> IO.NodeOutput: if image2 is None: - return (image1,) + return IO.NodeOutput(image1) # Handle batch size differences if image1.shape[0] != image2.shape[0]: @@ -412,36 +363,30 @@ Optional spacing can be added between images. images.insert(1, spacing) concat_dim = 2 if direction in ["left", "right"] else 1 - return (torch.cat(images, dim=concat_dim),) + return IO.NodeOutput(torch.cat(images, dim=concat_dim)) + + stitch = execute # TODO: remove + + +class ResizeAndPadImage(IO.ComfyNode): -class ResizeAndPadImage: @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "image": ("IMAGE",), - "target_width": ("INT", { - "default": 512, - "min": 1, - "max": MAX_RESOLUTION, - "step": 1 - }), - "target_height": ("INT", { - "default": 512, - "min": 1, - "max": MAX_RESOLUTION, - "step": 1 - }), - "padding_color": (["white", "black"],), - "interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ResizeAndPadImage", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("target_width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("target_height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Combo.Input("padding_color", options=["white", "black"]), + IO.Combo.Input("interpolation", options=["area", "bicubic", "nearest-exact", "bilinear", "lanczos"]), + ], + outputs=[IO.Image.Output()], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "resize_and_pad" - CATEGORY = "image/transform" - - def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation): + @classmethod + def execute(cls, image, target_width, target_height, padding_color, interpolation) -> IO.NodeOutput: batch_size, orig_height, orig_width, channels = image.shape scale_w = target_width / orig_width @@ -469,52 +414,47 @@ class ResizeAndPadImage: padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized output = padded.permute(0, 2, 3, 1) - return (output,) + return IO.NodeOutput(output) -class SaveSVGNode: - """ - Save SVG files on disk. - """ + resize_and_pad = execute # TODO: remove - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" - RETURN_TYPES = () - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "save_svg" - CATEGORY = "image/save" # Changed - OUTPUT_NODE = True +class SaveSVGNode(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "svg": ("SVG",), # Changed - "filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}) - }, - "hidden": { - "prompt": "PROMPT", - "extra_pnginfo": "EXTRA_PNGINFO" - } - } + def define_schema(cls): + return IO.Schema( + node_id="SaveSVGNode", + description="Save SVG files on disk.", + category="image/save", + inputs=[ + IO.SVG.Input("svg"), + IO.String.Input( + "filename_prefix", + default="svg/ComfyUI", + tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.", + ), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) - def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None): - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) - results = list() + @classmethod + def execute(cls, svg: IO.SVG.Type, filename_prefix="svg/ComfyUI") -> IO.NodeOutput: + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory()) + results: list[UI.SavedResult] = [] # Prepare metadata JSON metadata_dict = {} - if prompt is not None: - metadata_dict["prompt"] = prompt - if extra_pnginfo is not None: - metadata_dict.update(extra_pnginfo) + if cls.hidden.prompt is not None: + metadata_dict["prompt"] = cls.hidden.prompt + if cls.hidden.extra_pnginfo is not None: + metadata_dict.update(cls.hidden.extra_pnginfo) # Convert metadata to JSON string metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None + for batch_number, svg_bytes in enumerate(svg.data): filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) file = f"{filename_with_batch_num}_{counter:05}_.svg" @@ -544,57 +484,64 @@ class SaveSVGNode: with open(os.path.join(full_output_folder, file), 'wb') as svg_file: svg_file.write(svg_content.encode('utf-8')) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) + results.append(UI.SavedResult(filename=file, subfolder=subfolder, type=IO.FolderType.output)) counter += 1 - return { "ui": { "images": results } } + return IO.NodeOutput(ui={"images": results}) -class GetImageSize: + save_svg = execute # TODO: remove + + +class GetImageSize(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE,), - }, - "hidden": { - "unique_id": "UNIQUE_ID", - } - } + def define_schema(cls): + return IO.Schema( + node_id="GetImageSize", + display_name="Get Image Size", + description="Returns width and height of the image, and passes it through unchanged.", + category="image", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.Int.Output(display_name="width"), + IO.Int.Output(display_name="height"), + IO.Int.Output(display_name="batch_size"), + ], + hidden=[IO.Hidden.unique_id], + ) - RETURN_TYPES = (IO.INT, IO.INT, IO.INT) - RETURN_NAMES = ("width", "height", "batch_size") - FUNCTION = "get_size" - - CATEGORY = "image" - DESCRIPTION = """Returns width and height of the image, and passes it through unchanged.""" - - def get_size(self, image, unique_id=None) -> tuple[int, int]: + @classmethod + def execute(cls, image) -> IO.NodeOutput: height = image.shape[1] width = image.shape[2] batch_size = image.shape[0] # Send progress text to display size on the node - if unique_id: - PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id) + if cls.hidden.unique_id: + PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", cls.hidden.unique_id) - return width, height, batch_size + return IO.NodeOutput(width, height, batch_size) + + get_size = execute # TODO: remove + + +class ImageRotate(IO.ComfyNode): -class ImageRotate: @classmethod - def INPUT_TYPES(s): - return {"required": { "image": (IO.IMAGE,), - "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), - }} - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "rotate" + def define_schema(cls): + return IO.Schema( + node_id="ImageRotate", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("rotation", options=["none", "90 degrees", "180 degrees", "270 degrees"]), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def rotate(self, image, rotation): + @classmethod + def execute(cls, image, rotation) -> IO.NodeOutput: rotate_by = 0 if rotation.startswith("90"): rotate_by = 1 @@ -604,41 +551,57 @@ class ImageRotate: rotate_by = 3 image = torch.rot90(image, k=rotate_by, dims=[2, 1]) - return (image,) + return IO.NodeOutput(image) + + rotate = execute # TODO: remove + + +class ImageFlip(IO.ComfyNode): -class ImageFlip: @classmethod - def INPUT_TYPES(s): - return {"required": { "image": (IO.IMAGE,), - "flip_method": (["x-axis: vertically", "y-axis: horizontally"],), - }} - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "flip" + def define_schema(cls): + return IO.Schema( + node_id="ImageFlip", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("flip_method", options=["x-axis: vertically", "y-axis: horizontally"]), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def flip(self, image, flip_method): + @classmethod + def execute(cls, image, flip_method) -> IO.NodeOutput: if flip_method.startswith("x"): image = torch.flip(image, dims=[1]) elif flip_method.startswith("y"): image = torch.flip(image, dims=[2]) - return (image,) + return IO.NodeOutput(image) -class ImageScaleToMaxDimension: - upscale_methods = ["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"] + flip = execute # TODO: remove + + +class ImageScaleToMaxDimension(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"image": ("IMAGE",), - "upscale_method": (s.upscale_methods,), - "largest_size": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1})}} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "upscale" + def define_schema(cls): + return IO.Schema( + node_id="ImageScaleToMaxDimension", + category="image/upscaling", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input( + "upscale_method", + options=["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"], + ), + IO.Int.Input("largest_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/upscaling" - - def upscale(self, image, upscale_method, largest_size): + @classmethod + def execute(cls, image, upscale_method, largest_size) -> IO.NodeOutput: height = image.shape[1] width = image.shape[2] @@ -655,20 +618,30 @@ class ImageScaleToMaxDimension: samples = image.movedim(-1, 1) s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") s = s.movedim(1, -1) - return (s,) + return IO.NodeOutput(s) -NODE_CLASS_MAPPINGS = { - "ImageCrop": ImageCrop, - "RepeatImageBatch": RepeatImageBatch, - "ImageFromBatch": ImageFromBatch, - "ImageAddNoise": ImageAddNoise, - "SaveAnimatedWEBP": SaveAnimatedWEBP, - "SaveAnimatedPNG": SaveAnimatedPNG, - "SaveSVGNode": SaveSVGNode, - "ImageStitch": ImageStitch, - "ResizeAndPadImage": ResizeAndPadImage, - "GetImageSize": GetImageSize, - "ImageRotate": ImageRotate, - "ImageFlip": ImageFlip, - "ImageScaleToMaxDimension": ImageScaleToMaxDimension, -} + upscale = execute # TODO: remove + + +class ImagesExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + ImageCrop, + RepeatImageBatch, + ImageFromBatch, + ImageAddNoise, + SaveAnimatedWEBP, + SaveAnimatedPNG, + SaveSVGNode, + ImageStitch, + ResizeAndPadImage, + GetImageSize, + ImageRotate, + ImageFlip, + ImageScaleToMaxDimension, + ] + + +async def comfy_entrypoint() -> ImagesExtension: + return ImagesExtension() diff --git a/tests-unit/comfy_extras_test/image_stitch_test.py b/tests-unit/comfy_extras_test/image_stitch_test.py index b5a0f022c..5c6a15ac4 100644 --- a/tests-unit/comfy_extras_test/image_stitch_test.py +++ b/tests-unit/comfy_extras_test/image_stitch_test.py @@ -25,7 +25,7 @@ class TestImageStitch: result = node.stitch(image1, "right", True, 0, "white", image2=None) - assert len(result) == 1 + assert len(result.result) == 1 assert torch.equal(result[0], image1) def test_basic_horizontal_stitch_right(self): From 0d2e4bdd44f61b198588c5db99bebfd5cdec286b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:55:30 +0200 Subject: [PATCH 29/52] fix(api-nodes-gemini): always force enhance_prompt to be True (#11503) --- comfy_api_nodes/nodes_veo2.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_veo2.py b/comfy_api_nodes/nodes_veo2.py index e165b8380..13a6bfd91 100644 --- a/comfy_api_nodes/nodes_veo2.py +++ b/comfy_api_nodes/nodes_veo2.py @@ -168,6 +168,8 @@ class VeoVideoGenerationNode(IO.ComfyNode): # Only add generateAudio for Veo 3 models if model.find("veo-2.0") == -1: parameters["generateAudio"] = generate_audio + # force "enhance_prompt" to True for Veo3 models + parameters["enhancePrompt"] = True initial_response = await sync_op( cls, @@ -291,7 +293,7 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode): IO.Boolean.Input( "enhance_prompt", default=True, - tooltip="Whether to enhance the prompt with AI assistance", + tooltip="This parameter is deprecated and ignored.", optional=True, ), IO.Combo.Input( From 36deef2c57eacb5d847bd709c5f3068190630612 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:56:52 +0200 Subject: [PATCH 30/52] chore(api-nodes): switch to credits instead of $ (#11489) --- comfy_api_nodes/util/client.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index bf37cba5f..f372ec7b5 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -430,9 +430,9 @@ def _display_text( if status: display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}") if price is not None: - p = f"{float(price):,.4f}".rstrip("0").rstrip(".") + p = f"{float(price) * 211:,.1f}".rstrip("0").rstrip(".") if p != "0": - display_lines.append(f"Price: ${p}") + display_lines.append(f"Price: {p} credits") if text is not None: display_lines.append(text) if display_lines: From 2943093a5310fc96aa010a3c68c04f7c16f58a9e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 27 Dec 2025 15:54:15 -0800 Subject: [PATCH 31/52] Enable async offload by default for AMD. (#11534) --- comfy/model_management.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 1889ab0ac..e5554e225 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1019,8 +1019,8 @@ NUM_STREAMS = 0 if args.async_offload is not None: NUM_STREAMS = args.async_offload else: - # Enable by default on Nvidia - if is_nvidia(): + # Enable by default on Nvidia and AMD + if is_nvidia() or is_amd(): NUM_STREAMS = 2 if args.disable_async_offload: From 8fd07170f1b0a7eaaf5a62020cd1926dd3b5092c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 28 Dec 2025 19:07:25 -0800 Subject: [PATCH 32/52] Comment out unused norm_final in lumina/z image model. (#11545) --- comfy/ldm/lumina/model.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index e80b1c138..afbab2ac7 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -491,7 +491,8 @@ class NextDiT(nn.Module): for layer_id in range(n_layers) ] ) - self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + # This norm final is in the lumina 2.0 code but isn't actually used for anything. + # self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings) if self.pad_tokens_multiple is not None: From 9ca7e143afe6f09734c9aefcc85f491c5c0dc6e0 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Mon, 29 Dec 2025 15:19:34 -0800 Subject: [PATCH 33/52] mm: discard async errors from pinning failures (#10738) Pretty much every error cudaHostRegister can throw also queues the same error on the async GPU queue. This was fixed for repinning error case, but there is the bad mmap and just enomem cases that are harder to detect. Do some dummy GPU work to clean the error state. --- comfy/model_management.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index e5554e225..9fcb699bc 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1126,6 +1126,16 @@ if not args.disable_pinned_memory: PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) +def discard_cuda_async_error(): + try: + a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + _ = a + b + torch.cuda.synchronize() + except torch.AcceleratorError: + #Dump it! We already know about it from the synchronous return + pass + def pin_memory(tensor): global TOTAL_PINNED_MEMORY if MAX_PINNED_MEMORY <= 0: @@ -1158,6 +1168,8 @@ def pin_memory(tensor): PINNED_MEMORY[ptr] = size TOTAL_PINNED_MEMORY += size return True + else: + discard_cuda_async_error() return False @@ -1186,6 +1198,8 @@ def unpin_memory(tensor): if len(PINNED_MEMORY) == 0: TOTAL_PINNED_MEMORY = 0 return True + else: + discard_cuda_async_error() return False From 0e6221cc79a3f3cbf0e15a8321bfe75fcffbe667 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 29 Dec 2025 15:26:42 -0800 Subject: [PATCH 34/52] Add some warnings for pin and unpin errors. (#11561) --- comfy/model_management.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 9fcb699bc..87baedd73 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1169,6 +1169,7 @@ def pin_memory(tensor): TOTAL_PINNED_MEMORY += size return True else: + logging.warning("Pin error.") discard_cuda_async_error() return False @@ -1199,6 +1200,7 @@ def unpin_memory(tensor): TOTAL_PINNED_MEMORY = 0 return True else: + logging.warning("Unpin error.") discard_cuda_async_error() return False From d7111e426a48127a97922227b03d31391eb4eba2 Mon Sep 17 00:00:00 2001 From: Tavi Halperin Date: Tue, 30 Dec 2025 03:07:29 +0200 Subject: [PATCH 35/52] ResizeByLongerSide: support video (#11555) (cherry picked from commit 98c6840aa4e5fd5407ba9ab113d209011e474bf6) --- comfy_extras/nodes_dataset.py | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py index 513aecf3a..5ef851bd0 100644 --- a/comfy_extras/nodes_dataset.py +++ b/comfy_extras/nodes_dataset.py @@ -667,16 +667,19 @@ class ResizeImagesByLongerEdgeNode(ImageProcessingNode): @classmethod def _process(cls, image, longer_edge): - img = tensor_to_pil(image) - w, h = img.size - if w > h: - new_w = longer_edge - new_h = int(h * (longer_edge / w)) - else: - new_h = longer_edge - new_w = int(w * (longer_edge / h)) - img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) - return pil_to_tensor(img) + resized_images = [] + for image_i in image: + img = tensor_to_pil(image_i) + w, h = img.size + if w > h: + new_w = longer_edge + new_h = int(h * (longer_edge / w)) + else: + new_h = longer_edge + new_w = int(w * (longer_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + resized_images.append(pil_to_tensor(img)) + return torch.cat(resized_images, dim=0) class CenterCropImagesNode(ImageProcessingNode): From 25a1bfab4e19b541c2bd6f253a3b83886fb660a1 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 30 Dec 2025 18:33:34 +0200 Subject: [PATCH 36/52] chore(api-nodes-bytedance): mark "seededit" as deprecated, adjust display name of Seedream (#11490) --- comfy_api_nodes/nodes_bytedance.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index 636cc1265..d4a2cfae6 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -229,6 +229,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -269,7 +270,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ByteDanceSeedreamNode", - display_name="ByteDance Seedream 4", + display_name="ByteDance Seedream 4.5", category="api node/image/ByteDance", description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.", inputs=[ From 178bdc5e14ec0a55e401c509719e33773cc9b565 Mon Sep 17 00:00:00 2001 From: drozbay <17261091+drozbay@users.noreply.github.com> Date: Tue, 30 Dec 2025 15:40:42 -0700 Subject: [PATCH 37/52] Add handling for vace_context in context windows (#11386) Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 1e0f86026..2f82d51da 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -188,6 +188,12 @@ class IndexListContextHandler(ContextHandlerABC): audio_cond = cond_value.cond if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim): new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1)) + # Handle vace_context (temporal dim is 3) + elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + vace_cond = cond_value.cond + if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim): + sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list) + new_cond_item[cond_key] = cond_value._copy_with(sliced_vace) # if has cond that is a Tensor, check if needs to be subset elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \ From f59f71cf34067d46713f6243312f7f0b360d061f Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 30 Dec 2025 22:41:22 -0500 Subject: [PATCH 38/52] ComfyUI version v0.7.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 1f28e2407..1ed60fe5c 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.6.0" +__version__ = "0.7.0" diff --git a/pyproject.toml b/pyproject.toml index 35a268bd1..bc1467941 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.6.0" +version = "0.7.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 0357ed7ec4a1bbfe3832874ad6cfc1ca3db1bc0d Mon Sep 17 00:00:00 2001 From: mengqin Date: Tue, 30 Dec 2025 17:53:52 -1000 Subject: [PATCH 39/52] Add support for sage attention 3 in comfyui, enable via new cli arg (#11026) * Add support for sage attention 3 in comfyui, enable via new cli arg --use-sage-attiention3 * Fix some bugs found in PR review. The N dimension at which Sage Attention 3 takes effect is reduced to 1024 (although the improvement is not significant at this scale). * Remove the Sage Attention3 switch, but retain the attention function registration. * Fix a ruff check issue in attention.py --- comfy/ldm/modules/attention.py | 96 ++++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index a8800ded0..ccf690945 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -30,6 +30,13 @@ except ImportError as e: raise e exit(-1) +SAGE_ATTENTION3_IS_AVAILABLE = False +try: + from sageattn3 import sageattn3_blackwell + SAGE_ATTENTION3_IS_AVAILABLE = True +except ImportError: + pass + FLASH_ATTENTION_IS_AVAILABLE = False try: from flash_attn import flash_attn_func @@ -563,6 +570,93 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = out.reshape(b, -1, heads * dim_head) return out +@wrap_attn +def attention3_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False + if (q.device.type != "cuda" or + q.dtype not in (torch.float16, torch.bfloat16) or + mask is not None): + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + B, H, L, D = q.shape + if H != heads: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=True, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + q_s, k_s, v_s = q, k, v + N = q.shape[2] + dim_head = D + else: + B, N, inner_dim = q.shape + if inner_dim % heads != 0: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + dim_head = inner_dim // heads + + if dim_head >= 256 or N <= 1024: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if not skip_reshape: + q_s, k_s, v_s = map( + lambda t: t.view(B, -1, heads, dim_head).permute(0, 2, 1, 3).contiguous(), + (q, k, v), + ) + B, H, L, D = q_s.shape + + try: + out = sageattn3_blackwell(q_s, k_s, v_s, is_causal=False) + except Exception as e: + exception_fallback = True + logging.error("Error running SageAttention3: %s, falling back to pytorch attention.", e) + + if exception_fallback: + if not skip_reshape: + del q_s, k_s, v_s + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + if not skip_output_reshape: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + else: + if skip_output_reshape: + pass + else: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + + return out try: @torch.library.custom_op("flash_attention::flash_attn", mutates_args=()) @@ -650,6 +744,8 @@ optimized_attention_masked = optimized_attention # register core-supported attention functions if SAGE_ATTENTION_IS_AVAILABLE: register_attention_function("sage", attention_sage) +if SAGE_ATTENTION3_IS_AVAILABLE: + register_attention_function("sage3", attention3_sage) if FLASH_ATTENTION_IS_AVAILABLE: register_attention_function("flash", attention_flash) if model_management.xformers_enabled(): From 0be8a76c933026011098d41e61cc6e544739e427 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 30 Dec 2025 20:09:55 -0800 Subject: [PATCH 40/52] V3 Improvements + DynamicCombo + Autogrow exposed in public API (#11345) * Support Combo outputs in a more sane way * Remove test validate_inputs function on test node * Make curr_prefix be a list of strings instead of string for easier parsing as keys get added to dynamic types * Start to account for id prefixes from frontend, need to fix bug with nested dynamics * Ensure inputs/outputs/hidden are lists in schema finalize function, remove no longer needed 'is not None' checks * Add raw_link and extra_dict to all relevant Inputs * Make nested DynamicCombos work properly with prefixed keys on latest frontend; breaks old Autogrow, but is pretty much ready for upcoming Autogrow keys * Replace ... usage with a MISSING sentinel for clarity in nodes_logic.py * Added CustomCombo node in backend to reflect frontend node * Prepare Autogrow's expand_schema_for_dynamic to work with upcoming frontend changes * Prepare for look up table for dynamic input stuff * More progress towards dynamic input lookup function stuff * Finished converting _expand_schema_for_dynamic to be done via lookup instead of OOP to guarantee working with process isolation, did refactoring to remove old implementation + cleaning INPUT_TYPES definition including v3 hidden definition * Change order of functions * Removed some unneeded functions after dynamic refactor * Make MatchType's output default displayname "MATCHTYPE" * Fix DynamicSlot get_all * Removed redundant code - dynamic stuff no longer happens in OOP way * Natively support AnyType (*) without __ne__ hacks * Remove stray code that made it in * Remove expand_schema_for_dynamic left over on DynamicInput class * get_dynamic() on DynamicInput/Output was not doing anything anymore, so removed it * Make validate_inputs validate combo input correctly * Temporarily comment out conversion to 'new' (9 month old) COMBO format in get_input_info * Remove refrences to resources feature scrapped from V3 * Expose DynamicCombo in public API * satisfy ruff after some code got commented out * Make missing input error prettier for dynamic types * Created a Switch2 node as a side-by-side test, will likely go with Switch2 as the initial switch node * Figured out Switch situation * Pass in v3_data in IsChangedCache.get function's fingerprint_inputs, add a from_v3_data helper method to HiddenHolder * Switch order of Switch and Soft Switch nodes in file * Temp test node for MatchType * Fix missing v3_data for v1 nodes in validation * For now, remove chacking duplicate id's for dynamic types * Add Resize Image/Mask node that thanks to MatchType+DynamicCombo is 16-nodes-in-1 * Made DynamicCombo references in DCTestNode use public interface * Add an AnyTypeTestNode * Make lazy status for specific inputs on DynamicInputs work by having the values of the dictionary for check_lazy_status be a tuple, where the second element is the key of the input that can be returned * Comment out test logic nodes * Make primitive float's step make more sense * Add (and leave commented out) some potential logic nodes * Change default crop option to "center" on Resize Image/Mask node * Changed copy.copy(d) to d.copy() * Autogrow is available in stable frontend, so exposing it in public API * Use outputs id as display_name if no display_name present, remove v3 outputs id restriction that made them have to have unique IDs from the inputs * Enable Custom Combo node as stable frontend now supports it * Make id properly act like display_name on outputs * Add Batch Images/Masks/Latents node * Comment out Batch Images/Masks/Latents node for now, as Autogrow has a bug with MatchType where top connection is disconnected upon refresh * Removed code for a couple test nodes in nodes_logic.py * Add Batch Images, Batch Masks, and Batch Latents nodes with Autogrow, deprecate old Batch Images + LatentBatch nodes --- comfy_api/latest/__init__.py | 1 - comfy_api/latest/_io.py | 370 ++++++++++++++------------ comfy_api/latest/_resources.py | 72 ----- comfy_execution/graph.py | 5 + comfy_execution/validation.py | 14 + comfy_extras/nodes_latent.py | 1 + comfy_extras/nodes_logic.py | 149 +++++++++-- comfy_extras/nodes_post_processing.py | 356 +++++++++++++++++++++++++ comfy_extras/nodes_primitive.py | 2 +- execution.py | 45 ++-- nodes.py | 1 + 11 files changed, 742 insertions(+), 274 deletions(-) delete mode 100644 comfy_api/latest/_resources.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index fab63c7df..b0fa14ff6 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -10,7 +10,6 @@ from ._input_impl import VideoFromFile, VideoFromComponents from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL from . import _io_public as io from . import _ui_public as ui -# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple from PIL import Image diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index ba0b95498..764fa8b2b 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -26,7 +26,6 @@ if TYPE_CHECKING: from comfy_api.input import VideoInput from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class, prune_dict, shallow_clone_class) -from ._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker from ._util import MESH, VOXEL, SVG as _SVG @@ -76,16 +75,6 @@ class NumberDisplay(str, Enum): slider = "slider" -class _StringIOType(str): - def __ne__(self, value: object) -> bool: - if self == "*" or value == "*": - return False - if not isinstance(value, str): - return True - a = frozenset(self.split(",")) - b = frozenset(value.split(",")) - return not (b.issubset(a) or a.issubset(b)) - class _ComfyType(ABC): Type = Any io_type: str = None @@ -125,8 +114,7 @@ def comfytype(io_type: str, **kwargs): new_cls.__module__ = cls.__module__ new_cls.__doc__ = cls.__doc__ # assign ComfyType attributes, if needed - # NOTE: use __ne__ trick for io_type (see node_typing.IO.__ne__ for details) - new_cls.io_type = _StringIOType(io_type) + new_cls.io_type = io_type if hasattr(new_cls, "Input") and new_cls.Input is not None: new_cls.Input.Parent = new_cls if hasattr(new_cls, "Output") and new_cls.Output is not None: @@ -165,7 +153,7 @@ class Input(_IO_V3): ''' Base class for a V3 Input. ''' - def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): super().__init__() self.id = id self.display_name = display_name @@ -173,6 +161,7 @@ class Input(_IO_V3): self.tooltip = tooltip self.lazy = lazy self.extra_dict = extra_dict if extra_dict is not None else {} + self.rawLink = raw_link def as_dict(self): return prune_dict({ @@ -180,10 +169,11 @@ class Input(_IO_V3): "optional": self.optional, "tooltip": self.tooltip, "lazy": self.lazy, + "rawLink": self.rawLink, }) | prune_dict(self.extra_dict) def get_io_type(self): - return _StringIOType(self.io_type) + return self.io_type def get_all(self) -> list[Input]: return [self] @@ -194,8 +184,8 @@ class WidgetInput(Input): ''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: Any=None, - socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.default = default self.socketless = socketless self.widget_type = widget_type @@ -217,13 +207,14 @@ class Output(_IO_V3): def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): self.id = id - self.display_name = display_name + self.display_name = display_name if display_name else id self.tooltip = tooltip self.is_output_list = is_output_list def as_dict(self): + display_name = self.display_name if self.display_name else self.id return prune_dict({ - "display_name": self.display_name, + "display_name": display_name, "tooltip": self.tooltip, "is_output_list": self.is_output_list, }) @@ -251,8 +242,8 @@ class Boolean(ComfyTypeIO): '''Boolean input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: bool=None, label_on: str=None, label_off: str=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.label_on = label_on self.label_off = label_off self.default: bool @@ -271,8 +262,8 @@ class Int(ComfyTypeIO): '''Integer input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -297,8 +288,8 @@ class Float(ComfyTypeIO): '''Float input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: float=None, min: float=None, max: float=None, step: float=None, round: float=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -323,8 +314,8 @@ class String(ComfyTypeIO): '''String input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.multiline = multiline self.placeholder = placeholder self.dynamic_prompts = dynamic_prompts @@ -357,12 +348,14 @@ class Combo(ComfyTypeIO): image_folder: FolderType=None, remote: RemoteOptions=None, socketless: bool=None, + extra_dict=None, + raw_link: bool=None, ): if isinstance(options, type) and issubclass(options, Enum): options = [v.value for v in options] if isinstance(default, Enum): default = default.value - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) self.multiselect = False self.options = options self.control_after_generate = control_after_generate @@ -386,10 +379,6 @@ class Combo(ComfyTypeIO): super().__init__(id, display_name, tooltip, is_output_list) self.options = options if options is not None else [] - @property - def io_type(self): - return self.options - @comfytype(io_type="COMBO") class MultiCombo(ComfyTypeI): '''Multiselect Combo input (dropdown for selecting potentially more than one value).''' @@ -398,8 +387,8 @@ class MultiCombo(ComfyTypeI): class Input(Combo.Input): def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None, - socketless: bool=None): - super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless) + socketless: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link) self.multiselect = True self.placeholder = placeholder self.chip = chip @@ -432,9 +421,9 @@ class Webcam(ComfyTypeIO): Type = str def __init__( self, id: str, display_name: str=None, optional=False, - tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None + tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None, extra_dict=None, raw_link: bool=None ): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) @comfytype(io_type="MASK") @@ -787,7 +776,7 @@ class MultiType: ''' Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values. ''' - def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): # if id is an Input, then use that Input with overridden values self.input_override = None if isinstance(id, Input): @@ -800,7 +789,7 @@ class MultiType: # if is a widget input, make sure widget_type is set appropriately if isinstance(self.input_override, WidgetInput): self.input_override.widget_type = self.input_override.get_io_type() - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self._io_types = types @property @@ -854,8 +843,8 @@ class MatchType(ComfyTypeIO): class Input(Input): def __init__(self, id: str, template: MatchType.Template, - display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.template = template def as_dict(self): @@ -866,6 +855,8 @@ class MatchType(ComfyTypeIO): class Output(Output): def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): + if not id and not display_name: + display_name = "MATCHTYPE" super().__init__(id, display_name, tooltip, is_output_list) self.template = template @@ -878,24 +869,30 @@ class DynamicInput(Input, ABC): ''' Abstract class for dynamic input registration. ''' - def get_dynamic(self) -> list[Input]: - return [] - - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - pass + pass class DynamicOutput(Output, ABC): ''' Abstract class for dynamic output registration. ''' - def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) + pass - def get_dynamic(self) -> list[Output]: - return [] +def handle_prefix(prefix_list: list[str] | None, id: str | None = None) -> list[str]: + if prefix_list is None: + prefix_list = [] + if id is not None: + prefix_list = prefix_list + [id] + return prefix_list + +def finalize_prefix(prefix_list: list[str] | None, id: str | None = None) -> str: + assert not (prefix_list is None and id is None) + if prefix_list is None: + return id + elif id is not None: + prefix_list = prefix_list + [id] + return ".".join(prefix_list) @comfytype(io_type="COMFY_AUTOGROW_V3") class Autogrow(ComfyTypeI): @@ -932,14 +929,6 @@ class Autogrow(ComfyTypeI): def validate(self): self.input.validate() - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - real_inputs = [] - for name, input in self.cached_inputs.items(): - if name in live_inputs: - real_inputs.append(input) - add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, real_inputs, curr_prefix) - class TemplatePrefix(_AutogrowTemplate): def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): super().__init__(input) @@ -984,22 +973,45 @@ class Autogrow(ComfyTypeI): "template": self.template.as_dict(), }) - def get_dynamic(self) -> list[Input]: - return self.template.get_all() - def get_all(self) -> list[Input]: return [self] + self.template.get_all() def validate(self): self.template.validate() - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - curr_prefix = f"{curr_prefix}{self.id}." - # need to remove self from expected inputs dictionary; replaced by template inputs in frontend - for inner_dict in d.values(): - if self.id in inner_dict: - del inner_dict[self.id] - self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + # NOTE: purposely do not include self in out_dict; instead use only the template inputs + # need to figure out names based on template type + is_names = ("names" in value[1]["template"]) + is_prefix = ("prefix" in value[1]["template"]) + input = value[1]["template"]["input"] + if is_names: + min = value[1]["template"]["min"] + names = value[1]["template"]["names"] + max = len(names) + elif is_prefix: + prefix = value[1]["template"]["prefix"] + min = value[1]["template"]["min"] + max = value[1]["template"]["max"] + names = [f"{prefix}{i}" for i in range(max)] + # need to create a new input based on the contents of input + template_input = None + for _, dict_input in input.items(): + # for now, get just the first value from dict_input + template_input = list(dict_input.values())[0] + new_dict = {} + for i, name in enumerate(names): + expected_id = finalize_prefix(curr_prefix, name) + if expected_id in live_inputs: + # required + if i < min: + type_dict = new_dict.setdefault("required", {}) + # optional + else: + type_dict = new_dict.setdefault("optional", {}) + type_dict[name] = template_input + parse_class_inputs(out_dict, live_inputs, new_dict, curr_prefix) @comfytype(io_type="COMFY_DYNAMICCOMBO_V3") class DynamicCombo(ComfyTypeI): @@ -1022,23 +1034,6 @@ class DynamicCombo(ComfyTypeI): super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) self.options = options - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - # check if dynamic input's id is in live_inputs - if self.id in live_inputs: - curr_prefix = f"{curr_prefix}{self.id}." - key = live_inputs[self.id] - selected_option = None - for option in self.options: - if option.key == key: - selected_option = option - break - if selected_option is not None: - add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self) - - def get_dynamic(self) -> list[Input]: - return [input for option in self.options for input in option.inputs] - def get_all(self) -> list[Input]: return [self] + [input for option in self.options for input in option.inputs] @@ -1053,6 +1048,24 @@ class DynamicCombo(ComfyTypeI): for input in option.inputs: input.validate() + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + key = live_inputs[finalized_id] + selected_option = None + # get options from dict + options: list[dict[str, str | dict[str, Any]]] = value[1]["options"] + for option in options: + if option["key"] == key: + selected_option = option + break + if selected_option is not None: + parse_class_inputs(out_dict, live_inputs, selected_option["inputs"], curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + @comfytype(io_type="COMFY_DYNAMICSLOT_V3") class DynamicSlot(ComfyTypeI): Type = dict[str, Any] @@ -1075,17 +1088,8 @@ class DynamicSlot(ComfyTypeI): self.force_input = True self.slot.force_input = True - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - if self.id in live_inputs: - curr_prefix = f"{curr_prefix}{self.id}." - add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix) - - def get_dynamic(self) -> list[Input]: - return [self.slot] + self.inputs - def get_all(self) -> list[Input]: - return [self] + [self.slot] + self.inputs + return [self.slot] + self.inputs def as_dict(self): return super().as_dict() | prune_dict({ @@ -1099,17 +1103,41 @@ class DynamicSlot(ComfyTypeI): for input in self.inputs: input.validate() -def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None): - dynamic = d.setdefault("dynamic_paths", {}) - if self is not None: - dynamic[self.id] = f"{curr_prefix}{self.id}" - for i in inputs: - if not isinstance(i, DynamicInput): - dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}" + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + inputs = value[1]["inputs"] + parse_class_inputs(out_dict, live_inputs, inputs, curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + +DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {} +def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]): + DYNAMIC_INPUT_LOOKUP[io_type] = func + +def get_dynamic_input_func(io_type: str) -> Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]: + return DYNAMIC_INPUT_LOOKUP[io_type] + +def setup_dynamic_input_funcs(): + # Autogrow.Input + register_dynamic_input_func(Autogrow.io_type, Autogrow._expand_schema_for_dynamic) + # DynamicCombo.Input + register_dynamic_input_func(DynamicCombo.io_type, DynamicCombo._expand_schema_for_dynamic) + # DynamicSlot.Input + register_dynamic_input_func(DynamicSlot.io_type, DynamicSlot._expand_schema_for_dynamic) + +if len(DYNAMIC_INPUT_LOOKUP) == 0: + setup_dynamic_input_funcs() class V3Data(TypedDict): hidden_inputs: dict[str, Any] + 'Dictionary where the keys are the hidden input ids and the values are the values of the hidden inputs.' dynamic_paths: dict[str, Any] + 'Dictionary where the keys are the input ids and the values dictate how to turn the inputs into a nested dictionary.' + create_dynamic_tuple: bool + 'When True, the value of the dynamic input will be in the format (value, path_key).' class HiddenHolder: def __init__(self, unique_id: str, prompt: Any, @@ -1145,6 +1173,10 @@ class HiddenHolder: api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None), ) + @classmethod + def from_v3_data(cls, v3_data: V3Data | None) -> HiddenHolder: + return cls.from_dict(v3_data["hidden_inputs"] if v3_data else None) + class Hidden(str, Enum): ''' Enumerator for requesting hidden variables in nodes. @@ -1250,61 +1282,56 @@ class Schema: - verify ids on inputs and outputs are unique - both internally and in relation to each other ''' nested_inputs: list[Input] = [] - if self.inputs is not None: - for input in self.inputs: + for input in self.inputs: + if not isinstance(input, DynamicInput): nested_inputs.extend(input.get_all()) - input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else [] - output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] + input_ids = [i.id for i in nested_inputs] + output_ids = [o.id for o in self.outputs] input_set = set(input_ids) output_set = set(output_ids) - issues = [] + issues: list[str] = [] # verify ids are unique per list if len(input_set) != len(input_ids): issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.") if len(output_set) != len(output_ids): issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.") - # verify ids are unique between lists - intersection = input_set & output_set - if len(intersection) > 0: - issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.") if len(issues) > 0: raise ValueError("\n".join(issues)) # validate inputs and outputs - if self.inputs is not None: - for input in self.inputs: - input.validate() - if self.outputs is not None: - for output in self.outputs: - output.validate() + for input in self.inputs: + input.validate() + for output in self.outputs: + output.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" + # ensure inputs, outputs, and hidden are lists + if self.inputs is None: + self.inputs = [] + if self.outputs is None: + self.outputs = [] + if self.hidden is None: + self.hidden = [] # if is an api_node, will need key-related hidden if self.is_api_node: - if self.hidden is None: - self.hidden = [] if Hidden.auth_token_comfy_org not in self.hidden: self.hidden.append(Hidden.auth_token_comfy_org) if Hidden.api_key_comfy_org not in self.hidden: self.hidden.append(Hidden.api_key_comfy_org) # if is an output_node, will need prompt and extra_pnginfo if self.is_output_node: - if self.hidden is None: - self.hidden = [] if Hidden.prompt not in self.hidden: self.hidden.append(Hidden.prompt) if Hidden.extra_pnginfo not in self.hidden: self.hidden.append(Hidden.extra_pnginfo) # give outputs without ids default ids - if self.outputs is not None: - for i, output in enumerate(self.outputs): - if output.id is None: - output.id = f"_{i}_{output.io_type}_" + for i, output in enumerate(self.outputs): + if output.id is None: + output.id = f"_{i}_{output.io_type}_" - def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1: - # NOTE: live_inputs will not be used anymore very soon and this will be done another way + def get_v1_info(self, cls) -> NodeInfoV1: # get V1 inputs - input = create_input_dict_v1(self.inputs, live_inputs) + input = create_input_dict_v1(self.inputs) if self.hidden: for hidden in self.hidden: input.setdefault("hidden", {})[hidden.name] = (hidden.value,) @@ -1384,33 +1411,54 @@ class Schema: ) return info +def get_finalized_class_inputs(d: dict[str, Any], live_inputs: dict[str, Any], include_hidden=False) -> tuple[dict[str, Any], V3Data]: + out_dict = { + "required": {}, + "optional": {}, + "dynamic_paths": {}, + } + d = d.copy() + # ignore hidden for parsing + hidden = d.pop("hidden", None) + parse_class_inputs(out_dict, live_inputs, d) + if hidden is not None and include_hidden: + out_dict["hidden"] = hidden + v3_data = {} + dynamic_paths = out_dict.pop("dynamic_paths", None) + if dynamic_paths is not None: + v3_data["dynamic_paths"] = dynamic_paths + return out_dict, hidden, v3_data -def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict: +def parse_class_inputs(out_dict: dict[str, Any], live_inputs: dict[str, Any], curr_dict: dict[str, Any], curr_prefix: list[str] | None=None) -> None: + for input_type, inner_d in curr_dict.items(): + for id, value in inner_d.items(): + io_type = value[0] + if io_type in DYNAMIC_INPUT_LOOKUP: + # dynamic inputs need to be handled with lookup functions + dynamic_input_func = get_dynamic_input_func(io_type) + new_prefix = handle_prefix(curr_prefix, id) + dynamic_input_func(out_dict, live_inputs, value, input_type, new_prefix) + else: + # non-dynamic inputs get directly transferred + finalized_id = finalize_prefix(curr_prefix, id) + out_dict[input_type][finalized_id] = value + if curr_prefix: + out_dict["dynamic_paths"][finalized_id] = finalized_id + +def create_input_dict_v1(inputs: list[Input]) -> dict: input = { "required": {} } - add_to_input_dict_v1(input, inputs, live_inputs) + for i in inputs: + add_to_dict_v1(i, input) return input -def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''): - for i in inputs: - if isinstance(i, DynamicInput): - add_to_dict_v1(i, d) - if live_inputs is not None: - i.expand_schema_for_dynamic(d, live_inputs, curr_prefix) - else: - add_to_dict_v1(i, d) - -def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None): +def add_to_dict_v1(i: Input, d: dict): key = "optional" if i.optional else "required" as_dict = i.as_dict() # for v1, we don't want to include the optional key as_dict.pop("optional", None) - if dynamic_dict is None: - value = (i.get_io_type(), as_dict) - else: - value = (i.get_io_type(), as_dict, dynamic_dict) - d.setdefault(key, {})[i.id] = value + d.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) def add_to_dict_v3(io: Input | Output, d: dict): d[io.id] = (io.get_io_type(), io.as_dict()) @@ -1422,6 +1470,8 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): values = values.copy() result = {} + create_tuple = v3_data.get("create_dynamic_tuple", False) + for key, path in paths.items(): parts = path.split(".") current = result @@ -1430,7 +1480,10 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): is_last = (i == len(parts) - 1) if is_last: - current[p] = values.pop(key, None) + value = values.pop(key, None) + if create_tuple: + value = (value, key) + current[p] = value else: current = current.setdefault(p, {}) @@ -1445,7 +1498,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): SCHEMA = None # filled in during execution - resources: Resources = None hidden: HiddenHolder = None @classmethod @@ -1492,7 +1544,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): return [name for name in kwargs if kwargs[name] is None] def __init__(self): - self.local_resources: ResourcesLocal = None self.__class__.VALIDATE_CLASS() @classmethod @@ -1560,7 +1611,7 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"] if v3_data else None) + type_clone.hidden = HiddenHolder.from_v3_data(v3_data) return type_clone @final @@ -1677,19 +1728,10 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]: + def INPUT_TYPES(cls) -> dict[str, dict]: schema = cls.FINALIZE_SCHEMA() - info = schema.get_v1_info(cls, live_inputs) - input = info.input - if not include_hidden: - input.pop("hidden", None) - if return_schema: - v3_data: V3Data = {} - dynamic = input.pop("dynamic_paths", None) - if dynamic is not None: - v3_data["dynamic_paths"] = dynamic - return input, schema, v3_data - return input + info = schema.get_v1_info(cls) + return info.input @final @classmethod @@ -1808,7 +1850,7 @@ class NodeOutput(_NodeOutputInternal): return self.args if len(self.args) > 0 else None @classmethod - def from_dict(cls, data: dict[str, Any]) -> "NodeOutput": + def from_dict(cls, data: dict[str, Any]) -> NodeOutput: args = () ui = None expand = None @@ -1903,8 +1945,8 @@ __all__ = [ "Tracks", # Dynamic Types "MatchType", - # "DynamicCombo", - # "Autogrow", + "DynamicCombo", + "Autogrow", # Other classes "HiddenHolder", "Hidden", diff --git a/comfy_api/latest/_resources.py b/comfy_api/latest/_resources.py deleted file mode 100644 index a6bdda972..000000000 --- a/comfy_api/latest/_resources.py +++ /dev/null @@ -1,72 +0,0 @@ -from __future__ import annotations -import comfy.utils -import folder_paths -import logging -from abc import ABC, abstractmethod -from typing import Any -import torch - -class ResourceKey(ABC): - Type = Any - def __init__(self): - ... - -class TorchDictFolderFilename(ResourceKey): - '''Key for requesting a torch file via file_name from a folder category.''' - Type = dict[str, torch.Tensor] - def __init__(self, folder_name: str, file_name: str): - self.folder_name = folder_name - self.file_name = file_name - - def __hash__(self): - return hash((self.folder_name, self.file_name)) - - def __eq__(self, other: object) -> bool: - if not isinstance(other, TorchDictFolderFilename): - return False - return self.folder_name == other.folder_name and self.file_name == other.file_name - - def __str__(self): - return f"{self.folder_name} -> {self.file_name}" - -class Resources(ABC): - def __init__(self): - ... - - @abstractmethod - def get(self, key: ResourceKey, default: Any=...) -> Any: - pass - -class ResourcesLocal(Resources): - def __init__(self): - super().__init__() - self.local_resources: dict[ResourceKey, Any] = {} - - def get(self, key: ResourceKey, default: Any=...) -> Any: - cached = self.local_resources.get(key, None) - if cached is not None: - logging.info(f"Using cached resource '{key}'") - return cached - logging.info(f"Loading resource '{key}'") - to_return = None - if isinstance(key, TorchDictFolderFilename): - if default is ...: - to_return = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise(key.folder_name, key.file_name), safe_load=True) - else: - full_path = folder_paths.get_full_path(key.folder_name, key.file_name) - if full_path is not None: - to_return = comfy.utils.load_torch_file(full_path, safe_load=True) - - if to_return is not None: - self.local_resources[key] = to_return - return to_return - if default is not ...: - return default - raise Exception(f"Unsupported resource key type: {type(key)}") - - -class _RESOURCES: - ResourceKey = ResourceKey - TorchDictFolderFilename = TorchDictFolderFilename - Resources = Resources - ResourcesLocal = ResourcesLocal diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index 0d811e354..8fc5846b7 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -97,6 +97,11 @@ def get_input_info( extra_info = input_info[1] else: extra_info = {} + # if input_type is a list, it is a Combo defined in outdated format; convert it. + # NOTE: uncomment this when we are confident old format going away won't cause too much trouble. + # if isinstance(input_type, list): + # extra_info["options"] = input_type + # input_type = IO.Combo.io_type return input_type, input_category, extra_info class TopologicalSort: diff --git a/comfy_execution/validation.py b/comfy_execution/validation.py index 24c0b4ed7..e73624bd1 100644 --- a/comfy_execution/validation.py +++ b/comfy_execution/validation.py @@ -21,14 +21,24 @@ def validate_node_input( """ # If the types are exactly the same, we can return immediately # Use pre-union behaviour: inverse of `__ne__` + # NOTE: this lets legacy '*' Any types work that override the __ne__ method of the str class. if not received_type != input_type: return True + # If one of the types is '*', we can return True immediately; this is the 'Any' type. + if received_type == IO.AnyType.io_type or input_type == IO.AnyType.io_type: + return True + # If the received type or input_type is a MatchType, we can return True immediately; # validation for this is handled by the frontend if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: return True + # This accounts for some custom nodes that output lists of options as the type; + # if we ever want to break them on purpose, this can be removed + if isinstance(received_type, list) and input_type == IO.Combo.io_type: + return True + # Not equal, and not strings if not isinstance(received_type, str) or not isinstance(input_type, str): return False @@ -37,6 +47,10 @@ def validate_node_input( received_types = set(t.strip() for t in received_type.split(",")) input_types = set(t.strip() for t in input_type.split(",")) + # If any of the types is '*', we can return True immediately; this is the 'Any' type. + if IO.AnyType.io_type in received_types or IO.AnyType.io_type in input_types: + return True + if strict: # In strict mode, all received types must be in the input types return received_types.issubset(input_types) diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 2815c5ffc..9ba1c4ba8 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -255,6 +255,7 @@ class LatentBatch(io.ComfyNode): return io.Schema( node_id="LatentBatch", category="latent/batch", + is_deprecated=True, inputs=[ io.Latent.Input("samples1"), io.Latent.Input("samples2"), diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py index 95a6ba788..eb888316a 100644 --- a/comfy_extras/nodes_logic.py +++ b/comfy_extras/nodes_logic.py @@ -1,8 +1,11 @@ +from __future__ import annotations from typing import TypedDict from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy_api.latest import _io +# sentinel for missing inputs +MISSING = object() class SwitchNode(io.ComfyNode): @@ -14,6 +17,37 @@ class SwitchNode(io.ComfyNode): display_name="Switch", category="logic", is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True), + io.MatchType.Input("on_true", template=template, lazy=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=None, on_true=None): + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def execute(cls, switch, on_true, on_false) -> io.NodeOutput: + return io.NodeOutput(on_true if switch else on_false) + + +class SoftSwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySoftSwitchNode", + display_name="Soft Switch", + category="logic", + is_experimental=True, inputs=[ io.Boolean.Input("switch"), io.MatchType.Input("on_false", template=template, lazy=True, optional=True), @@ -25,14 +59,14 @@ class SwitchNode(io.ComfyNode): ) @classmethod - def check_lazy_status(cls, switch, on_false=..., on_true=...): - # We use ... instead of None, as None is passed for connected-but-unevaluated inputs. + def check_lazy_status(cls, switch, on_false=MISSING, on_true=MISSING): + # We use MISSING instead of None, as None is passed for connected-but-unevaluated inputs. # This trick allows us to ignore the value of the switch and still be able to run execute(). # One of the inputs may be missing, in which case we need to evaluate the other input - if on_false is ...: + if on_false is MISSING: return ["on_true"] - if on_true is ...: + if on_true is MISSING: return ["on_false"] # Normal lazy switch operation if switch and on_true is None: @@ -41,22 +75,50 @@ class SwitchNode(io.ComfyNode): return ["on_false"] @classmethod - def validate_inputs(cls, switch, on_false=..., on_true=...): + def validate_inputs(cls, switch, on_false=MISSING, on_true=MISSING): # This check happens before check_lazy_status(), so we can eliminate the case where # both inputs are missing. - if on_false is ... and on_true is ...: + if on_false is MISSING and on_true is MISSING: return "At least one of on_false or on_true must be connected to Switch node" return True @classmethod - def execute(cls, switch, on_true=..., on_false=...) -> io.NodeOutput: - if on_true is ...: + def execute(cls, switch, on_true=MISSING, on_false=MISSING) -> io.NodeOutput: + if on_true is MISSING: return io.NodeOutput(on_false) - if on_false is ...: + if on_false is MISSING: return io.NodeOutput(on_true) return io.NodeOutput(on_true if switch else on_false) +class CustomComboNode(io.ComfyNode): + """ + Frontend node that allows user to write their own options for a combo. + This is here to make sure the node has a backend-representation to avoid some annoyances. + """ + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CustomCombo", + display_name="Custom Combo", + category="utils", + is_experimental=True, + inputs=[io.Combo.Input("choice", options=[])], + outputs=[io.String.Output()] + ) + + @classmethod + def validate_inputs(cls, choice: io.Combo.Type) -> bool: + # NOTE: DO NOT DO THIS unless you want to skip validation entirely on the node's inputs. + # I am doing that here because the widgets (besides the combo dropdown) on this node are fully frontend defined. + # I need to skip checking that the chosen combo option is in the options list, since those are defined by the user. + return True + + @classmethod + def execute(cls, choice: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(choice) + + class DCTestNode(io.ComfyNode): class DCValues(TypedDict): combo: str @@ -72,14 +134,14 @@ class DCTestNode(io.ComfyNode): display_name="DCTest", category="logic", is_output_node=True, - inputs=[_io.DynamicCombo.Input("combo", options=[ - _io.DynamicCombo.Option("option1", [io.String.Input("string")]), - _io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), - _io.DynamicCombo.Option("option3", [io.Image.Input("image")]), - _io.DynamicCombo.Option("option4", [ - _io.DynamicCombo.Input("subcombo", options=[ - _io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), - _io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), + inputs=[io.DynamicCombo.Input("combo", options=[ + io.DynamicCombo.Option("option1", [io.String.Input("string")]), + io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), + io.DynamicCombo.Option("option3", [io.Image.Input("image")]), + io.DynamicCombo.Option("option4", [ + io.DynamicCombo.Input("subcombo", options=[ + io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), + io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), ]) ])] )], @@ -141,14 +203,65 @@ class AutogrowPrefixTestNode(io.ComfyNode): combined = ",".join([str(x) for x in vals]) return io.NodeOutput(combined) +class ComboOutputTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ComboOptionTestNode", + display_name="ComboOptionTest", + category="logic", + inputs=[io.Combo.Input("combo", options=["option1", "option2", "option3"]), + io.Combo.Input("combo2", options=["option4", "option5", "option6"])], + outputs=[io.Combo.Output(), io.Combo.Output()], + ) + + @classmethod + def execute(cls, combo: io.Combo.Type, combo2: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(combo, combo2) + +class ConvertStringToComboNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ConvertStringToComboNode", + display_name="Convert String to Combo", + category="logic", + inputs=[io.String.Input("string")], + outputs=[io.Combo.Output()], + ) + + @classmethod + def execute(cls, string: str) -> io.NodeOutput: + return io.NodeOutput(string) + +class InvertBooleanNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="InvertBooleanNode", + display_name="Invert Boolean", + category="logic", + inputs=[io.Boolean.Input("boolean")], + outputs=[io.Boolean.Output()], + ) + + @classmethod + def execute(cls, boolean: bool) -> io.NodeOutput: + return io.NodeOutput(not boolean) + class LogicExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ - # SwitchNode, + SwitchNode, + CustomComboNode, + # SoftSwitchNode, + # ConvertStringToComboNode, # DCTestNode, # AutogrowNamesTestNode, # AutogrowPrefixTestNode, + # ComboOutputTestNode, + # InvertBooleanNode, ] async def comfy_entrypoint() -> LogicExtension: diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index ca2cdeb50..01afa13a1 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -4,11 +4,15 @@ import torch import torch.nn.functional as F from PIL import Image import math +from enum import Enum +from typing import TypedDict, Literal import comfy.utils import comfy.model_management +from comfy_extras.nodes_latent import reshape_latent_to import node_helpers from comfy_api.latest import ComfyExtension, io +from nodes import MAX_RESOLUTION class Blend(io.ComfyNode): @classmethod @@ -241,6 +245,353 @@ class ImageScaleToTotalPixels(io.ComfyNode): s = s.movedim(1,-1) return io.NodeOutput(s) +class ResizeType(str, Enum): + SCALE_BY = "scale by multiplier" + SCALE_DIMENSIONS = "scale dimensions" + SCALE_LONGER_DIMENSION = "scale longer dimension" + SCALE_SHORTER_DIMENSION = "scale shorter dimension" + SCALE_WIDTH = "scale width" + SCALE_HEIGHT = "scale height" + SCALE_TOTAL_PIXELS = "scale total pixels" + MATCH_SIZE = "match size" + +def is_image(input: torch.Tensor) -> bool: + # images have 4 dimensions: [batch, height, width, channels] + # masks have 3 dimensions: [batch, height, width] + return len(input.shape) == 4 + +def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(-1, 1) + else: + input = input.unsqueeze(1) + return input + +def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(1, -1) + else: + input = input.squeeze(1) + return input + +def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = round(input.shape[-1] * multiplier) + height = round(input.shape[-2] * multiplier) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor: + if width == 0 and height == 0: + return input + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + + if width == 0: + width = max(1, round(input.shape[-1] * height / input.shape[-2])) + elif height == 0: + height = max(1, round(input.shape[-2] * width / input.shape[-1])) + + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height > width: + width = round((width / height) * longer_size) + height = longer_size + elif width > height: + height = round((height / width) * longer_size) + width = longer_size + else: + height = longer_size + width = longer_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height < width: + width = round((width / height) * shorter_size) + height = shorter_size + elif width > height: + height = round((height / width) * shorter_size) + width = shorter_size + else: + height = shorter_size + width = shorter_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + total = int(megapixels * 1024 * 1024) + + scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2])) + width = round(input.shape[-1] * scale_by) + height = round(input.shape[-2] * scale_by) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + match = init_image_mask_input(match, is_image(match)) + + width = match.shape[-1] + height = match.shape[-2] + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +class ResizeImageMaskNode(io.ComfyNode): + + scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop_methods = ["disabled", "center"] + + class ResizeTypedDict(TypedDict): + resize_type: ResizeType + scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop: Literal["disabled", "center"] + multiplier: float + width: int + height: int + longer_size: int + shorter_size: int + megapixels: float + + @classmethod + def define_schema(cls): + template = io.MatchType.Template("input_type", [io.Image, io.Mask]) + crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") + return io.Schema( + node_id="ResizeImageMaskNode", + display_name="Resize Image/Mask", + category="transform", + inputs=[ + io.MatchType.Input("input", template=template), + io.DynamicCombo.Input("resize_type", options=[ + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + crop_combo, + ]), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask]), + crop_combo, + ]), + ]), + io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), + ], + outputs=[io.MatchType.Output(template=template, display_name="resized")] + ) + + @classmethod + def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput: + selected_type = resize_type["resize_type"] + if selected_type == ResizeType.SCALE_BY: + return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method)) + elif selected_type == ResizeType.SCALE_DIMENSIONS: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"])) + elif selected_type == ResizeType.SCALE_LONGER_DIMENSION: + return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method)) + elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION: + return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method)) + elif selected_type == ResizeType.SCALE_WIDTH: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method)) + elif selected_type == ResizeType.SCALE_HEIGHT: + return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method)) + elif selected_type == ResizeType.SCALE_TOTAL_PIXELS: + return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method)) + elif selected_type == ResizeType.MATCH_SIZE: + return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"])) + raise ValueError(f"Unsupported resize type: {selected_type}") + +def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None: + if len(images) == 0: + return None + # first, get the max channels count + max_channels = max(image.shape[-1] for image in images) + # then, pad all images to have the same channels count + padded_images: list[torch.Tensor] = [] + for image in images: + if image.shape[-1] < max_channels: + padded_images.append(torch.nn.functional.pad(image, (0,1), mode='constant', value=1.0)) + else: + padded_images.append(image) + # resize all images to be the same size as the first image + resized_images: list[torch.Tensor] = [] + first_image_shape = padded_images[0].shape + for image in padded_images: + if image.shape[1:] != first_image_shape[1:]: + resized_images.append(comfy.utils.common_upscale(image.movedim(-1,1), first_image_shape[2], first_image_shape[1], "bilinear", "center").movedim(1,-1)) + else: + resized_images.append(image) + # batch the images in the format [b, h, w, c] + return torch.cat(resized_images, dim=0) + +def batch_masks(masks: list[torch.Tensor]) -> torch.Tensor | None: + if len(masks) == 0: + return None + # resize all masks to be the same size as the first mask + resized_masks: list[torch.Tensor] = [] + first_mask_shape = masks[0].shape + for mask in masks: + if mask.shape[1:] != first_mask_shape[1:]: + mask = init_image_mask_input(mask, is_type_image=False) + mask = comfy.utils.common_upscale(mask, first_mask_shape[2], first_mask_shape[1], "bilinear", "center") + resized_masks.append(finalize_image_mask_input(mask, is_type_image=False)) + else: + resized_masks.append(mask) + # batch the masks in the format [b, h, w] + return torch.cat(resized_masks, dim=0) + +def batch_latents(latents: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor] | None: + if len(latents) == 0: + return None + samples_out = latents[0].copy() + samples_out["batch_index"] = [] + first_samples = latents[0]["samples"] + tensors: list[torch.Tensor] = [] + for latent in latents: + # first, deal with latent tensors + tensors.append(reshape_latent_to(first_samples.shape, latent["samples"], repeat_batch=False)) + # next, deal with batch_index + samples_out["batch_index"].extend(latent.get("batch_index", [x for x in range(0, latent["samples"].shape[0])])) + samples_out["samples"] = torch.cat(tensors, dim=0) + return samples_out + +class BatchImagesNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Image.Input("image"), prefix="image", min=2, max=50) + return io.Schema( + node_id="BatchImagesNode", + display_name="Batch Images", + category="image", + inputs=[ + io.Autogrow.Input("images", template=autogrow_template) + ], + outputs=[ + io.Image.Output() + ] + ) + + @classmethod + def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_images(list(images.values()))) + +class BatchMasksNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50) + return io.Schema( + node_id="BatchMasksNode", + display_name="Batch Masks", + category="mask", + inputs=[ + io.Autogrow.Input("masks", template=autogrow_template) + ], + outputs=[ + io.Mask.Output() + ] + ) + + @classmethod + def execute(cls, masks: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_masks(list(masks.values()))) + +class BatchLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50) + return io.Schema( + node_id="BatchLatentsNode", + display_name="Batch Latents", + category="latent", + inputs=[ + io.Autogrow.Input("latents", template=autogrow_template) + ], + outputs=[ + io.Latent.Output() + ] + ) + + @classmethod + def execute(cls, latents: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_latents(list(latents.values()))) + +class BatchImagesMasksLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + matchtype_template = io.MatchType.Template("input", allowed_types=[io.Image, io.Mask, io.Latent]) + autogrow_template = io.Autogrow.TemplatePrefix( + io.MatchType.Input("input", matchtype_template), + prefix="input", min=1, max=50) + return io.Schema( + node_id="BatchImagesMasksLatentsNode", + display_name="Batch Images/Masks/Latents", + category="util", + inputs=[ + io.Autogrow.Input("inputs", template=autogrow_template) + ], + outputs=[ + io.MatchType.Output(id=None, template=matchtype_template) + ] + ) + + @classmethod + def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput: + batched = None + values = list(inputs.values()) + # latents + if isinstance(values[0], dict): + batched = batch_latents(values) + # images + elif is_image(values[0]): + batched = batch_images(values) + # masks + else: + batched = batch_masks(values) + return io.NodeOutput(batched) + class PostProcessingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: @@ -250,6 +601,11 @@ class PostProcessingExtension(ComfyExtension): Quantize, Sharpen, ImageScaleToTotalPixels, + ResizeImageMaskNode, + BatchImagesNode, + BatchMasksNode, + BatchLatentsNode, + # BatchImagesMasksLatentsNode, ] async def comfy_entrypoint() -> PostProcessingExtension: diff --git a/comfy_extras/nodes_primitive.py b/comfy_extras/nodes_primitive.py index 5a1aeba80..937321800 100644 --- a/comfy_extras/nodes_primitive.py +++ b/comfy_extras/nodes_primitive.py @@ -66,7 +66,7 @@ class Float(io.ComfyNode): display_name="Float", category="utils/primitive", inputs=[ - io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize), + io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize, step=0.1), ], outputs=[io.Float.Output()], ) diff --git a/execution.py b/execution.py index 0c239efd7..38159b1f4 100644 --- a/execution.py +++ b/execution.py @@ -79,7 +79,7 @@ class IsChangedCache: # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) try: - is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) + is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name, v3_data=v3_data) is_changed = await resolve_map_node_over_list_results(is_changed) node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] except Exception as e: @@ -148,13 +148,12 @@ SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org") def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): is_v3 = issubclass(class_def, _ComfyNodeInternal) v3_data: io.V3Data = {} + hidden_inputs_v3 = {} + valid_inputs = class_def.INPUT_TYPES() if is_v3: - valid_inputs, schema, v3_data = class_def.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) - else: - valid_inputs = class_def.INPUT_TYPES() + valid_inputs, hidden, v3_data = _io.get_finalized_class_inputs(valid_inputs, inputs) input_data_all = {} missing_keys = {} - hidden_inputs_v3 = {} for x in inputs: input_data = inputs[x] _, input_category, input_info = get_input_info(class_def, x, valid_inputs) @@ -180,18 +179,18 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt= input_data_all[x] = [input_data] if is_v3: - if schema.hidden: - if io.Hidden.prompt in schema.hidden: + if hidden is not None: + if io.Hidden.prompt.name in hidden: hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {} - if io.Hidden.dynprompt in schema.hidden: + if io.Hidden.dynprompt.name in hidden: hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt - if io.Hidden.extra_pnginfo in schema.hidden: + if io.Hidden.extra_pnginfo.name in hidden: hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None) - if io.Hidden.unique_id in schema.hidden: + if io.Hidden.unique_id.name in hidden: hidden_inputs_v3[io.Hidden.unique_id] = unique_id - if io.Hidden.auth_token_comfy_org in schema.hidden: + if io.Hidden.auth_token_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None) - if io.Hidden.api_key_comfy_org in schema.hidden: + if io.Hidden.api_key_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None) else: if "hidden" in valid_inputs: @@ -258,7 +257,7 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f pre_execute_cb(index) # V3 if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)): - # if is just a class, then assign no resources or state, just create clone + # if is just a class, then assign no state, just create clone if is_class(obj): type_obj = obj obj.VALIDATE_CLASS() @@ -481,7 +480,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, else: lazy_status_present = getattr(obj, "check_lazy_status", None) is not None if lazy_status_present: - required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data) + # for check_lazy_status, the returned data should include the original key of the input + v3_data_lazy = v3_data.copy() + v3_data_lazy["create_dynamic_tuple"] = True + required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data_lazy) required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = [x for x in required_inputs if isinstance(x,str) and ( @@ -756,10 +758,13 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors = [] valid = True + v3_data = None validate_function_inputs = [] validate_has_kwargs = False if issubclass(obj_class, _ComfyNodeInternal): - class_inputs, _, _ = obj_class.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) + obj_class: _io._ComfyNodeBaseInternal + class_inputs = obj_class.INPUT_TYPES() + class_inputs, _, v3_data = _io.get_finalized_class_inputs(class_inputs, inputs) validate_function_name = "validate_inputs" validate_function = first_real_override(obj_class, validate_function_name) else: @@ -779,10 +784,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): assert extra_info is not None if x not in inputs: if input_category == "required": + details = f"{x}" if not v3_data else x.split(".")[-1] error = { "type": "required_input_missing", "message": "Required input is missing", - "details": f"{x}", + "details": details, "extra_info": { "input_name": x } @@ -916,8 +922,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors.append(error) continue - if isinstance(input_type, list): - combo_options = input_type + if isinstance(input_type, list) or input_type == io.Combo.io_type: + if input_type == io.Combo.io_type: + combo_options = extra_info.get("options", []) + else: + combo_options = input_type if val not in combo_options: input_config = info list_info = "" diff --git a/nodes.py b/nodes.py index 7d83ecb21..d9e4ebd91 100644 --- a/nodes.py +++ b/nodes.py @@ -1863,6 +1863,7 @@ class ImageBatch: FUNCTION = "batch" CATEGORY = "image" + DEPRECATED = True def batch(self, image1, image2): if image1.shape[-1] != image2.shape[-1]: From 6ca3d5c011bc15737131eb665939ae0a39a74254 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 31 Dec 2025 06:12:38 +0200 Subject: [PATCH 41/52] fix(api-nodes-vidu): preserve percent-encoding for signed URLs (#11564) --- comfy_api_nodes/util/_helpers.py | 20 ++++++++++++++++++++ comfy_api_nodes/util/download_helpers.py | 3 ++- 2 files changed, 22 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/util/_helpers.py b/comfy_api_nodes/util/_helpers.py index 491e6b6a8..648defe3d 100644 --- a/comfy_api_nodes/util/_helpers.py +++ b/comfy_api_nodes/util/_helpers.py @@ -1,16 +1,22 @@ import asyncio import contextlib import os +import re import time from collections.abc import Callable from io import BytesIO +from yarl import URL + from comfy.cli_args import args from comfy.model_management import processing_interrupted from comfy_api.latest import IO from .common_exceptions import ProcessingInterrupted +_HAS_PCT_ESC = re.compile(r"%[0-9A-Fa-f]{2}") # any % followed by 2 hex digits +_HAS_BAD_PCT = re.compile(r"%(?![0-9A-Fa-f]{2})") # any % not followed by 2 hex digits + def is_processing_interrupted() -> bool: """Return True if user/runtime requested interruption.""" @@ -69,3 +75,17 @@ def get_fs_object_size(path_or_object: str | BytesIO) -> int: if isinstance(path_or_object, str): return os.path.getsize(path_or_object) return len(path_or_object.getvalue()) + + +def to_aiohttp_url(url: str) -> URL: + """If `url` appears to be already percent-encoded (contains at least one valid %HH + escape and no malformed '%' sequences) and contains no raw whitespace/control + characters preserve the original encoding byte-for-byte (important for signed/presigned URLs). + Otherwise, return `URL(url)` and allow yarl to normalize/quote as needed.""" + if any(c.isspace() for c in url) or any(ord(c) < 0x20 for c in url): + # Avoid encoded=True if URL contains raw whitespace/control chars + return URL(url) + if _HAS_PCT_ESC.search(url) and not _HAS_BAD_PCT.search(url): + # Preserve encoding only if it appears pre-encoded AND has no invalid % sequences + return URL(url, encoded=True) + return URL(url) diff --git a/comfy_api_nodes/util/download_helpers.py b/comfy_api_nodes/util/download_helpers.py index 3e0d0352d..4668d14a9 100644 --- a/comfy_api_nodes/util/download_helpers.py +++ b/comfy_api_nodes/util/download_helpers.py @@ -19,6 +19,7 @@ from ._helpers import ( get_auth_header, is_processing_interrupted, sleep_with_interrupt, + to_aiohttp_url, ) from .client import _diagnose_connectivity from .common_exceptions import ApiServerError, LocalNetworkError, ProcessingInterrupted @@ -94,7 +95,7 @@ async def download_url_to_bytesio( monitor_task = asyncio.create_task(_monitor()) - req_task = asyncio.create_task(session.get(url, headers=headers)) + req_task = asyncio.create_task(session.get(to_aiohttp_url(url), headers=headers)) done, pending = await asyncio.wait({req_task, monitor_task}, return_when=asyncio.FIRST_COMPLETED) if monitor_task in done and req_task in pending: From 236b9e211d5093b33acbe1918f56a6bfb4a5cf17 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 1 Jan 2026 05:38:39 +0800 Subject: [PATCH 42/52] chore: update workflow templates to v0.7.65 (#11579) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8b670b813..3a05799eb 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.64 +comfyui-workflow-templates==0.7.65 comfyui-embedded-docs==0.3.1 torch torchsde From d622a618749b603531b753cef286a6051dd85565 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 31 Dec 2025 14:38:36 -0800 Subject: [PATCH 43/52] Refactor: move clip_preprocess to comfy.clip_model (#11586) --- comfy/clip_model.py | 19 +++++++++++++++++++ comfy/clip_vision.py | 22 ++-------------------- 2 files changed, 21 insertions(+), 20 deletions(-) diff --git a/comfy/clip_model.py b/comfy/clip_model.py index 7c0cadab5..e88872728 100644 --- a/comfy/clip_model.py +++ b/comfy/clip_model.py @@ -2,6 +2,25 @@ import torch from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.ops +def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): + image = image[:, :, :, :3] if image.shape[3] > 3 else image + mean = torch.tensor(mean, device=image.device, dtype=image.dtype) + std = torch.tensor(std, device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + if not (image.shape[2] == size and image.shape[3] == size): + if crop: + scale = (size / min(image.shape[2], image.shape[3])) + scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) + else: + scale_size = (size, size) + + image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) + class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): super().__init__() diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 447b1ce4a..d5fc53497 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -1,6 +1,5 @@ from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace import os -import torch import json import logging @@ -17,24 +16,7 @@ class Output: def __setitem__(self, key, item): setattr(self, key, item) -def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): - image = image[:, :, :, :3] if image.shape[3] > 3 else image - mean = torch.tensor(mean, device=image.device, dtype=image.dtype) - std = torch.tensor(std, device=image.device, dtype=image.dtype) - image = image.movedim(-1, 1) - if not (image.shape[2] == size and image.shape[3] == size): - if crop: - scale = (size / min(image.shape[2], image.shape[3])) - scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) - else: - scale_size = (size, size) - - image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) - h = (image.shape[2] - size)//2 - w = (image.shape[3] - size)//2 - image = image[:,:,h:h+size,w:w+size] - image = torch.clip((255. * image), 0, 255).round() / 255.0 - return (image - mean.view([3,1,1])) / std.view([3,1,1]) +clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually IMAGE_ENCODERS = { "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection, @@ -73,7 +55,7 @@ class ClipVisionModel(): def encode_image(self, image, crop=True): comfy.model_management.load_model_gpu(self.patcher) - pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() + pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2) outputs = Output() From 1bdc9a947f578733f81c9ae894a5acd5809c7a66 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 31 Dec 2025 16:29:55 -0800 Subject: [PATCH 44/52] Remove duplicate import of model_management (#11587) --- comfy/text_encoders/llama.py | 1 - 1 file changed, 1 deletion(-) diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index ed29e014d..faa4e1de8 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -8,7 +8,6 @@ from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management import comfy.ldm.common_dit -import comfy.model_management from . import qwen_vl @dataclass From 65cfcf5b1bb0d0618fef7bee08ee64397be5c434 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 1 Jan 2026 19:06:14 -0800 Subject: [PATCH 45/52] New Year ruff cleanup. (#11595) --- app/model_manager.py | 4 ++-- comfy/hooks.py | 3 ++- comfy/ldm/chroma_radiance/model.py | 2 +- comfy/ldm/hunyuan_video/upsampler.py | 3 ++- comfy/ldm/modules/diffusionmodules/model.py | 6 ++++-- comfy/ldm/modules/ema.py | 4 ++-- comfy/ldm/util.py | 2 +- comfy/taesd/taehv.py | 6 ++++-- comfy_execution/graph.py | 6 +++--- comfy_extras/nodes_apg.py | 3 ++- comfy_extras/nodes_wan.py | 2 +- nodes.py | 6 ++++-- pyproject.toml | 4 ++++ server.py | 6 +++--- 14 files changed, 35 insertions(+), 22 deletions(-) diff --git a/app/model_manager.py b/app/model_manager.py index ab36bca74..f124d1117 100644 --- a/app/model_manager.py +++ b/app/model_manager.py @@ -44,7 +44,7 @@ class ModelFileManager: @routes.get("/experiment/models/{folder}") async def get_all_models(request): folder = request.match_info.get("folder", None) - if not folder in folder_paths.folder_names_and_paths: + if folder not in folder_paths.folder_names_and_paths: return web.Response(status=404) files = self.get_model_file_list(folder) return web.json_response(files) @@ -55,7 +55,7 @@ class ModelFileManager: path_index = int(request.match_info.get("path_index", None)) filename = request.match_info.get("filename", None) - if not folder_name in folder_paths.folder_names_and_paths: + if folder_name not in folder_paths.folder_names_and_paths: return web.Response(status=404) folders = folder_paths.folder_names_and_paths[folder_name] diff --git a/comfy/hooks.py b/comfy/hooks.py index 9d0731072..1a76c7ba4 100644 --- a/comfy/hooks.py +++ b/comfy/hooks.py @@ -527,7 +527,8 @@ class HookKeyframeGroup: if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0: break # if eval_c is outside the percent range, stop looking further - else: break + else: + break # update steps current context is used self._current_used_steps += 1 # update current timestep this was performed on diff --git a/comfy/ldm/chroma_radiance/model.py b/comfy/ldm/chroma_radiance/model.py index 70d173889..4fb56165e 100644 --- a/comfy/ldm/chroma_radiance/model.py +++ b/comfy/ldm/chroma_radiance/model.py @@ -270,7 +270,7 @@ class ChromaRadiance(Chroma): bad_keys = tuple( k for k, v in overrides.items() - if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys) + if not isinstance(v, type(getattr(params, k))) and (v is not None or k not in nullable_keys) ) if bad_keys: e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}" diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index 85f515f67..d9e76922f 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -3,7 +3,8 @@ import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm -import model_management, model_patcher +import model_management +import model_patcher class SRResidualCausalBlock3D(nn.Module): def __init__(self, channels: int): diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 681a55db5..1ae3ef034 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -394,7 +394,8 @@ class Model(nn.Module): attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): super().__init__() - if use_linear_attn: attn_type = "linear" + if use_linear_attn: + attn_type = "linear" self.ch = ch self.temb_ch = self.ch*4 self.num_resolutions = len(ch_mult) @@ -548,7 +549,8 @@ class Encoder(nn.Module): conv3d=False, time_compress=None, **ignore_kwargs): super().__init__() - if use_linear_attn: attn_type = "linear" + if use_linear_attn: + attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) diff --git a/comfy/ldm/modules/ema.py b/comfy/ldm/modules/ema.py index bded25019..96ee6e895 100644 --- a/comfy/ldm/modules/ema.py +++ b/comfy/ldm/modules/ema.py @@ -45,7 +45,7 @@ class LitEma(nn.Module): shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: - assert not key in self.m_name2s_name + assert key not in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) @@ -54,7 +54,7 @@ class LitEma(nn.Module): if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: - assert not key in self.m_name2s_name + assert key not in self.m_name2s_name def store(self, parameters): """ diff --git a/comfy/ldm/util.py b/comfy/ldm/util.py index 30b4b4721..304936ff4 100644 --- a/comfy/ldm/util.py +++ b/comfy/ldm/util.py @@ -71,7 +71,7 @@ def count_params(model, verbose=False): def instantiate_from_config(config): - if not "target" in config: + if "target" not in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": diff --git a/comfy/taesd/taehv.py b/comfy/taesd/taehv.py index 3dfe1e4d4..0e5f9a378 100644 --- a/comfy/taesd/taehv.py +++ b/comfy/taesd/taehv.py @@ -154,7 +154,8 @@ class TAEHV(nn.Module): self._show_progress_bar = value def encode(self, x, **kwargs): - if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size) + if self.patch_size > 1: + x = F.pixel_unshuffle(x, self.patch_size) x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] if x.shape[1] % 4 != 0: # pad at end to multiple of 4 @@ -167,5 +168,6 @@ class TAEHV(nn.Module): def decode(self, x, **kwargs): x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar) - if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size) + if self.patch_size > 1: + x = F.pixel_shuffle(x, self.patch_size) return x[:, self.frames_to_trim:].movedim(2, 1) diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index 8fc5846b7..9d170b16e 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -207,15 +207,15 @@ class ExecutionList(TopologicalSort): return self.output_cache.get(node_id) is not None def cache_link(self, from_node_id, to_node_id): - if not to_node_id in self.execution_cache: + if to_node_id not in self.execution_cache: self.execution_cache[to_node_id] = {} self.execution_cache[to_node_id][from_node_id] = self.output_cache.get(from_node_id) - if not from_node_id in self.execution_cache_listeners: + if from_node_id not in self.execution_cache_listeners: self.execution_cache_listeners[from_node_id] = set() self.execution_cache_listeners[from_node_id].add(to_node_id) def get_cache(self, from_node_id, to_node_id): - if not to_node_id in self.execution_cache: + if to_node_id not in self.execution_cache: return None value = self.execution_cache[to_node_id].get(from_node_id) if value is None: diff --git a/comfy_extras/nodes_apg.py b/comfy_extras/nodes_apg.py index f27ae7da8..b9df2dcc9 100644 --- a/comfy_extras/nodes_apg.py +++ b/comfy_extras/nodes_apg.py @@ -55,7 +55,8 @@ class APG(io.ComfyNode): def pre_cfg_function(args): nonlocal running_avg, prev_sigma - if len(args["conds_out"]) == 1: return args["conds_out"] + if len(args["conds_out"]) == 1: + return args["conds_out"] cond = args["conds_out"][0] uncond = args["conds_out"][1] diff --git a/comfy_extras/nodes_wan.py b/comfy_extras/nodes_wan.py index b0bd471bf..d32aad98e 100644 --- a/comfy_extras/nodes_wan.py +++ b/comfy_extras/nodes_wan.py @@ -817,7 +817,7 @@ def get_sample_indices(original_fps, if required_duration > total_frames / original_fps: raise ValueError("required_duration must be less than video length") - if not fixed_start is None and fixed_start >= 0: + if fixed_start is not None and fixed_start >= 0: start_frame = fixed_start else: max_start = total_frames - required_origin_frames diff --git a/nodes.py b/nodes.py index d9e4ebd91..eae2f0086 100644 --- a/nodes.py +++ b/nodes.py @@ -2242,8 +2242,10 @@ async def init_external_custom_nodes(): for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) - if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue - if module_path.endswith(".disabled"): continue + if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": + continue + if module_path.endswith(".disabled"): + continue if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes: logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes") continue diff --git a/pyproject.toml b/pyproject.toml index bc1467941..60378de1e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -15,12 +15,16 @@ lint.select = [ "N805", # invalid-first-argument-name-for-method "S307", # suspicious-eval-usage "S102", # exec + "E", "T", # print-usage "W", # The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names. # See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f "F", ] + +lint.ignore = ["E501", "E722", "E731", "E712", "E402", "E741"] + exclude = ["*.ipynb", "**/generated/*.pyi"] [tool.pylint] diff --git a/server.py b/server.py index c27f8be7d..70c8b5e3b 100644 --- a/server.py +++ b/server.py @@ -324,7 +324,7 @@ class PromptServer(): @routes.get("/models/{folder}") async def get_models(request): folder = request.match_info.get("folder", None) - if not folder in folder_paths.folder_names_and_paths: + if folder not in folder_paths.folder_names_and_paths: return web.Response(status=404) files = folder_paths.get_filename_list(folder) return web.json_response(files) @@ -579,7 +579,7 @@ class PromptServer(): folder_name = request.match_info.get("folder_name", None) if folder_name is None: return web.Response(status=404) - if not "filename" in request.rel_url.query: + if "filename" not in request.rel_url.query: return web.Response(status=404) filename = request.rel_url.query["filename"] @@ -593,7 +593,7 @@ class PromptServer(): if out is None: return web.Response(status=404) dt = json.loads(out) - if not "__metadata__" in dt: + if "__metadata__" not in dt: return web.Response(status=404) return web.json_response(dt["__metadata__"]) From 9e5f677746463228e35ac6a08f308d758ed620d5 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 2 Jan 2026 10:35:34 +0200 Subject: [PATCH 46/52] Ignore all frames except the first one for MPO format. (#11569) --- nodes.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/nodes.py b/nodes.py index eae2f0086..662907ae6 100644 --- a/nodes.py +++ b/nodes.py @@ -1663,8 +1663,6 @@ class LoadImage: output_masks = [] w, h = None, None - excluded_formats = ['MPO'] - for i in ImageSequence.Iterator(img): i = node_helpers.pillow(ImageOps.exif_transpose, i) @@ -1692,7 +1690,10 @@ class LoadImage: output_images.append(image) output_masks.append(mask.unsqueeze(0)) - if len(output_images) > 1 and img.format not in excluded_formats: + if img.format == "MPO": + break # ignore all frames except the first one for MPO format + + if len(output_images) > 1: output_image = torch.cat(output_images, dim=0) output_mask = torch.cat(output_masks, dim=0) else: From 303b1735f8785c0d1f947af965567850ca413f61 Mon Sep 17 00:00:00 2001 From: throttlekitty Date: Fri, 2 Jan 2026 01:37:37 -0700 Subject: [PATCH 47/52] Give Mahiro CFG a more appropriate display name (#11580) --- comfy_extras/nodes_mahiro.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_mahiro.py b/comfy_extras/nodes_mahiro.py index 07b3353f4..6459ca8c1 100644 --- a/comfy_extras/nodes_mahiro.py +++ b/comfy_extras/nodes_mahiro.py @@ -10,7 +10,7 @@ class Mahiro(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="Mahiro", - display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)", + display_name="Mahiro CFG", category="_for_testing", description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.", inputs=[ From f2fda021ab179ba31d9175698b82474a5dd14359 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 2 Jan 2026 13:18:43 +0200 Subject: [PATCH 48/52] Tripo3D: pass face_limit parameter only when it differs from default (#11601) --- comfy_api_nodes/nodes_tripo.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy_api_nodes/nodes_tripo.py b/comfy_api_nodes/nodes_tripo.py index bd3c24fb3..e72f8e96a 100644 --- a/comfy_api_nodes/nodes_tripo.py +++ b/comfy_api_nodes/nodes_tripo.py @@ -155,7 +155,7 @@ class TripoTextToModelNode(IO.ComfyNode): model_seed=model_seed, texture_seed=texture_seed, texture_quality=texture_quality, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, geometry_quality=geometry_quality, auto_size=True, quad=quad, @@ -255,7 +255,7 @@ class TripoImageToModelNode(IO.ComfyNode): texture_alignment=texture_alignment, texture_seed=texture_seed, texture_quality=texture_quality, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, auto_size=True, quad=quad, ), @@ -369,7 +369,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode): texture_quality=texture_quality, geometry_quality=geometry_quality, texture_alignment=texture_alignment, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, quad=quad, ), ) From 9a552df898ec57f066784cc1f7c475644099b3c1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 2 Jan 2026 17:28:10 -0800 Subject: [PATCH 49/52] Remove leftover scaled_fp8 key. (#11603) --- comfy/utils.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/utils.py b/comfy/utils.py index 8d4e2b445..e4162d7ac 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1230,6 +1230,8 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}): out_sd = {} layers = {} for k in list(state_dict.keys()): + if k == scaled_fp8_key: + continue if not k.startswith(model_prefix): out_sd[k] = state_dict[k] continue From 53e762a3af9502ebe61a60eb2d39d783fe8d012b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 3 Jan 2026 19:28:38 -0800 Subject: [PATCH 50/52] Print memory summary on OOM to help with debugging. (#11613) --- comfy/model_management.py | 4 ++++ execution.py | 1 + 2 files changed, 5 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 87baedd73..2501cecb7 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1542,6 +1542,10 @@ def soft_empty_cache(force=False): def unload_all_models(): free_memory(1e30, get_torch_device()) +def debug_memory_summary(): + if is_amd() or is_nvidia(): + return torch.cuda.memory.memory_summary() + return "" #TODO: might be cleaner to put this somewhere else import threading diff --git a/execution.py b/execution.py index 38159b1f4..648f204ec 100644 --- a/execution.py +++ b/execution.py @@ -601,6 +601,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, if isinstance(ex, comfy.model_management.OOM_EXCEPTION): tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number." + logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary())) logging.error("Got an OOM, unloading all loaded models.") comfy.model_management.unload_all_models() From acbf08cd60fade74b2e9e5009fa0dcad9538356b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sun, 4 Jan 2026 09:05:02 +0200 Subject: [PATCH 51/52] feat(api-nodes): add support for 720p resolution for Kling Omni nodes (#11604) --- comfy_api_nodes/nodes_kling.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 58259e029..9c707a339 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -807,6 +807,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): ), IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), IO.Combo.Input("duration", options=[5, 10]), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -826,6 +827,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): prompt: str, aspect_ratio: str, duration: int, + resolution: str = "1080p", ) -> IO.NodeOutput: validate_string(prompt, min_length=1, max_length=2500) response = await sync_op( @@ -837,6 +839,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): prompt=prompt, aspect_ratio=aspect_ratio, duration=str(duration), + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -872,6 +875,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): optional=True, tooltip="Up to 6 additional reference images.", ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -893,6 +897,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): first_frame: Input.Image, end_frame: Input.Image | None = None, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -936,6 +941,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): prompt=prompt, duration=str(duration), image_list=image_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -964,6 +970,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): "reference_images", tooltip="Up to 7 reference images.", ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -984,6 +991,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): aspect_ratio: str, duration: int, reference_images: Input.Image, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1005,6 +1013,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): aspect_ratio=aspect_ratio, duration=str(duration), image_list=image_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -1036,6 +1045,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): tooltip="Up to 4 additional reference images.", optional=True, ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -1058,6 +1068,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): reference_video: Input.Video, keep_original_sound: bool, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1090,6 +1101,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): duration=str(duration), image_list=image_list if image_list else None, video_list=video_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -1119,6 +1131,7 @@ class OmniProEditVideoNode(IO.ComfyNode): tooltip="Up to 4 additional reference images.", optional=True, ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -1139,6 +1152,7 @@ class OmniProEditVideoNode(IO.ComfyNode): video: Input.Video, keep_original_sound: bool, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1171,6 +1185,7 @@ class OmniProEditVideoNode(IO.ComfyNode): duration=None, image_list=image_list if image_list else None, video_list=video_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) From 38d049382533c6662d815b08ca3395e96cca9f57 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 16:13:50 -0800 Subject: [PATCH 52/52] Fix case where upscale model wouldn't be moved to cpu. (#11633) --- comfy_extras/nodes_upscale_model.py | 24 +++++++++++++----------- 1 file changed, 13 insertions(+), 11 deletions(-) diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index 4d62b87be..ed587851c 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -78,18 +78,20 @@ class ImageUpscaleWithModel(io.ComfyNode): overlap = 32 oom = True - while oom: - try: - steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) - pbar = comfy.utils.ProgressBar(steps) - s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) - oom = False - except model_management.OOM_EXCEPTION as e: - tile //= 2 - if tile < 128: - raise e + try: + while oom: + try: + steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) + pbar = comfy.utils.ProgressBar(steps) + s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) + oom = False + except model_management.OOM_EXCEPTION as e: + tile //= 2 + if tile < 128: + raise e + finally: + upscale_model.to("cpu") - upscale_model.to("cpu") s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) return io.NodeOutput(s)