mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-09 13:02:31 +08:00
Merge branch 'comfyanonymous:master' into feature/maskpainting
This commit is contained in:
commit
7dc1dd6503
83
comfy/sample.py
Normal file
83
comfy/sample.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
import torch
|
||||||
|
import comfy.model_management
|
||||||
|
import comfy.samplers
|
||||||
|
import math
|
||||||
|
|
||||||
|
def prepare_noise(latent_image, seed, skip=0):
|
||||||
|
"""
|
||||||
|
creates random noise given a latent image and a seed.
|
||||||
|
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
||||||
|
"""
|
||||||
|
generator = torch.manual_seed(seed)
|
||||||
|
for _ in range(skip):
|
||||||
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||||
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||||
|
return noise
|
||||||
|
|
||||||
|
def prepare_mask(noise_mask, shape, device):
|
||||||
|
"""ensures noise mask is of proper dimensions"""
|
||||||
|
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
||||||
|
noise_mask = noise_mask.round()
|
||||||
|
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
||||||
|
if noise_mask.shape[0] < shape[0]:
|
||||||
|
noise_mask = noise_mask.repeat(math.ceil(shape[0] / noise_mask.shape[0]), 1, 1, 1)[:shape[0]]
|
||||||
|
noise_mask = noise_mask.to(device)
|
||||||
|
return noise_mask
|
||||||
|
|
||||||
|
def broadcast_cond(cond, batch, device):
|
||||||
|
"""broadcasts conditioning to the batch size"""
|
||||||
|
copy = []
|
||||||
|
for p in cond:
|
||||||
|
t = p[0]
|
||||||
|
if t.shape[0] < batch:
|
||||||
|
t = torch.cat([t] * batch)
|
||||||
|
t = t.to(device)
|
||||||
|
copy += [[t] + p[1:]]
|
||||||
|
return copy
|
||||||
|
|
||||||
|
def get_models_from_cond(cond, model_type):
|
||||||
|
models = []
|
||||||
|
for c in cond:
|
||||||
|
if model_type in c[1]:
|
||||||
|
models += [c[1][model_type]]
|
||||||
|
return models
|
||||||
|
|
||||||
|
def load_additional_models(positive, negative):
|
||||||
|
"""loads additional models in positive and negative conditioning"""
|
||||||
|
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
|
||||||
|
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
|
||||||
|
gligen = [x[1] for x in gligen]
|
||||||
|
models = control_nets + gligen
|
||||||
|
comfy.model_management.load_controlnet_gpu(models)
|
||||||
|
return models
|
||||||
|
|
||||||
|
def cleanup_additional_models(models):
|
||||||
|
"""cleanup additional models that were loaded"""
|
||||||
|
for m in models:
|
||||||
|
m.cleanup()
|
||||||
|
|
||||||
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None):
|
||||||
|
device = comfy.model_management.get_torch_device()
|
||||||
|
|
||||||
|
if noise_mask is not None:
|
||||||
|
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
||||||
|
|
||||||
|
real_model = None
|
||||||
|
comfy.model_management.load_model_gpu(model)
|
||||||
|
real_model = model.model
|
||||||
|
|
||||||
|
noise = noise.to(device)
|
||||||
|
latent_image = latent_image.to(device)
|
||||||
|
|
||||||
|
positive_copy = broadcast_cond(positive, noise.shape[0], device)
|
||||||
|
negative_copy = broadcast_cond(negative, noise.shape[0], device)
|
||||||
|
|
||||||
|
models = load_additional_models(positive, negative)
|
||||||
|
|
||||||
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||||
|
|
||||||
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas)
|
||||||
|
samples = samples.cpu()
|
||||||
|
|
||||||
|
cleanup_additional_models(models)
|
||||||
|
return samples
|
||||||
@ -429,7 +429,7 @@ class KSampler:
|
|||||||
self.denoise = denoise
|
self.denoise = denoise
|
||||||
self.model_options = model_options
|
self.model_options = model_options
|
||||||
|
|
||||||
def _calculate_sigmas(self, steps):
|
def calculate_sigmas(self, steps):
|
||||||
sigmas = None
|
sigmas = None
|
||||||
|
|
||||||
discard_penultimate_sigma = False
|
discard_penultimate_sigma = False
|
||||||
@ -438,13 +438,13 @@ class KSampler:
|
|||||||
discard_penultimate_sigma = True
|
discard_penultimate_sigma = True
|
||||||
|
|
||||||
if self.scheduler == "karras":
|
if self.scheduler == "karras":
|
||||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
|
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
||||||
elif self.scheduler == "normal":
|
elif self.scheduler == "normal":
|
||||||
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
|
sigmas = self.model_wrap.get_sigmas(steps)
|
||||||
elif self.scheduler == "simple":
|
elif self.scheduler == "simple":
|
||||||
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
|
sigmas = simple_scheduler(self.model_wrap, steps)
|
||||||
elif self.scheduler == "ddim_uniform":
|
elif self.scheduler == "ddim_uniform":
|
||||||
sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
|
sigmas = ddim_scheduler(self.model_wrap, steps)
|
||||||
else:
|
else:
|
||||||
print("error invalid scheduler", self.scheduler)
|
print("error invalid scheduler", self.scheduler)
|
||||||
|
|
||||||
@ -455,15 +455,16 @@ class KSampler:
|
|||||||
def set_steps(self, steps, denoise=None):
|
def set_steps(self, steps, denoise=None):
|
||||||
self.steps = steps
|
self.steps = steps
|
||||||
if denoise is None or denoise > 0.9999:
|
if denoise is None or denoise > 0.9999:
|
||||||
self.sigmas = self._calculate_sigmas(steps)
|
self.sigmas = self.calculate_sigmas(steps).to(self.device)
|
||||||
else:
|
else:
|
||||||
new_steps = int(steps/denoise)
|
new_steps = int(steps/denoise)
|
||||||
sigmas = self._calculate_sigmas(new_steps)
|
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||||
self.sigmas = sigmas[-(steps + 1):]
|
self.sigmas = sigmas[-(steps + 1):]
|
||||||
|
|
||||||
|
|
||||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
|
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None):
|
||||||
sigmas = self.sigmas
|
if sigmas is None:
|
||||||
|
sigmas = self.sigmas
|
||||||
sigma_min = self.sigma_min
|
sigma_min = self.sigma_min
|
||||||
|
|
||||||
if last_step is not None and last_step < (len(sigmas) - 1):
|
if last_step is not None and last_step < (len(sigmas) - 1):
|
||||||
|
|||||||
83
nodes.py
83
nodes.py
@ -16,6 +16,7 @@ sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "co
|
|||||||
|
|
||||||
import comfy.diffusers_convert
|
import comfy.diffusers_convert
|
||||||
import comfy.samplers
|
import comfy.samplers
|
||||||
|
import comfy.sample
|
||||||
import comfy.sd
|
import comfy.sd
|
||||||
import comfy.utils
|
import comfy.utils
|
||||||
|
|
||||||
@ -171,24 +172,24 @@ class VAEEncodeForInpaint:
|
|||||||
def encode(self, vae, pixels, mask):
|
def encode(self, vae, pixels, mask):
|
||||||
x = (pixels.shape[1] // 64) * 64
|
x = (pixels.shape[1] // 64) * 64
|
||||||
y = (pixels.shape[2] // 64) * 64
|
y = (pixels.shape[2] // 64) * 64
|
||||||
mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
||||||
|
|
||||||
pixels = pixels.clone()
|
pixels = pixels.clone()
|
||||||
if pixels.shape[1] != x or pixels.shape[2] != y:
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
||||||
pixels = pixels[:,:x,:y,:]
|
pixels = pixels[:,:x,:y,:]
|
||||||
mask = mask[:x,:y]
|
mask = mask[:,:,:x,:y]
|
||||||
|
|
||||||
#grow mask by a few pixels to keep things seamless in latent space
|
#grow mask by a few pixels to keep things seamless in latent space
|
||||||
kernel_tensor = torch.ones((1, 1, 6, 6))
|
kernel_tensor = torch.ones((1, 1, 6, 6))
|
||||||
mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
|
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=3), 0, 1)
|
||||||
m = (1.0 - mask.round())
|
m = (1.0 - mask.round()).squeeze(1)
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
pixels[:,:,:,i] -= 0.5
|
pixels[:,:,:,i] -= 0.5
|
||||||
pixels[:,:,:,i] *= m
|
pixels[:,:,:,i] *= m
|
||||||
pixels[:,:,:,i] += 0.5
|
pixels[:,:,:,i] += 0.5
|
||||||
t = vae.encode(pixels)
|
t = vae.encode(pixels)
|
||||||
|
|
||||||
return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
|
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
||||||
|
|
||||||
class CheckpointLoader:
|
class CheckpointLoader:
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -739,79 +740,23 @@ class SetLatentNoiseMask:
|
|||||||
s["noise_mask"] = mask
|
s["noise_mask"] = mask
|
||||||
return (s,)
|
return (s,)
|
||||||
|
|
||||||
|
|
||||||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||||
latent_image = latent["samples"]
|
|
||||||
noise_mask = None
|
|
||||||
device = comfy.model_management.get_torch_device()
|
device = comfy.model_management.get_torch_device()
|
||||||
|
latent_image = latent["samples"]
|
||||||
|
|
||||||
if disable_noise:
|
if disable_noise:
|
||||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||||
else:
|
else:
|
||||||
batch_index = 0
|
skip = latent["batch_index"] if "batch_index" in latent else 0
|
||||||
if "batch_index" in latent:
|
noise = comfy.sample.prepare_noise(latent_image, seed, skip)
|
||||||
batch_index = latent["batch_index"]
|
|
||||||
|
|
||||||
generator = torch.manual_seed(seed)
|
|
||||||
for i in range(batch_index):
|
|
||||||
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
||||||
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
||||||
|
|
||||||
|
noise_mask = None
|
||||||
if "noise_mask" in latent:
|
if "noise_mask" in latent:
|
||||||
noise_mask = latent['noise_mask']
|
noise_mask = latent["noise_mask"]
|
||||||
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
|
||||||
noise_mask = noise_mask.round()
|
|
||||||
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
|
||||||
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
|
||||||
noise_mask = noise_mask.to(device)
|
|
||||||
|
|
||||||
real_model = None
|
|
||||||
comfy.model_management.load_model_gpu(model)
|
|
||||||
real_model = model.model
|
|
||||||
|
|
||||||
noise = noise.to(device)
|
|
||||||
latent_image = latent_image.to(device)
|
|
||||||
|
|
||||||
positive_copy = []
|
|
||||||
negative_copy = []
|
|
||||||
|
|
||||||
control_nets = []
|
|
||||||
def get_models(cond):
|
|
||||||
models = []
|
|
||||||
for c in cond:
|
|
||||||
if 'control' in c[1]:
|
|
||||||
models += [c[1]['control']]
|
|
||||||
if 'gligen' in c[1]:
|
|
||||||
models += [c[1]['gligen'][1]]
|
|
||||||
return models
|
|
||||||
|
|
||||||
for p in positive:
|
|
||||||
t = p[0]
|
|
||||||
if t.shape[0] < noise.shape[0]:
|
|
||||||
t = torch.cat([t] * noise.shape[0])
|
|
||||||
t = t.to(device)
|
|
||||||
positive_copy += [[t] + p[1:]]
|
|
||||||
for n in negative:
|
|
||||||
t = n[0]
|
|
||||||
if t.shape[0] < noise.shape[0]:
|
|
||||||
t = torch.cat([t] * noise.shape[0])
|
|
||||||
t = t.to(device)
|
|
||||||
negative_copy += [[t] + n[1:]]
|
|
||||||
|
|
||||||
models = get_models(positive) + get_models(negative)
|
|
||||||
comfy.model_management.load_controlnet_gpu(models)
|
|
||||||
|
|
||||||
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
|
||||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
|
||||||
else:
|
|
||||||
#other samplers
|
|
||||||
pass
|
|
||||||
|
|
||||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
|
|
||||||
samples = samples.cpu()
|
|
||||||
for m in models:
|
|
||||||
m.cleanup()
|
|
||||||
|
|
||||||
|
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||||
|
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
||||||
|
force_full_denoise=force_full_denoise, noise_mask=noise_mask)
|
||||||
out = latent.copy()
|
out = latent.copy()
|
||||||
out["samples"] = samples
|
out["samples"] = samples
|
||||||
return (out, )
|
return (out, )
|
||||||
|
|||||||
@ -270,6 +270,9 @@ export const ComfyWidgets = {
|
|||||||
app.graph.setDirtyCanvas(true);
|
app.graph.setDirtyCanvas(true);
|
||||||
};
|
};
|
||||||
img.src = `/view?filename=${name}&type=input`;
|
img.src = `/view?filename=${name}&type=input`;
|
||||||
|
if ((node.size[1] - node.imageOffset) < 100) {
|
||||||
|
node.size[1] = 250 + node.imageOffset;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Add our own callback to the combo widget to render an image when it changes
|
// Add our own callback to the combo widget to render an image when it changes
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user