mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 06:10:50 +08:00
Multi-modal LLM support and ongoing improvements to language features.
This commit is contained in:
parent
6575409461
commit
7f300bcb7a
@ -0,0 +1,3 @@
|
||||
from .chat_templates import _update_known_chat_templates
|
||||
|
||||
_update_known_chat_templates()
|
||||
18
comfy/language/chat_templates.py
Normal file
18
comfy/language/chat_templates.py
Normal file
@ -0,0 +1,18 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from importlib.abc import Traversable
|
||||
from importlib.resources import files
|
||||
from pathlib import Path
|
||||
|
||||
KNOWN_CHAT_TEMPLATES = {}
|
||||
|
||||
|
||||
def _update_known_chat_templates():
|
||||
try:
|
||||
_chat_templates: Traversable
|
||||
with files("huggingface_extra_chat_templates") / "chat_templates" as _chat_templates:
|
||||
_extra_jinja_templates = {Path(traversable.name).stem: traversable.read_text().replace(' ', '').replace('\n', '') for traversable in _chat_templates.iterdir() if traversable.is_file()}
|
||||
KNOWN_CHAT_TEMPLATES.update(_extra_jinja_templates)
|
||||
except ImportError as exc:
|
||||
logging.warning("Could not load extra chat templates, some text models will fail", exc_info=exc)
|
||||
24
comfy/language/language_types.py
Normal file
24
comfy/language/language_types.py
Normal file
@ -0,0 +1,24 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from transformers import BatchEncoding
|
||||
from typing_extensions import TypedDict, NotRequired
|
||||
|
||||
|
||||
class ProcessorResult(TypedDict):
|
||||
"""
|
||||
Attributes:
|
||||
attention_mask: attention mask
|
||||
pixel_values: post image-processed values
|
||||
|
||||
images: used for LLaVA compatibility and points to pixel_values
|
||||
inputs: used for LLaVA compatibility and points to input_ids
|
||||
images_sizes: used for LLaVA compatibility, stores the (width, height) tuples of the original input images
|
||||
"""
|
||||
|
||||
attention_mask: NotRequired[torch.Tensor]
|
||||
pixel_values: NotRequired[torch.Tensor]
|
||||
|
||||
images: NotRequired[torch.Tensor]
|
||||
inputs: BatchEncoding
|
||||
image_sizes: NotRequired[torch.Tensor]
|
||||
@ -1,28 +1,66 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import warnings
|
||||
from typing import Optional, Any
|
||||
from typing import Optional, Any, Callable, Union, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase, PretrainedConfig
|
||||
from PIL.Image import Image
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, AutoProcessor, AutoTokenizer, \
|
||||
TensorType, BatchFeature
|
||||
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy
|
||||
from transformers.utils import PaddingStrategy
|
||||
|
||||
from .chat_templates import KNOWN_CHAT_TEMPLATES
|
||||
from .language_types import ProcessorResult
|
||||
from ..model_management import unet_offload_device, get_torch_device
|
||||
from ..model_management_types import ModelManageable
|
||||
|
||||
LLaVAProcessor = Callable[
|
||||
[
|
||||
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], # text parameter
|
||||
Union[Image, np.ndarray, torch.Tensor, List[Image], List[np.ndarray], List[torch.Tensor]], # images parameter
|
||||
Union[bool, str, PaddingStrategy], # padding parameter
|
||||
Union[bool, str, TruncationStrategy], # truncation parameter
|
||||
Optional[int], # max_length parameter
|
||||
Optional[Union[str, TensorType]] # return_tensors parameter
|
||||
],
|
||||
BatchFeature
|
||||
]
|
||||
|
||||
|
||||
class TransformersManagedModel(ModelManageable):
|
||||
def __init__(self, repo_id: str, model: PreTrainedModel, tokenizer: Optional[PreTrainedTokenizerBase] = None, config_dict: Optional[dict] = None):
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
model: PreTrainedModel,
|
||||
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
||||
config_dict: Optional[dict] = None,
|
||||
processor: Optional[ProcessorMixin | AutoProcessor] = None
|
||||
):
|
||||
self.repo_id = repo_id
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self._tokenizer = tokenizer
|
||||
self._processor = processor
|
||||
self._parameter_count = sum(param.nelement() for param in self.model.state_dict().values())
|
||||
self._size = sum(param.nelement() * param.element_size() for param in self.model.state_dict().values())
|
||||
self.load_device = get_torch_device()
|
||||
self.offload_device = unet_offload_device()
|
||||
self._config_dict = config_dict
|
||||
self._on_set_processor(self._processor)
|
||||
if model.device != self.offload_device:
|
||||
model.to(device=self.offload_device)
|
||||
|
||||
@property
|
||||
def tokenizer(self) -> PreTrainedTokenizerBase | AutoTokenizer:
|
||||
return self._tokenizer
|
||||
|
||||
@property
|
||||
def processor(self) -> AutoProcessor | ProcessorMixin | LLaVAProcessor | None:
|
||||
return self._processor
|
||||
|
||||
@property
|
||||
def config_dict(self) -> dict:
|
||||
"""
|
||||
@ -67,7 +105,10 @@ class TransformersManagedModel(ModelManageable):
|
||||
if not self.is_clone(clone):
|
||||
return False
|
||||
|
||||
return frozenset(self.model.active_adapters()) == frozenset(clone.model.active_adapters())
|
||||
try:
|
||||
return frozenset(self.model.active_adapters()) == frozenset(clone.model.active_adapters())
|
||||
except ValueError as no_adapters:
|
||||
return True
|
||||
|
||||
def model_size(self) -> int:
|
||||
return self._size
|
||||
@ -92,3 +133,57 @@ class TransformersManagedModel(ModelManageable):
|
||||
def unpatch_model(self, offload_device: torch.device, unpatch_weights: Optional[bool] = False) -> torch.nn.Module:
|
||||
warnings.warn("Transformers models do not currently support adapters like LoRAs")
|
||||
return self.model.to(device=offload_device)
|
||||
|
||||
def patch_processor(self, processor: Any, overwrite_tokenizer: bool = False) -> TransformersManagedModel:
|
||||
model = copy.copy(self)
|
||||
model._processor = processor
|
||||
if hasattr(processor, "tokenizer") and overwrite_tokenizer:
|
||||
model._tokenizer = processor.tokenizer
|
||||
self._on_set_processor(model._processor)
|
||||
return model
|
||||
|
||||
def _on_set_processor(self, processor: Any):
|
||||
if processor is not None and hasattr(processor, "image_processor") and hasattr(processor.image_processor, "do_rescale"):
|
||||
processor.image_processor.do_rescale = False
|
||||
|
||||
def tokenize(self, prompt: str, images: List[torch.Tensor] | torch.Tensor, chat_template: str) -> ProcessorResult:
|
||||
tokenizer = self.tokenizer
|
||||
assert tokenizer is not None
|
||||
assert hasattr(tokenizer, "decode")
|
||||
|
||||
# try to retrieve a matching chat template
|
||||
chat_template = chat_template or tokenizer.chat_template if hasattr(tokenizer, "chat_template") else None
|
||||
if chat_template is None:
|
||||
candidate_chat_templates = [(name, template) for name, template in KNOWN_CHAT_TEMPLATES.items() if name in self.config_dict["_name_or_path"] or name in self.model.name_or_path]
|
||||
if len(candidate_chat_templates) > 0:
|
||||
filename, chat_template = candidate_chat_templates[0]
|
||||
logging.debug(f"Selected chat template filename={filename} for {self.model.name_or_path}")
|
||||
try:
|
||||
# todo: this should come from node inputs
|
||||
prompt = tokenizer.apply_chat_template([
|
||||
{"role": "user", "content": prompt},
|
||||
], chat_template=chat_template, add_generation_prompt=True, tokenize=False)
|
||||
except Exception as exc:
|
||||
logging.error("Could not apply chat template", exc_info=exc)
|
||||
|
||||
if self.processor is None:
|
||||
batch_encoding = tokenizer(prompt, return_tensors="pt").to(device=self.load_device)
|
||||
return {**batch_encoding}
|
||||
else:
|
||||
assert images is not None and len(images) > 0, "When using a multi-modal model, pass at least one, possibly empty, image"
|
||||
if hasattr(self.processor, "to"):
|
||||
self.processor.to(device=self.load_device)
|
||||
|
||||
assert "<image>" in prompt, "You must specify a <image> token inside the prompt for it to be substituted correctly by a HuggingFace processor"
|
||||
batch_feature: BatchFeature = self.processor([prompt], images=images, padding=True, return_tensors="pt")
|
||||
if hasattr(self.processor, "to"):
|
||||
self.processor.to(device=self.offload_device)
|
||||
assert "input_ids" in batch_feature
|
||||
batch_feature.to(device=self.load_device, dtype=self.model_dtype())
|
||||
# noinspection PyTypeChecker
|
||||
return {
|
||||
"image_sizes": [(images.shape[-1], image.shape[-2]) for image in images],
|
||||
"images": batch_feature["pixel_values"],
|
||||
"inputs": batch_feature["input_ids"],
|
||||
**batch_feature
|
||||
}
|
||||
|
||||
@ -303,6 +303,7 @@ KNOWN_HUGGINGFACE_MODEL_REPOS = {
|
||||
"JingyeChen22/textdiffuser2_layout_planner",
|
||||
'JingyeChen22/textdiffuser2-full-ft',
|
||||
"microsoft/Phi-3-mini-4k-instruct",
|
||||
"llava-hf/llava-v1.6-mistral-7b-hf"
|
||||
}
|
||||
|
||||
KNOWN_UNET_MODELS: List[Union[CivitFile | HuggingFile]] = [
|
||||
|
||||
@ -1,42 +1,44 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import inspect
|
||||
import logging
|
||||
import operator
|
||||
import os.path
|
||||
from functools import reduce
|
||||
from importlib.resources import files
|
||||
from importlib.resources.abc import Traversable
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, List, Callable, TypedDict
|
||||
from typing import Any, Dict, Optional, List, Callable, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, LogitsProcessor, TextStreamer, \
|
||||
PreTrainedTokenizerBase, LogitsProcessorList, PretrainedConfig
|
||||
PreTrainedTokenizerBase, LogitsProcessorList, PretrainedConfig, AutoProcessor, BatchFeature, ProcessorMixin, \
|
||||
LlavaNextForConditionalGeneration, LlavaNextProcessor
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from comfy.language.chat_templates import KNOWN_CHAT_TEMPLATES
|
||||
from comfy.language.language_types import ProcessorResult
|
||||
from comfy.language.transformers_model_management import TransformersManagedModel
|
||||
from comfy.model_downloader import huggingface_repos
|
||||
from comfy.model_management import get_torch_device_name, load_model_gpu, unet_dtype, unet_offload_device
|
||||
from comfy.nodes.package_typing import CustomNode, InputTypes, ValidatedNodeResult
|
||||
from comfy.utils import comfy_tqdm, seed_for_block, comfy_progress, ProgressBar
|
||||
|
||||
_AUTO_CHAT_TEMPLATE = "default"
|
||||
|
||||
# add llava support
|
||||
try:
|
||||
from llava import model
|
||||
|
||||
logging.info("Additional LLaVA models are now supported")
|
||||
except ImportError as exc:
|
||||
logging.info(f"Install LLavA with `pip install git+https://github.com/AppMana/appmana-comfyui-llava` for additional LLaVA support")
|
||||
|
||||
# aka kwargs type
|
||||
_GENERATION_KWARGS_TYPE = Dict[str, Any]
|
||||
_GENERATION_KWARGS_TYPE_NAME = "SAMPLER"
|
||||
_TOKENS_TYPE = torch.Tensor
|
||||
|
||||
_TOKENS_TYPE = Union[ProcessorResult, BatchFeature]
|
||||
TOKENS_TYPE_NAME = "TOKENS"
|
||||
|
||||
KNOWN_CHAT_TEMPLATES = {}
|
||||
|
||||
|
||||
def _update_known_chat_templates():
|
||||
try:
|
||||
_chat_templates: Traversable
|
||||
with files("huggingface_extra_chat_templates") / "chat_templates" as _chat_templates:
|
||||
_extra_jinja_templates = {Path(traversable.name).stem: traversable.read_text().replace(' ', '').replace('\n', '') for traversable in _chat_templates.iterdir() if traversable.is_file()}
|
||||
KNOWN_CHAT_TEMPLATES.update(_extra_jinja_templates)
|
||||
except ImportError as exc:
|
||||
logging.warning("Could not load extra chat templates, some text models will fail", exc_info=exc)
|
||||
|
||||
|
||||
class _ProgressTextStreamer(TextStreamer):
|
||||
def __init__(self, on_finalized_text: Callable[[str, bool], None], tokenizer: "AutoTokenizer", skip_prompt: bool = False, **decode_kwargs):
|
||||
@ -190,13 +192,15 @@ class TransformerMergeSamplers(CustomNode):
|
||||
return (reduce(operator.or_, list(kwargs.values()) + [do_sample], {}),)
|
||||
|
||||
|
||||
class TransformersLoader(CustomNode):
|
||||
class TransformersImageProcessorLoader(CustomNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypes:
|
||||
return {
|
||||
"required": {
|
||||
"ckpt_name": (huggingface_repos(),),
|
||||
"subfolder": ("STRING", {})
|
||||
"subfolder": ("STRING", {}),
|
||||
"model": ("MODEL", {}),
|
||||
"overwrite_tokenizer": ("BOOLEAN", {"default": False}),
|
||||
}
|
||||
}
|
||||
|
||||
@ -204,15 +208,66 @@ class TransformersLoader(CustomNode):
|
||||
RETURN_TYPES = "MODEL",
|
||||
FUNCTION = "execute"
|
||||
|
||||
def execute(self, ckpt_name: str, subfolder: Optional[str] = None):
|
||||
def execute(self, ckpt_name: str, subfolder: Optional[str] = None, model: TransformersManagedModel = None, overwrite_tokenizer: bool = False):
|
||||
hub_kwargs = {}
|
||||
if subfolder is not None and subfolder != "":
|
||||
hub_kwargs["subfolder"] = subfolder
|
||||
processor = AutoProcessor.from_pretrained(ckpt_name, torch_dtype=unet_dtype(), device_map=get_torch_device_name(unet_offload_device()), low_cpu_mem_usage=True, trust_remote_code=True, **hub_kwargs)
|
||||
return model.patch_processor(processor, overwrite_tokenizer),
|
||||
|
||||
|
||||
class TransformersLoader(CustomNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypes:
|
||||
return {
|
||||
"required": {
|
||||
"ckpt_name": (huggingface_repos(),),
|
||||
"subfolder": ("STRING", {})
|
||||
},
|
||||
}
|
||||
|
||||
CATEGORY = "language"
|
||||
RETURN_TYPES = "MODEL",
|
||||
FUNCTION = "execute"
|
||||
|
||||
def execute(self, ckpt_name: str, subfolder: Optional[str] = None, *args, **kwargs):
|
||||
hub_kwargs = {}
|
||||
if subfolder is not None and subfolder != "":
|
||||
hub_kwargs["subfolder"] = subfolder
|
||||
with comfy_tqdm():
|
||||
model = AutoModelForCausalLM.from_pretrained(ckpt_name, torch_dtype=unet_dtype(), device_map=get_torch_device_name(unet_offload_device()), low_cpu_mem_usage=True, trust_remote_code=True, **hub_kwargs)
|
||||
tokenizer = AutoTokenizer.from_pretrained(ckpt_name)
|
||||
from_pretrained_kwargs = {
|
||||
"pretrained_model_name_or_path": ckpt_name,
|
||||
"torch_dtype": unet_dtype(),
|
||||
"device_map": get_torch_device_name(unet_offload_device()),
|
||||
"low_cpu_mem_usage": True,
|
||||
"trust_remote_code": True,
|
||||
**hub_kwargs
|
||||
}
|
||||
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(**from_pretrained_kwargs)
|
||||
except:
|
||||
model = LlavaNextForConditionalGeneration.from_pretrained(**from_pretrained_kwargs)
|
||||
|
||||
config_dict, _ = PretrainedConfig.get_config_dict(ckpt_name, trust_remote_code=True, **hub_kwargs)
|
||||
model_managed = TransformersManagedModel(ckpt_name, model, tokenizer, config_dict)
|
||||
try:
|
||||
try:
|
||||
processor = AutoProcessor.from_pretrained(**from_pretrained_kwargs)
|
||||
except:
|
||||
processor = LlavaNextProcessor.from_pretrained(**from_pretrained_kwargs)
|
||||
except:
|
||||
processor = None
|
||||
if not isinstance(processor, ProcessorMixin):
|
||||
processor = None
|
||||
tokenizer = getattr(processor, "tokenizer") if processor is not None and hasattr(processor, "tokenizer") else AutoTokenizer.from_pretrained(ckpt_name, **hub_kwargs)
|
||||
|
||||
model_managed = TransformersManagedModel(
|
||||
repo_id=ckpt_name,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
config_dict=config_dict,
|
||||
processor=processor
|
||||
)
|
||||
return model_managed,
|
||||
|
||||
|
||||
@ -223,6 +278,10 @@ class OneShotInstructTokenize(CustomNode):
|
||||
"required": {
|
||||
"model": ("MODEL",),
|
||||
"prompt": ("STRING", {"default": "", "multiline": True}),
|
||||
"chat_template": ([_AUTO_CHAT_TEMPLATE] + list(KNOWN_CHAT_TEMPLATES.keys()), {})
|
||||
},
|
||||
"optional": {
|
||||
"images": ("IMAGE", {}),
|
||||
}
|
||||
}
|
||||
|
||||
@ -230,27 +289,17 @@ class OneShotInstructTokenize(CustomNode):
|
||||
RETURN_TYPES = (TOKENS_TYPE_NAME,)
|
||||
FUNCTION = "execute"
|
||||
|
||||
def execute(self, model: TransformersManagedModel, prompt: str) -> ValidatedNodeResult:
|
||||
tokenizer: PreTrainedTokenizerBase | AutoTokenizer = model.tokenizer
|
||||
assert tokenizer is not None
|
||||
assert hasattr(tokenizer, "decode")
|
||||
|
||||
# try to retrieve a matching chat template
|
||||
chat_template = tokenizer.chat_template if hasattr(tokenizer, "chat_template") else None
|
||||
if chat_template is None:
|
||||
candidate_chat_templates = [(name, template) for name, template in KNOWN_CHAT_TEMPLATES.items() if name in model.config_dict["_name_or_path"] or name in model.model.name_or_path]
|
||||
if len(candidate_chat_templates) > 0:
|
||||
filename, chat_template = candidate_chat_templates[0]
|
||||
logging.debug(f"Selected chat template filename={filename} for {model.model.name_or_path}")
|
||||
try:
|
||||
# todo: this should come from node inputs
|
||||
prompt = tokenizer.apply_chat_template([
|
||||
{"role": "user", "content": prompt},
|
||||
], chat_template=chat_template, add_generation_prompt=True, tokenize=False)
|
||||
except Exception as exc:
|
||||
logging.error("Could not apply chat template", exc_info=exc)
|
||||
|
||||
return tokenizer(prompt, return_tensors="pt"),
|
||||
def execute(self, model: TransformersManagedModel, prompt: str, images: List[torch.Tensor] | torch.Tensor = None, chat_template: str = "__auto__") -> ValidatedNodeResult:
|
||||
if chat_template == _AUTO_CHAT_TEMPLATE:
|
||||
# use an exact match
|
||||
model_name = os.path.basename(model.repo_id)
|
||||
if model_name in KNOWN_CHAT_TEMPLATES:
|
||||
chat_template = KNOWN_CHAT_TEMPLATES[model_name]
|
||||
else:
|
||||
chat_template = None
|
||||
else:
|
||||
chat_template = KNOWN_CHAT_TEMPLATES[chat_template]
|
||||
return model.tokenize(prompt, images, chat_template),
|
||||
|
||||
|
||||
class TransformersGenerate(CustomNode):
|
||||
@ -266,7 +315,6 @@ class TransformersGenerate(CustomNode):
|
||||
"use_cache": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
"optional": {
|
||||
"images": ("IMAGE", {}),
|
||||
"sampler": (_GENERATION_KWARGS_TYPE_NAME, {}),
|
||||
}
|
||||
}
|
||||
@ -281,24 +329,36 @@ class TransformersGenerate(CustomNode):
|
||||
max_new_tokens: int = 512,
|
||||
repetition_penalty: float = 0.0,
|
||||
seed: int = 0,
|
||||
images: Optional[List[torch.Tensor] | torch.Tensor] = None,
|
||||
sampler: Optional[_GENERATION_KWARGS_TYPE] = None,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
tokens = copy.copy(tokens)
|
||||
sampler = sampler or {}
|
||||
generate_kwargs = copy.copy(sampler)
|
||||
# gracefully support LlaVA and others
|
||||
if images is not None and not isinstance(images, torch.Tensor):
|
||||
images = torch.stack(images, dim=0)
|
||||
if images is not None:
|
||||
generate_kwargs["images"] = images
|
||||
# assuming it's of the form (batch, features..., height, width)
|
||||
generate_kwargs["images_sizes"] = [(images.shape[-2], images.shape[-1]) for _ in range(images.shape[0])]
|
||||
load_model_gpu(model)
|
||||
tokenizer: PreTrainedTokenizerBase | AutoTokenizer = model.tokenizer
|
||||
inputs = tokens.to(model.current_device)
|
||||
transformers_model: PreTrainedModel = model.model
|
||||
tokenizer: PreTrainedTokenizerBase | AutoTokenizer = model.tokenizer
|
||||
# remove unused inputs
|
||||
# maximizes compatibility with different models
|
||||
generate_signature = inspect.signature(transformers_model.generate).parameters
|
||||
prepare_signature = inspect.signature(transformers_model.prepare_inputs_for_generation).parameters
|
||||
to_delete = set(reduce(operator.sub, map(lambda x: x.keys(), [tokens, generate_signature, prepare_signature])))
|
||||
gen_sig_keys = generate_signature.keys()
|
||||
if "input_ids" in tokens and "inputs" in tokens:
|
||||
if "input_ids" in gen_sig_keys:
|
||||
to_delete.add("inputs")
|
||||
elif "inputs" in gen_sig_keys:
|
||||
to_delete.add("input_ids")
|
||||
for unused_kwarg in to_delete:
|
||||
tokens.pop(unused_kwarg)
|
||||
logging.info(f"{transformers_model.name_or_path}.generate does not accept {unused_kwarg}, removing")
|
||||
|
||||
# images should be moved to model
|
||||
for key in ("images", "pixel_values"):
|
||||
if key in tokens:
|
||||
tokens[key] = tokens[key].to(device=model.current_device, dtype=model.model_dtype())
|
||||
inputs = tokens
|
||||
progress_logits_processor = _ProgressLogitsProcessor(model)
|
||||
progress_bar: ProgressBar
|
||||
with comfy_progress(total=max_new_tokens) as progress_bar:
|
||||
@ -320,9 +380,8 @@ class TransformersGenerate(CustomNode):
|
||||
text_streamer = _ProgressTextStreamer(on_finalized_text, tokenizer, True)
|
||||
|
||||
with seed_for_block(seed):
|
||||
# load the model as close to the actual generation as possible
|
||||
output_ids = transformers_model.generate(
|
||||
inputs.input_ids,
|
||||
**inputs,
|
||||
logits_processor=LogitsProcessorList([progress_logits_processor]),
|
||||
streamer=text_streamer,
|
||||
max_new_tokens=max_new_tokens,
|
||||
@ -333,12 +392,22 @@ class TransformersGenerate(CustomNode):
|
||||
if transformers_model.config.is_encoder_decoder:
|
||||
start_position = 1
|
||||
else:
|
||||
start_position = inputs.input_ids.shape[1]
|
||||
start_position = inputs["input_ids" if "input_ids" in inputs else "inputs"].shape[1]
|
||||
output_ids = output_ids[:, start_position:]
|
||||
|
||||
# todo: is this redundant consider I'm decoding in the on_finalized_text block?
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
||||
return outputs,
|
||||
|
||||
# gpu-loaded stuff like images can now be unloaded
|
||||
if hasattr(tokens, "to"):
|
||||
del tokens
|
||||
else:
|
||||
for to_delete in tokens.values():
|
||||
del to_delete
|
||||
del tokens
|
||||
|
||||
# todo: better support batches
|
||||
return outputs[0],
|
||||
|
||||
|
||||
class PreviewString(CustomNode):
|
||||
@ -369,10 +438,9 @@ for cls in (
|
||||
TransformerBeamSearchSampler,
|
||||
TransformerMergeSamplers,
|
||||
TransformersLoader,
|
||||
TransformersImageProcessorLoader,
|
||||
TransformersGenerate,
|
||||
OneShotInstructTokenize,
|
||||
PreviewString,
|
||||
):
|
||||
NODE_CLASS_MAPPINGS[cls.__name__] = cls
|
||||
|
||||
_update_known_chat_templates()
|
||||
|
||||
@ -284,10 +284,11 @@ class DevNullUris(CustomNode):
|
||||
class StringJoin(CustomNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypes:
|
||||
required = {f"value{i}": ("STRING", {"default": "", "multiline": True, "forceInput": True}) for i in range(5)}
|
||||
required["separator"] = ("STRING", {"default": "_"})
|
||||
optional = {f"value{i}": ("STRING", {"default": "", "multiline": True, "forceInput": True}) for i in range(5)}
|
||||
optional["separator"] = ("STRING", {"default": "_"})
|
||||
return {
|
||||
"required": required
|
||||
"required": {},
|
||||
"optional": optional
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("STRING",)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user