Florence2

This commit is contained in:
doctorpangloss 2025-02-04 15:17:14 -08:00
parent ce3583ad42
commit 80db9a8e25
4 changed files with 189 additions and 5 deletions

View File

@ -5,7 +5,6 @@ import inspect
import logging
import operator
import pathlib
import warnings
from functools import reduce
from typing import Optional, Any, Callable
@ -24,8 +23,13 @@ from ..component_model.tensor_types import RGBImageBatch
from ..model_downloader import get_or_download_huggingface_repo
from ..model_management import unet_offload_device, get_torch_device, unet_dtype, load_models_gpu
from ..model_management_types import ModelManageable
from ..utils import comfy_tqdm, ProgressBar, comfy_progress, seed_for_block, tensor2pil
from ..utils import comfy_tqdm, ProgressBar, comfy_progress, seed_for_block
# tweaks to support florence 2
_OVERRIDDEN_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = list(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.keys()) + ['florence2']
# should be added if the expectation is that this model emits special tokens
_DO_NOT_SKIP_SPECIAL_TOKENS = {'florence2'}
class TransformersManagedModel(ModelManageable, LanguageModel):
def __init__(
@ -46,6 +50,7 @@ class TransformersManagedModel(ModelManageable, LanguageModel):
self.offload_device = unet_offload_device()
self._config_dict = config_dict
self._on_set_processor(self._processor)
self._model_type = ""
if model.device != self.offload_device:
model.to(device=self.offload_device)
@ -94,7 +99,7 @@ class TransformersManagedModel(ModelManageable, LanguageModel):
model = AutoModelForVision2Seq.from_pretrained(**from_pretrained_kwargs, **props)
elif model_type in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
model = AutoModelForSeq2SeqLM.from_pretrained(**from_pretrained_kwargs, **props)
elif model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
elif model_type in _OVERRIDDEN_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
model = AutoModelForCausalLM.from_pretrained(**from_pretrained_kwargs, **props)
else:
model = AutoModel.from_pretrained(**from_pretrained_kwargs, **props)
@ -139,6 +144,8 @@ class TransformersManagedModel(ModelManageable, LanguageModel):
processor=processor
)
model_managed._model_type = model_type
return model_managed
def generate(self, tokens: TOKENS_TYPE = None,
@ -229,7 +236,7 @@ class TransformersManagedModel(ModelManageable, LanguageModel):
prev_src_lang = None
# todo: is this redundant consider I'm decoding in the on_finalized_text block?
try:
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=self._model_type not in _DO_NOT_SKIP_SPECIAL_TOKENS, clean_up_tokenization_spaces=False)
finally:
if prev_src_lang is not None:
tokenizer.src_lang = prev_src_lang

View File

@ -451,6 +451,7 @@ KNOWN_HUGGINGFACE_MODEL_REPOS: Final[Set[str]] = {
'THUDM/chatglm3-6b',
'roborovski/superprompt-v1',
'Qwen/Qwen2-VL-7B-Instruct',
'microsoft/Florence-2-large-ft',
}
KNOWN_UNET_MODELS: Final[KnownDownloadables] = KnownDownloadables([

View File

@ -70,7 +70,6 @@ else:
logging.debug("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.")
# deprecate PROGRESS_BAR_ENABLED
def _get_progress_bar_enabled():
warnings.warn(
@ -1230,6 +1229,12 @@ def tensor2pil(t_image: torch.Tensor) -> Image:
return Image.fromarray(np.clip(255.0 * t_image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pil2mask(image):
image_np = np.array(image.convert("L")).astype(np.float32) / 255.0
mask = torch.from_numpy(image_np)
return 1.0 - mask
def reshape_mask(input_mask, output_shape):
dims = len(output_shape) - 2

View File

@ -0,0 +1,171 @@
from typing import List, Union, Optional
import numpy as np
import torch
from PIL import Image, ImageDraw
from typing_extensions import TypedDict, NotRequired
from comfy.component_model.tensor_types import RGBImageBatch, MaskBatch
from comfy.language.language_types import TOKENS_TYPE_NAME, LanguageModel
from comfy.language.transformers_model_management import TransformersManagedModel
from comfy.nodes.package_typing import CustomNode, InputTypes, ValidatedNodeResult
from comfy.utils import pil2mask
TASKS = ['<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>', '<OD>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<CAPTION_TO_PHRASE_GROUNDING>', '<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>', '<OCR>', '<OCR_WITH_REGION>']
TASKS_TYPE_NAME = "FLORENCE2_TASK"
FLORENCE2_OUTPUT_TYPE_NAME = "FLORENCE2_OUTPUT"
class BoundingBoxResult(TypedDict):
bboxes: List[List[float]] # List of [x1, y1, x2, y2] coordinates
labels: List[str]
scores: Optional[List[float]] # Only present if score mode is used
class QuadBoxResult(TypedDict):
quad_boxes: List[List[float]] # List of [x1, y1, x2, y2, x3, y3, x4, y4] coordinates
labels: List[str]
class PolygonResult(TypedDict):
polygons: List[List[float]] # List of [x1, y1, x2, y2, ...] coordinates
labels: List[str]
class BBoxesAndPolygonsResult(TypedDict):
bboxes: List[List[float]]
bboxes_labels: List[str]
polygons: List[List[float]]
polygons_labels: List[str]
PostProcessResult = TypedDict('PostProcessResult', {
'<OCR>': NotRequired[Union[str, QuadBoxResult]], # pure_text or ocr
'<OCR_WITH_REGION>': NotRequired[QuadBoxResult], # ocr
'<CAPTION>': NotRequired[str], # pure_text
'<DETAILED_CAPTION>': NotRequired[str], # pure_text
'<MORE_DETAILED_CAPTION>': NotRequired[str], # pure_text
'<OD>': NotRequired[BoundingBoxResult], # description_with_bboxes
'<DENSE_REGION_CAPTION>': NotRequired[BoundingBoxResult], # description_with_bboxes
'<CAPTION_TO_PHRASE_GROUNDING>': NotRequired[BoundingBoxResult], # phrase_grounding
'<REFERRING_EXPRESSION_SEGMENTATION>': NotRequired[PolygonResult], # polygons
'<REGION_TO_SEGMENTATION>': NotRequired[PolygonResult], # polygons
'<OPEN_VOCABULARY_DETECTION>': NotRequired[BBoxesAndPolygonsResult], # description_with_bboxes_or_polygons
'<REGION_TO_CATEGORY>': NotRequired[str], # pure_text
'<REGION_TO_DESCRIPTION>': NotRequired[str], # pure_text
'<REGION_TO_OCR>': NotRequired[str], # pure_text
'<REGION_PROPOSAL>': NotRequired[BoundingBoxResult] # bboxes
})
def draw_polygons(image: Image, prediction: PolygonResult) -> Image:
"""
Draws segmentation masks with polygons on an image.
Parameters:
- image_path: Path to the image file.
- prediction: Dictionary containing 'polygons' and 'labels' keys.
'polygons' is a list of lists, each containing vertices of a polygon.
'labels' is a list of labels corresponding to each polygon.
- fill_mask: Boolean indicating whether to fill the polygons with color.
"""
# Load the image
draw = ImageDraw.Draw(image)
# Set up scale factor if needed (use 1 if not scaling)
scale = 1
# Iterate over polygons and labels
for polygons, label in zip(prediction['polygons'], prediction['labels']):
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
# Draw the polygon
draw.polygon(_polygon, fill='white')
return image
class Florence2TaskTokenize(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL",),
"prompt": ("STRING", {"default": "", "multiline": True}),
"task": (TASKS, {"default": TASKS[0]})
},
"optional": {
"images": ("IMAGE", {}),
}
}
CATEGORY = "language"
RETURN_TYPES = (TOKENS_TYPE_NAME, TASKS_TYPE_NAME)
RETURN_NAMES = ("tokens",)
FUNCTION = "execute"
def execute(self, model: LanguageModel, prompt: str, images: List[torch.Tensor] | torch.Tensor = None, task: str = "") -> ValidatedNodeResult:
return model.tokenize(prompt, images, task + prompt),
class Florence2PostProcess(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL",),
"generated_text": ("STRING", {"forceInput": True}),
"task": (TASKS, {"default": TASKS[0]})
},
"optional": {
"images": ("IMAGE", {}),
}
}
CATEGORY = "language"
RETURN_TYPES = (FLORENCE2_OUTPUT_TYPE_NAME,)
RETURN_NAMES = ("florence2 output",)
FUNCTION = "execute"
def execute(self, model: TransformersManagedModel, generated_text: str = "", task: str = "", images: RGBImageBatch = None) -> tuple[PostProcessResult]:
assert hasattr(model.processor, "post_process_generation")
return model.processor.post_process_generation(generated_text, task=task, image_size=(images.shape[-2], images.shape[-3])),
class Florence2OutputToPolygon(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"florence2_output": (FLORENCE2_OUTPUT_TYPE_NAME, {}),
},
"optional": {
"images": ("IMAGE", {}),
}
}
CATEGORY = "language"
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
def execute(self, florence2_output: PostProcessResult, images: RGBImageBatch = None) -> tuple[MaskBatch]:
image = Image.new('RGB', (images.shape[-2], images.shape[-3]), color='black')
for prediction in ('<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>'):
if prediction in florence2_output:
image = draw_polygons(image, florence2_output[prediction])
return pil2mask(image),
NODE_CLASS_MAPPINGS = {}
for cls in (
Florence2PostProcess,
Florence2TaskTokenize,
Florence2OutputToPolygon
):
NODE_CLASS_MAPPINGS[cls.__name__] = cls