mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
Merge branch 'comfyanonymous:master' into feature/blockweights
This commit is contained in:
commit
81720a855f
@ -14,7 +14,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Command line option: ```--lowvram``` to make it work on GPUs with less than 3GB vram (enabled automatically on GPUs with low vram)
|
||||
- Works even if you don't have a GPU with: ```--cpu``` (slow)
|
||||
- Can load both ckpt and safetensors models/checkpoints. Standalone VAEs and CLIP models.
|
||||
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
|
||||
- Embeddings/Textual inversion
|
||||
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
|
||||
- Loading full workflows (with seeds) from generated PNG files.
|
||||
|
||||
31
comfy/cli_args.py
Normal file
31
comfy/cli_args.py
Normal file
@ -0,0 +1,31 @@
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
||||
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
||||
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
||||
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
|
||||
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
|
||||
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
||||
|
||||
vram_group = parser.add_mutually_exclusive_group()
|
||||
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
||||
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
||||
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
||||
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
||||
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build.")
|
||||
|
||||
args = parser.parse_args()
|
||||
362
comfy/diffusers_convert.py
Normal file
362
comfy/diffusers_convert.py
Normal file
@ -0,0 +1,362 @@
|
||||
import json
|
||||
import os
|
||||
import yaml
|
||||
|
||||
import folder_paths
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
|
||||
import os.path as osp
|
||||
import re
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
||||
|
||||
# =================#
|
||||
# UNet Conversion #
|
||||
# =================#
|
||||
|
||||
unet_conversion_map = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
||||
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
||||
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
||||
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
||||
("input_blocks.0.0.weight", "conv_in.weight"),
|
||||
("input_blocks.0.0.bias", "conv_in.bias"),
|
||||
("out.0.weight", "conv_norm_out.weight"),
|
||||
("out.0.bias", "conv_norm_out.bias"),
|
||||
("out.2.weight", "conv_out.weight"),
|
||||
("out.2.bias", "conv_out.bias"),
|
||||
]
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0", "norm1"),
|
||||
("in_layers.2", "conv1"),
|
||||
("out_layers.0", "norm2"),
|
||||
("out_layers.3", "conv2"),
|
||||
("emb_layers.1", "time_emb_proj"),
|
||||
("skip_connection", "conv_shortcut"),
|
||||
]
|
||||
|
||||
unet_conversion_map_layer = []
|
||||
# hardcoded number of downblocks and resnets/attentions...
|
||||
# would need smarter logic for other networks.
|
||||
for i in range(4):
|
||||
# loop over downblocks/upblocks
|
||||
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
if i > 0:
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
|
||||
def convert_unet_state_dict(unet_state_dict):
|
||||
# buyer beware: this is a *brittle* function,
|
||||
# and correct output requires that all of these pieces interact in
|
||||
# the exact order in which I have arranged them.
|
||||
mapping = {k: k for k in unet_state_dict.keys()}
|
||||
for sd_name, hf_name in unet_conversion_map:
|
||||
mapping[hf_name] = sd_name
|
||||
for k, v in mapping.items():
|
||||
if "resnets" in k:
|
||||
for sd_part, hf_part in unet_conversion_map_resnet:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
for k, v in mapping.items():
|
||||
for sd_part, hf_part in unet_conversion_map_layer:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# ================#
|
||||
# VAE Conversion #
|
||||
# ================#
|
||||
|
||||
vae_conversion_map = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("nin_shortcut", "conv_shortcut"),
|
||||
("norm_out", "conv_norm_out"),
|
||||
("mid.attn_1.", "mid_block.attentions.0."),
|
||||
]
|
||||
|
||||
for i in range(4):
|
||||
# down_blocks have two resnets
|
||||
for j in range(2):
|
||||
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
||||
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
||||
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
||||
|
||||
if i < 3:
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
||||
sd_downsample_prefix = f"down.{i}.downsample."
|
||||
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
||||
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
# up_blocks have three resnets
|
||||
# also, up blocks in hf are numbered in reverse from sd
|
||||
for j in range(3):
|
||||
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
||||
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
||||
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
||||
|
||||
# this part accounts for mid blocks in both the encoder and the decoder
|
||||
for i in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
||||
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
||||
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
vae_conversion_map_attn = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("norm.", "group_norm."),
|
||||
("q.", "query."),
|
||||
("k.", "key."),
|
||||
("v.", "value."),
|
||||
("proj_out.", "proj_attn."),
|
||||
]
|
||||
|
||||
|
||||
def reshape_weight_for_sd(w):
|
||||
# convert HF linear weights to SD conv2d weights
|
||||
return w.reshape(*w.shape, 1, 1)
|
||||
|
||||
|
||||
def convert_vae_state_dict(vae_state_dict):
|
||||
mapping = {k: k for k in vae_state_dict.keys()}
|
||||
for k, v in mapping.items():
|
||||
for sd_part, hf_part in vae_conversion_map:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
for k, v in mapping.items():
|
||||
if "attentions" in k:
|
||||
for sd_part, hf_part in vae_conversion_map_attn:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
||||
weights_to_convert = ["q", "k", "v", "proj_out"]
|
||||
for k, v in new_state_dict.items():
|
||||
for weight_name in weights_to_convert:
|
||||
if f"mid.attn_1.{weight_name}.weight" in k:
|
||||
print(f"Reshaping {k} for SD format")
|
||||
new_state_dict[k] = reshape_weight_for_sd(v)
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# =========================#
|
||||
# Text Encoder Conversion #
|
||||
# =========================#
|
||||
|
||||
|
||||
textenc_conversion_lst = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("resblocks.", "text_model.encoder.layers."),
|
||||
("ln_1", "layer_norm1"),
|
||||
("ln_2", "layer_norm2"),
|
||||
(".c_fc.", ".fc1."),
|
||||
(".c_proj.", ".fc2."),
|
||||
(".attn", ".self_attn"),
|
||||
("ln_final.", "transformer.text_model.final_layer_norm."),
|
||||
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
||||
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
||||
]
|
||||
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
||||
textenc_pattern = re.compile("|".join(protected.keys()))
|
||||
|
||||
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
||||
code2idx = {"q": 0, "k": 1, "v": 2}
|
||||
|
||||
|
||||
def convert_text_enc_state_dict_v20(text_enc_dict):
|
||||
new_state_dict = {}
|
||||
capture_qkv_weight = {}
|
||||
capture_qkv_bias = {}
|
||||
for k, v in text_enc_dict.items():
|
||||
if (
|
||||
k.endswith(".self_attn.q_proj.weight")
|
||||
or k.endswith(".self_attn.k_proj.weight")
|
||||
or k.endswith(".self_attn.v_proj.weight")
|
||||
):
|
||||
k_pre = k[: -len(".q_proj.weight")]
|
||||
k_code = k[-len("q_proj.weight")]
|
||||
if k_pre not in capture_qkv_weight:
|
||||
capture_qkv_weight[k_pre] = [None, None, None]
|
||||
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
||||
continue
|
||||
|
||||
if (
|
||||
k.endswith(".self_attn.q_proj.bias")
|
||||
or k.endswith(".self_attn.k_proj.bias")
|
||||
or k.endswith(".self_attn.v_proj.bias")
|
||||
):
|
||||
k_pre = k[: -len(".q_proj.bias")]
|
||||
k_code = k[-len("q_proj.bias")]
|
||||
if k_pre not in capture_qkv_bias:
|
||||
capture_qkv_bias[k_pre] = [None, None, None]
|
||||
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
||||
continue
|
||||
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
||||
new_state_dict[relabelled_key] = v
|
||||
|
||||
for k_pre, tensors in capture_qkv_weight.items():
|
||||
if None in tensors:
|
||||
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
||||
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
||||
|
||||
for k_pre, tensors in capture_qkv_bias.items():
|
||||
if None in tensors:
|
||||
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
||||
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
def convert_text_enc_state_dict(text_enc_dict):
|
||||
return text_enc_dict
|
||||
|
||||
|
||||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
|
||||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
|
||||
|
||||
# magic
|
||||
v2 = diffusers_unet_conf["sample_size"] == 96
|
||||
if 'prediction_type' in diffusers_scheduler_conf:
|
||||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
|
||||
|
||||
if v2:
|
||||
if v_pred:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
|
||||
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
vae_config = model_config_params['first_stage_config']
|
||||
vae_config['scale_factor'] = scale_factor
|
||||
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
|
||||
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
||||
|
||||
# Load models from safetensors if it exists, if it doesn't pytorch
|
||||
if osp.exists(unet_path):
|
||||
unet_state_dict = load_file(unet_path, device="cpu")
|
||||
else:
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
||||
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
||||
|
||||
if osp.exists(vae_path):
|
||||
vae_state_dict = load_file(vae_path, device="cpu")
|
||||
else:
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
||||
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
||||
|
||||
if osp.exists(text_enc_path):
|
||||
text_enc_dict = load_file(text_enc_path, device="cpu")
|
||||
else:
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
||||
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
||||
|
||||
# Convert the UNet model
|
||||
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
||||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
||||
|
||||
# Convert the VAE model
|
||||
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
||||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
||||
|
||||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
||||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
||||
|
||||
if is_v20_model:
|
||||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
||||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
||||
else:
|
||||
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
|
||||
# Put together new checkpoint
|
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
||||
|
||||
clip = None
|
||||
vae = None
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
|
||||
w = WeightsLoader()
|
||||
load_state_dict_to = []
|
||||
if output_vae:
|
||||
vae = VAE(scale_factor=scale_factor, config=vae_config)
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
if output_clip:
|
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config["model"])
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return ModelPatcher(model), clip, vae
|
||||
@ -21,6 +21,8 @@ if model_management.xformers_enabled():
|
||||
import os
|
||||
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
||||
|
||||
from cli_args import args
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
@ -474,7 +476,6 @@ class CrossAttentionPytorch(nn.Module):
|
||||
|
||||
return self.to_out(out)
|
||||
|
||||
import sys
|
||||
if model_management.xformers_enabled():
|
||||
print("Using xformers cross attention")
|
||||
CrossAttention = MemoryEfficientCrossAttention
|
||||
@ -482,7 +483,7 @@ elif model_management.pytorch_attention_enabled():
|
||||
print("Using pytorch cross attention")
|
||||
CrossAttention = CrossAttentionPytorch
|
||||
else:
|
||||
if "--use-split-cross-attention" in sys.argv:
|
||||
if args.use_split_cross_attention:
|
||||
print("Using split optimization for cross attention")
|
||||
CrossAttention = CrossAttentionDoggettx
|
||||
else:
|
||||
|
||||
@ -1,36 +1,42 @@
|
||||
import psutil
|
||||
from enum import Enum
|
||||
from cli_args import args
|
||||
|
||||
CPU = 0
|
||||
NO_VRAM = 1
|
||||
LOW_VRAM = 2
|
||||
NORMAL_VRAM = 3
|
||||
HIGH_VRAM = 4
|
||||
MPS = 5
|
||||
class VRAMState(Enum):
|
||||
CPU = 0
|
||||
NO_VRAM = 1
|
||||
LOW_VRAM = 2
|
||||
NORMAL_VRAM = 3
|
||||
HIGH_VRAM = 4
|
||||
MPS = 5
|
||||
|
||||
accelerate_enabled = False
|
||||
vram_state = NORMAL_VRAM
|
||||
# Determine VRAM State
|
||||
vram_state = VRAMState.NORMAL_VRAM
|
||||
set_vram_to = VRAMState.NORMAL_VRAM
|
||||
|
||||
total_vram = 0
|
||||
total_vram_available_mb = -1
|
||||
|
||||
import sys
|
||||
import psutil
|
||||
|
||||
forced_cpu = "--cpu" in sys.argv
|
||||
|
||||
set_vram_to = NORMAL_VRAM
|
||||
accelerate_enabled = False
|
||||
xpu_available = False
|
||||
|
||||
try:
|
||||
import torch
|
||||
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
if torch.xpu.is_available():
|
||||
xpu_available = True
|
||||
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
|
||||
except:
|
||||
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
||||
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
forced_normal_vram = "--normalvram" in sys.argv
|
||||
if not forced_normal_vram and not forced_cpu:
|
||||
if not args.normalvram and not args.cpu:
|
||||
if total_vram <= 4096:
|
||||
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
||||
set_vram_to = LOW_VRAM
|
||||
set_vram_to = VRAMState.LOW_VRAM
|
||||
elif total_vram > total_ram * 1.1 and total_vram > 14336:
|
||||
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
|
||||
vram_state = HIGH_VRAM
|
||||
vram_state = VRAMState.HIGH_VRAM
|
||||
except:
|
||||
pass
|
||||
|
||||
@ -39,34 +45,37 @@ try:
|
||||
except:
|
||||
OOM_EXCEPTION = Exception
|
||||
|
||||
if "--disable-xformers" in sys.argv:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
if args.disable_xformers:
|
||||
XFORMERS_IS_AVAILABLE = False
|
||||
else:
|
||||
try:
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
XFORMERS_IS_AVAILABLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
XFORMERS_IS_AVAILABLE = False
|
||||
|
||||
ENABLE_PYTORCH_ATTENTION = False
|
||||
if "--use-pytorch-cross-attention" in sys.argv:
|
||||
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
|
||||
if ENABLE_PYTORCH_ATTENTION:
|
||||
torch.backends.cuda.enable_math_sdp(True)
|
||||
torch.backends.cuda.enable_flash_sdp(True)
|
||||
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
XFORMERS_IS_AVAILABLE = False
|
||||
|
||||
if args.lowvram:
|
||||
set_vram_to = VRAMState.LOW_VRAM
|
||||
elif args.novram:
|
||||
set_vram_to = VRAMState.NO_VRAM
|
||||
elif args.highvram:
|
||||
vram_state = VRAMState.HIGH_VRAM
|
||||
|
||||
FORCE_FP32 = False
|
||||
if args.force_fp32:
|
||||
print("Forcing FP32, if this improves things please report it.")
|
||||
FORCE_FP32 = True
|
||||
|
||||
|
||||
if "--lowvram" in sys.argv:
|
||||
set_vram_to = LOW_VRAM
|
||||
if "--novram" in sys.argv:
|
||||
set_vram_to = NO_VRAM
|
||||
if "--highvram" in sys.argv:
|
||||
vram_state = HIGH_VRAM
|
||||
|
||||
|
||||
if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
|
||||
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
|
||||
try:
|
||||
import accelerate
|
||||
accelerate_enabled = True
|
||||
@ -81,14 +90,14 @@ if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
|
||||
|
||||
try:
|
||||
if torch.backends.mps.is_available():
|
||||
vram_state = MPS
|
||||
vram_state = VRAMState.MPS
|
||||
except:
|
||||
pass
|
||||
|
||||
if forced_cpu:
|
||||
vram_state = CPU
|
||||
if args.cpu:
|
||||
vram_state = VRAMState.CPU
|
||||
|
||||
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM", "MPS"][vram_state])
|
||||
print(f"Set vram state to: {vram_state.name}")
|
||||
|
||||
|
||||
current_loaded_model = None
|
||||
@ -109,12 +118,12 @@ def unload_model():
|
||||
model_accelerated = False
|
||||
|
||||
#never unload models from GPU on high vram
|
||||
if vram_state != HIGH_VRAM:
|
||||
if vram_state != VRAMState.HIGH_VRAM:
|
||||
current_loaded_model.model.cpu()
|
||||
current_loaded_model.unpatch_model()
|
||||
current_loaded_model = None
|
||||
|
||||
if vram_state != HIGH_VRAM:
|
||||
if vram_state != VRAMState.HIGH_VRAM:
|
||||
if len(current_gpu_controlnets) > 0:
|
||||
for n in current_gpu_controlnets:
|
||||
n.cpu()
|
||||
@ -135,32 +144,32 @@ def load_model_gpu(model):
|
||||
model.unpatch_model()
|
||||
raise e
|
||||
current_loaded_model = model
|
||||
if vram_state == CPU:
|
||||
if vram_state == VRAMState.CPU:
|
||||
pass
|
||||
elif vram_state == MPS:
|
||||
elif vram_state == VRAMState.MPS:
|
||||
mps_device = torch.device("mps")
|
||||
real_model.to(mps_device)
|
||||
pass
|
||||
elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM:
|
||||
elif vram_state == VRAMState.NORMAL_VRAM or vram_state == VRAMState.HIGH_VRAM:
|
||||
model_accelerated = False
|
||||
real_model.cuda()
|
||||
real_model.to(get_torch_device())
|
||||
else:
|
||||
if vram_state == NO_VRAM:
|
||||
if vram_state == VRAMState.NO_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
|
||||
elif vram_state == LOW_VRAM:
|
||||
elif vram_state == VRAMState.LOW_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
|
||||
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device())
|
||||
model_accelerated = True
|
||||
return current_loaded_model
|
||||
|
||||
def load_controlnet_gpu(models):
|
||||
global current_gpu_controlnets
|
||||
global vram_state
|
||||
if vram_state == CPU:
|
||||
if vram_state == VRAMState.CPU:
|
||||
return
|
||||
|
||||
if vram_state == LOW_VRAM or vram_state == NO_VRAM:
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
|
||||
return
|
||||
|
||||
@ -176,23 +185,27 @@ def load_controlnet_gpu(models):
|
||||
|
||||
def load_if_low_vram(model):
|
||||
global vram_state
|
||||
if vram_state == LOW_VRAM or vram_state == NO_VRAM:
|
||||
return model.cuda()
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
return model.to(get_torch_device())
|
||||
return model
|
||||
|
||||
def unload_if_low_vram(model):
|
||||
global vram_state
|
||||
if vram_state == LOW_VRAM or vram_state == NO_VRAM:
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
return model.cpu()
|
||||
return model
|
||||
|
||||
def get_torch_device():
|
||||
if vram_state == MPS:
|
||||
global xpu_available
|
||||
if vram_state == VRAMState.MPS:
|
||||
return torch.device("mps")
|
||||
if vram_state == CPU:
|
||||
if vram_state == VRAMState.CPU:
|
||||
return torch.device("cpu")
|
||||
else:
|
||||
return torch.cuda.current_device()
|
||||
if xpu_available:
|
||||
return torch.device("xpu")
|
||||
else:
|
||||
return torch.cuda.current_device()
|
||||
|
||||
def get_autocast_device(dev):
|
||||
if hasattr(dev, 'type'):
|
||||
@ -201,9 +214,9 @@ def get_autocast_device(dev):
|
||||
|
||||
|
||||
def xformers_enabled():
|
||||
if vram_state == CPU:
|
||||
if vram_state == VRAMState.CPU:
|
||||
return False
|
||||
return XFORMERS_IS_AVAILBLE
|
||||
return XFORMERS_IS_AVAILABLE
|
||||
|
||||
|
||||
def xformers_enabled_vae():
|
||||
@ -222,6 +235,7 @@ def pytorch_attention_enabled():
|
||||
return ENABLE_PYTORCH_ATTENTION
|
||||
|
||||
def get_free_memory(dev=None, torch_free_too=False):
|
||||
global xpu_available
|
||||
if dev is None:
|
||||
dev = get_torch_device()
|
||||
|
||||
@ -229,12 +243,16 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
mem_free_total = psutil.virtual_memory().available
|
||||
mem_free_torch = mem_free_total
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
if xpu_available:
|
||||
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
|
||||
mem_free_torch = mem_free_total
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
if torch_free_too:
|
||||
return (mem_free_total, mem_free_torch)
|
||||
@ -243,7 +261,7 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
|
||||
def maximum_batch_area():
|
||||
global vram_state
|
||||
if vram_state == NO_VRAM:
|
||||
if vram_state == VRAMState.NO_VRAM:
|
||||
return 0
|
||||
|
||||
memory_free = get_free_memory() / (1024 * 1024)
|
||||
@ -252,14 +270,18 @@ def maximum_batch_area():
|
||||
|
||||
def cpu_mode():
|
||||
global vram_state
|
||||
return vram_state == CPU
|
||||
return vram_state == VRAMState.CPU
|
||||
|
||||
def mps_mode():
|
||||
global vram_state
|
||||
return vram_state == MPS
|
||||
return vram_state == VRAMState.MPS
|
||||
|
||||
def should_use_fp16():
|
||||
if cpu_mode() or mps_mode():
|
||||
global xpu_available
|
||||
if FORCE_FP32:
|
||||
return False
|
||||
|
||||
if cpu_mode() or mps_mode() or xpu_available:
|
||||
return False #TODO ?
|
||||
|
||||
if torch.cuda.is_bf16_supported():
|
||||
|
||||
@ -23,10 +23,45 @@ folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_
|
||||
folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions)
|
||||
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
|
||||
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
|
||||
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
|
||||
|
||||
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
|
||||
folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions)
|
||||
|
||||
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
||||
temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
||||
input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
||||
|
||||
if not os.path.exists(input_directory):
|
||||
os.makedirs(input_directory)
|
||||
|
||||
def set_output_directory(output_dir):
|
||||
global output_directory
|
||||
output_directory = output_dir
|
||||
|
||||
def get_output_directory():
|
||||
global output_directory
|
||||
return output_directory
|
||||
|
||||
def get_temp_directory():
|
||||
global temp_directory
|
||||
return temp_directory
|
||||
|
||||
def get_input_directory():
|
||||
global input_directory
|
||||
return input_directory
|
||||
|
||||
|
||||
#NOTE: used in http server so don't put folders that should not be accessed remotely
|
||||
def get_directory_by_type(type_name):
|
||||
if type_name == "output":
|
||||
return get_output_directory()
|
||||
if type_name == "temp":
|
||||
return get_temp_directory()
|
||||
if type_name == "input":
|
||||
return get_input_directory()
|
||||
return None
|
||||
|
||||
|
||||
def add_model_folder_path(folder_name, full_folder_path):
|
||||
global folder_names_and_paths
|
||||
|
||||
97
main.py
97
main.py
@ -1,56 +1,33 @@
|
||||
import os
|
||||
import sys
|
||||
import shutil
|
||||
|
||||
import threading
|
||||
import asyncio
|
||||
import itertools
|
||||
import os
|
||||
import shutil
|
||||
import threading
|
||||
|
||||
from comfy.cli_args import args
|
||||
|
||||
if os.name == "nt":
|
||||
import logging
|
||||
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
||||
|
||||
if __name__ == "__main__":
|
||||
if '--help' in sys.argv:
|
||||
print()
|
||||
print("Valid Command line Arguments:")
|
||||
print("\t--listen [ip]\t\t\tListen on ip or 0.0.0.0 if none given so the UI can be accessed from other computers.")
|
||||
print("\t--port 8188\t\t\tSet the listen port.")
|
||||
print()
|
||||
print("\t--extra-model-paths-config file.yaml\tload an extra_model_paths.yaml file.")
|
||||
print()
|
||||
print()
|
||||
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n")
|
||||
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.")
|
||||
print("\t--use-pytorch-cross-attention\tUse the new pytorch 2.0 cross attention function.")
|
||||
print("\t--disable-xformers\t\tdisables xformers")
|
||||
print("\t--cuda-device 1\t\tSet the id of the cuda device this instance will use.")
|
||||
print()
|
||||
print("\t--highvram\t\t\tBy default models will be unloaded to CPU memory after being used.\n\t\t\t\t\tThis option keeps them in GPU memory.\n")
|
||||
print("\t--normalvram\t\t\tUsed to force normal vram use if lowvram gets automatically enabled.")
|
||||
print("\t--lowvram\t\t\tSplit the unet in parts to use less vram.")
|
||||
print("\t--novram\t\t\tWhen lowvram isn't enough.")
|
||||
print()
|
||||
print("\t--cpu\t\t\tTo use the CPU for everything (slow).")
|
||||
exit()
|
||||
|
||||
if '--dont-upcast-attention' in sys.argv:
|
||||
if args.dont_upcast_attention:
|
||||
print("disabling upcasting of attention")
|
||||
os.environ['ATTN_PRECISION'] = "fp16"
|
||||
|
||||
try:
|
||||
index = sys.argv.index('--cuda-device')
|
||||
device = sys.argv[index + 1]
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device
|
||||
print("Set cuda device to:", device)
|
||||
except:
|
||||
pass
|
||||
if args.cuda_device is not None:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
|
||||
print("Set cuda device to:", args.cuda_device)
|
||||
|
||||
|
||||
from nodes import init_custom_nodes
|
||||
import execution
|
||||
import server
|
||||
import folder_paths
|
||||
import yaml
|
||||
|
||||
import execution
|
||||
import folder_paths
|
||||
import server
|
||||
from nodes import init_custom_nodes
|
||||
|
||||
|
||||
def prompt_worker(q, server):
|
||||
e = execution.PromptExecutor(server)
|
||||
while True:
|
||||
@ -109,43 +86,31 @@ if __name__ == "__main__":
|
||||
hijack_progress(server)
|
||||
|
||||
threading.Thread(target=prompt_worker, daemon=True, args=(q,server,)).start()
|
||||
try:
|
||||
address = '0.0.0.0'
|
||||
p_index = sys.argv.index('--listen')
|
||||
try:
|
||||
ip = sys.argv[p_index + 1]
|
||||
if ip[:2] != '--':
|
||||
address = ip
|
||||
except:
|
||||
pass
|
||||
except:
|
||||
address = '127.0.0.1'
|
||||
|
||||
dont_print = False
|
||||
if '--dont-print-server' in sys.argv:
|
||||
dont_print = True
|
||||
address = args.listen
|
||||
|
||||
dont_print = args.dont_print_server
|
||||
|
||||
extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml")
|
||||
if os.path.isfile(extra_model_paths_config_path):
|
||||
load_extra_path_config(extra_model_paths_config_path)
|
||||
|
||||
if '--extra-model-paths-config' in sys.argv:
|
||||
indices = [(i + 1) for i in range(len(sys.argv) - 1) if sys.argv[i] == '--extra-model-paths-config']
|
||||
for i in indices:
|
||||
load_extra_path_config(sys.argv[i])
|
||||
if args.extra_model_paths_config:
|
||||
for config_path in itertools.chain(*args.extra_model_paths_config):
|
||||
load_extra_path_config(config_path)
|
||||
|
||||
port = 8188
|
||||
try:
|
||||
p_index = sys.argv.index('--port')
|
||||
port = int(sys.argv[p_index + 1])
|
||||
except:
|
||||
pass
|
||||
if args.output_directory:
|
||||
output_dir = os.path.abspath(args.output_directory)
|
||||
print(f"Setting output directory to: {output_dir}")
|
||||
folder_paths.set_output_directory(output_dir)
|
||||
|
||||
if '--quick-test-for-ci' in sys.argv:
|
||||
port = args.port
|
||||
|
||||
if args.quick_test_for_ci:
|
||||
exit(0)
|
||||
|
||||
call_on_start = None
|
||||
if "--windows-standalone-build" in sys.argv:
|
||||
if args.windows_standalone_build:
|
||||
def startup_server(address, port):
|
||||
import webbrowser
|
||||
webbrowser.open("http://{}:{}".format(address, port))
|
||||
|
||||
0
models/diffusers/put_diffusers_models_here
Normal file
0
models/diffusers/put_diffusers_models_here
Normal file
57
nodes.py
57
nodes.py
@ -4,16 +4,17 @@ import os
|
||||
import sys
|
||||
import json
|
||||
import hashlib
|
||||
import copy
|
||||
import traceback
|
||||
|
||||
from PIL import Image
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
import numpy as np
|
||||
|
||||
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
||||
|
||||
|
||||
import comfy.diffusers_convert
|
||||
import comfy.samplers
|
||||
import comfy.sd
|
||||
import comfy.utils
|
||||
@ -219,6 +220,30 @@ class CheckpointLoaderSimple:
|
||||
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return out
|
||||
|
||||
class DiffusersLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
paths = []
|
||||
for search_path in folder_paths.get_folder_paths("diffusers"):
|
||||
if os.path.exists(search_path):
|
||||
paths += next(os.walk(search_path))[1]
|
||||
return {"required": {"model_path": (paths,), }}
|
||||
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
||||
FUNCTION = "load_checkpoint"
|
||||
|
||||
CATEGORY = "advanced/loaders"
|
||||
|
||||
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
|
||||
for search_path in folder_paths.get_folder_paths("diffusers"):
|
||||
if os.path.exists(search_path):
|
||||
paths = next(os.walk(search_path))[1]
|
||||
if model_path in paths:
|
||||
model_path = os.path.join(search_path, model_path)
|
||||
break
|
||||
|
||||
return comfy.diffusers_convert.load_diffusers(model_path, fp16=model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
|
||||
|
||||
class unCLIPCheckpointLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -853,7 +878,7 @@ class KSamplerAdvanced:
|
||||
|
||||
class SaveImage:
|
||||
def __init__(self):
|
||||
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type = "output"
|
||||
|
||||
@classmethod
|
||||
@ -905,9 +930,6 @@ class SaveImage:
|
||||
os.makedirs(full_output_folder, exist_ok=True)
|
||||
counter = 1
|
||||
|
||||
if not os.path.exists(self.output_dir):
|
||||
os.makedirs(self.output_dir)
|
||||
|
||||
results = list()
|
||||
for image in images:
|
||||
i = 255. * image.cpu().numpy()
|
||||
@ -932,7 +954,7 @@ class SaveImage:
|
||||
|
||||
class PreviewImage(SaveImage):
|
||||
def __init__(self):
|
||||
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
|
||||
@classmethod
|
||||
@ -943,13 +965,11 @@ class PreviewImage(SaveImage):
|
||||
}
|
||||
|
||||
class LoadImage:
|
||||
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
if not os.path.exists(s.input_dir):
|
||||
os.makedirs(s.input_dir)
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
return {"required":
|
||||
{"image": (sorted(os.listdir(s.input_dir)), )},
|
||||
{"image": (sorted(os.listdir(input_dir)), )},
|
||||
}
|
||||
|
||||
CATEGORY = "image"
|
||||
@ -957,7 +977,8 @@ class LoadImage:
|
||||
RETURN_TYPES = ("IMAGE", "MASK")
|
||||
FUNCTION = "load_image"
|
||||
def load_image(self, image):
|
||||
image_path = os.path.join(self.input_dir, image)
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
image_path = os.path.join(input_dir, image)
|
||||
i = Image.open(image_path)
|
||||
image = i.convert("RGB")
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
@ -971,18 +992,19 @@ class LoadImage:
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image):
|
||||
image_path = os.path.join(s.input_dir, image)
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
image_path = os.path.join(input_dir, image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
class LoadImageMask:
|
||||
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
return {"required":
|
||||
{"image": (sorted(os.listdir(s.input_dir)), ),
|
||||
{"image": (sorted(os.listdir(input_dir)), ),
|
||||
"channel": (["alpha", "red", "green", "blue"], ),}
|
||||
}
|
||||
|
||||
@ -991,7 +1013,8 @@ class LoadImageMask:
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "load_image"
|
||||
def load_image(self, image, channel):
|
||||
image_path = os.path.join(self.input_dir, image)
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
image_path = os.path.join(input_dir, image)
|
||||
i = Image.open(image_path)
|
||||
mask = None
|
||||
c = channel[0].upper()
|
||||
@ -1006,7 +1029,8 @@ class LoadImageMask:
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image, channel):
|
||||
image_path = os.path.join(s.input_dir, image)
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
image_path = os.path.join(input_dir, image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
@ -1154,6 +1178,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"TomePatchModel": TomePatchModel,
|
||||
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
||||
"CheckpointLoader": CheckpointLoader,
|
||||
"DiffusersLoader": DiffusersLoader,
|
||||
}
|
||||
|
||||
def load_custom_node(module_path):
|
||||
|
||||
@ -4,7 +4,7 @@ torchsde
|
||||
einops
|
||||
open-clip-torch
|
||||
transformers>=4.25.1
|
||||
safetensors
|
||||
safetensors>=0.3.0
|
||||
pytorch_lightning
|
||||
aiohttp
|
||||
accelerate
|
||||
|
||||
31
server.py
31
server.py
@ -18,6 +18,7 @@ except ImportError:
|
||||
sys.exit()
|
||||
|
||||
import mimetypes
|
||||
from comfy.cli_args import args
|
||||
|
||||
|
||||
@web.middleware
|
||||
@ -27,6 +28,23 @@ async def cache_control(request: web.Request, handler):
|
||||
response.headers.setdefault('Cache-Control', 'no-cache')
|
||||
return response
|
||||
|
||||
def create_cors_middleware(allowed_origin: str):
|
||||
@web.middleware
|
||||
async def cors_middleware(request: web.Request, handler):
|
||||
if request.method == "OPTIONS":
|
||||
# Pre-flight request. Reply successfully:
|
||||
response = web.Response()
|
||||
else:
|
||||
response = await handler(request)
|
||||
|
||||
response.headers['Access-Control-Allow-Origin'] = allowed_origin
|
||||
response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS'
|
||||
response.headers['Access-Control-Allow-Headers'] = 'Content-Type, Authorization'
|
||||
response.headers['Access-Control-Allow-Credentials'] = 'true'
|
||||
return response
|
||||
|
||||
return cors_middleware
|
||||
|
||||
class PromptServer():
|
||||
def __init__(self, loop):
|
||||
PromptServer.instance = self
|
||||
@ -37,7 +55,12 @@ class PromptServer():
|
||||
self.loop = loop
|
||||
self.messages = asyncio.Queue()
|
||||
self.number = 0
|
||||
self.app = web.Application(client_max_size=20971520, middlewares=[cache_control])
|
||||
|
||||
middlewares = [cache_control]
|
||||
if args.enable_cors_header:
|
||||
middlewares.append(create_cors_middleware(args.enable_cors_header))
|
||||
|
||||
self.app = web.Application(client_max_size=20971520, middlewares=middlewares)
|
||||
self.sockets = dict()
|
||||
self.web_root = os.path.join(os.path.dirname(
|
||||
os.path.realpath(__file__)), "web")
|
||||
@ -89,7 +112,7 @@ class PromptServer():
|
||||
|
||||
@routes.post("/upload/image")
|
||||
async def upload_image(request):
|
||||
upload_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
||||
upload_dir = folder_paths.get_input_directory()
|
||||
|
||||
if not os.path.exists(upload_dir):
|
||||
os.makedirs(upload_dir)
|
||||
@ -122,10 +145,10 @@ class PromptServer():
|
||||
async def view_image(request):
|
||||
if "filename" in request.rel_url.query:
|
||||
type = request.rel_url.query.get("type", "output")
|
||||
if type not in ["output", "input", "temp"]:
|
||||
output_dir = folder_paths.get_directory_by_type(type)
|
||||
if output_dir is None:
|
||||
return web.Response(status=400)
|
||||
|
||||
output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), type)
|
||||
if "subfolder" in request.rel_url.query:
|
||||
full_output_dir = os.path.join(output_dir, request.rel_url.query["subfolder"])
|
||||
if os.path.commonpath((os.path.abspath(full_output_dir), output_dir)) != output_dir:
|
||||
|
||||
@ -112,6 +112,46 @@ class ComfyApp {
|
||||
};
|
||||
}
|
||||
|
||||
#addNodeKeyHandler(node) {
|
||||
const app = this;
|
||||
const origNodeOnKeyDown = node.prototype.onKeyDown;
|
||||
|
||||
node.prototype.onKeyDown = function(e) {
|
||||
if (origNodeOnKeyDown && origNodeOnKeyDown.apply(this, e) === false) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (this.flags.collapsed || !this.imgs || this.imageIndex === null) {
|
||||
return;
|
||||
}
|
||||
|
||||
let handled = false;
|
||||
|
||||
if (e.key === "ArrowLeft" || e.key === "ArrowRight") {
|
||||
if (e.key === "ArrowLeft") {
|
||||
this.imageIndex -= 1;
|
||||
} else if (e.key === "ArrowRight") {
|
||||
this.imageIndex += 1;
|
||||
}
|
||||
this.imageIndex %= this.imgs.length;
|
||||
|
||||
if (this.imageIndex < 0) {
|
||||
this.imageIndex = this.imgs.length + this.imageIndex;
|
||||
}
|
||||
handled = true;
|
||||
} else if (e.key === "Escape") {
|
||||
this.imageIndex = null;
|
||||
handled = true;
|
||||
}
|
||||
|
||||
if (handled === true) {
|
||||
e.preventDefault();
|
||||
e.stopImmediatePropagation();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds Custom drawing logic for nodes
|
||||
* e.g. Draws images and handles thumbnail navigation on nodes that output images
|
||||
@ -803,6 +843,7 @@ class ComfyApp {
|
||||
|
||||
this.#addNodeContextMenuHandler(node);
|
||||
this.#addDrawBackgroundHandler(node, app);
|
||||
this.#addNodeKeyHandler(node);
|
||||
|
||||
await this.#invokeExtensionsAsync("beforeRegisterNodeDef", node, nodeData);
|
||||
LiteGraph.registerNodeType(nodeId, node);
|
||||
|
||||
@ -115,14 +115,6 @@ function dragElement(dragEl, settings) {
|
||||
savePos = value;
|
||||
},
|
||||
});
|
||||
|
||||
settings.addSetting({
|
||||
id: "Comfy.ConfirmClear",
|
||||
name: "Require confirmation when clearing workflow",
|
||||
type: "boolean",
|
||||
defaultValue: true,
|
||||
});
|
||||
|
||||
function dragMouseDown(e) {
|
||||
e = e || window.event;
|
||||
e.preventDefault();
|
||||
@ -170,7 +162,7 @@ class ComfyDialog {
|
||||
$el("p", { $: (p) => (this.textElement = p) }),
|
||||
$el("button", {
|
||||
type: "button",
|
||||
textContent: "CLOSE",
|
||||
textContent: "Close",
|
||||
onclick: () => this.close(),
|
||||
}),
|
||||
]),
|
||||
@ -233,6 +225,7 @@ class ComfySettingsDialog extends ComfyDialog {
|
||||
};
|
||||
|
||||
let element;
|
||||
value = this.getSettingValue(id, defaultValue);
|
||||
|
||||
if (typeof type === "function") {
|
||||
element = type(name, setter, value, attrs);
|
||||
@ -289,6 +282,16 @@ class ComfySettingsDialog extends ComfyDialog {
|
||||
return element;
|
||||
},
|
||||
});
|
||||
|
||||
const self = this;
|
||||
return {
|
||||
get value() {
|
||||
return self.getSettingValue(id, defaultValue);
|
||||
},
|
||||
set value(v) {
|
||||
self.setSettingValue(id, v);
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
show() {
|
||||
@ -410,6 +413,13 @@ export class ComfyUI {
|
||||
this.history.update();
|
||||
});
|
||||
|
||||
const confirmClear = this.settings.addSetting({
|
||||
id: "Comfy.ConfirmClear",
|
||||
name: "Require confirmation when clearing workflow",
|
||||
type: "boolean",
|
||||
defaultValue: true,
|
||||
});
|
||||
|
||||
const fileInput = $el("input", {
|
||||
type: "file",
|
||||
accept: ".json,image/png",
|
||||
@ -421,7 +431,7 @@ export class ComfyUI {
|
||||
});
|
||||
|
||||
this.menuContainer = $el("div.comfy-menu", { parent: document.body }, [
|
||||
$el("div", { style: { overflow: "hidden", position: "relative", width: "100%" } }, [
|
||||
$el("div.drag-handle", { style: { overflow: "hidden", position: "relative", width: "100%", cursor: "default" } }, [
|
||||
$el("span.drag-handle"),
|
||||
$el("span", { $: (q) => (this.queueSize = q) }),
|
||||
$el("button.comfy-settings-btn", { textContent: "⚙️", onclick: () => this.settings.show() }),
|
||||
@ -517,13 +527,13 @@ export class ComfyUI {
|
||||
$el("button", { textContent: "Load", onclick: () => fileInput.click() }),
|
||||
$el("button", { textContent: "Refresh", onclick: () => app.refreshComboInNodes() }),
|
||||
$el("button", { textContent: "Clear", onclick: () => {
|
||||
if (localStorage.getItem("Comfy.Settings.Comfy.ConfirmClear") == "false" || confirm("Clear workflow?")) {
|
||||
if (!confirmClear.value || confirm("Clear workflow?")) {
|
||||
app.clean();
|
||||
app.graph.clear();
|
||||
}
|
||||
}}),
|
||||
$el("button", { textContent: "Load Default", onclick: () => {
|
||||
if (localStorage.getItem("Comfy.Settings.Comfy.ConfirmClear") == "false" || confirm("Load default workflow?")) {
|
||||
if (!confirmClear.value || confirm("Load default workflow?")) {
|
||||
app.loadGraphData()
|
||||
}
|
||||
}}),
|
||||
|
||||
@ -306,7 +306,7 @@ export const ComfyWidgets = {
|
||||
const fileInput = document.createElement("input");
|
||||
Object.assign(fileInput, {
|
||||
type: "file",
|
||||
accept: "image/jpeg,image/png",
|
||||
accept: "image/jpeg,image/png,image/webp",
|
||||
style: "display: none",
|
||||
onchange: async () => {
|
||||
if (fileInput.files.length) {
|
||||
|
||||
@ -39,18 +39,19 @@ body {
|
||||
position: fixed; /* Stay in place */
|
||||
z-index: 100; /* Sit on top */
|
||||
padding: 30px 30px 10px 30px;
|
||||
background-color: #ff0000; /* Modal background */
|
||||
background-color: #353535; /* Modal background */
|
||||
color: #ff4444;
|
||||
box-shadow: 0px 0px 20px #888888;
|
||||
border-radius: 10px;
|
||||
text-align: center;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
max-width: 80vw;
|
||||
max-height: 80vh;
|
||||
transform: translate(-50%, -50%);
|
||||
overflow: hidden;
|
||||
min-width: 60%;
|
||||
justify-content: center;
|
||||
font-family: monospace;
|
||||
font-size: 15px;
|
||||
}
|
||||
|
||||
.comfy-modal-content {
|
||||
@ -70,31 +71,11 @@ body {
|
||||
margin: 3px 3px 3px 4px;
|
||||
}
|
||||
|
||||
.comfy-modal button {
|
||||
cursor: pointer;
|
||||
color: #aaaaaa;
|
||||
border: none;
|
||||
background-color: transparent;
|
||||
font-size: 24px;
|
||||
font-weight: bold;
|
||||
width: 100%;
|
||||
}
|
||||
|
||||
.comfy-modal button:hover,
|
||||
.comfy-modal button:focus {
|
||||
color: #000;
|
||||
text-decoration: none;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.comfy-menu {
|
||||
width: 200px;
|
||||
font-size: 15px;
|
||||
position: absolute;
|
||||
top: 50%;
|
||||
right: 0%;
|
||||
background-color: white;
|
||||
color: #000;
|
||||
text-align: center;
|
||||
z-index: 100;
|
||||
width: 170px;
|
||||
@ -109,7 +90,8 @@ body {
|
||||
box-shadow: 3px 3px 8px rgba(0, 0, 0, 0.4);
|
||||
}
|
||||
|
||||
.comfy-menu button {
|
||||
.comfy-menu button,
|
||||
.comfy-modal button {
|
||||
font-size: 20px;
|
||||
}
|
||||
|
||||
@ -130,7 +112,8 @@ body {
|
||||
|
||||
.comfy-menu > button,
|
||||
.comfy-menu-btns button,
|
||||
.comfy-menu .comfy-list button {
|
||||
.comfy-menu .comfy-list button,
|
||||
.comfy-modal button{
|
||||
color: #ddd;
|
||||
background-color: #222;
|
||||
border-radius: 8px;
|
||||
@ -220,11 +203,22 @@ button.comfy-queue-btn {
|
||||
}
|
||||
|
||||
.comfy-modal.comfy-settings {
|
||||
background-color: var(--bg-color);
|
||||
color: var(--fg-color);
|
||||
text-align: center;
|
||||
font-family: sans-serif;
|
||||
color: #999;
|
||||
z-index: 99;
|
||||
}
|
||||
|
||||
.comfy-modal input,
|
||||
.comfy-modal select {
|
||||
color: #ddd;
|
||||
background-color: #222;
|
||||
border-radius: 8px;
|
||||
border-color: #4e4e4e;
|
||||
border-style: solid;
|
||||
font-size: inherit;
|
||||
}
|
||||
|
||||
@media only screen and (max-height: 850px) {
|
||||
.comfy-menu {
|
||||
top: 0 !important;
|
||||
@ -239,26 +233,26 @@ button.comfy-queue-btn {
|
||||
}
|
||||
|
||||
.graphdialog {
|
||||
min-height: 1em;
|
||||
min-height: 1em;
|
||||
}
|
||||
|
||||
.graphdialog .name {
|
||||
font-size: 14px;
|
||||
font-family: sans-serif;
|
||||
color: #999999;
|
||||
font-size: 14px;
|
||||
font-family: sans-serif;
|
||||
color: #999999;
|
||||
}
|
||||
|
||||
.graphdialog button {
|
||||
margin-top: unset;
|
||||
vertical-align: unset;
|
||||
height: 1.6em;
|
||||
padding-right: 8px;
|
||||
margin-top: unset;
|
||||
vertical-align: unset;
|
||||
height: 1.6em;
|
||||
padding-right: 8px;
|
||||
}
|
||||
|
||||
.graphdialog input, .graphdialog textarea, .graphdialog select {
|
||||
background-color: #222;
|
||||
border: 2px solid;
|
||||
border-color: #444444;
|
||||
color: #ddd;
|
||||
border-radius: 12px 0 0 12px;
|
||||
background-color: #222;
|
||||
border: 2px solid;
|
||||
border-color: #444444;
|
||||
color: #ddd;
|
||||
border-radius: 12px 0 0 12px;
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user