Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2025-12-06 03:58:11 +03:00 committed by GitHub
commit 81e364f3db
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
37 changed files with 590 additions and 450 deletions

View File

@ -321,6 +321,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
2. Launch ComfyUI by running `python main.py`
## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4)
**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI.
### Setup
1. Install the manager dependencies:
```bash
pip install -r manager_requirements.txt
```
2. Enable the manager with the `--enable-manager` flag when running ComfyUI:
```bash
python main.py --enable-manager
```
### Command Line Options
| Flag | Description |
|------|-------------|
| `--enable-manager` | Enable ComfyUI-Manager |
| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) |
| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) |
# Running
```python main.py```

View File

@ -51,26 +51,36 @@ class ContextHandlerABC(ABC):
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0):
def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
self.total_frames = total_frames
self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames)
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
idx = tuple([slice(None)] * dim + [self.index_list])
window = full[idx]
if retain_index_list:
idx = tuple([slice(None)] * dim + [retain_index_list])
window[idx] = full[idx]
return window.to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = [slice(None)] * dim + [self.index_list]
idx = tuple([slice(None)] * dim + [self.index_list])
full[idx] += to_add
return full
def get_region_index(self, num_regions: int) -> int:
region_idx = int(self.center_ratio * num_regions)
return min(max(region_idx, 0), num_regions - 1)
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
@ -94,7 +104,8 @@ class ContextFuseMethod:
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1,
closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
@ -103,13 +114,18 @@ class IndexListContextHandler(ContextHandlerABC):
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.freenoise = freenoise
self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else []
self.split_conds_to_windows = split_conds_to_windows
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.")
if self.cond_retain_index_list:
logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}")
return True
return False
@ -123,6 +139,11 @@ class IndexListContextHandler(ContextHandlerABC):
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# if multiple conds, split based on primary region
if self.split_conds_to_windows and len(cond_in) > 1:
region = window.get_region_index(len(cond_in))
logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}")
cond_in = [cond_in[region]]
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
@ -146,12 +167,19 @@ class IndexListContextHandler(ContextHandlerABC):
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \
(cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# Handle audio_embed (temporal dim is 1)
elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
audio_cond = cond_value.cond
if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1))
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \
(cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
@ -164,7 +192,7 @@ class IndexListContextHandler(ContextHandlerABC):
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
@ -173,7 +201,7 @@ class IndexListContextHandler(ContextHandlerABC):
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
@ -250,8 +278,8 @@ class IndexListContextHandler(ContextHandlerABC):
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
idx_window = tuple([slice(None)] * self.dim + [idx])
pos_window = tuple([slice(None)] * self.dim + [pos])
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
@ -287,6 +315,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher):
)
def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs):
model_options = extra_args.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is None:
raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.")
if not handler.freenoise:
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"])
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
def create_sampler_sample_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE,
"ContextWindows_sampler_sample",
_sampler_sample_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
@ -538,3 +588,29 @@ def shift_window_to_end(window: list[int], num_frames: int):
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465
def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int):
logging.info("Context windows: Applying FreeNoise")
generator = torch.Generator(device='cpu').manual_seed(seed)
latent_video_length = noise.shape[dim]
delta = context_length - context_overlap
for start_idx in range(0, latent_video_length - context_length, delta):
place_idx = start_idx + context_length
actual_delta = min(delta, latent_video_length - place_idx)
if actual_delta <= 0:
break
list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx
source_slice = [slice(None)] * noise.ndim
source_slice[dim] = list_idx
target_slice = [slice(None)] * noise.ndim
target_slice[dim] = slice(place_idx, place_idx + actual_delta)
noise[tuple(target_slice)] = noise[tuple(source_slice)]
return noise

View File

@ -586,7 +586,6 @@ class NextDiT(nn.Module):
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
patches = transformer_options.get("patches", {})
transformer_options = kwargs.get("transformer_options", {})
x_is_tensor = isinstance(x, torch.Tensor)
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(img.device)

View File

@ -134,7 +134,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config)
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
@ -329,18 +329,6 @@ class BaseModel(torch.nn.Module):
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
if self.model_config.scaled_fp8 is not None:
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
# Save mixed precision metadata
if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config:
metadata = {
"format_version": "1.0",
"layers": self.model_config.layer_quant_config
}
unet_state_dict["_quantization_metadata"] = metadata
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:

View File

@ -6,20 +6,6 @@ import math
import logging
import torch
def detect_layer_quantization(metadata):
quant_key = "_quantization_metadata"
if metadata is not None and quant_key in metadata:
quant_metadata = metadata.pop(quant_key)
quant_metadata = json.loads(quant_metadata)
if isinstance(quant_metadata, dict) and "layers" in quant_metadata:
logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})")
return quant_metadata["layers"]
else:
raise ValueError("Invalid quantization metadata format")
return None
def count_blocks(state_dict_keys, prefix_string):
count = 0
while True:
@ -767,22 +753,11 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
if model_config is None and use_base_if_no_match:
model_config = comfy.supported_models_base.BASE(unet_config)
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix)
if scaled_fp8_key in state_dict:
scaled_fp8_weight = state_dict.pop(scaled_fp8_key)
model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
model_config.optimizations["fp8"] = False
else:
model_config.optimizations["fp8"] = True
# Detect per-layer quantization (mixed precision)
layer_quant_config = detect_layer_quantization(metadata)
if layer_quant_config:
model_config.layer_quant_config = layer_quant_config
logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized")
quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix)
if quant_config:
model_config.quant_config = quant_config
logging.info("Detected mixed precision quantization")
return model_config

View File

@ -126,27 +126,11 @@ class LowVramPatch:
def __init__(self, key, patches, convert_func=None, set_func=None):
self.key = key
self.patches = patches
self.convert_func = convert_func
self.convert_func = convert_func # TODO: remove
self.set_func = set_func
def __call__(self, weight):
intermediate_dtype = weight.dtype
if self.convert_func is not None:
weight = self.convert_func(weight, inplace=False)
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is None:
return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key))
else:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True)
out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is not None:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype)
else:
return out
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype)
#The above patch logic may cast up the weight to fp32, and do math. Go with fp32 x 3
LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 3

View File

@ -23,6 +23,7 @@ from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
import contextlib
import json
def run_every_op():
if comfy.model_management.torch_version_numeric >= (2, 3) and torch.compiler.is_compiling():
@ -422,22 +423,12 @@ def fp8_linear(self, input):
if input.ndim == 3 or input.ndim == 2:
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
scale_weight = self.scale_weight
scale_input = self.scale_input
if scale_weight is None:
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
else:
scale_weight = scale_weight.to(input.device)
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
else:
scale_input = scale_input.to(input.device)
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
@ -458,7 +449,7 @@ class fp8_ops(manual_cast):
return None
def forward_comfy_cast_weights(self, input):
if not self.training:
if len(self.weight_function) == 0 and len(self.bias_function) == 0:
try:
out = fp8_linear(self, input)
if out is not None:
@ -471,59 +462,6 @@ class fp8_ops(manual_cast):
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
if override_dtype is not None:
kwargs['dtype'] = override_dtype
super().__init__(*args, **kwargs)
def reset_parameters(self):
if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
if not scale_input:
self.scale_input = None
if not hasattr(self, 'scale_input'):
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
return None
def forward_comfy_cast_weights(self, input):
if fp8_matrix_mult:
out = fp8_linear(self, input)
if out is not None:
return out
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
if weight.numel() < input.numel(): #TODO: optimize
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
else:
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32)
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
if return_weight:
return weight
if inplace_update:
self.weight.data.copy_(weight)
else:
self.weight = torch.nn.Parameter(weight, requires_grad=False)
return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
@ -550,9 +488,9 @@ if CUBLAS_IS_AVAILABLE:
from .quant_ops import QuantizedTensor, QUANT_ALGOS
def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
class MixedPrecisionOps(manual_cast):
_layer_quant_config = layer_quant_config
_quant_config = quant_config
_compute_dtype = compute_dtype
_full_precision_mm = full_precision_mm
@ -595,27 +533,38 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
manually_loaded_keys = [weight_key]
if layer_name not in MixedPrecisionOps._layer_quant_config:
layer_conf = state_dict.pop(f"{prefix}comfy_quant", None)
if layer_conf is not None:
layer_conf = json.loads(layer_conf.numpy().tobytes())
if layer_conf is None:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
self.quant_format = layer_conf.get("format", None)
if not self._full_precision_mm:
self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False)
if self.quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
qconfig = QUANT_ALGOS[quant_format]
qconfig = QUANT_ALGOS[self.quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
weight_scale_key = f"{prefix}weight_scale"
scale = state_dict.pop(weight_scale_key, None)
if scale is not None:
scale = scale.to(device)
layout_params = {
'scale': state_dict.pop(weight_scale_key, None),
'scale': scale,
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
}
if layout_params['scale'] is not None:
if scale is not None:
manually_loaded_keys.append(weight_scale_key)
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params),
requires_grad=False
)
@ -624,7 +573,7 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
_v = state_dict.pop(param_key, None)
if _v is None:
continue
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
@ -633,6 +582,16 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
if key in missing_keys:
missing_keys.remove(key)
def state_dict(self, *args, destination=None, prefix="", **kwargs):
sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs)
if isinstance(self.weight, QuantizedTensor):
sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale']
quant_conf = {"format": self.quant_format}
if self._full_precision_mm:
quant_conf["full_precision_matrix_mult"] = True
sd["{}comfy_quant".format(prefix)] = torch.frombuffer(json.dumps(quant_conf).encode('utf-8'), dtype=torch.uint8)
return sd
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
@ -648,9 +607,8 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def convert_weight(self, weight, inplace=False, **kwargs):
@ -661,7 +619,7 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
if getattr(self, 'layout_type', None) is not None:
weight = QuantizedTensor.from_float(weight, self.layout_type, scale=None, dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True)
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True)
else:
weight = weight.to(self.weight.dtype)
if return_weight:
@ -670,17 +628,28 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
assert inplace_update is False # TODO: eventually remove the inplace_update stuff
self.weight = torch.nn.Parameter(weight, requires_grad=False)
def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working
if recurse:
for module in self.children():
module._apply(fn)
for key, param in self._parameters.items():
if param is None:
continue
self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False))
for key, buf in self._buffers.items():
if buf is not None:
self._buffers[key] = fn(buf)
return self
return MixedPrecisionOps
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
return mixed_precision_ops(model_config.layer_quant_config, compute_dtype, full_precision_mm=not fp8_compute)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config:
logging.info("Using mixed precision operations")
return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute)
if (
fp8_compute and

View File

@ -238,6 +238,9 @@ class QuantizedTensor(torch.Tensor):
def is_contiguous(self, *arg, **kwargs):
return self._qdata.is_contiguous(*arg, **kwargs)
def storage(self):
return self._qdata.storage()
# ==============================================================================
# Generic Utilities (Layout-Agnostic Operations)
# ==============================================================================
@ -249,12 +252,6 @@ def _create_transformed_qtensor(qt, transform_fn):
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
if target_dtype is not None and target_dtype != qt.dtype:
logging.warning(
f"QuantizedTensor: dtype conversion requested to {target_dtype}, "
f"but not supported for quantized tensors. Ignoring dtype."
)
if target_layout is not None and target_layout != torch.strided:
logging.warning(
f"QuantizedTensor: layout change requested to {target_layout}, "
@ -274,6 +271,8 @@ def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
new_q_data = qt._qdata.to(device=target_device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
if target_dtype is not None:
new_params["orig_dtype"] = target_dtype
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
return new_qt
@ -339,7 +338,9 @@ def generic_copy_(func, args, kwargs):
# Copy from another quantized tensor
qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
qt_dest._layout_type = src._layout_type
orig_dtype = qt_dest._layout_params["orig_dtype"]
_copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
qt_dest._layout_params["orig_dtype"] = orig_dtype
else:
# Copy from regular tensor - just copy raw data
qt_dest._qdata.copy_(src)
@ -397,17 +398,20 @@ class TensorCoreFP8Layout(QuantizedLayout):
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False):
orig_dtype = tensor.dtype
if scale is None:
if isinstance(scale, str) and scale == "recalculate":
scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
if scale is not None:
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
if inplace_ops:
tensor *= (1.0 / scale).to(tensor.dtype)
if inplace_ops:
tensor *= (1.0 / scale).to(tensor.dtype)
else:
tensor = tensor * (1.0 / scale).to(tensor.dtype)
else:
tensor = tensor * (1.0 / scale).to(tensor.dtype)
scale = torch.ones((), device=tensor.device, dtype=torch.float32)
if stochastic_rounding > 0:
tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding)

View File

@ -98,7 +98,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}):
if no_init:
return
params = target.params.copy()
@ -129,6 +129,27 @@ class CLIP:
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
self.patcher.is_clip = True
self.apply_hooks_to_conds = None
if len(state_dict) > 0:
if isinstance(state_dict, list):
for c in state_dict:
m, u = self.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
else:
m, u = self.load_sd(state_dict, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
if params['device'] == load_device:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
@ -968,10 +989,8 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
clip_data = []
for p in ckpt_paths:
sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True)
if metadata is not None:
quant_metadata = metadata.get("_quantization_metadata", None)
if quant_metadata is not None:
sd["_quantization_metadata"] = quant_metadata
if model_options.get("custom_operations", None) is None:
sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata)
clip_data.append(sd)
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
@ -1088,7 +1107,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
@ -1112,7 +1131,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
@ -1141,7 +1160,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
@ -1169,7 +1188,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
@ -1224,19 +1243,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
parameters = 0
for c in clip_data:
if "_quantization_metadata" in c:
c.pop("_quantization_metadata")
parameters += comfy.utils.calculate_parameters(c)
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options)
return clip
def load_gligen(ckpt_path):
@ -1295,6 +1305,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata)
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
@ -1303,18 +1317,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
if model_config.quant_config is not None:
weight_dtype = None
model_config.custom_operations = model_options.get("custom_operations", None)
if custom_operations is not None:
model_config.custom_operations = custom_operations
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if model_config.clip_vision_prefix is not None:
@ -1332,22 +1350,33 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
if te_model_options.get("custom_operations", None) is None:
scaled_fp8_list = []
for k in list(sd.keys()): # Convert scaled fp8 to mixed ops
if k.endswith(".scaled_fp8"):
scaled_fp8_list.append(k[:-len("scaled_fp8")])
if len(scaled_fp8_list) > 0:
out_sd = {}
for k in sd:
skip = False
for pref in scaled_fp8_list:
skip = skip or k.startswith(pref)
if not skip:
out_sd[k] = sd[k]
for pref in scaled_fp8_list:
quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={})
for k in quant_sd:
out_sd[k] = quant_sd[k]
sd = out_sd
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = comfy.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options)
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
@ -1394,6 +1423,9 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
if len(temp_sd) > 0:
sd = temp_sd
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata)
parameters = comfy.utils.calculate_parameters(sd)
weight_dtype = comfy.utils.weight_dtype(sd)
@ -1424,7 +1456,7 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
offload_device = model_management.unet_offload_device()
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
if model_config.quant_config is not None:
weight_dtype = None
if dtype is None:
@ -1432,12 +1464,15 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
else:
unet_dtype = dtype
if model_config.layer_quant_config is not None:
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if custom_operations is not None:
model_config.custom_operations = custom_operations
if model_options.get("fp8_optimizations", False):
model_config.optimizations["fp8"] = True
@ -1476,6 +1511,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m
if vae is not None:
vae_sd = vae.get_sd()
if metadata is None:
metadata = {}
model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)

View File

@ -107,29 +107,17 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
config[k] = v
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
quantization_metadata = model_options.get("quantization_metadata", None)
quant_config = model_options.get("quantization_metadata", None)
if operations is None:
layer_quant_config = None
if quantization_metadata is not None:
layer_quant_config = json.loads(quantization_metadata).get("layers", None)
if layer_quant_config is not None:
operations = comfy.ops.mixed_precision_ops(layer_quant_config, dtype, full_precision_mm=True)
logging.info(f"Using MixedPrecisionOps for text encoder: {len(layer_quant_config)} quantized layers")
if quant_config is not None:
operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True)
logging.info("Using MixedPrecisionOps for text encoder")
else:
# Fallback to scaled_fp8_ops for backward compatibility
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
else:
operations = comfy.ops.manual_cast
operations = comfy.ops.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
if scaled_fp8 is not None:
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
self.num_layers = self.transformer.num_layers

View File

@ -17,6 +17,7 @@
"""
import torch
import logging
from . import model_base
from . import utils
from . import latent_formats
@ -49,8 +50,7 @@ class BASE:
manual_cast_dtype = None
custom_operations = None
scaled_fp8 = None
layer_quant_config = None # Per-layer quantization configuration for mixed precision
quant_config = None # quantization configuration for mixed precision
optimizations = {"fp8": False}
@classmethod
@ -118,3 +118,7 @@ class BASE:
def set_inference_dtype(self, dtype, manual_cast_dtype):
self.unet_config['dtype'] = dtype
self.manual_cast_dtype = manual_cast_dtype
def __getattr__(self, name):
logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name))
return None

View File

@ -7,10 +7,10 @@ from transformers import T5TokenizerFast
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None)
if t5xxl_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options["quantization_metadata"] = t5xxl_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options)
@ -30,12 +30,12 @@ class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
def te(dtype_t5=None, t5_quantization_metadata=None):
class CosmosTEModel_(CosmosT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@ -63,12 +63,12 @@ class FluxClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
def flux_clip(dtype_t5=None, t5_quantization_metadata=None):
class FluxClipModel_(FluxClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
return FluxClipModel_
@ -159,15 +159,13 @@ class Flux2TEModel(sd1_clip.SD1ClipModel):
out = out.reshape(out.shape[0], out.shape[1], -1)
return out, pooled, extra
def flux2_te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None, pruned=False):
def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
class Flux2TEModel_(Flux2TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
if pruned:
model_options = model_options.copy()

View File

@ -26,12 +26,12 @@ class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None):
def mochi_te(dtype_t5=None, t5_quantization_metadata=None):
class MochiTEModel_(MochiT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@ -142,14 +142,14 @@ class HiDreamTEModel(torch.nn.Module):
return self.llama.load_sd(sd)
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5_quantization_metadata=None, llama_quantization_metadata=None):
class HiDreamTEModel_(HiDreamTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HiDreamTEModel_

View File

@ -40,10 +40,10 @@ class HunyuanImageTokenizer(QwenImageTokenizer):
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None)
if llama_scaled_fp8 is not None:
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@ -91,12 +91,12 @@ class HunyuanImageTEModel(QwenImageTEModel):
else:
return super().load_sd(sd)
def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None):
def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None):
class QwenImageTEModel_(HunyuanImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["qwen_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options)

View File

@ -6,7 +6,7 @@ from transformers import LlamaTokenizerFast
import torch
import os
import numbers
import comfy.utils
def llama_detect(state_dict, prefix=""):
out = {}
@ -14,12 +14,9 @@ def llama_detect(state_dict, prefix=""):
if t5_key in state_dict:
out["dtype_llama"] = state_dict[t5_key].dtype
scaled_fp8_key = "{}scaled_fp8".format(prefix)
if scaled_fp8_key in state_dict:
out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
if "_quantization_metadata" in state_dict:
out["llama_quantization_metadata"] = state_dict["_quantization_metadata"]
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
if quant is not None:
out["llama_quantization_metadata"] = quant
return out
@ -31,10 +28,10 @@ class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
textmodel_json_config = {}
vocab_size = model_options.get("vocab_size", None)
@ -161,11 +158,11 @@ class HunyuanVideoClipModel(torch.nn.Module):
return self.llama.load_sd(sd)
def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None):
def hunyuan_video_clip(dtype_llama=None, llama_quantization_metadata=None):
class HunyuanVideoClipModel_(HunyuanVideoClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HunyuanVideoClipModel_

View File

@ -40,7 +40,7 @@ class LuminaModel(sd1_clip.SD1ClipModel):
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"):
def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b"):
if model_type == "gemma2_2b":
model = Gemma2_2BModel
elif model_type == "gemma3_4b":
@ -48,9 +48,9 @@ def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"):
class LuminaTEModel_(LuminaModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model)

View File

@ -32,12 +32,12 @@ class Omnigen2Model(sd1_clip.SD1ClipModel):
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None):
def te(dtype_llama=None, llama_quantization_metadata=None):
class Omnigen2TEModel_(Omnigen2Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@ -55,12 +55,9 @@ class OvisTEModel(sd1_clip.SD1ClipModel):
return out, pooled, {}
def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None):
def te(dtype_llama=None, llama_quantization_metadata=None):
class OvisTEModel_(OvisTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:

View File

@ -30,12 +30,12 @@ class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
def pixart_te(dtype_t5=None, t5_quantization_metadata=None):
class PixArtTEModel_(PixArtT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@ -85,12 +85,12 @@ class QwenImageTEModel(sd1_clip.SD1ClipModel):
return out, pooled, extra
def te(dtype_llama=None, llama_scaled_fp8=None):
def te(dtype_llama=None, llama_quantization_metadata=None):
class QwenImageTEModel_(QwenImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@ -6,14 +6,15 @@ import torch
import os
import comfy.model_management
import logging
import comfy.utils
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None)
if t5xxl_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options["quantization_metadata"] = t5xxl_quantization_metadata
model_options = {**model_options, "model_name": "t5xxl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@ -25,9 +26,9 @@ def t5_xxl_detect(state_dict, prefix=""):
if t5_key in state_dict:
out["dtype_t5"] = state_dict[t5_key].dtype
scaled_fp8_key = "{}scaled_fp8".format(prefix)
if scaled_fp8_key in state_dict:
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
if quant is not None:
out["t5_quantization_metadata"] = quant
return out
@ -156,11 +157,11 @@ class SD3ClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_quantization_metadata=None, t5_attention_mask=False):
class SD3ClipModel_(SD3ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
return SD3ClipModel_

View File

@ -25,12 +25,12 @@ class WanT5Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
def te(dtype_t5=None, t5_quantization_metadata=None):
class WanTEModel(WanT5Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options["quantization_metadata"] = t5_quantization_metadata
if dtype_t5 is not None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@ -34,12 +34,9 @@ class ZImageTEModel(sd1_clip.SD1ClipModel):
super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None):
def te(dtype_llama=None, llama_quantization_metadata=None):
class ZImageTEModel_(ZImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:

View File

@ -29,6 +29,7 @@ import itertools
from torch.nn.functional import interpolate
from einops import rearrange
from comfy.cli_args import args
import json
MMAP_TORCH_FILES = args.mmap_torch_files
DISABLE_MMAP = args.disable_mmap
@ -1194,3 +1195,68 @@ def unpack_latents(combined_latent, latent_shapes):
else:
output_tensors = combined_latent
return output_tensors
def detect_layer_quantization(state_dict, prefix):
for k in state_dict:
if k.startswith(prefix) and k.endswith(".comfy_quant"):
logging.info("Found quantization metadata version 1")
return {"mixed_ops": True}
return None
def convert_old_quants(state_dict, model_prefix="", metadata={}):
if metadata is None:
metadata = {}
quant_metadata = None
if "_quantization_metadata" not in metadata:
scaled_fp8_key = "{}scaled_fp8".format(model_prefix)
if scaled_fp8_key in state_dict:
scaled_fp8_weight = state_dict[scaled_fp8_key]
scaled_fp8_dtype = scaled_fp8_weight.dtype
if scaled_fp8_dtype == torch.float32:
scaled_fp8_dtype = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
full_precision_matrix_mult = True
else:
full_precision_matrix_mult = False
out_sd = {}
layers = {}
for k in list(state_dict.keys()):
if not k.startswith(model_prefix):
out_sd[k] = state_dict[k]
continue
k_out = k
w = state_dict.pop(k)
layer = None
if k_out.endswith(".scale_weight"):
layer = k_out[:-len(".scale_weight")]
k_out = "{}.weight_scale".format(layer)
if layer is not None:
layer_conf = {"format": "float8_e4m3fn"} # TODO: check if anyone did some non e4m3fn scaled checkpoints
if full_precision_matrix_mult:
layer_conf["full_precision_matrix_mult"] = full_precision_matrix_mult
layers[layer] = layer_conf
if k_out.endswith(".scale_input"):
layer = k_out[:-len(".scale_input")]
k_out = "{}.input_scale".format(layer)
if w.item() == 1.0:
continue
out_sd[k_out] = w
state_dict = out_sd
quant_metadata = {"layers": layers}
else:
quant_metadata = json.loads(metadata["_quantization_metadata"])
if quant_metadata is not None:
layers = quant_metadata["layers"]
for k, v in layers.items():
state_dict["{}.comfy_quant".format(k)] = torch.frombuffer(json.dumps(v).encode('utf-8'), dtype=torch.uint8)
return state_dict, metadata

View File

@ -47,6 +47,7 @@ from .validation_utils import (
validate_string,
validate_video_dimensions,
validate_video_duration,
validate_video_frame_count,
)
__all__ = [
@ -94,6 +95,7 @@ __all__ = [
"validate_string",
"validate_video_dimensions",
"validate_video_duration",
"validate_video_frame_count",
# Misc functions
"get_fs_object_size",
]

View File

@ -2,8 +2,8 @@ import asyncio
import contextlib
import os
import time
from collections.abc import Callable
from io import BytesIO
from typing import Callable, Optional, Union
from comfy.cli_args import args
from comfy.model_management import processing_interrupted
@ -35,12 +35,12 @@ def default_base_url() -> str:
async def sleep_with_interrupt(
seconds: float,
node_cls: Optional[type[IO.ComfyNode]],
label: Optional[str] = None,
start_ts: Optional[float] = None,
estimated_total: Optional[int] = None,
node_cls: type[IO.ComfyNode] | None,
label: str | None = None,
start_ts: float | None = None,
estimated_total: int | None = None,
*,
display_callback: Optional[Callable[[type[IO.ComfyNode], str, int, Optional[int]], None]] = None,
display_callback: Callable[[type[IO.ComfyNode], str, int, int | None], None] | None = None,
):
"""
Sleep in 1s slices while:
@ -65,7 +65,7 @@ def mimetype_to_extension(mime_type: str) -> str:
return mime_type.split("/")[-1].lower()
def get_fs_object_size(path_or_object: Union[str, BytesIO]) -> int:
def get_fs_object_size(path_or_object: str | BytesIO) -> int:
if isinstance(path_or_object, str):
return os.path.getsize(path_or_object)
return len(path_or_object.getvalue())

View File

@ -4,10 +4,11 @@ import json
import logging
import time
import uuid
from collections.abc import Callable, Iterable
from dataclasses import dataclass
from enum import Enum
from io import BytesIO
from typing import Any, Callable, Iterable, Literal, Optional, Type, TypeVar, Union
from typing import Any, Literal, TypeVar
from urllib.parse import urljoin, urlparse
import aiohttp
@ -37,8 +38,8 @@ class ApiEndpoint:
path: str,
method: Literal["GET", "POST", "PUT", "DELETE", "PATCH"] = "GET",
*,
query_params: Optional[dict[str, Any]] = None,
headers: Optional[dict[str, str]] = None,
query_params: dict[str, Any] | None = None,
headers: dict[str, str] | None = None,
):
self.path = path
self.method = method
@ -52,18 +53,18 @@ class _RequestConfig:
endpoint: ApiEndpoint
timeout: float
content_type: str
data: Optional[dict[str, Any]]
files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]]
multipart_parser: Optional[Callable]
data: dict[str, Any] | None
files: dict[str, Any] | list[tuple[str, Any]] | None
multipart_parser: Callable | None
max_retries: int
retry_delay: float
retry_backoff: float
wait_label: str = "Waiting"
monitor_progress: bool = True
estimated_total: Optional[int] = None
final_label_on_success: Optional[str] = "Completed"
progress_origin_ts: Optional[float] = None
price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None
estimated_total: int | None = None
final_label_on_success: str | None = "Completed"
progress_origin_ts: float | None = None
price_extractor: Callable[[dict[str, Any]], float | None] | None = None
@dataclass
@ -71,10 +72,10 @@ class _PollUIState:
started: float
status_label: str = "Queued"
is_queued: bool = True
price: Optional[float] = None
estimated_duration: Optional[int] = None
price: float | None = None
estimated_duration: int | None = None
base_processing_elapsed: float = 0.0 # sum of completed active intervals
active_since: Optional[float] = None # start time of current active interval (None if queued)
active_since: float | None = None # start time of current active interval (None if queued)
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
@ -87,20 +88,20 @@ async def sync_op(
cls: type[IO.ComfyNode],
endpoint: ApiEndpoint,
*,
response_model: Type[M],
price_extractor: Optional[Callable[[M], Optional[float]]] = None,
data: Optional[BaseModel] = None,
files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None,
response_model: type[M],
price_extractor: Callable[[M | Any], float | None] | None = None,
data: BaseModel | None = None,
files: dict[str, Any] | list[tuple[str, Any]] | None = None,
content_type: str = "application/json",
timeout: float = 3600.0,
multipart_parser: Optional[Callable] = None,
multipart_parser: Callable | None = None,
max_retries: int = 3,
retry_delay: float = 1.0,
retry_backoff: float = 2.0,
wait_label: str = "Waiting for server",
estimated_duration: Optional[int] = None,
final_label_on_success: Optional[str] = "Completed",
progress_origin_ts: Optional[float] = None,
estimated_duration: int | None = None,
final_label_on_success: str | None = "Completed",
progress_origin_ts: float | None = None,
monitor_progress: bool = True,
) -> M:
raw = await sync_op_raw(
@ -131,22 +132,22 @@ async def poll_op(
cls: type[IO.ComfyNode],
poll_endpoint: ApiEndpoint,
*,
response_model: Type[M],
status_extractor: Callable[[M], Optional[Union[str, int]]],
progress_extractor: Optional[Callable[[M], Optional[int]]] = None,
price_extractor: Optional[Callable[[M], Optional[float]]] = None,
completed_statuses: Optional[list[Union[str, int]]] = None,
failed_statuses: Optional[list[Union[str, int]]] = None,
queued_statuses: Optional[list[Union[str, int]]] = None,
data: Optional[BaseModel] = None,
response_model: type[M],
status_extractor: Callable[[M | Any], str | int | None],
progress_extractor: Callable[[M | Any], int | None] | None = None,
price_extractor: Callable[[M | Any], float | None] | None = None,
completed_statuses: list[str | int] | None = None,
failed_statuses: list[str | int] | None = None,
queued_statuses: list[str | int] | None = None,
data: BaseModel | None = None,
poll_interval: float = 5.0,
max_poll_attempts: int = 120,
timeout_per_poll: float = 120.0,
max_retries_per_poll: int = 3,
retry_delay_per_poll: float = 1.0,
retry_backoff_per_poll: float = 2.0,
estimated_duration: Optional[int] = None,
cancel_endpoint: Optional[ApiEndpoint] = None,
estimated_duration: int | None = None,
cancel_endpoint: ApiEndpoint | None = None,
cancel_timeout: float = 10.0,
) -> M:
raw = await poll_op_raw(
@ -178,22 +179,22 @@ async def sync_op_raw(
cls: type[IO.ComfyNode],
endpoint: ApiEndpoint,
*,
price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None,
data: Optional[Union[dict[str, Any], BaseModel]] = None,
files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None,
price_extractor: Callable[[dict[str, Any]], float | None] | None = None,
data: dict[str, Any] | BaseModel | None = None,
files: dict[str, Any] | list[tuple[str, Any]] | None = None,
content_type: str = "application/json",
timeout: float = 3600.0,
multipart_parser: Optional[Callable] = None,
multipart_parser: Callable | None = None,
max_retries: int = 3,
retry_delay: float = 1.0,
retry_backoff: float = 2.0,
wait_label: str = "Waiting for server",
estimated_duration: Optional[int] = None,
estimated_duration: int | None = None,
as_binary: bool = False,
final_label_on_success: Optional[str] = "Completed",
progress_origin_ts: Optional[float] = None,
final_label_on_success: str | None = "Completed",
progress_origin_ts: float | None = None,
monitor_progress: bool = True,
) -> Union[dict[str, Any], bytes]:
) -> dict[str, Any] | bytes:
"""
Make a single network request.
- If as_binary=False (default): returns JSON dict (or {'_raw': '<text>'} if non-JSON).
@ -229,21 +230,21 @@ async def poll_op_raw(
cls: type[IO.ComfyNode],
poll_endpoint: ApiEndpoint,
*,
status_extractor: Callable[[dict[str, Any]], Optional[Union[str, int]]],
progress_extractor: Optional[Callable[[dict[str, Any]], Optional[int]]] = None,
price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None,
completed_statuses: Optional[list[Union[str, int]]] = None,
failed_statuses: Optional[list[Union[str, int]]] = None,
queued_statuses: Optional[list[Union[str, int]]] = None,
data: Optional[Union[dict[str, Any], BaseModel]] = None,
status_extractor: Callable[[dict[str, Any]], str | int | None],
progress_extractor: Callable[[dict[str, Any]], int | None] | None = None,
price_extractor: Callable[[dict[str, Any]], float | None] | None = None,
completed_statuses: list[str | int] | None = None,
failed_statuses: list[str | int] | None = None,
queued_statuses: list[str | int] | None = None,
data: dict[str, Any] | BaseModel | None = None,
poll_interval: float = 5.0,
max_poll_attempts: int = 120,
timeout_per_poll: float = 120.0,
max_retries_per_poll: int = 3,
retry_delay_per_poll: float = 1.0,
retry_backoff_per_poll: float = 2.0,
estimated_duration: Optional[int] = None,
cancel_endpoint: Optional[ApiEndpoint] = None,
estimated_duration: int | None = None,
cancel_endpoint: ApiEndpoint | None = None,
cancel_timeout: float = 10.0,
) -> dict[str, Any]:
"""
@ -261,7 +262,7 @@ async def poll_op_raw(
consumed_attempts = 0 # counts only non-queued polls
progress_bar = utils.ProgressBar(100) if progress_extractor else None
last_progress: Optional[int] = None
last_progress: int | None = None
state = _PollUIState(started=started, estimated_duration=estimated_duration)
stop_ticker = asyncio.Event()
@ -420,10 +421,10 @@ async def poll_op_raw(
def _display_text(
node_cls: type[IO.ComfyNode],
text: Optional[str],
text: str | None,
*,
status: Optional[Union[str, int]] = None,
price: Optional[float] = None,
status: str | int | None = None,
price: float | None = None,
) -> None:
display_lines: list[str] = []
if status:
@ -440,13 +441,13 @@ def _display_text(
def _display_time_progress(
node_cls: type[IO.ComfyNode],
status: Optional[Union[str, int]],
status: str | int | None,
elapsed_seconds: int,
estimated_total: Optional[int] = None,
estimated_total: int | None = None,
*,
price: Optional[float] = None,
is_queued: Optional[bool] = None,
processing_elapsed_seconds: Optional[int] = None,
price: float | None = None,
is_queued: bool | None = None,
processing_elapsed_seconds: int | None = None,
) -> None:
if estimated_total is not None and estimated_total > 0 and is_queued is False:
pe = processing_elapsed_seconds if processing_elapsed_seconds is not None else elapsed_seconds
@ -488,7 +489,7 @@ def _unpack_tuple(t: tuple) -> tuple[str, Any, str]:
raise ValueError("files tuple must be (filename, file[, content_type])")
def _merge_params(endpoint_params: dict[str, Any], method: str, data: Optional[dict[str, Any]]) -> dict[str, Any]:
def _merge_params(endpoint_params: dict[str, Any], method: str, data: dict[str, Any] | None) -> dict[str, Any]:
params = dict(endpoint_params or {})
if method.upper() == "GET" and data:
for k, v in data.items():
@ -534,9 +535,9 @@ def _generate_operation_id(method: str, path: str, attempt: int) -> str:
def _snapshot_request_body_for_logging(
content_type: str,
method: str,
data: Optional[dict[str, Any]],
files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]],
) -> Optional[Union[dict[str, Any], str]]:
data: dict[str, Any] | None,
files: dict[str, Any] | list[tuple[str, Any]] | None,
) -> dict[str, Any] | str | None:
if method.upper() == "GET":
return None
if content_type == "multipart/form-data":
@ -586,13 +587,13 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
attempt = 0
delay = cfg.retry_delay
operation_succeeded: bool = False
final_elapsed_seconds: Optional[int] = None
extracted_price: Optional[float] = None
final_elapsed_seconds: int | None = None
extracted_price: float | None = None
while True:
attempt += 1
stop_event = asyncio.Event()
monitor_task: Optional[asyncio.Task] = None
sess: Optional[aiohttp.ClientSession] = None
monitor_task: asyncio.Task | None = None
sess: aiohttp.ClientSession | None = None
operation_id = _generate_operation_id(method, cfg.endpoint.path, attempt)
logging.debug("[DEBUG] HTTP %s %s (attempt %d)", method, url, attempt)
@ -887,7 +888,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
)
def _validate_or_raise(response_model: Type[M], payload: Any) -> M:
def _validate_or_raise(response_model: type[M], payload: Any) -> M:
try:
return response_model.model_validate(payload)
except Exception as e:
@ -902,9 +903,9 @@ def _validate_or_raise(response_model: Type[M], payload: Any) -> M:
def _wrap_model_extractor(
response_model: Type[M],
extractor: Optional[Callable[[M], Any]],
) -> Optional[Callable[[dict[str, Any]], Any]]:
response_model: type[M],
extractor: Callable[[M], Any] | None,
) -> Callable[[dict[str, Any]], Any] | None:
"""Wrap a typed extractor so it can be used by the dict-based poller.
Validates the dict into `response_model` before invoking `extractor`.
Uses a small per-wrapper cache keyed by `id(dict)` to avoid re-validating
@ -929,10 +930,10 @@ def _wrap_model_extractor(
return _wrapped
def _normalize_statuses(values: Optional[Iterable[Union[str, int]]]) -> set[Union[str, int]]:
def _normalize_statuses(values: Iterable[str | int] | None) -> set[str | int]:
if not values:
return set()
out: set[Union[str, int]] = set()
out: set[str | int] = set()
for v in values:
nv = _normalize_status_value(v)
if nv is not None:
@ -940,7 +941,7 @@ def _normalize_statuses(values: Optional[Iterable[Union[str, int]]]) -> set[Unio
return out
def _normalize_status_value(val: Union[str, int, None]) -> Union[str, int, None]:
def _normalize_status_value(val: str | int | None) -> str | int | None:
if isinstance(val, str):
return val.strip().lower()
return val

View File

@ -4,7 +4,6 @@ import math
import mimetypes
import uuid
from io import BytesIO
from typing import Optional
import av
import numpy as np
@ -12,8 +11,7 @@ import torch
from PIL import Image
from comfy.utils import common_upscale
from comfy_api.latest import Input, InputImpl
from comfy_api.util import VideoCodec, VideoContainer
from comfy_api.latest import Input, InputImpl, Types
from ._helpers import mimetype_to_extension
@ -57,7 +55,7 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to
def tensor_to_bytesio(
image: torch.Tensor,
name: Optional[str] = None,
name: str | None = None,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> BytesIO:
@ -177,8 +175,8 @@ def audio_to_base64_string(audio: Input.Audio, container_format: str = "mp4", co
def video_to_base64_string(
video: Input.Video,
container_format: VideoContainer = None,
codec: VideoCodec = None
container_format: Types.VideoContainer | None = None,
codec: Types.VideoCodec | None = None,
) -> str:
"""
Converts a video input to a base64 string.
@ -189,12 +187,11 @@ def video_to_base64_string(
codec: Optional codec to use (defaults to video.codec if available)
"""
video_bytes_io = BytesIO()
# Use provided format/codec if specified, otherwise use video's own if available
format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4)
codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264)
video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use)
video.save_to(
video_bytes_io,
format=container_format or getattr(video, "container", Types.VideoContainer.MP4),
codec=codec or getattr(video, "codec", Types.VideoCodec.H264),
)
video_bytes_io.seek(0)
return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8")

View File

@ -3,15 +3,15 @@ import contextlib
import uuid
from io import BytesIO
from pathlib import Path
from typing import IO, Optional, Union
from typing import IO
from urllib.parse import urljoin, urlparse
import aiohttp
import torch
from aiohttp.client_exceptions import ClientError, ContentTypeError
from comfy_api.input_impl import VideoFromFile
from comfy_api.latest import IO as COMFY_IO
from comfy_api.latest import InputImpl
from . import request_logger
from ._helpers import (
@ -29,9 +29,9 @@ _RETRY_STATUS = {408, 429, 500, 502, 503, 504}
async def download_url_to_bytesio(
url: str,
dest: Optional[Union[BytesIO, IO[bytes], str, Path]],
dest: BytesIO | IO[bytes] | str | Path | None,
*,
timeout: Optional[float] = None,
timeout: float | None = None,
max_retries: int = 5,
retry_delay: float = 1.0,
retry_backoff: float = 2.0,
@ -71,10 +71,10 @@ async def download_url_to_bytesio(
is_path_sink = isinstance(dest, (str, Path))
fhandle = None
session: Optional[aiohttp.ClientSession] = None
stop_evt: Optional[asyncio.Event] = None
monitor_task: Optional[asyncio.Task] = None
req_task: Optional[asyncio.Task] = None
session: aiohttp.ClientSession | None = None
stop_evt: asyncio.Event | None = None
monitor_task: asyncio.Task | None = None
req_task: asyncio.Task | None = None
try:
with contextlib.suppress(Exception):
@ -234,11 +234,11 @@ async def download_url_to_video_output(
timeout: float = None,
max_retries: int = 5,
cls: type[COMFY_IO.ComfyNode] = None,
) -> VideoFromFile:
) -> InputImpl.VideoFromFile:
"""Downloads a video from a URL and returns a `VIDEO` output."""
result = BytesIO()
await download_url_to_bytesio(video_url, result, timeout=timeout, max_retries=max_retries, cls=cls)
return VideoFromFile(result)
return InputImpl.VideoFromFile(result)
async def download_url_as_bytesio(

View File

@ -1,5 +1,3 @@
from __future__ import annotations
import datetime
import hashlib
import json

View File

@ -4,15 +4,13 @@ import logging
import time
import uuid
from io import BytesIO
from typing import Optional
from urllib.parse import urlparse
import aiohttp
import torch
from pydantic import BaseModel, Field
from comfy_api.latest import IO, Input
from comfy_api.util import VideoCodec, VideoContainer
from comfy_api.latest import IO, Input, Types
from . import request_logger
from ._helpers import is_processing_interrupted, sleep_with_interrupt
@ -32,7 +30,7 @@ from .conversions import (
class UploadRequest(BaseModel):
file_name: str = Field(..., description="Filename to upload")
content_type: Optional[str] = Field(
content_type: str | None = Field(
None,
description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.",
)
@ -56,7 +54,7 @@ async def upload_images_to_comfyapi(
Uploads images to ComfyUI API and returns download URLs.
To upload multiple images, stack them in the batch dimension first.
"""
# if batch, try to upload each file if max_images is greater than 0
# if batched, try to upload each file if max_images is greater than 0
download_urls: list[str] = []
is_batch = len(image.shape) > 3
batch_len = image.shape[0] if is_batch else 1
@ -100,9 +98,9 @@ async def upload_video_to_comfyapi(
cls: type[IO.ComfyNode],
video: Input.Video,
*,
container: VideoContainer = VideoContainer.MP4,
codec: VideoCodec = VideoCodec.H264,
max_duration: Optional[int] = None,
container: Types.VideoContainer = Types.VideoContainer.MP4,
codec: Types.VideoCodec = Types.VideoCodec.H264,
max_duration: int | None = None,
wait_label: str | None = "Uploading",
) -> str:
"""
@ -220,7 +218,7 @@ async def upload_file(
return
monitor_task = asyncio.create_task(_monitor())
sess: Optional[aiohttp.ClientSession] = None
sess: aiohttp.ClientSession | None = None
try:
try:
request_logger.log_request_response(

View File

@ -1,9 +1,7 @@
import logging
from typing import Optional
import torch
from comfy_api.input.video_types import VideoInput
from comfy_api.latest import Input
@ -18,10 +16,10 @@ def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]:
def validate_image_dimensions(
image: torch.Tensor,
min_width: Optional[int] = None,
max_width: Optional[int] = None,
min_height: Optional[int] = None,
max_height: Optional[int] = None,
min_width: int | None = None,
max_width: int | None = None,
min_height: int | None = None,
max_height: int | None = None,
):
height, width = get_image_dimensions(image)
@ -37,8 +35,8 @@ def validate_image_dimensions(
def validate_image_aspect_ratio(
image: torch.Tensor,
min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4)
max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1)
min_ratio: tuple[float, float] | None = None, # e.g. (1, 4)
max_ratio: tuple[float, float] | None = None, # e.g. (4, 1)
*,
strict: bool = True, # True -> (min, max); False -> [min, max]
) -> float:
@ -54,8 +52,8 @@ def validate_image_aspect_ratio(
def validate_images_aspect_ratio_closeness(
first_image: torch.Tensor,
second_image: torch.Tensor,
min_rel: float, # e.g. 0.8
max_rel: float, # e.g. 1.25
min_rel: float, # e.g. 0.8
max_rel: float, # e.g. 1.25
*,
strict: bool = False, # True -> (min, max); False -> [min, max]
) -> float:
@ -84,8 +82,8 @@ def validate_images_aspect_ratio_closeness(
def validate_aspect_ratio_string(
aspect_ratio: str,
min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4)
max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1)
min_ratio: tuple[float, float] | None = None, # e.g. (1, 4)
max_ratio: tuple[float, float] | None = None, # e.g. (4, 1)
*,
strict: bool = False, # True -> (min, max); False -> [min, max]
) -> float:
@ -97,10 +95,10 @@ def validate_aspect_ratio_string(
def validate_video_dimensions(
video: Input.Video,
min_width: Optional[int] = None,
max_width: Optional[int] = None,
min_height: Optional[int] = None,
max_height: Optional[int] = None,
min_width: int | None = None,
max_width: int | None = None,
min_height: int | None = None,
max_height: int | None = None,
):
try:
width, height = video.get_dimensions()
@ -120,8 +118,8 @@ def validate_video_dimensions(
def validate_video_duration(
video: Input.Video,
min_duration: Optional[float] = None,
max_duration: Optional[float] = None,
min_duration: float | None = None,
max_duration: float | None = None,
):
try:
duration = video.get_duration()
@ -136,6 +134,23 @@ def validate_video_duration(
raise ValueError(f"Video duration must be at most {max_duration}s, got {duration}s")
def validate_video_frame_count(
video: Input.Video,
min_frame_count: int | None = None,
max_frame_count: int | None = None,
):
try:
frame_count = video.get_frame_count()
except Exception as e:
logging.error("Error getting frame count of video: %s", e)
return
if min_frame_count is not None and min_frame_count > frame_count:
raise ValueError(f"Video frame count must be at least {min_frame_count}, got {frame_count}")
if max_frame_count is not None and frame_count > max_frame_count:
raise ValueError(f"Video frame count must be at most {max_frame_count}, got {frame_count}")
def get_number_of_images(images):
if isinstance(images, torch.Tensor):
return images.shape[0] if images.ndim >= 4 else 1
@ -144,8 +159,8 @@ def get_number_of_images(images):
def validate_audio_duration(
audio: Input.Audio,
min_duration: Optional[float] = None,
max_duration: Optional[float] = None,
min_duration: float | None = None,
max_duration: float | None = None,
) -> None:
sr = int(audio["sample_rate"])
dur = int(audio["waveform"].shape[-1]) / sr
@ -177,7 +192,7 @@ def validate_string(
)
def validate_container_format_is_mp4(video: VideoInput) -> None:
def validate_container_format_is_mp4(video: Input.Video) -> None:
"""Validates video container format is MP4."""
container_format = video.get_container_format()
if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]:
@ -194,8 +209,8 @@ def _ratio_from_tuple(r: tuple[float, float]) -> float:
def _assert_ratio_bounds(
ar: float,
*,
min_ratio: Optional[tuple[float, float]] = None,
max_ratio: Optional[tuple[float, float]] = None,
min_ratio: tuple[float, float] | None = None,
max_ratio: tuple[float, float] | None = None,
strict: bool = True,
) -> None:
"""Validate a numeric aspect ratio against optional min/max ratio bounds."""

View File

@ -26,6 +26,9 @@ class ContextWindowsManualNode(io.ComfyNode):
io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."),
io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."),
io.Int.Input("dim", min=0, max=5, default=0, tooltip="The dimension to apply the context windows to."),
io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."),
#io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."),
#io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."),
],
outputs=[
io.Model.Output(tooltip="The model with context windows applied during sampling."),
@ -34,7 +37,8 @@ class ContextWindowsManualNode(io.ComfyNode):
)
@classmethod
def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int) -> io.Model:
def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int, freenoise: bool,
cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model:
model = model.clone()
model.model_options["context_handler"] = comfy.context_windows.IndexListContextHandler(
context_schedule=comfy.context_windows.get_matching_context_schedule(context_schedule),
@ -43,9 +47,15 @@ class ContextWindowsManualNode(io.ComfyNode):
context_overlap=context_overlap,
context_stride=context_stride,
closed_loop=closed_loop,
dim=dim)
dim=dim,
freenoise=freenoise,
cond_retain_index_list=cond_retain_index_list,
split_conds_to_windows=split_conds_to_windows
)
# make memory usage calculation only take into account the context window latents
comfy.context_windows.create_prepare_sampling_wrapper(model)
if freenoise: # no other use for this wrapper at this time
comfy.context_windows.create_sampler_sample_wrapper(model)
return io.NodeOutput(model)
class WanContextWindowsManualNode(ContextWindowsManualNode):
@ -68,14 +78,18 @@ class WanContextWindowsManualNode(ContextWindowsManualNode):
io.Int.Input("context_stride", min=1, default=1, tooltip="The stride of the context window; only applicable to uniform schedules."),
io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."),
io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."),
io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."),
#io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."),
#io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."),
]
return schema
@classmethod
def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str) -> io.Model:
def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, freenoise: bool,
cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model:
context_length = max(((context_length - 1) // 4) + 1, 1) # at least length 1
context_overlap = max(((context_overlap - 1) // 4) + 1, 0) # at least overlap 0
return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2)
return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2, freenoise=freenoise, cond_retain_index_list=cond_retain_index_list, split_conds_to_windows=split_conds_to_windows)
class ContextWindowsExtension(ComfyExtension):

View File

@ -1 +1 @@
comfyui_manager==4.0.3b3
comfyui_manager==4.0.3b4

View File

@ -2,6 +2,7 @@ import unittest
import torch
import sys
import os
import json
# Add comfy to path
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", ".."))
@ -15,6 +16,7 @@ if not has_gpu():
from comfy import ops
from comfy.quant_ops import QuantizedTensor
import comfy.utils
class SimpleModel(torch.nn.Module):
@ -94,8 +96,9 @@ class TestMixedPrecisionOps(unittest.TestCase):
"layer3.weight_scale": torch.tensor(1.5, dtype=torch.float32),
}
state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})})
# Create model and load state dict (strict=False because custom loading pops keys)
model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config))
model = SimpleModel(operations=ops.mixed_precision_ops({}))
model.load_state_dict(state_dict, strict=False)
# Verify weights are wrapped in QuantizedTensor
@ -115,7 +118,8 @@ class TestMixedPrecisionOps(unittest.TestCase):
# Forward pass
input_tensor = torch.randn(5, 10, dtype=torch.bfloat16)
output = model(input_tensor)
with torch.inference_mode():
output = model(input_tensor)
self.assertEqual(output.shape, (5, 40))
@ -141,7 +145,8 @@ class TestMixedPrecisionOps(unittest.TestCase):
"layer3.bias": torch.randn(40, dtype=torch.bfloat16),
}
model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config))
state_dict1, _ = comfy.utils.convert_old_quants(state_dict1, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})})
model = SimpleModel(operations=ops.mixed_precision_ops({}))
model.load_state_dict(state_dict1, strict=False)
# Save state dict
@ -178,7 +183,8 @@ class TestMixedPrecisionOps(unittest.TestCase):
"layer3.bias": torch.randn(40, dtype=torch.bfloat16),
}
model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config))
state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})})
model = SimpleModel(operations=ops.mixed_precision_ops({}))
model.load_state_dict(state_dict, strict=False)
# Add a weight function (simulating LoRA)
@ -215,8 +221,10 @@ class TestMixedPrecisionOps(unittest.TestCase):
"layer3.bias": torch.randn(40, dtype=torch.bfloat16),
}
state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})})
# Load should raise KeyError for unknown format in QUANT_FORMAT_MIXINS
model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config))
model = SimpleModel(operations=ops.mixed_precision_ops({}))
with self.assertRaises(KeyError):
model.load_state_dict(state_dict, strict=False)