mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-20 03:23:00 +08:00
Resolution bucketing and Trainer implementation refactoring (#11117)
This commit is contained in:
parent
ba6080bbab
commit
86dbb89fc9
@ -122,20 +122,21 @@ def estimate_memory(model, noise_shape, conds):
|
|||||||
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
|
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
|
||||||
return memory_required, minimum_memory_required
|
return memory_required, minimum_memory_required
|
||||||
|
|
||||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False):
|
||||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||||
_prepare_sampling,
|
_prepare_sampling,
|
||||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
||||||
)
|
)
|
||||||
return executor.execute(model, noise_shape, conds, model_options=model_options)
|
return executor.execute(model, noise_shape, conds, model_options=model_options, skip_load_model=skip_load_model)
|
||||||
|
|
||||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False):
|
||||||
real_model: BaseModel = None
|
real_model: BaseModel = None
|
||||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||||
models += get_additional_models_from_model_options(model_options)
|
models += get_additional_models_from_model_options(model_options)
|
||||||
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
||||||
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
|
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
|
||||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
|
models_list = [model] if not skip_load_model else []
|
||||||
|
comfy.model_management.load_models_gpu(models_list + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
|
||||||
real_model = model.model
|
real_model = model.model
|
||||||
|
|
||||||
return real_model, conds, models
|
return real_model, conds, models
|
||||||
|
|||||||
@ -1125,6 +1125,99 @@ class MergeTextListsNode(TextProcessingNode):
|
|||||||
# ========== Training Dataset Nodes ==========
|
# ========== Training Dataset Nodes ==========
|
||||||
|
|
||||||
|
|
||||||
|
class ResolutionBucket(io.ComfyNode):
|
||||||
|
"""Bucket latents and conditions by resolution for efficient batch training."""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def define_schema(cls):
|
||||||
|
return io.Schema(
|
||||||
|
node_id="ResolutionBucket",
|
||||||
|
display_name="Resolution Bucket",
|
||||||
|
category="dataset",
|
||||||
|
is_experimental=True,
|
||||||
|
is_input_list=True,
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input(
|
||||||
|
"latents",
|
||||||
|
tooltip="List of latent dicts to bucket by resolution.",
|
||||||
|
),
|
||||||
|
io.Conditioning.Input(
|
||||||
|
"conditioning",
|
||||||
|
tooltip="List of conditioning lists (must match latents length).",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(
|
||||||
|
display_name="latents",
|
||||||
|
is_output_list=True,
|
||||||
|
tooltip="List of batched latent dicts, one per resolution bucket.",
|
||||||
|
),
|
||||||
|
io.Conditioning.Output(
|
||||||
|
display_name="conditioning",
|
||||||
|
is_output_list=True,
|
||||||
|
tooltip="List of condition lists, one per resolution bucket.",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, latents, conditioning):
|
||||||
|
# latents: list[{"samples": tensor}] where tensor is (B, C, H, W), typically B=1
|
||||||
|
# conditioning: list[list[cond]]
|
||||||
|
|
||||||
|
# Validate lengths match
|
||||||
|
if len(latents) != len(conditioning):
|
||||||
|
raise ValueError(
|
||||||
|
f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)})."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Flatten latents and conditions to individual samples
|
||||||
|
flat_latents = [] # list of (C, H, W) tensors
|
||||||
|
flat_conditions = [] # list of condition lists
|
||||||
|
|
||||||
|
for latent_dict, cond in zip(latents, conditioning):
|
||||||
|
samples = latent_dict["samples"] # (B, C, H, W)
|
||||||
|
batch_size = samples.shape[0]
|
||||||
|
|
||||||
|
# cond is a list of conditions with length == batch_size
|
||||||
|
for i in range(batch_size):
|
||||||
|
flat_latents.append(samples[i]) # (C, H, W)
|
||||||
|
flat_conditions.append(cond[i]) # single condition
|
||||||
|
|
||||||
|
# Group by resolution (H, W)
|
||||||
|
buckets = {} # (H, W) -> {"latents": list, "conditions": list}
|
||||||
|
|
||||||
|
for latent, cond in zip(flat_latents, flat_conditions):
|
||||||
|
# latent shape is (..., H, W) (B, C, H, W) or (B, T, C, H ,W)
|
||||||
|
h, w = latent.shape[-2], latent.shape[-1]
|
||||||
|
key = (h, w)
|
||||||
|
|
||||||
|
if key not in buckets:
|
||||||
|
buckets[key] = {"latents": [], "conditions": []}
|
||||||
|
|
||||||
|
buckets[key]["latents"].append(latent)
|
||||||
|
buckets[key]["conditions"].append(cond)
|
||||||
|
|
||||||
|
# Convert buckets to output format
|
||||||
|
output_latents = [] # list[{"samples": tensor}] where tensor is (Bi, ..., H, W)
|
||||||
|
output_conditions = [] # list[list[cond]] where each inner list has Bi conditions
|
||||||
|
|
||||||
|
for (h, w), bucket_data in buckets.items():
|
||||||
|
# Stack latents into batch: list of (..., H, W) -> (Bi, ..., H, W)
|
||||||
|
stacked_latents = torch.stack(bucket_data["latents"], dim=0)
|
||||||
|
output_latents.append({"samples": stacked_latents})
|
||||||
|
|
||||||
|
# Conditions stay as list of condition lists
|
||||||
|
output_conditions.append(bucket_data["conditions"])
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Resolution bucket ({h}x{w}): {len(bucket_data['latents'])} samples"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Created {len(buckets)} resolution buckets from {len(flat_latents)} samples")
|
||||||
|
return io.NodeOutput(output_latents, output_conditions)
|
||||||
|
|
||||||
|
|
||||||
class MakeTrainingDataset(io.ComfyNode):
|
class MakeTrainingDataset(io.ComfyNode):
|
||||||
"""Encode images with VAE and texts with CLIP to create a training dataset."""
|
"""Encode images with VAE and texts with CLIP to create a training dataset."""
|
||||||
|
|
||||||
@ -1373,7 +1466,7 @@ class LoadTrainingDataset(io.ComfyNode):
|
|||||||
shard_path = os.path.join(dataset_dir, shard_file)
|
shard_path = os.path.join(dataset_dir, shard_file)
|
||||||
|
|
||||||
with open(shard_path, "rb") as f:
|
with open(shard_path, "rb") as f:
|
||||||
shard_data = torch.load(f, weights_only=True)
|
shard_data = torch.load(f)
|
||||||
|
|
||||||
all_latents.extend(shard_data["latents"])
|
all_latents.extend(shard_data["latents"])
|
||||||
all_conditioning.extend(shard_data["conditioning"])
|
all_conditioning.extend(shard_data["conditioning"])
|
||||||
@ -1425,6 +1518,7 @@ class DatasetExtension(ComfyExtension):
|
|||||||
MakeTrainingDataset,
|
MakeTrainingDataset,
|
||||||
SaveTrainingDataset,
|
SaveTrainingDataset,
|
||||||
LoadTrainingDataset,
|
LoadTrainingDataset,
|
||||||
|
ResolutionBucket,
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -221,6 +221,7 @@ class ImageScaleToTotalPixels(io.ComfyNode):
|
|||||||
io.Image.Input("image"),
|
io.Image.Input("image"),
|
||||||
io.Combo.Input("upscale_method", options=cls.upscale_methods),
|
io.Combo.Input("upscale_method", options=cls.upscale_methods),
|
||||||
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
|
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
|
||||||
|
io.Int.Input("resolution_steps", default=1, min=1, max=256),
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
io.Image.Output(),
|
io.Image.Output(),
|
||||||
@ -228,15 +229,15 @@ class ImageScaleToTotalPixels(io.ComfyNode):
|
|||||||
)
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def execute(cls, image, upscale_method, megapixels) -> io.NodeOutput:
|
def execute(cls, image, upscale_method, megapixels, resolution_steps) -> io.NodeOutput:
|
||||||
samples = image.movedim(-1,1)
|
samples = image.movedim(-1,1)
|
||||||
total = int(megapixels * 1024 * 1024)
|
total = megapixels * 1024 * 1024
|
||||||
|
|
||||||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||||||
width = round(samples.shape[3] * scale_by)
|
width = round(samples.shape[3] * scale_by / resolution_steps) * resolution_steps
|
||||||
height = round(samples.shape[2] * scale_by)
|
height = round(samples.shape[2] * scale_by / resolution_steps) * resolution_steps
|
||||||
|
|
||||||
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
s = comfy.utils.common_upscale(samples, int(width), int(height), upscale_method, "disabled")
|
||||||
s = s.movedim(1,-1)
|
s = s.movedim(1,-1)
|
||||||
return io.NodeOutput(s)
|
return io.NodeOutput(s)
|
||||||
|
|
||||||
|
|||||||
@ -10,6 +10,7 @@ from PIL import Image, ImageDraw, ImageFont
|
|||||||
from typing_extensions import override
|
from typing_extensions import override
|
||||||
|
|
||||||
import comfy.samplers
|
import comfy.samplers
|
||||||
|
import comfy.sampler_helpers
|
||||||
import comfy.sd
|
import comfy.sd
|
||||||
import comfy.utils
|
import comfy.utils
|
||||||
import comfy.model_management
|
import comfy.model_management
|
||||||
@ -21,6 +22,68 @@ from comfy_api.latest import ComfyExtension, io, ui
|
|||||||
from comfy.utils import ProgressBar
|
from comfy.utils import ProgressBar
|
||||||
|
|
||||||
|
|
||||||
|
class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic):
|
||||||
|
"""
|
||||||
|
CFGGuider with modifications for training specific logic
|
||||||
|
"""
|
||||||
|
def outer_sample(
|
||||||
|
self,
|
||||||
|
noise,
|
||||||
|
latent_image,
|
||||||
|
sampler,
|
||||||
|
sigmas,
|
||||||
|
denoise_mask=None,
|
||||||
|
callback=None,
|
||||||
|
disable_pbar=False,
|
||||||
|
seed=None,
|
||||||
|
latent_shapes=None,
|
||||||
|
):
|
||||||
|
self.inner_model, self.conds, self.loaded_models = (
|
||||||
|
comfy.sampler_helpers.prepare_sampling(
|
||||||
|
self.model_patcher,
|
||||||
|
noise.shape,
|
||||||
|
self.conds,
|
||||||
|
self.model_options,
|
||||||
|
skip_load_model=True, # skip load model as we manage it in TrainLoraNode.execute()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
device = self.model_patcher.load_device
|
||||||
|
|
||||||
|
if denoise_mask is not None:
|
||||||
|
denoise_mask = comfy.sampler_helpers.prepare_mask(
|
||||||
|
denoise_mask, noise.shape, device
|
||||||
|
)
|
||||||
|
|
||||||
|
noise = noise.to(device)
|
||||||
|
latent_image = latent_image.to(device)
|
||||||
|
sigmas = sigmas.to(device)
|
||||||
|
comfy.samplers.cast_to_load_options(
|
||||||
|
self.model_options, device=device, dtype=self.model_patcher.model_dtype()
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.model_patcher.pre_run()
|
||||||
|
output = self.inner_sample(
|
||||||
|
noise,
|
||||||
|
latent_image,
|
||||||
|
device,
|
||||||
|
sampler,
|
||||||
|
sigmas,
|
||||||
|
denoise_mask,
|
||||||
|
callback,
|
||||||
|
disable_pbar,
|
||||||
|
seed,
|
||||||
|
latent_shapes=latent_shapes,
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
self.model_patcher.cleanup()
|
||||||
|
|
||||||
|
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
|
||||||
|
del self.inner_model
|
||||||
|
del self.loaded_models
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
def make_batch_extra_option_dict(d, indicies, full_size=None):
|
def make_batch_extra_option_dict(d, indicies, full_size=None):
|
||||||
new_dict = {}
|
new_dict = {}
|
||||||
for k, v in d.items():
|
for k, v in d.items():
|
||||||
@ -65,6 +128,7 @@ class TrainSampler(comfy.samplers.Sampler):
|
|||||||
seed=0,
|
seed=0,
|
||||||
training_dtype=torch.bfloat16,
|
training_dtype=torch.bfloat16,
|
||||||
real_dataset=None,
|
real_dataset=None,
|
||||||
|
bucket_latents=None,
|
||||||
):
|
):
|
||||||
self.loss_fn = loss_fn
|
self.loss_fn = loss_fn
|
||||||
self.optimizer = optimizer
|
self.optimizer = optimizer
|
||||||
@ -75,6 +139,28 @@ class TrainSampler(comfy.samplers.Sampler):
|
|||||||
self.seed = seed
|
self.seed = seed
|
||||||
self.training_dtype = training_dtype
|
self.training_dtype = training_dtype
|
||||||
self.real_dataset: list[torch.Tensor] | None = real_dataset
|
self.real_dataset: list[torch.Tensor] | None = real_dataset
|
||||||
|
# Bucket mode data
|
||||||
|
self.bucket_latents: list[torch.Tensor] | None = (
|
||||||
|
bucket_latents # list of (Bi, C, Hi, Wi)
|
||||||
|
)
|
||||||
|
# Precompute bucket offsets and weights for sampling
|
||||||
|
if bucket_latents is not None:
|
||||||
|
self._init_bucket_data(bucket_latents)
|
||||||
|
else:
|
||||||
|
self.bucket_offsets = None
|
||||||
|
self.bucket_weights = None
|
||||||
|
self.num_images = None
|
||||||
|
|
||||||
|
def _init_bucket_data(self, bucket_latents):
|
||||||
|
"""Initialize bucket offsets and weights for sampling."""
|
||||||
|
self.bucket_offsets = [0]
|
||||||
|
bucket_sizes = []
|
||||||
|
for lat in bucket_latents:
|
||||||
|
bucket_sizes.append(lat.shape[0])
|
||||||
|
self.bucket_offsets.append(self.bucket_offsets[-1] + lat.shape[0])
|
||||||
|
self.num_images = self.bucket_offsets[-1]
|
||||||
|
# Weights for sampling buckets proportional to their size
|
||||||
|
self.bucket_weights = torch.tensor(bucket_sizes, dtype=torch.float32)
|
||||||
|
|
||||||
def fwd_bwd(
|
def fwd_bwd(
|
||||||
self,
|
self,
|
||||||
@ -115,6 +201,108 @@ class TrainSampler(comfy.samplers.Sampler):
|
|||||||
bwd_loss.backward()
|
bwd_loss.backward()
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
def _generate_batch_sigmas(self, model_wrap, batch_size, device):
|
||||||
|
"""Generate random sigma values for a batch."""
|
||||||
|
batch_sigmas = [
|
||||||
|
model_wrap.inner_model.model_sampling.percent_to_sigma(
|
||||||
|
torch.rand((1,)).item()
|
||||||
|
)
|
||||||
|
for _ in range(batch_size)
|
||||||
|
]
|
||||||
|
return torch.tensor(batch_sigmas).to(device)
|
||||||
|
|
||||||
|
def _train_step_bucket_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, pbar):
|
||||||
|
"""Execute one training step in bucket mode."""
|
||||||
|
# Sample bucket (weighted by size), then sample batch from bucket
|
||||||
|
bucket_idx = torch.multinomial(self.bucket_weights, 1).item()
|
||||||
|
bucket_latent = self.bucket_latents[bucket_idx] # (Bi, C, Hi, Wi)
|
||||||
|
bucket_size = bucket_latent.shape[0]
|
||||||
|
bucket_offset = self.bucket_offsets[bucket_idx]
|
||||||
|
|
||||||
|
# Sample indices from this bucket (use all if bucket_size < batch_size)
|
||||||
|
actual_batch_size = min(self.batch_size, bucket_size)
|
||||||
|
relative_indices = torch.randperm(bucket_size)[:actual_batch_size].tolist()
|
||||||
|
# Convert to absolute indices for fwd_bwd (cond is flattened, use absolute index)
|
||||||
|
absolute_indices = [bucket_offset + idx for idx in relative_indices]
|
||||||
|
|
||||||
|
batch_latent = bucket_latent[relative_indices].to(latent_image) # (actual_batch_size, C, H, W)
|
||||||
|
batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(
|
||||||
|
batch_latent.device
|
||||||
|
)
|
||||||
|
batch_sigmas = self._generate_batch_sigmas(model_wrap, actual_batch_size, batch_latent.device)
|
||||||
|
|
||||||
|
loss = self.fwd_bwd(
|
||||||
|
model_wrap,
|
||||||
|
batch_sigmas,
|
||||||
|
batch_noise,
|
||||||
|
batch_latent,
|
||||||
|
cond, # Use flattened cond with absolute indices
|
||||||
|
absolute_indices,
|
||||||
|
extra_args,
|
||||||
|
self.num_images,
|
||||||
|
bwd=True,
|
||||||
|
)
|
||||||
|
if self.loss_callback:
|
||||||
|
self.loss_callback(loss.item())
|
||||||
|
pbar.set_postfix({"loss": f"{loss.item():.4f}", "bucket": bucket_idx})
|
||||||
|
|
||||||
|
def _train_step_standard_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar):
|
||||||
|
"""Execute one training step in standard (non-bucket, non-multi-res) mode."""
|
||||||
|
indicies = torch.randperm(dataset_size)[: self.batch_size].tolist()
|
||||||
|
batch_latent = torch.stack([latent_image[i] for i in indicies])
|
||||||
|
batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(
|
||||||
|
batch_latent.device
|
||||||
|
)
|
||||||
|
batch_sigmas = self._generate_batch_sigmas(model_wrap, min(self.batch_size, dataset_size), batch_latent.device)
|
||||||
|
|
||||||
|
loss = self.fwd_bwd(
|
||||||
|
model_wrap,
|
||||||
|
batch_sigmas,
|
||||||
|
batch_noise,
|
||||||
|
batch_latent,
|
||||||
|
cond,
|
||||||
|
indicies,
|
||||||
|
extra_args,
|
||||||
|
dataset_size,
|
||||||
|
bwd=True,
|
||||||
|
)
|
||||||
|
if self.loss_callback:
|
||||||
|
self.loss_callback(loss.item())
|
||||||
|
pbar.set_postfix({"loss": f"{loss.item():.4f}"})
|
||||||
|
|
||||||
|
def _train_step_multires_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar):
|
||||||
|
"""Execute one training step in multi-resolution mode (real_dataset is set)."""
|
||||||
|
indicies = torch.randperm(dataset_size)[: self.batch_size].tolist()
|
||||||
|
total_loss = 0
|
||||||
|
for index in indicies:
|
||||||
|
single_latent = self.real_dataset[index].to(latent_image)
|
||||||
|
batch_noise = noisegen.generate_noise(
|
||||||
|
{"samples": single_latent}
|
||||||
|
).to(single_latent.device)
|
||||||
|
batch_sigmas = (
|
||||||
|
model_wrap.inner_model.model_sampling.percent_to_sigma(
|
||||||
|
torch.rand((1,)).item()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device)
|
||||||
|
loss = self.fwd_bwd(
|
||||||
|
model_wrap,
|
||||||
|
batch_sigmas,
|
||||||
|
batch_noise,
|
||||||
|
single_latent,
|
||||||
|
cond,
|
||||||
|
[index],
|
||||||
|
extra_args,
|
||||||
|
dataset_size,
|
||||||
|
bwd=False,
|
||||||
|
)
|
||||||
|
total_loss += loss
|
||||||
|
total_loss = total_loss / self.grad_acc / len(indicies)
|
||||||
|
total_loss.backward()
|
||||||
|
if self.loss_callback:
|
||||||
|
self.loss_callback(total_loss.item())
|
||||||
|
pbar.set_postfix({"loss": f"{total_loss.item():.4f}"})
|
||||||
|
|
||||||
def sample(
|
def sample(
|
||||||
self,
|
self,
|
||||||
model_wrap,
|
model_wrap,
|
||||||
@ -142,70 +330,18 @@ class TrainSampler(comfy.samplers.Sampler):
|
|||||||
noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(
|
noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(
|
||||||
self.seed + i * 1000
|
self.seed + i * 1000
|
||||||
)
|
)
|
||||||
indicies = torch.randperm(dataset_size)[: self.batch_size].tolist()
|
|
||||||
|
|
||||||
if self.real_dataset is None:
|
if self.bucket_latents is not None:
|
||||||
batch_latent = torch.stack([latent_image[i] for i in indicies])
|
self._train_step_bucket_mode(model_wrap, cond, extra_args, noisegen, latent_image, pbar)
|
||||||
batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(
|
elif self.real_dataset is None:
|
||||||
batch_latent.device
|
self._train_step_standard_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar)
|
||||||
)
|
|
||||||
batch_sigmas = [
|
|
||||||
model_wrap.inner_model.model_sampling.percent_to_sigma(
|
|
||||||
torch.rand((1,)).item()
|
|
||||||
)
|
|
||||||
for _ in range(min(self.batch_size, dataset_size))
|
|
||||||
]
|
|
||||||
batch_sigmas = torch.tensor(batch_sigmas).to(batch_latent.device)
|
|
||||||
|
|
||||||
loss = self.fwd_bwd(
|
|
||||||
model_wrap,
|
|
||||||
batch_sigmas,
|
|
||||||
batch_noise,
|
|
||||||
batch_latent,
|
|
||||||
cond,
|
|
||||||
indicies,
|
|
||||||
extra_args,
|
|
||||||
dataset_size,
|
|
||||||
bwd=True,
|
|
||||||
)
|
|
||||||
if self.loss_callback:
|
|
||||||
self.loss_callback(loss.item())
|
|
||||||
pbar.set_postfix({"loss": f"{loss.item():.4f}"})
|
|
||||||
else:
|
else:
|
||||||
total_loss = 0
|
self._train_step_multires_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar)
|
||||||
for index in indicies:
|
|
||||||
single_latent = self.real_dataset[index].to(latent_image)
|
|
||||||
batch_noise = noisegen.generate_noise(
|
|
||||||
{"samples": single_latent}
|
|
||||||
).to(single_latent.device)
|
|
||||||
batch_sigmas = (
|
|
||||||
model_wrap.inner_model.model_sampling.percent_to_sigma(
|
|
||||||
torch.rand((1,)).item()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device)
|
|
||||||
loss = self.fwd_bwd(
|
|
||||||
model_wrap,
|
|
||||||
batch_sigmas,
|
|
||||||
batch_noise,
|
|
||||||
single_latent,
|
|
||||||
cond,
|
|
||||||
[index],
|
|
||||||
extra_args,
|
|
||||||
dataset_size,
|
|
||||||
bwd=False,
|
|
||||||
)
|
|
||||||
total_loss += loss
|
|
||||||
total_loss = total_loss / self.grad_acc / len(indicies)
|
|
||||||
total_loss.backward()
|
|
||||||
if self.loss_callback:
|
|
||||||
self.loss_callback(total_loss.item())
|
|
||||||
pbar.set_postfix({"loss": f"{total_loss.item():.4f}"})
|
|
||||||
|
|
||||||
if (i + 1) % self.grad_acc == 0:
|
if (i + 1) % self.grad_acc == 0:
|
||||||
self.optimizer.step()
|
self.optimizer.step()
|
||||||
self.optimizer.zero_grad()
|
self.optimizer.zero_grad()
|
||||||
ui_pbar.update(1)
|
ui_pbar.update(1)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
return torch.zeros_like(latent_image)
|
return torch.zeros_like(latent_image)
|
||||||
|
|
||||||
@ -283,6 +419,364 @@ def unpatch(m):
|
|||||||
del m.org_forward
|
del m.org_forward
|
||||||
|
|
||||||
|
|
||||||
|
def _process_latents_bucket_mode(latents):
|
||||||
|
"""Process latents for bucket mode training.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
latents: list[{"samples": tensor}] where each tensor is (Bi, C, Hi, Wi)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list of latent tensors
|
||||||
|
"""
|
||||||
|
bucket_latents = []
|
||||||
|
for latent_dict in latents:
|
||||||
|
bucket_latents.append(latent_dict["samples"]) # (Bi, C, Hi, Wi)
|
||||||
|
return bucket_latents
|
||||||
|
|
||||||
|
|
||||||
|
def _process_latents_standard_mode(latents):
|
||||||
|
"""Process latents for standard (non-bucket) mode training.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
latents: list of latent dicts or single latent dict
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Processed latents (tensor or list of tensors)
|
||||||
|
"""
|
||||||
|
if len(latents) == 1:
|
||||||
|
return latents[0]["samples"] # Single latent dict
|
||||||
|
|
||||||
|
latent_list = []
|
||||||
|
for latent in latents:
|
||||||
|
latent = latent["samples"]
|
||||||
|
bs = latent.shape[0]
|
||||||
|
if bs != 1:
|
||||||
|
for sub_latent in latent:
|
||||||
|
latent_list.append(sub_latent[None])
|
||||||
|
else:
|
||||||
|
latent_list.append(latent)
|
||||||
|
return latent_list
|
||||||
|
|
||||||
|
|
||||||
|
def _process_conditioning(positive):
|
||||||
|
"""Process conditioning - either single list or list of lists.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
positive: list of conditioning
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Flattened conditioning list
|
||||||
|
"""
|
||||||
|
if len(positive) == 1:
|
||||||
|
return positive[0] # Single conditioning list
|
||||||
|
|
||||||
|
# Multiple conditioning lists - flatten
|
||||||
|
flat_positive = []
|
||||||
|
for cond in positive:
|
||||||
|
if isinstance(cond, list):
|
||||||
|
flat_positive.extend(cond)
|
||||||
|
else:
|
||||||
|
flat_positive.append(cond)
|
||||||
|
return flat_positive
|
||||||
|
|
||||||
|
|
||||||
|
def _prepare_latents_and_count(latents, dtype, bucket_mode):
|
||||||
|
"""Convert latents to dtype and compute image counts.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
latents: Latents (tensor, list of tensors, or bucket list)
|
||||||
|
dtype: Target dtype
|
||||||
|
bucket_mode: Whether bucket mode is enabled
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (processed_latents, num_images, multi_res)
|
||||||
|
"""
|
||||||
|
if bucket_mode:
|
||||||
|
# In bucket mode, latents is list of tensors (Bi, C, Hi, Wi)
|
||||||
|
latents = [t.to(dtype) for t in latents]
|
||||||
|
num_buckets = len(latents)
|
||||||
|
num_images = sum(t.shape[0] for t in latents)
|
||||||
|
multi_res = False # Not using multi_res path in bucket mode
|
||||||
|
|
||||||
|
logging.info(f"Bucket mode: {num_buckets} buckets, {num_images} total samples")
|
||||||
|
for i, lat in enumerate(latents):
|
||||||
|
logging.info(f" Bucket {i}: shape {lat.shape}")
|
||||||
|
return latents, num_images, multi_res
|
||||||
|
|
||||||
|
# Non-bucket mode
|
||||||
|
if isinstance(latents, list):
|
||||||
|
all_shapes = set()
|
||||||
|
latents = [t.to(dtype) for t in latents]
|
||||||
|
for latent in latents:
|
||||||
|
all_shapes.add(latent.shape)
|
||||||
|
logging.info(f"Latent shapes: {all_shapes}")
|
||||||
|
if len(all_shapes) > 1:
|
||||||
|
multi_res = True
|
||||||
|
else:
|
||||||
|
multi_res = False
|
||||||
|
latents = torch.cat(latents, dim=0)
|
||||||
|
num_images = len(latents)
|
||||||
|
elif isinstance(latents, torch.Tensor):
|
||||||
|
latents = latents.to(dtype)
|
||||||
|
num_images = latents.shape[0]
|
||||||
|
multi_res = False
|
||||||
|
else:
|
||||||
|
logging.error(f"Invalid latents type: {type(latents)}")
|
||||||
|
num_images = 0
|
||||||
|
multi_res = False
|
||||||
|
|
||||||
|
return latents, num_images, multi_res
|
||||||
|
|
||||||
|
|
||||||
|
def _validate_and_expand_conditioning(positive, num_images, bucket_mode):
|
||||||
|
"""Validate conditioning count matches image count, expand if needed.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
positive: Conditioning list
|
||||||
|
num_images: Number of images
|
||||||
|
bucket_mode: Whether bucket mode is enabled
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Validated/expanded conditioning list
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If conditioning count doesn't match image count
|
||||||
|
"""
|
||||||
|
if bucket_mode:
|
||||||
|
return positive # Skip validation in bucket mode
|
||||||
|
|
||||||
|
logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}")
|
||||||
|
if len(positive) == 1 and num_images > 1:
|
||||||
|
return positive * num_images
|
||||||
|
elif len(positive) != num_images:
|
||||||
|
raise ValueError(
|
||||||
|
f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})."
|
||||||
|
)
|
||||||
|
return positive
|
||||||
|
|
||||||
|
|
||||||
|
def _load_existing_lora(existing_lora):
|
||||||
|
"""Load existing LoRA weights if provided.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
existing_lora: LoRA filename or "[None]"
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (existing_weights dict, existing_steps int)
|
||||||
|
"""
|
||||||
|
if existing_lora == "[None]":
|
||||||
|
return {}, 0
|
||||||
|
|
||||||
|
lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora)
|
||||||
|
# Extract steps from filename like "trained_lora_10_steps_20250225_203716"
|
||||||
|
existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1])
|
||||||
|
existing_weights = {}
|
||||||
|
if lora_path:
|
||||||
|
existing_weights = comfy.utils.load_torch_file(lora_path)
|
||||||
|
return existing_weights, existing_steps
|
||||||
|
|
||||||
|
|
||||||
|
def _create_weight_adapter(
|
||||||
|
module, module_name, existing_weights, algorithm, lora_dtype, rank
|
||||||
|
):
|
||||||
|
"""Create a weight adapter for a module with weight.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module: The module to create adapter for
|
||||||
|
module_name: Name of the module
|
||||||
|
existing_weights: Dict of existing LoRA weights
|
||||||
|
algorithm: Algorithm name for new adapters
|
||||||
|
lora_dtype: dtype for LoRA weights
|
||||||
|
rank: Rank for new LoRA adapters
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (train_adapter, lora_params dict)
|
||||||
|
"""
|
||||||
|
key = f"{module_name}.weight"
|
||||||
|
shape = module.weight.shape
|
||||||
|
lora_params = {}
|
||||||
|
|
||||||
|
if len(shape) >= 2:
|
||||||
|
alpha = float(existing_weights.get(f"{key}.alpha", 1.0))
|
||||||
|
dora_scale = existing_weights.get(f"{key}.dora_scale", None)
|
||||||
|
|
||||||
|
# Try to load existing adapter
|
||||||
|
existing_adapter = None
|
||||||
|
for adapter_cls in adapters:
|
||||||
|
existing_adapter = adapter_cls.load(
|
||||||
|
module_name, existing_weights, alpha, dora_scale
|
||||||
|
)
|
||||||
|
if existing_adapter is not None:
|
||||||
|
break
|
||||||
|
|
||||||
|
if existing_adapter is None:
|
||||||
|
adapter_cls = adapter_maps[algorithm]
|
||||||
|
|
||||||
|
if existing_adapter is not None:
|
||||||
|
train_adapter = existing_adapter.to_train().to(lora_dtype)
|
||||||
|
else:
|
||||||
|
# Use LoRA with alpha=1.0 by default
|
||||||
|
train_adapter = adapter_cls.create_train(
|
||||||
|
module.weight, rank=rank, alpha=1.0
|
||||||
|
).to(lora_dtype)
|
||||||
|
|
||||||
|
for name, parameter in train_adapter.named_parameters():
|
||||||
|
lora_params[f"{module_name}.{name}"] = parameter
|
||||||
|
|
||||||
|
return train_adapter.train().requires_grad_(True), lora_params
|
||||||
|
else:
|
||||||
|
# 1D weight - use BiasDiff
|
||||||
|
diff = torch.nn.Parameter(
|
||||||
|
torch.zeros(module.weight.shape, dtype=lora_dtype, requires_grad=True)
|
||||||
|
)
|
||||||
|
diff_module = BiasDiff(diff).train().requires_grad_(True)
|
||||||
|
lora_params[f"{module_name}.diff"] = diff
|
||||||
|
return diff_module, lora_params
|
||||||
|
|
||||||
|
|
||||||
|
def _create_bias_adapter(module, module_name, lora_dtype):
|
||||||
|
"""Create a bias adapter for a module with bias.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module: The module with bias
|
||||||
|
module_name: Name of the module
|
||||||
|
lora_dtype: dtype for LoRA weights
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (bias_module, lora_params dict)
|
||||||
|
"""
|
||||||
|
bias = torch.nn.Parameter(
|
||||||
|
torch.zeros(module.bias.shape, dtype=lora_dtype, requires_grad=True)
|
||||||
|
)
|
||||||
|
bias_module = BiasDiff(bias).train().requires_grad_(True)
|
||||||
|
lora_params = {f"{module_name}.diff_b": bias}
|
||||||
|
return bias_module, lora_params
|
||||||
|
|
||||||
|
|
||||||
|
def _setup_lora_adapters(mp, existing_weights, algorithm, lora_dtype, rank):
|
||||||
|
"""Setup all LoRA adapters on the model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mp: Model patcher
|
||||||
|
existing_weights: Dict of existing LoRA weights
|
||||||
|
algorithm: Algorithm name for new adapters
|
||||||
|
lora_dtype: dtype for LoRA weights
|
||||||
|
rank: Rank for new LoRA adapters
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (lora_sd dict, all_weight_adapters list)
|
||||||
|
"""
|
||||||
|
lora_sd = {}
|
||||||
|
all_weight_adapters = []
|
||||||
|
|
||||||
|
for n, m in mp.model.named_modules():
|
||||||
|
if hasattr(m, "weight_function"):
|
||||||
|
if m.weight is not None:
|
||||||
|
adapter, params = _create_weight_adapter(
|
||||||
|
m, n, existing_weights, algorithm, lora_dtype, rank
|
||||||
|
)
|
||||||
|
lora_sd.update(params)
|
||||||
|
key = f"{n}.weight"
|
||||||
|
mp.add_weight_wrapper(key, adapter)
|
||||||
|
all_weight_adapters.append(adapter)
|
||||||
|
|
||||||
|
if hasattr(m, "bias") and m.bias is not None:
|
||||||
|
bias_adapter, bias_params = _create_bias_adapter(m, n, lora_dtype)
|
||||||
|
lora_sd.update(bias_params)
|
||||||
|
key = f"{n}.bias"
|
||||||
|
mp.add_weight_wrapper(key, bias_adapter)
|
||||||
|
all_weight_adapters.append(bias_adapter)
|
||||||
|
|
||||||
|
return lora_sd, all_weight_adapters
|
||||||
|
|
||||||
|
|
||||||
|
def _create_optimizer(optimizer_name, parameters, learning_rate):
|
||||||
|
"""Create optimizer based on name.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
optimizer_name: Name of optimizer ("Adam", "AdamW", "SGD", "RMSprop")
|
||||||
|
parameters: Parameters to optimize
|
||||||
|
learning_rate: Learning rate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Optimizer instance
|
||||||
|
"""
|
||||||
|
if optimizer_name == "Adam":
|
||||||
|
return torch.optim.Adam(parameters, lr=learning_rate)
|
||||||
|
elif optimizer_name == "AdamW":
|
||||||
|
return torch.optim.AdamW(parameters, lr=learning_rate)
|
||||||
|
elif optimizer_name == "SGD":
|
||||||
|
return torch.optim.SGD(parameters, lr=learning_rate)
|
||||||
|
elif optimizer_name == "RMSprop":
|
||||||
|
return torch.optim.RMSprop(parameters, lr=learning_rate)
|
||||||
|
|
||||||
|
|
||||||
|
def _create_loss_function(loss_function_name):
|
||||||
|
"""Create loss function based on name.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
loss_function_name: Name of loss function ("MSE", "L1", "Huber", "SmoothL1")
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Loss function instance
|
||||||
|
"""
|
||||||
|
if loss_function_name == "MSE":
|
||||||
|
return torch.nn.MSELoss()
|
||||||
|
elif loss_function_name == "L1":
|
||||||
|
return torch.nn.L1Loss()
|
||||||
|
elif loss_function_name == "Huber":
|
||||||
|
return torch.nn.HuberLoss()
|
||||||
|
elif loss_function_name == "SmoothL1":
|
||||||
|
return torch.nn.SmoothL1Loss()
|
||||||
|
|
||||||
|
|
||||||
|
def _run_training_loop(
|
||||||
|
guider, train_sampler, latents, num_images, seed, bucket_mode, multi_res
|
||||||
|
):
|
||||||
|
"""Execute the training loop.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
guider: The guider object
|
||||||
|
train_sampler: The training sampler
|
||||||
|
latents: Latent tensors
|
||||||
|
num_images: Number of images
|
||||||
|
seed: Random seed
|
||||||
|
bucket_mode: Whether bucket mode is enabled
|
||||||
|
multi_res: Whether multi-resolution mode is enabled
|
||||||
|
"""
|
||||||
|
sigmas = torch.tensor(range(num_images))
|
||||||
|
noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed)
|
||||||
|
|
||||||
|
if bucket_mode:
|
||||||
|
# Use first bucket's first latent as dummy for guider
|
||||||
|
dummy_latent = latents[0][:1].repeat(num_images, 1, 1, 1)
|
||||||
|
guider.sample(
|
||||||
|
noise.generate_noise({"samples": dummy_latent}),
|
||||||
|
dummy_latent,
|
||||||
|
train_sampler,
|
||||||
|
sigmas,
|
||||||
|
seed=noise.seed,
|
||||||
|
)
|
||||||
|
elif multi_res:
|
||||||
|
# use first latent as dummy latent if multi_res
|
||||||
|
latents = latents[0].repeat(num_images, 1, 1, 1)
|
||||||
|
guider.sample(
|
||||||
|
noise.generate_noise({"samples": latents}),
|
||||||
|
latents,
|
||||||
|
train_sampler,
|
||||||
|
sigmas,
|
||||||
|
seed=noise.seed,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
guider.sample(
|
||||||
|
noise.generate_noise({"samples": latents}),
|
||||||
|
latents,
|
||||||
|
train_sampler,
|
||||||
|
sigmas,
|
||||||
|
seed=noise.seed,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class TrainLoraNode(io.ComfyNode):
|
class TrainLoraNode(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def define_schema(cls):
|
def define_schema(cls):
|
||||||
@ -385,6 +879,11 @@ class TrainLoraNode(io.ComfyNode):
|
|||||||
default="[None]",
|
default="[None]",
|
||||||
tooltip="The existing LoRA to append to. Set to None for new LoRA.",
|
tooltip="The existing LoRA to append to. Set to None for new LoRA.",
|
||||||
),
|
),
|
||||||
|
io.Boolean.Input(
|
||||||
|
"bucket_mode",
|
||||||
|
default=False,
|
||||||
|
tooltip="Enable resolution bucket mode. When enabled, expects pre-bucketed latents from ResolutionBucket node.",
|
||||||
|
),
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
io.Model.Output(
|
io.Model.Output(
|
||||||
@ -419,6 +918,7 @@ class TrainLoraNode(io.ComfyNode):
|
|||||||
algorithm,
|
algorithm,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
existing_lora,
|
existing_lora,
|
||||||
|
bucket_mode,
|
||||||
):
|
):
|
||||||
# Extract scalars from lists (due to is_input_list=True)
|
# Extract scalars from lists (due to is_input_list=True)
|
||||||
model = model[0]
|
model = model[0]
|
||||||
@ -427,215 +927,125 @@ class TrainLoraNode(io.ComfyNode):
|
|||||||
grad_accumulation_steps = grad_accumulation_steps[0]
|
grad_accumulation_steps = grad_accumulation_steps[0]
|
||||||
learning_rate = learning_rate[0]
|
learning_rate = learning_rate[0]
|
||||||
rank = rank[0]
|
rank = rank[0]
|
||||||
optimizer = optimizer[0]
|
optimizer_name = optimizer[0]
|
||||||
loss_function = loss_function[0]
|
loss_function_name = loss_function[0]
|
||||||
seed = seed[0]
|
seed = seed[0]
|
||||||
training_dtype = training_dtype[0]
|
training_dtype = training_dtype[0]
|
||||||
lora_dtype = lora_dtype[0]
|
lora_dtype = lora_dtype[0]
|
||||||
algorithm = algorithm[0]
|
algorithm = algorithm[0]
|
||||||
gradient_checkpointing = gradient_checkpointing[0]
|
gradient_checkpointing = gradient_checkpointing[0]
|
||||||
existing_lora = existing_lora[0]
|
existing_lora = existing_lora[0]
|
||||||
|
bucket_mode = bucket_mode[0]
|
||||||
|
|
||||||
# Handle latents - either single dict or list of dicts
|
# Process latents based on mode
|
||||||
if len(latents) == 1:
|
if bucket_mode:
|
||||||
latents = latents[0]["samples"] # Single latent dict
|
latents = _process_latents_bucket_mode(latents)
|
||||||
else:
|
else:
|
||||||
latent_list = []
|
latents = _process_latents_standard_mode(latents)
|
||||||
for latent in latents:
|
|
||||||
latent = latent["samples"]
|
|
||||||
bs = latent.shape[0]
|
|
||||||
if bs != 1:
|
|
||||||
for sub_latent in latent:
|
|
||||||
latent_list.append(sub_latent[None])
|
|
||||||
else:
|
|
||||||
latent_list.append(latent)
|
|
||||||
latents = latent_list
|
|
||||||
|
|
||||||
# Handle conditioning - either single list or list of lists
|
# Process conditioning
|
||||||
if len(positive) == 1:
|
positive = _process_conditioning(positive)
|
||||||
positive = positive[0] # Single conditioning list
|
|
||||||
else:
|
|
||||||
# Multiple conditioning lists - flatten
|
|
||||||
flat_positive = []
|
|
||||||
for cond in positive:
|
|
||||||
if isinstance(cond, list):
|
|
||||||
flat_positive.extend(cond)
|
|
||||||
else:
|
|
||||||
flat_positive.append(cond)
|
|
||||||
positive = flat_positive
|
|
||||||
|
|
||||||
|
# Setup model and dtype
|
||||||
mp = model.clone()
|
mp = model.clone()
|
||||||
dtype = node_helpers.string_to_torch_dtype(training_dtype)
|
dtype = node_helpers.string_to_torch_dtype(training_dtype)
|
||||||
lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype)
|
lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype)
|
||||||
mp.set_model_compute_dtype(dtype)
|
mp.set_model_compute_dtype(dtype)
|
||||||
|
|
||||||
# latents here can be list of different size latent or one large batch
|
# Prepare latents and compute counts
|
||||||
if isinstance(latents, list):
|
latents, num_images, multi_res = _prepare_latents_and_count(
|
||||||
all_shapes = set()
|
latents, dtype, bucket_mode
|
||||||
latents = [t.to(dtype) for t in latents]
|
)
|
||||||
for latent in latents:
|
|
||||||
all_shapes.add(latent.shape)
|
|
||||||
logging.info(f"Latent shapes: {all_shapes}")
|
|
||||||
if len(all_shapes) > 1:
|
|
||||||
multi_res = True
|
|
||||||
else:
|
|
||||||
multi_res = False
|
|
||||||
latents = torch.cat(latents, dim=0)
|
|
||||||
num_images = len(latents)
|
|
||||||
elif isinstance(latents, torch.Tensor):
|
|
||||||
latents = latents.to(dtype)
|
|
||||||
num_images = latents.shape[0]
|
|
||||||
else:
|
|
||||||
logging.error(f"Invalid latents type: {type(latents)}")
|
|
||||||
|
|
||||||
logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}")
|
# Validate and expand conditioning
|
||||||
if len(positive) == 1 and num_images > 1:
|
positive = _validate_and_expand_conditioning(positive, num_images, bucket_mode)
|
||||||
positive = positive * num_images
|
|
||||||
elif len(positive) != num_images:
|
|
||||||
raise ValueError(
|
|
||||||
f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})."
|
|
||||||
)
|
|
||||||
|
|
||||||
with torch.inference_mode(False):
|
with torch.inference_mode(False):
|
||||||
lora_sd = {}
|
# Setup models for training
|
||||||
generator = torch.Generator()
|
mp.model.requires_grad_(False)
|
||||||
generator.manual_seed(seed)
|
|
||||||
|
|
||||||
# Load existing LoRA weights if provided
|
# Load existing LoRA weights if provided
|
||||||
existing_weights = {}
|
existing_weights, existing_steps = _load_existing_lora(existing_lora)
|
||||||
existing_steps = 0
|
|
||||||
if existing_lora != "[None]":
|
|
||||||
lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora)
|
|
||||||
# Extract steps from filename like "trained_lora_10_steps_20250225_203716"
|
|
||||||
existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1])
|
|
||||||
if lora_path:
|
|
||||||
existing_weights = comfy.utils.load_torch_file(lora_path)
|
|
||||||
|
|
||||||
all_weight_adapters = []
|
# Setup LoRA adapters
|
||||||
for n, m in mp.model.named_modules():
|
lora_sd, all_weight_adapters = _setup_lora_adapters(
|
||||||
if hasattr(m, "weight_function"):
|
mp, existing_weights, algorithm, lora_dtype, rank
|
||||||
if m.weight is not None:
|
)
|
||||||
key = "{}.weight".format(n)
|
|
||||||
shape = m.weight.shape
|
|
||||||
if len(shape) >= 2:
|
|
||||||
alpha = float(existing_weights.get(f"{key}.alpha", 1.0))
|
|
||||||
dora_scale = existing_weights.get(f"{key}.dora_scale", None)
|
|
||||||
for adapter_cls in adapters:
|
|
||||||
existing_adapter = adapter_cls.load(
|
|
||||||
n, existing_weights, alpha, dora_scale
|
|
||||||
)
|
|
||||||
if existing_adapter is not None:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
existing_adapter = None
|
|
||||||
adapter_cls = adapter_maps[algorithm]
|
|
||||||
|
|
||||||
if existing_adapter is not None:
|
# Create optimizer and loss function
|
||||||
train_adapter = existing_adapter.to_train().to(
|
optimizer = _create_optimizer(
|
||||||
lora_dtype
|
optimizer_name, lora_sd.values(), learning_rate
|
||||||
)
|
)
|
||||||
else:
|
criterion = _create_loss_function(loss_function_name)
|
||||||
# Use LoRA with alpha=1.0 by default
|
|
||||||
train_adapter = adapter_cls.create_train(
|
|
||||||
m.weight, rank=rank, alpha=1.0
|
|
||||||
).to(lora_dtype)
|
|
||||||
for name, parameter in train_adapter.named_parameters():
|
|
||||||
lora_sd[f"{n}.{name}"] = parameter
|
|
||||||
|
|
||||||
mp.add_weight_wrapper(key, train_adapter)
|
# Setup gradient checkpointing
|
||||||
all_weight_adapters.append(train_adapter)
|
|
||||||
else:
|
|
||||||
diff = torch.nn.Parameter(
|
|
||||||
torch.zeros(
|
|
||||||
m.weight.shape, dtype=lora_dtype, requires_grad=True
|
|
||||||
)
|
|
||||||
)
|
|
||||||
diff_module = BiasDiff(diff)
|
|
||||||
mp.add_weight_wrapper(key, BiasDiff(diff))
|
|
||||||
all_weight_adapters.append(diff_module)
|
|
||||||
lora_sd["{}.diff".format(n)] = diff
|
|
||||||
if hasattr(m, "bias") and m.bias is not None:
|
|
||||||
key = "{}.bias".format(n)
|
|
||||||
bias = torch.nn.Parameter(
|
|
||||||
torch.zeros(
|
|
||||||
m.bias.shape, dtype=lora_dtype, requires_grad=True
|
|
||||||
)
|
|
||||||
)
|
|
||||||
bias_module = BiasDiff(bias)
|
|
||||||
lora_sd["{}.diff_b".format(n)] = bias
|
|
||||||
mp.add_weight_wrapper(key, BiasDiff(bias))
|
|
||||||
all_weight_adapters.append(bias_module)
|
|
||||||
|
|
||||||
if optimizer == "Adam":
|
|
||||||
optimizer = torch.optim.Adam(lora_sd.values(), lr=learning_rate)
|
|
||||||
elif optimizer == "AdamW":
|
|
||||||
optimizer = torch.optim.AdamW(lora_sd.values(), lr=learning_rate)
|
|
||||||
elif optimizer == "SGD":
|
|
||||||
optimizer = torch.optim.SGD(lora_sd.values(), lr=learning_rate)
|
|
||||||
elif optimizer == "RMSprop":
|
|
||||||
optimizer = torch.optim.RMSprop(lora_sd.values(), lr=learning_rate)
|
|
||||||
|
|
||||||
# Setup loss function based on selection
|
|
||||||
if loss_function == "MSE":
|
|
||||||
criterion = torch.nn.MSELoss()
|
|
||||||
elif loss_function == "L1":
|
|
||||||
criterion = torch.nn.L1Loss()
|
|
||||||
elif loss_function == "Huber":
|
|
||||||
criterion = torch.nn.HuberLoss()
|
|
||||||
elif loss_function == "SmoothL1":
|
|
||||||
criterion = torch.nn.SmoothL1Loss()
|
|
||||||
|
|
||||||
# setup models
|
|
||||||
if gradient_checkpointing:
|
if gradient_checkpointing:
|
||||||
for m in find_all_highest_child_module_with_forward(
|
for m in find_all_highest_child_module_with_forward(
|
||||||
mp.model.diffusion_model
|
mp.model.diffusion_model
|
||||||
):
|
):
|
||||||
patch(m)
|
patch(m)
|
||||||
mp.model.requires_grad_(False)
|
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
# With force_full_load=False we should be able to have offloading
|
||||||
|
# But for offloading in training we need custom AutoGrad hooks for fwd/bwd
|
||||||
comfy.model_management.load_models_gpu(
|
comfy.model_management.load_models_gpu(
|
||||||
[mp], memory_required=1e20, force_full_load=True
|
[mp], memory_required=1e20, force_full_load=True
|
||||||
)
|
)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
# Setup sampler and guider like in test script
|
# Setup loss tracking
|
||||||
loss_map = {"loss": []}
|
loss_map = {"loss": []}
|
||||||
|
|
||||||
def loss_callback(loss):
|
def loss_callback(loss):
|
||||||
loss_map["loss"].append(loss)
|
loss_map["loss"].append(loss)
|
||||||
|
|
||||||
train_sampler = TrainSampler(
|
# Create sampler
|
||||||
criterion,
|
if bucket_mode:
|
||||||
optimizer,
|
train_sampler = TrainSampler(
|
||||||
loss_callback=loss_callback,
|
criterion,
|
||||||
batch_size=batch_size,
|
optimizer,
|
||||||
grad_acc=grad_accumulation_steps,
|
loss_callback=loss_callback,
|
||||||
total_steps=steps * grad_accumulation_steps,
|
batch_size=batch_size,
|
||||||
seed=seed,
|
grad_acc=grad_accumulation_steps,
|
||||||
training_dtype=dtype,
|
total_steps=steps * grad_accumulation_steps,
|
||||||
real_dataset=latents if multi_res else None,
|
seed=seed,
|
||||||
)
|
training_dtype=dtype,
|
||||||
guider = comfy_extras.nodes_custom_sampler.Guider_Basic(mp)
|
bucket_latents=latents,
|
||||||
guider.set_conds(positive) # Set conditioning from input
|
)
|
||||||
|
else:
|
||||||
|
train_sampler = TrainSampler(
|
||||||
|
criterion,
|
||||||
|
optimizer,
|
||||||
|
loss_callback=loss_callback,
|
||||||
|
batch_size=batch_size,
|
||||||
|
grad_acc=grad_accumulation_steps,
|
||||||
|
total_steps=steps * grad_accumulation_steps,
|
||||||
|
seed=seed,
|
||||||
|
training_dtype=dtype,
|
||||||
|
real_dataset=latents if multi_res else None,
|
||||||
|
)
|
||||||
|
|
||||||
# Training loop
|
# Setup guider
|
||||||
|
guider = TrainGuider(mp)
|
||||||
|
guider.set_conds(positive)
|
||||||
|
|
||||||
|
# Run training loop
|
||||||
try:
|
try:
|
||||||
# Generate dummy sigmas and noise
|
_run_training_loop(
|
||||||
sigmas = torch.tensor(range(num_images))
|
guider,
|
||||||
noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed)
|
|
||||||
if multi_res:
|
|
||||||
# use first latent as dummy latent if multi_res
|
|
||||||
latents = latents[0].repeat((num_images,) + ((1,) * (latents[0].ndim - 1)))
|
|
||||||
guider.sample(
|
|
||||||
noise.generate_noise({"samples": latents}),
|
|
||||||
latents,
|
|
||||||
train_sampler,
|
train_sampler,
|
||||||
sigmas,
|
latents,
|
||||||
seed=noise.seed,
|
num_images,
|
||||||
|
seed,
|
||||||
|
bucket_mode,
|
||||||
|
multi_res,
|
||||||
)
|
)
|
||||||
finally:
|
finally:
|
||||||
for m in mp.model.modules():
|
for m in mp.model.modules():
|
||||||
unpatch(m)
|
unpatch(m)
|
||||||
del train_sampler, optimizer
|
del train_sampler, optimizer
|
||||||
|
|
||||||
|
# Finalize adapters
|
||||||
for adapter in all_weight_adapters:
|
for adapter in all_weight_adapters:
|
||||||
adapter.requires_grad_(False)
|
adapter.requires_grad_(False)
|
||||||
|
|
||||||
@ -645,7 +1055,7 @@ class TrainLoraNode(io.ComfyNode):
|
|||||||
return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps)
|
return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps)
|
||||||
|
|
||||||
|
|
||||||
class LoraModelLoader(io.ComfyNode):
|
class LoraModelLoader(io.ComfyNode):#
|
||||||
@classmethod
|
@classmethod
|
||||||
def define_schema(cls):
|
def define_schema(cls):
|
||||||
return io.Schema(
|
return io.Schema(
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user