nodes: add cache barriers to models / clip

This commit is contained in:
Rattus 2025-12-19 20:24:36 +10:00
parent 783da446c1
commit 86e74e7f8b
2 changed files with 13 additions and 13 deletions

View File

@ -18,7 +18,7 @@ class BasicScheduler(io.ComfyNode):
node_id="BasicScheduler",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Combo.Input("scheduler", options=comfy.samplers.SCHEDULER_NAMES),
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
@ -137,7 +137,7 @@ class SDTurboScheduler(io.ComfyNode):
node_id="SDTurboScheduler",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Int.Input("steps", default=1, min=1, max=10),
io.Float.Input("denoise", default=1.0, min=0, max=1.0, step=0.01),
],
@ -161,7 +161,7 @@ class BetaSamplingScheduler(io.ComfyNode):
node_id="BetaSamplingScheduler",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("alpha", default=0.6, min=0.0, max=50.0, step=0.01, round=False),
io.Float.Input("beta", default=0.6, min=0.0, max=50.0, step=0.01, round=False),
@ -351,7 +351,7 @@ class SamplingPercentToSigma(io.ComfyNode):
node_id="SamplingPercentToSigma",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Float.Input("sampling_percent", default=0.0, min=0.0, max=1.0, step=0.0001),
io.Boolean.Input("return_actual_sigma", default=False, tooltip="Return the actual sigma value instead of the value used for interval checks.\nThis only affects results at 0.0 and 1.0."),
],
@ -622,7 +622,7 @@ class SamplerSASolver(io.ComfyNode):
node_id="SamplerSASolver",
category="sampling/custom_sampling/samplers",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Float.Input("eta", default=1.0, min=0.0, max=10.0, step=0.01, round=False),
io.Float.Input("sde_start_percent", default=0.2, min=0.0, max=1.0, step=0.001),
io.Float.Input("sde_end_percent", default=0.8, min=0.0, max=1.0, step=0.001),
@ -718,7 +718,7 @@ class SamplerCustom(io.ComfyNode):
node_id="SamplerCustom",
category="sampling/custom_sampling",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Boolean.Input("add_noise", default=True),
io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True),
io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
@ -779,7 +779,7 @@ class BasicGuider(io.ComfyNode):
node_id="BasicGuider",
category="sampling/custom_sampling/guiders",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Conditioning.Input("conditioning"),
],
outputs=[io.Guider.Output()]
@ -800,7 +800,7 @@ class CFGGuider(io.ComfyNode):
node_id="CFGGuider",
category="sampling/custom_sampling/guiders",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
@ -853,7 +853,7 @@ class DualCFGGuider(io.ComfyNode):
node_id="DualCFGGuider",
category="sampling/custom_sampling/guiders",
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Conditioning.Input("cond1"),
io.Conditioning.Input("cond2"),
io.Conditioning.Input("negative"),
@ -964,7 +964,7 @@ class AddNoise(io.ComfyNode):
category="_for_testing/custom_sampling/noise",
is_experimental=True,
inputs=[
io.Model.Input("model"),
io.Model.Input("model", extra_dict={"cache-barrier":True}),
io.Noise.Input("noise"),
io.Sigmas.Input("sigmas"),
io.Latent.Input("latent_image"),

View File

@ -60,7 +60,7 @@ class CLIPTextEncode(ComfyNodeABC):
return {
"required": {
"text": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text.", "cache-barrier" : True})
}
}
RETURN_TYPES = (IO.CONDITIONING,)
@ -1514,7 +1514,7 @@ class KSampler:
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
"model": ("MODEL", {"tooltip": "The model used for denoising the input latent.", "cache-barrier": True}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
@ -1541,7 +1541,7 @@ class KSamplerAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
{"model": ("MODEL", {"cache-barrier": True}),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),