Merge branch 'comfyanonymous:master' into feature/blockweights

This commit is contained in:
Dr.Lt.Data 2023-05-05 17:19:22 +09:00 committed by GitHub
commit 8895cbe7b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 206 additions and 126 deletions

View File

@ -5,17 +5,17 @@ import torch
import torch as th
import torch.nn as nn
from ldm.modules.diffusionmodules.util import (
from ..ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ..ldm.models.diffusion.ddpm import LatentDiffusion
from ..ldm.util import log_txt_as_img, exists, instantiate_from_config
class ControlledUnetModel(UNetModel):

View File

@ -767,7 +767,7 @@ class UniPC:
model_x = self.model_fn(x, vec_t)
model_prev_list[-1] = model_x
if callback is not None:
callback(step_index, model_prev_list[-1], x)
callback(step_index, model_prev_list[-1], x, steps)
else:
raise NotImplementedError()
if denoise_to_zero:

View File

@ -1,6 +1,6 @@
import torch
from torch import nn, einsum
from ldm.modules.attention import CrossAttention
from .ldm.modules.attention import CrossAttention
from inspect import isfunction

View File

@ -3,11 +3,11 @@ import torch
import torch.nn.functional as F
from contextlib import contextmanager
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from comfy.ldm.modules.diffusionmodules.model import Encoder, Decoder
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from ldm.util import instantiate_from_config
from ldm.modules.ema import LitEma
from comfy.ldm.util import instantiate_from_config
from comfy.ldm.modules.ema import LitEma
# class AutoencoderKL(pl.LightningModule):
class AutoencoderKL(torch.nn.Module):

View File

@ -4,7 +4,7 @@ import torch
import numpy as np
from tqdm import tqdm
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
from comfy.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
class DDIMSampler(object):

View File

@ -19,12 +19,12 @@ from tqdm import tqdm
from torchvision.utils import make_grid
# from pytorch_lightning.utilities.distributed import rank_zero_only
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from ldm.models.diffusion.ddim import DDIMSampler
from comfy.ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
from comfy.ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ..autoencoder import IdentityFirstStage, AutoencoderKL
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from .ddim import DDIMSampler
__conditioning_keys__ = {'concat': 'c_concat',

View File

@ -6,7 +6,7 @@ from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
from ldm.modules.diffusionmodules.util import checkpoint
from .diffusionmodules.util import checkpoint
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
@ -21,7 +21,7 @@ if model_management.xformers_enabled():
import os
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
from cli_args import args
from comfy.cli_args import args
def exists(val):
return val is not None

View File

@ -6,7 +6,7 @@ import numpy as np
from einops import rearrange
from typing import Optional, Any
from ldm.modules.attention import MemoryEfficientCrossAttention
from ..attention import MemoryEfficientCrossAttention
from comfy import model_management
if model_management.xformers_enabled_vae():

View File

@ -6,7 +6,7 @@ import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
from .util import (
checkpoint,
conv_nd,
linear,
@ -15,8 +15,8 @@ from ldm.modules.diffusionmodules.util import (
normalization,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.util import exists
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
# dummy replace
@ -76,12 +76,14 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
support it as an extra input.
"""
def forward(self, x, emb, context=None, transformer_options={}):
def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context, transformer_options)
elif isinstance(layer, Upsample):
x = layer(x, output_shape=output_shape)
else:
x = layer(x)
return x
@ -105,14 +107,20 @@ class Upsample(nn.Module):
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
def forward(self, x, output_shape=None):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
if output_shape is not None:
shape[1] = output_shape[3]
shape[2] = output_shape[4]
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
shape = [x.shape[2] * 2, x.shape[3] * 2]
if output_shape is not None:
shape[0] = output_shape[2]
shape[1] = output_shape[3]
x = F.interpolate(x, size=shape, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
@ -813,9 +821,14 @@ class UNetModel(nn.Module):
ctrl = control['output'].pop()
if ctrl is not None:
hsp += ctrl
h = th.cat([h, hsp], dim=1)
del hsp
h = module(h, emb, context, transformer_options)
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = module(h, emb, context, transformer_options, output_shape)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)

View File

@ -3,8 +3,8 @@ import torch.nn as nn
import numpy as np
from functools import partial
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
from ldm.util import default
from .util import extract_into_tensor, make_beta_schedule
from comfy.ldm.util import default
class AbstractLowScaleModel(nn.Module):

View File

@ -15,7 +15,7 @@ import torch.nn as nn
import numpy as np
from einops import repeat
from ldm.util import instantiate_from_config
from comfy.ldm.util import instantiate_from_config
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):

View File

@ -1,5 +1,5 @@
from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from ldm.modules.diffusionmodules.openaimodel import Timestep
from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from ..diffusionmodules.openaimodel import Timestep
import torch
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):

View File

@ -1,6 +1,6 @@
import psutil
from enum import Enum
from cli_args import args
from comfy.cli_args import args
class VRAMState(Enum):
CPU = 0

View File

@ -623,7 +623,8 @@ class KSampler:
ddim_callback = None
if callback is not None:
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None)
total_steps = len(timesteps) - 1
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
sampler = DDIMSampler(self.model, device=self.device)
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
@ -654,13 +655,14 @@ class KSampler:
noise = noise * sigmas[0]
k_callback = None
total_steps = len(sigmas) - 1
if callback is not None:
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"])
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
else:

View File

@ -2,8 +2,8 @@ import torch
import contextlib
import copy
import sd1_clip
import sd2_clip
from . import sd1_clip
from . import sd2_clip
from comfy import model_management
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
@ -495,10 +495,10 @@ class CLIP:
else:
params = {}
if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
clip = sd2_clip.SD2ClipModel
tokenizer = sd2_clip.SD2Tokenizer
elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
elif self.target_clip.endswith("FrozenCLIPEmbedder"):
clip = sd1_clip.SD1ClipModel
tokenizer = sd1_clip.SD1Tokenizer
@ -563,11 +563,16 @@ class VAE:
self.device = device
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
output = torch.clamp((
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
@ -611,9 +616,15 @@ class VAE:
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples /= 3.0
self.first_stage_model = self.first_stage_model.cpu()
samples = samples.cpu()
@ -934,9 +945,9 @@ def load_clip(ckpt_path, embedding_directory=None):
clip_data = utils.load_torch_file(ckpt_path)
config = {}
if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=config, embedding_directory=embedding_directory)
clip.load_from_state_dict(clip_data)
return clip
@ -1012,9 +1023,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if output_clip:
clip_config = {}
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
@ -1035,7 +1046,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
params["noise_schedule_config"] = noise_schedule_config
noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
if size == 1280: #h
params["timestep_dim"] = 1024
elif size == 1024: #l
@ -1087,19 +1098,19 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
if noise_aug_config is not None: #SD2.x unclip model
sd_config["noise_aug_config"] = noise_aug_config
sd_config["image_size"] = 96
sd_config["embedding_dropout"] = 0.25
sd_config["conditioning_key"] = 'crossattn-adm'
model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
elif unet_config["in_channels"] > 4: #inpainting model
sd_config["conditioning_key"] = "hybrid"
sd_config["finetune_keys"] = None
model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
else:
sd_config["conditioning_key"] = "crossattn"

View File

@ -191,11 +191,20 @@ def safe_load_embed_zip(embed_path):
del embed
return out
def expand_directory_list(directories):
dirs = set()
for x in directories:
dirs.add(x)
for root, subdir, file in os.walk(x, followlinks=True):
dirs.add(root)
return list(dirs)
def load_embed(embedding_name, embedding_directory):
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
valid_file = None
for embed_dir in embedding_directory:
embed_path = os.path.join(embed_dir, embedding_name)

View File

@ -1,4 +1,5 @@
import torch
import math
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
@ -62,8 +63,11 @@ def common_upscale(samples, width, height, upscale_method, crop):
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
@torch.inference_mode()
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3):
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
for b in range(samples.shape[0]):
s = samples[b:b+1]
@ -83,6 +87,33 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
if pbar is not None:
pbar.update(1)
output[b:b+1] = out/out_div
return output
PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
global PROGRESS_BAR_HOOK
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total)
def update(self, value):
self.update_absolute(self.current + value)

View File

@ -18,6 +18,7 @@ def load_hypernetwork_patch(path, strength):
"swish": torch.nn.Hardswish,
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
"softsign": torch.nn.Softsign,
}
if activation_func not in valid_activation:

View File

@ -37,7 +37,12 @@ class ImageUpscaleWithModel:
device = model_management.get_torch_device()
upscale_model.to(device)
in_img = image.movedim(-1,-3).to(device)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=128 + 64, tile_y=128 + 64, overlap = 8, upscale_amount=upscale_model.scale)
tile = 128 + 64
overlap = 8
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
upscale_model.cpu()
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
return (s,)

12
main.py
View File

@ -5,6 +5,7 @@ import shutil
import threading
from comfy.cli_args import args
import comfy.utils
if os.name == "nt":
import logging
@ -39,14 +40,9 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
def hijack_progress(server):
from tqdm.auto import tqdm
orig_func = getattr(tqdm, "update")
def wrapped_func(*args, **kwargs):
pbar = args[0]
v = orig_func(*args, **kwargs)
server.send_sync("progress", { "value": pbar.n, "max": pbar.total}, server.client_id)
return v
setattr(tqdm, "update", wrapped_func)
def hook(value, total):
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
comfy.utils.set_progress_bar_global_hook(hook)
def cleanup_temp():
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")

View File

@ -94,10 +94,10 @@ class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
@ -188,16 +188,21 @@ class VAEEncode:
CATEGORY = "latent"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
def encode(self, vae, pixels):
pixels = self.vae_encode_crop_pixels(pixels)
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
class VAEEncodeTiled:
def __init__(self, device="cpu"):
self.device = device
@ -211,13 +216,10 @@ class VAEEncodeTiled:
CATEGORY = "_for_testing"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
t = vae.encode_tiled(pixels[:,:,:,:3])
return ({"samples":t}, )
class VAEEncodeForInpaint:
def __init__(self, device="cpu"):
self.device = device
@ -231,14 +233,16 @@ class VAEEncodeForInpaint:
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask, grow_mask_by=6):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
mask = mask[:,:,:x,:y]
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
#grow mask by a few pixels to keep things seamless in latent space
if grow_mask_by == 0:
@ -686,8 +690,8 @@ class EmptyLatentImage:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
@ -725,8 +729,8 @@ class LatentUpscale:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
@ -828,8 +832,8 @@ class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
@ -854,16 +858,6 @@ class LatentCrop:
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
def enforce_image_dim(d, to_d, max_d):
if to_d > max_d:
leftover = (to_d - max_d) % 8
to_d = max_d
d -= leftover
return (d, to_d)
#make sure size is always multiple of 64
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
s['samples'] = samples[:,:,y:to_y, x:to_x]
return (s,)
@ -897,9 +891,13 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask)
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
out = latent.copy()
out["samples"] = samples
return (out, )
@ -1181,10 +1179,10 @@ class ImagePadForOutpaint:
return {
"required": {
"image": ("IMAGE",),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}
}

View File

@ -263,6 +263,34 @@ export class ComfyApp {
*/
#addDrawBackgroundHandler(node) {
const app = this;
function getImageTop(node) {
let shiftY;
if (node.imageOffset != null) {
shiftY = node.imageOffset;
} else {
if (node.widgets?.length) {
const w = node.widgets[node.widgets.length - 1];
shiftY = w.last_y;
if (w.computeSize) {
shiftY += w.computeSize()[1] + 4;
} else {
shiftY += LiteGraph.NODE_WIDGET_HEIGHT + 4;
}
} else {
shiftY = node.computeSize()[1];
}
}
return shiftY;
}
node.prototype.setSizeForImage = function () {
const minHeight = getImageTop(this) + 220;
if (this.size[1] < minHeight) {
this.setSize([this.size[0], minHeight]);
}
};
node.prototype.onDrawBackground = function (ctx) {
if (!this.flags.collapsed) {
const output = app.nodeOutputs[this.id + ""];
@ -283,9 +311,7 @@ export class ComfyApp {
).then((imgs) => {
if (this.images === output.images) {
this.imgs = imgs.filter(Boolean);
if (this.size[1] < 100) {
this.size[1] = 250;
}
this.setSizeForImage?.();
app.graph.setDirtyCanvas(true);
}
});
@ -310,12 +336,7 @@ export class ComfyApp {
this.imageIndex = imageIndex = 0;
}
let shiftY;
if (this.imageOffset != null) {
shiftY = this.imageOffset;
} else {
shiftY = this.computeSize()[1];
}
const shiftY = getImageTop(this);
let dw = this.size[0];
let dh = this.size[1];

View File

@ -261,20 +261,13 @@ export const ComfyWidgets = {
let uploadWidget;
function showImage(name) {
// Position the image somewhere sensible
if (!node.imageOffset) {
node.imageOffset = uploadWidget.last_y ? uploadWidget.last_y + 25 : 75;
}
const img = new Image();
img.onload = () => {
node.imgs = [img];
app.graph.setDirtyCanvas(true);
};
img.src = `/view?filename=${name}&type=input`;
if ((node.size[1] - node.imageOffset) < 100) {
node.size[1] = 250 + node.imageOffset;
}
node.setSizeForImage?.();
}
// Add our own callback to the combo widget to render an image when it changes