mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-22 04:20:49 +08:00
add
This commit is contained in:
parent
3bea4efc6b
commit
897d2662be
@ -111,6 +111,7 @@ attn_group.add_argument("--use-split-cross-attention", action="store_true", help
|
||||
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
||||
attn_group.add_argument("--use-aiter-attention", action="store_true", help="Use aiter attention.")
|
||||
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
|
||||
|
||||
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
||||
|
||||
@ -39,6 +39,15 @@ except ImportError:
|
||||
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
|
||||
exit(-1)
|
||||
|
||||
AITER_ATTENTION_IS_AVAILABLE = False
|
||||
try:
|
||||
import aiter
|
||||
AITER_ATTENTION_IS_AVAILABLE = True
|
||||
except ImportError:
|
||||
if model_management.aiter_attention_enabled():
|
||||
logging.error(f"\n\nTo use the `--use-aiter-attention` feature, the `aiter` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install aiter")
|
||||
exit(-1)
|
||||
|
||||
REGISTERED_ATTENTION_FUNCTIONS = {}
|
||||
def register_attention_function(name: str, func: Callable):
|
||||
# avoid replacing existing functions
|
||||
@ -619,11 +628,96 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
|
||||
return out
|
||||
|
||||
|
||||
try:
|
||||
@torch.library.custom_op("aiter_attention::aiter_flash_attn", mutates_args=())
|
||||
def aiter_flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
dropout_p: float = 0.0, softmax_scale: Optional[float] = None,
|
||||
causal: bool = False, window_size: tuple = (-1, -1),
|
||||
bias: Optional[torch.Tensor] = None, alibi_slopes: Optional[torch.Tensor] = None,
|
||||
deterministic: bool = False) -> torch.Tensor:
|
||||
return aiter.flash_attn_func(q, k, v, dropout_p=dropout_p, softmax_scale=softmax_scale,
|
||||
causal=causal, window_size=window_size, bias=bias,
|
||||
alibi_slopes=alibi_slopes, deterministic=deterministic,
|
||||
return_lse=False, return_attn_probs=False,
|
||||
cu_seqlens_q=None, cu_seqlens_kv=None)
|
||||
|
||||
|
||||
@aiter_flash_attn_wrapper.register_fake
|
||||
def aiter_flash_attn_fake(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False,
|
||||
window_size=(-1, -1), bias=None, alibi_slopes=None, deterministic=False):
|
||||
# Output shape is the same as q
|
||||
return q.new_empty(q.shape)
|
||||
except AttributeError as error:
|
||||
AITER_ATTN_ERROR = error
|
||||
|
||||
def aiter_flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
dropout_p: float = 0.0, softmax_scale: Optional[float] = None,
|
||||
causal: bool = False, window_size: tuple = (-1, -1),
|
||||
bias: Optional[torch.Tensor] = None, alibi_slopes: Optional[torch.Tensor] = None,
|
||||
deterministic: bool = False) -> torch.Tensor:
|
||||
assert False, f"Could not define aiter_flash_attn_wrapper: {AITER_ATTN_ERROR}"
|
||||
|
||||
@wrap_attn
|
||||
def attention_aiter(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
# reshape to (batch, seqlen, nheads, headdim) for aiter
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, heads, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
# add a heads dimension if there isn't already one
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
try:
|
||||
# aiter.flash_attn_func expects (batch, seqlen, nheads, headdim) format
|
||||
out = aiter_flash_attn_wrapper(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
dropout_p=0.0,
|
||||
softmax_scale=None,
|
||||
causal=False,
|
||||
window_size=(-1, -1),
|
||||
bias=mask,
|
||||
alibi_slopes=None,
|
||||
deterministic=False,
|
||||
)
|
||||
except Exception as e:
|
||||
logging.warning(f"Aiter Attention failed, using default SDPA: {e}")
|
||||
# fallback needs (batch, nheads, seqlen, headdim) format
|
||||
q_sdpa = q.transpose(1, 2)
|
||||
k_sdpa = k.transpose(1, 2)
|
||||
v_sdpa = v.transpose(1, 2)
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q_sdpa, k_sdpa, v_sdpa, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(1, 2)
|
||||
|
||||
if skip_output_reshape:
|
||||
# output is already in (batch, seqlen, nheads, headdim), need (batch, nheads, seqlen, headdim)
|
||||
out = out.transpose(1, 2)
|
||||
else:
|
||||
# reshape from (batch, seqlen, nheads, headdim) to (batch, seqlen, nheads * headdim)
|
||||
out = out.reshape(b, -1, heads * dim_head)
|
||||
return out
|
||||
|
||||
|
||||
optimized_attention = attention_basic
|
||||
|
||||
if model_management.sage_attention_enabled():
|
||||
logging.info("Using sage attention")
|
||||
optimized_attention = attention_sage
|
||||
elif model_management.aiter_attention_enabled():
|
||||
logging.info("Using aiter attention")
|
||||
optimized_attention = attention_aiter
|
||||
elif model_management.xformers_enabled():
|
||||
logging.info("Using xformers attention")
|
||||
optimized_attention = attention_xformers
|
||||
@ -647,6 +741,8 @@ optimized_attention_masked = optimized_attention
|
||||
# register core-supported attention functions
|
||||
if SAGE_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("sage", attention_sage)
|
||||
if AITER_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("aiter", attention_aiter)
|
||||
if FLASH_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("flash", attention_flash)
|
||||
if model_management.xformers_enabled():
|
||||
|
||||
@ -1083,6 +1083,9 @@ def cast_to_device(tensor, device, dtype, copy=False):
|
||||
def sage_attention_enabled():
|
||||
return args.use_sage_attention
|
||||
|
||||
def aiter_attention_enabled():
|
||||
return args.use_aiter_attention
|
||||
|
||||
def flash_attention_enabled():
|
||||
return args.use_flash_attention
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user