diff --git a/comfy/audio_encoders/audio_encoders.py b/comfy/audio_encoders/audio_encoders.py index 46ef21c95..16998af94 100644 --- a/comfy/audio_encoders/audio_encoders.py +++ b/comfy/audio_encoders/audio_encoders.py @@ -25,11 +25,11 @@ class AudioEncoderModel(): elif model_type == "whisper3": self.model = WhisperLargeV3(**model_config) self.model.eval() - self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) self.model_sample_rate = 16000 def load_sd(self, sd): - return self.model.load_state_dict(sd, strict=False) + return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic()) def get_sd(self): return self.model.state_dict() diff --git a/comfy/cli_args.py b/comfy/cli_args.py index 1716c3de7..63daca861 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -159,6 +159,7 @@ class PerformanceFeature(enum.Enum): Fp8MatrixMultiplication = "fp8_matrix_mult" CublasOps = "cublas_ops" AutoTune = "autotune" + DynamicVRAM = "dynamic_vram" parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature)))) @@ -257,3 +258,6 @@ elif args.fast == []: # '--fast' is provided with a list of performance features, use that list else: args.fast = set(args.fast) + +def enables_dynamic_vram(): + return PerformanceFeature.DynamicVRAM in args.fast and not args.highvram and not args.gpu_only diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 66f2a9d9c..e4dd4e678 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -47,10 +47,10 @@ class ClipVisionModel(): self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast) self.model.eval() - self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) def load_sd(self, sd): - return self.model.load_state_dict(sd, strict=False) + return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic()) def get_sd(self): return self.model.state_dict() diff --git a/comfy/controlnet.py b/comfy/controlnet.py index 0b5e30f52..9e1e704e0 100644 --- a/comfy/controlnet.py +++ b/comfy/controlnet.py @@ -203,7 +203,7 @@ class ControlNet(ControlBase): self.control_model = control_model self.load_device = load_device if control_model is not None: - self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) + self.control_model_wrapped = comfy.model_patcher.CoreModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) self.compression_ratio = compression_ratio self.global_average_pooling = global_average_pooling diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index 51b6d1da8..1f68144e2 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -109,10 +109,10 @@ class HunyuanVideo15SRModel(): self.model_class = UPSAMPLERS.get(model_type) self.model = self.model_class(**config).eval() - self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) def load_sd(self, sd): - return self.model.load_state_dict(sd, strict=True) + return self.model.load_state_dict(sd, strict=True, assign=self.patcher.is_dynamic()) def get_sd(self): return self.model.state_dict() diff --git a/comfy/memory_management.py b/comfy/memory_management.py new file mode 100644 index 000000000..4169e853c --- /dev/null +++ b/comfy/memory_management.py @@ -0,0 +1,54 @@ +from comfy.quant_ops import QuantizedTensor + +import comfy_aimdo.torch + +def vram_aligned_size(tensor): + if isinstance(tensor, list): + return sum([vram_aligned_size(t) for t in tensor]) + + if isinstance(tensor, QuantizedTensor): + inner_tensors, _ = tensor.__tensor_flatten__() + return vram_aligned_size([ getattr(tensor, attr) for attr in inner_tensors ]) + + if tensor is None: + return 0 + + size = tensor.numel() * tensor.element_size() + aligment_req = 1024 + return (size + aligment_req - 1) // aligment_req * aligment_req + +def interpret_gathered_like(tensors, gathered): + offset = 0 + dest_views = [] + + if gathered.dim() != 1 or gathered.element_size() != 1: + raise ValueError(f"Buffer must be 1D and single-byte (got {gathered.dim()}D {gathered.dtype})") + + for tensor in tensors: + + if tensor is None: + dest_views.append(None) + continue + + if isinstance(tensor, QuantizedTensor): + inner_tensors, qt_ctx = tensor.__tensor_flatten__() + templates = { attr: getattr(tensor, attr) for attr in inner_tensors } + else: + templates = { "data": tensor } + + actuals = {} + for attr, template in templates.items(): + size = template.numel() * template.element_size() + if offset + size > gathered.numel(): + raise ValueError(f"Buffer too small: needs {offset + size} bytes, but only has {gathered.numel()}. ") + actuals[attr] = gathered[offset:offset+size].view(dtype=template.dtype).view(template.shape) + offset += vram_aligned_size(template) + + if isinstance(tensor, QuantizedTensor): + dest_views.append(QuantizedTensor.__tensor_unflatten__(actuals, qt_ctx, 0, 0)) + else: + dest_views.append(actuals["data"]) + + return dest_views + +aimdo_allocator = comfy_aimdo.torch.CUDAPluggableAllocator() diff --git a/comfy/model_base.py b/comfy/model_base.py index 49efd700b..f4b037bb9 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -298,7 +298,7 @@ class BaseModel(torch.nn.Module): return out - def load_model_weights(self, sd, unet_prefix=""): + def load_model_weights(self, sd, unet_prefix="", assign=False): to_load = {} keys = list(sd.keys()) for k in keys: @@ -306,7 +306,7 @@ class BaseModel(torch.nn.Module): to_load[k[len(unet_prefix):]] = sd.pop(k) to_load = self.model_config.process_unet_state_dict(to_load) - m, u = self.diffusion_model.load_state_dict(to_load, strict=False) + m, u = self.diffusion_model.load_state_dict(to_load, strict=False, assign=assign) if len(m) > 0: logging.warning("unet missing: {}".format(m)) @@ -321,7 +321,7 @@ class BaseModel(torch.nn.Module): def process_latent_out(self, latent): return self.latent_format.process_out(latent) - def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): + def state_dict_for_saving(self, unet_state_dict, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): extra_sds = [] if clip_state_dict is not None: extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict)) @@ -329,10 +329,7 @@ class BaseModel(torch.nn.Module): extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict)) if clip_vision_state_dict is not None: extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) - - unet_state_dict = self.diffusion_model.state_dict() unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) - if self.model_type == ModelType.V_PREDICTION: unet_state_dict["v_pred"] = torch.tensor([]) @@ -775,8 +772,8 @@ class StableAudio1(BaseModel): out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) return out - def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): - sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict) + def state_dict_for_saving(self, unet_state_dict, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): + sd = super().state_dict_for_saving(unet_state_dict, clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict) d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()} for k in d: s = d[k] diff --git a/comfy/model_management.py b/comfy/model_management.py index 9d39be7b2..af59592ea 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -26,6 +26,12 @@ import platform import weakref import gc import os +from contextlib import nullcontext +import comfy.utils +import comfy.quant_ops + +import comfy_aimdo.torch +import comfy_aimdo.model_vbar class VRAMState(Enum): DISABLED = 0 #No vram present: no need to move models to vram @@ -592,7 +598,7 @@ def extra_reserved_memory(): def minimum_inference_memory(): return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory() -def free_memory(memory_required, device, keep_loaded=[]): +def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_required=0): cleanup_models_gc() unloaded_model = [] can_unload = [] @@ -607,15 +613,22 @@ def free_memory(memory_required, device, keep_loaded=[]): for x in sorted(can_unload): i = x[-1] - memory_to_free = None + memory_to_free = 1e32 + ram_to_free = 1e32 if not DISABLE_SMART_MEMORY: - free_mem = get_free_memory(device) - if free_mem > memory_required: - break - memory_to_free = memory_required - free_mem + memory_to_free = memory_required - get_free_memory(device) + ram_to_free = ram_required - psutil.virtual_memory().available + + if current_loaded_models[i].model.is_dynamic() and for_dynamic: + #don't actually unload dynamic models for the sake of other dynamic models + #as that works on-demand. + memory_required -= current_loaded_models[i].model.loaded_size() + continue logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}") - if current_loaded_models[i].model_unload(memory_to_free): + if memory_to_free > 0 and current_loaded_models[i].model_unload(memory_to_free): unloaded_model.append(i) + if ram_to_free > 0: + current_loaded_models[i].model.partially_unload_ram(ram_to_free) for i in sorted(unloaded_model, reverse=True): unloaded_models.append(current_loaded_models.pop(i)) @@ -650,7 +663,10 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu models_to_load = [] + free_for_dynamic=True for x in models: + if not x.is_dynamic(): + free_for_dynamic = False loaded_model = LoadedModel(x) try: loaded_model_index = current_loaded_models.index(loaded_model) @@ -676,19 +692,25 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu model_to_unload.model.detach(unpatch_all=False) model_to_unload.model_finalizer.detach() + total_memory_required = {} + total_ram_required = {} for loaded_model in models_to_load: total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) + #x2, one to make sure the OS can fit the model for loading in disk cache, and for us to do any pinning we + #want to do. + #FIXME: This should subtract off the to_load current pin consumption. + total_ram_required[loaded_model.device] = total_ram_required.get(loaded_model.device, 0) + loaded_model.model_memory() * 2 for device in total_memory_required: if device != torch.device("cpu"): - free_memory(total_memory_required[device] * 1.1 + extra_mem, device) + free_memory(total_memory_required[device] * 1.1 + extra_mem, device, for_dynamic=free_for_dynamic, ram_required=total_ram_required[device]) for device in total_memory_required: if device != torch.device("cpu"): free_mem = get_free_memory(device) if free_mem < minimum_memory_required: - models_l = free_memory(minimum_memory_required, device) + models_l = free_memory(minimum_memory_required, device, for_dynamic=free_for_dynamic) logging.info("{} models unloaded.".format(len(models_l))) for loaded_model in models_to_load: @@ -732,6 +754,9 @@ def loaded_models(only_currently_used=False): def cleanup_models_gc(): do_gc = False + + reset_cast_buffers() + for i in range(len(current_loaded_models)): cur = current_loaded_models[i] if cur.is_dead(): @@ -1051,6 +1076,49 @@ def current_stream(device): return None stream_counters = {} + +STREAM_CAST_BUFFERS = {} +LARGEST_CASTED_WEIGHT = (None, 0) + +def get_cast_buffer(offload_stream, device, size, ref): + global LARGEST_CASTED_WEIGHT + + if offload_stream is not None: + wf_context = offload_stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(offload_stream) + else: + wf_context = nullcontext() + + cast_buffer = STREAM_CAST_BUFFERS.get(offload_stream, None) + if cast_buffer is None or cast_buffer.numel() < size: + if ref is LARGEST_CASTED_WEIGHT[0]: + #If there is one giant weight we do not want both streams to + #allocate a buffer for it. It's up to the caster to get the other + #offload stream in this corner case + return None + if cast_buffer is not None and cast_buffer.numel() > 50 * (1024 ** 2): + #I want my wrongly sized 50MB+ of VRAM back from the caching allocator right now + torch.cuda.synchronize() + del STREAM_CAST_BUFFERS[offload_stream] + del cast_buffer + torch.cuda.empty_cache() + with wf_context: + cast_buffer = torch.empty((size), dtype=torch.int8, device=device) + STREAM_CAST_BUFFERS[offload_stream] = cast_buffer + + if size > LARGEST_CASTED_WEIGHT[1]: + LARGEST_CASTED_WEIGHT = (ref, size) + + return cast_buffer + +def reset_cast_buffers(): + global LARGEST_CASTED_WEIGHT + LARGEST_CASTED_WEIGHT = (None, 0) + torch.cuda.synchronize() + STREAM_CAST_BUFFERS.clear() + torch.cuda.empty_cache() + def get_offload_stream(device): stream_counter = stream_counters.get(device, 0) if NUM_STREAMS == 0: @@ -1093,7 +1161,59 @@ def sync_stream(device, stream): return current_stream(device).wait_stream(stream) -def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None): + +def cast_to_gathered(tensors, r, non_blocking=False, stream=None): + wf_context = nullcontext() + if stream is not None: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + + dest_views = comfy.memory_management.interpret_gathered_like(tensors, r) + with wf_context: + for tensor in tensors: + dest_view = dest_views.pop(0) + if tensor is None: + continue + dest_view.copy_(tensor, non_blocking=non_blocking) + + +def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None, r=None): + if hasattr(weight, "_v"): + #Unexpected usage patterns. There is no reason these don't work but they + #have no testing and no callers do this. + assert r is None + assert stream is None + + r = torch.empty_like(weight, dtype=dtype, device=device) + + signature = comfy_aimdo.model_vbar.vbar_fault(weight._v) + if signature is not None: + raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device) + v_tensor = comfy.memory_management.interpret_gathered_like([weight], raw_tensor)[0] + + if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature): + #always take a deep copy even if _v is good, as we have no reasonable point to unpin + #a non comfy weight + r.copy_(v_tensor) + comfy_aimdo.model_vbar.vbar_unpin(weight._v) + return r + + r.copy_(weight, non_blocking=non_blocking) + + #FIXME: remove hooks before PR + if hasattr(weight, "comfy_hook"): + dtype = r.dtype + r = weight.comfy_hook(r) + if r.dtype != dtype: + r = comfy.float.stochastic_rounding(r, dtype, seed=comfy.utils.string_to_seed(weight.seed_key)) + + if signature is not None: + v_tensor.copy_(r) + comfy_aimdo.model_vbar.vbar_unpin(weight._v) + + return r + if device is None or weight.device == device: if not copy: if dtype is None or weight.dtype == dtype: @@ -1112,10 +1232,12 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str if hasattr(wf_context, "as_context"): wf_context = wf_context.as_context(stream) with wf_context: - r = torch.empty_like(weight, dtype=dtype, device=device) + if r is None: + r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) else: - r = torch.empty_like(weight, dtype=dtype, device=device) + if r is None: + r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) return r @@ -1135,7 +1257,7 @@ if not args.disable_pinned_memory: MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95 logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024))) -PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) +PINNING_ALLOWED_TYPES = set(["Tensor", "Parameter", "QuantizedTensor"]) def discard_cuda_async_error(): try: @@ -1557,6 +1679,7 @@ def soft_empty_cache(force=False): elif is_mlu(): torch.mlu.empty_cache() elif torch.cuda.is_available(): + torch.cuda.synchronize() torch.cuda.empty_cache() torch.cuda.ipc_collect() diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index f6b80a40f..b30a9c63d 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -38,19 +38,7 @@ from comfy.comfy_types import UnetWrapperFunction from comfy.quant_ops import QuantizedTensor from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP - -def string_to_seed(data): - crc = 0xFFFFFFFF - for byte in data: - if isinstance(byte, str): - byte = ord(byte) - crc ^= byte - for _ in range(8): - if crc & 1: - crc = (crc >> 1) ^ 0xEDB88320 - else: - crc >>= 1 - return crc ^ 0xFFFFFFFF +import comfy_aimdo.model_vbar def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None): to = model_options["transformer_options"].copy() @@ -212,6 +200,27 @@ class MemoryCounter: def decrement(self, used: int): self.value -= used +CustomTorchDevice = collections.namedtuple("FakeDevice", ["type", "index"])("comfy-lazy-caster", 0) + +class LazyCastingParam(torch.nn.Parameter): + def __new__(cls, model, key, tensor): + return super().__new__(cls, tensor) + + def __init__(self, model, key, tensor): + self.model = model + self.key = key + + @property + def device(self): + return CustomTorchDevice + + #safetensors will .to() us to the cpu which we catch here to cast on demand. The returned tensor is + #then just a short lived thing in the safetensors serialization logic inside its big for loop over + #all weights getting garbage collected per-weight + def to(self, *args, **kwargs): + return self.model.patch_weight_to_device(self.key, device_to=self.model.load_device, return_weight=True).to("cpu") + + class ModelPatcher: def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False): self.size = size @@ -269,6 +278,9 @@ class ModelPatcher: if not hasattr(self.model, 'model_offload_buffer_memory'): self.model.model_offload_buffer_memory = 0 + def is_dynamic(self): + return False + def model_size(self): if self.size > 0: return self.size @@ -284,6 +296,9 @@ class ModelPatcher: def lowvram_patch_counter(self): return self.model.lowvram_patch_counter + def get_free_memory(self, device): + return comfy.model_management.get_free_memory(device) + def clone(self): n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update) n.patches = {} @@ -611,14 +626,14 @@ class ModelPatcher: sd.pop(k) return sd - def patch_weight_to_device(self, key, device_to=None, inplace_update=False): - if key not in self.patches: - return - + def patch_weight_to_device(self, key, device_to=None, inplace_update=False, return_weight=False): weight, set_func, convert_func = get_key_weight(self.model, key) + if key not in self.patches: + return weight + inplace_update = self.weight_inplace_update or inplace_update - if key not in self.backup: + if key not in self.backup and not return_weight: self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update) temp_dtype = comfy.model_management.lora_compute_dtype(device_to) @@ -631,13 +646,15 @@ class ModelPatcher: out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key) if set_func is None: - out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) - if inplace_update: + out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=comfy.utils.string_to_seed(key)) + if return_weight: + return out_weight + elif inplace_update: comfy.utils.copy_to_param(self.model, key, out_weight) else: comfy.utils.set_attr_param(self.model, key, out_weight) else: - set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key)) + return set_func(out_weight, inplace_update=inplace_update, seed=comfy.utils.string_to_seed(key), return_weight=return_weight) def pin_weight_to_device(self, key): weight, set_func, convert_func = get_key_weight(self.model, key) @@ -654,7 +671,7 @@ class ModelPatcher: for key in list(self.pinned): self.unpin_weight(key) - def _load_list(self): + def _load_list(self, prio_comfy_cast_weights=False): loading = [] for n, m in self.model.named_modules(): params = [] @@ -681,7 +698,8 @@ class ModelPatcher: return 0 module_offload_mem += check_module_offload_mem("{}.weight".format(n)) module_offload_mem += check_module_offload_mem("{}.bias".format(n)) - loading.append((module_offload_mem, module_mem, n, m, params)) + prepend = (not hasattr(m, "comfy_cast_weights"),) if prio_comfy_cast_weights else () + loading.append(prepend + (module_offload_mem, module_mem, n, m, params)) return loading def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): @@ -984,6 +1002,9 @@ class ModelPatcher: return self.model.model_loaded_weight_memory - current_used + def partially_unload_ram(self, ram_to_unload): + pass + def detach(self, unpatch_all=True): self.eject_model() self.model_patches_to(self.offload_device) @@ -1317,10 +1338,10 @@ class ModelPatcher: key, original_weights=original_weights) del original_weights[key] if set_func is None: - out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) + out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=comfy.utils.string_to_seed(key)) comfy.utils.copy_to_param(self.model, key, out_weight) else: - set_func(out_weight, inplace_update=True, seed=string_to_seed(key)) + set_func(out_weight, inplace_update=True, seed=comfy.utils.string_to_seed(key)) if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: # TODO: disable caching if not enough system RAM to do so target_device = self.offload_device @@ -1355,7 +1376,237 @@ class ModelPatcher: self.unpatch_hooks() self.clear_cached_hook_weights() + def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): + unet_state_dict = self.model.diffusion_model.state_dict() + for k, v in unet_state_dict.items(): + op_keys = k.rsplit('.', 1) + if (len(op_keys) < 2) or op_keys[1] not in ["weight", "bias"]: + continue + try: + op = comfy.utils.get_attr(self.model.diffusion_model, op_keys[0]) + except: + continue + if not op or not hasattr(op, "comfy_cast_weights") or \ + (hasattr(op, "comfy_patched_weights") and op.comfy_patched_weights == True): + continue + key = "diffusion_model." + k + unet_state_dict[k] = LazyCastingParam(self, key, comfy.utils.get_attr(self.model, key)) + return self.model.state_dict_for_saving(unet_state_dict) + def __del__(self): self.unpin_all_weights() self.detach(unpatch_all=False) +class ModelPatcherDynamic(ModelPatcher): + + def __new__(cls, model, load_device, offload_device, size=0, weight_inplace_update=False): + if comfy.model_management.is_device_cpu(load_device): + #reroute to default MP for CPUs + return ModelPatcher(model, load_device, offload_device, size, weight_inplace_update) + return super().__new__(cls) + + def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False): + super().__init__(model, load_device, offload_device, size, weight_inplace_update) + #this is now way more dynamic and we dont support the same base model for both Dynamic + #and non-dynamic patchers. + if hasattr(self.model, "model_loaded_weight_memory"): + del self.model.model_loaded_weight_memory + if not hasattr(self.model, "dynamic_vbars"): + self.model.dynamic_vbars = {} + assert load_device is not None + + def is_dynamic(self): + return True + + def _vbar_get(self, create=False): + if self.load_device == torch.device("cpu"): + return None + vbar = self.model.dynamic_vbars.get(self.load_device, None) + if create and vbar is None: + vbar = comfy_aimdo.model_vbar.ModelVBAR(self.model_size() * 1.2, self.load_device.index) + self.model.dynamic_vbars[self.load_device] = vbar + return vbar + + def loaded_size(self): + vbar = self._vbar_get() + if vbar is None: + return 0 + return vbar.loaded_size() + + def get_free_memory(self, device): + #NOTE: on high condition / batch counts, estimate should have already vacated + #all non-dynamic models so this is safe even if its not 100% true that this + #would all be avaiable for inference use. + return comfy.model_management.get_total_memory(device) - self.model_size() + + #Pinning is deferred to ops time. Assert against this API to avoid pin leaks. + + def pin_weight_to_device(self, key): + raise RuntimeError("pin_weight_to_device invalid for dymamic weight loading") + + def unpin_weight(self, key): + raise RuntimeError("unpin_weight invalid for dymamic weight loading") + + def unpin_all_weights(self): + pass + + def memory_required(self, input_shape): + #Pad this significantly. We are trying to get away from precise estimates. This + #estimate is only used when using the ModelPatcherDynamic after ModelPatcher. If you + #use all ModelPatcherDynamic this is ignored and its all done dynamically. + return super().memory_required(input_shape=input_shape) * 1.3 + (1024 ** 3) + + + def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False, dirty=False): + + #Force patching doesn't make sense in Dynamic loading, as you dont know what does and + #doesn't need to be forced at this stage. The only thing you could do would be patch + #it all on CPU which consumes huge RAM. + assert not force_patch_weights + + #Full load doesn't make sense as we dont actually have any loader capability here and + #now. + assert not full_load + + assert device_to == self.load_device + + num_patches = 0 + allocated_size = 0 + + with self.use_ejected(): + self.unpatch_hooks() + + vbar = self._vbar_get(create=True) + if vbar is not None: + vbar.prioritize() + + #We have way more tools for acceleration on comfy weight offloading, so always + #prioritize the non-comfy weights (note the order reverse). + loading = self._load_list(prio_comfy_cast_weights=True) + loading.sort(reverse=True) + + for x in loading: + _, _, _, n, m, params = x + + def set_dirty(item, dirty): + if dirty or not hasattr(item, "_v_signature"): + item._v_signature = None + if dirty: + comfy.pinned_memory.unpin_memory(item) + + def setup_param(self, m, n, param_key): + nonlocal num_patches + key = "{}.{}".format(n, param_key) + + weight_function = [] + + weight, _, _ = get_key_weight(self.model, key) + if key in self.patches: + setattr(m, param_key + "_lowvram_function", LowVramPatch(key, self.patches)) + num_patches += 1 + else: + setattr(m, param_key + "_lowvram_function", None) + + if key in self.weight_wrapper_patches: + weight_function.extend(self.weight_wrapper_patches[key]) + setattr(m, param_key + "_function", weight_function) + return comfy.memory_management.vram_aligned_size(weight) + + if hasattr(m, "comfy_cast_weights"): + m.comfy_cast_weights = True + m.pin_failed = False + m.seed_key = n + set_dirty(m, dirty) + + v_weight_size = 0 + v_weight_size += setup_param(self, m, n, "weight") + v_weight_size += setup_param(self, m, n, "bias") + + if vbar is not None and not hasattr(m, "_v"): + m._v = vbar.alloc(v_weight_size) + allocated_size += v_weight_size + + else: + for param in params: + key = "{}.{}".format(n, param) + weight, _, _ = get_key_weight(self.model, key) + weight.seed_key = key + set_dirty(weight, dirty) + weight_size = weight.numel() * weight.element_size() + if vbar is not None and not hasattr(weight, "_v"): + weight._v = vbar.alloc(weight_size) + allocated_size += weight_size + + logging.info(f"Model {self.model.__class__.__name__} prepared for dynamic VRAM loading. {allocated_size // (1024 ** 2)}MB Staged. {num_patches} patches attached.") + + self.model.device = device_to + self.model.current_weight_patches_uuid = self.patches_uuid + + for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD): + #These are all super dangerous. Who knows what the custom nodes actually do here... + callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load) + + self.apply_hooks(self.forced_hooks, force_apply=True) + + def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False): + assert not force_patch_weights #See above + assert self.load_device != torch.device("cpu") + + vbar = self._vbar_get() + return 0 if vbar is None else vbar.free_memory(memory_to_free) + + def partially_unload_ram(self, ram_to_unload): + loading = self._load_list(prio_comfy_cast_weights=True) + for x in loading: + _, _, _, _, m, _ = x + ram_to_unload -= comfy.pinned_memory.unpin_memory(m) + if ram_to_unload <= 0: + return + + def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False): + #This isn't used by the core at all and can only be to load a model out of + #the control of proper model_managment. If you are a custom node author reading + #this, the correct pattern is to call load_models_gpu() to get a proper + #managed load of your model. + assert not load_weights + return super().patch_model(load_weights=load_weights, force_patch_weights=force_patch_weights) + + def unpatch_model(self, device_to=None, unpatch_weights=True): + super().unpatch_model(device_to=None, unpatch_weights=False) + + if unpatch_weights: + self.partially_unload_ram(1e32) + self.partially_unload(None) + + def partially_load(self, device_to, extra_memory=0, force_patch_weights=False): + assert not force_patch_weights #See above + with self.use_ejected(skip_and_inject_on_exit_only=True): + dirty = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid) + + self.unpatch_model(self.offload_device, unpatch_weights=False) + self.patch_model(load_weights=False) + + try: + self.load(device_to, dirty=dirty) + except Exception as e: + self.detach() + raise e + #ModelPatcher::partially_load returns a number on what got loaded but + #nothing in core uses this and we have no data in the Dynamic world. Hit + #the custom node devs with a None rather than a 0 that would mislead any + #logic they might have. + return None + + def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter): + assert False #Should be unreachable - we dont ever cache in the new implementation + + def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter): + if key not in combined_patches: + return + + raise RuntimeError("Hooks not implemented in ModelPatcherDynamic. Please remove --fast arguments form ComfyUI startup") + + def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None: + pass + +CoreModelPatcher = ModelPatcher diff --git a/comfy/ops.py b/comfy/ops.py index 415c39e92..1057cda6b 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -23,6 +23,12 @@ from comfy.cli_args import args, PerformanceFeature import comfy.float import comfy.rmsnorm import json +import comfy.memory_management +import comfy.pinned_memory +import comfy.utils + +import comfy_aimdo.model_vbar +import comfy_aimdo.torch def run_every_op(): if torch.compiler.is_compiling(): @@ -72,7 +78,109 @@ def cast_to_input(weight, input, non_blocking=False, copy=True): return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy) -def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False): +def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype): + offload_stream = None + xfer_dest = None + + signature = comfy_aimdo.model_vbar.vbar_fault(s._v) + if signature is not None: + xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device) + resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature) + + if not resident: + + xfer_source = [ s.weight, s.bias ] + + pin = comfy.pinned_memory.get_pin(s) + if pin is not None: + xfer_source = [ pin ] + resident = True #If pinned data exists, it always has LowVram already applied + + dest_size = comfy.memory_management.vram_aligned_size(xfer_source) + offload_stream = comfy.model_management.get_offload_stream(device) + if xfer_dest is None and offload_stream is not None: + xfer_dest = comfy.model_management.get_cast_buffer(offload_stream, device, dest_size, s) + if xfer_dest is None: + offload_stream = comfy.model_management.get_offload_stream(device) + xfer_dest = comfy.model_management.get_cast_buffer(offload_stream, device, dest_size, s) + if xfer_dest is None: + xfer_dest = torch.empty((dest_size,), dtype=torch.uint8, device=device) + offload_stream = None + + #send it over + comfy.model_management.cast_to_gathered(xfer_source, xfer_dest, non_blocking=non_blocking, stream=offload_stream) + comfy.model_management.sync_stream(device, offload_stream) + + pin = None + if signature is not None: + #If we are able to increase our load level (e.g. user reduces resolution or batch number) + #reclaim the pin previously used for offload. + comfy.pinned_memory.unpin_memory(s) + elif not resident: + #prepare a new pin + assert comfy.pinned_memory.get_pin(s) is None + comfy.pinned_memory.pin_memory(s) + pin = comfy.pinned_memory.get_pin(s) + + params = comfy.memory_management.interpret_gathered_like([s.weight, s.bias], xfer_dest) + weight = params[0] + bias = params[1] + + def post_cast(s, param_key, x, dtype, resident, update_weight): + lowvram_fn = getattr(s, param_key + "_lowvram_function", None) + fns = getattr(s, param_key + "_function", []) + + orig = x + + def to_dequant(tensor, dtype): + tensor = tensor.to(dtype=dtype) + if isinstance(tensor, QuantizedTensor): + tensor = tensor.dequantize() + return tensor + + if orig.dtype != dtype or len(fns) > 0: + x = to_dequant(x, dtype) + if not resident and lowvram_fn is not None: + x = to_dequant(x, dtype if compute_dtype is None else compute_dtype) + #FIXME: this is not accurate, we need to be sensitive to the compute dtype + x = lowvram_fn(x) + if (isinstance(orig, QuantizedTensor) and + (orig.dtype == dtype and len(fns) == 0 or update_weight)): + seed = comfy.utils.string_to_seed(s.seed_key) + y = QuantizedTensor.from_float(x, s.layout_type, scale="recalculate", stochastic_rounding=seed) + if orig.dtype == dtype and len(fns) == 0: + #The layer actually wants our freshly saved QT + x = y + else: + y = x + if update_weight: + orig.copy_(y) + for f in fns: + x = f(x) + return x + + update_weight = signature is not None or pin is not None + + weight = post_cast(s, "weight", weight, dtype, resident, update_weight) + if s.bias is not None: + bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight) + s._v_signature=signature + + if pin is not None: + xfer_dest = comfy.memory_management.interpret_gathered_like([ pin ], xfer_dest)[0] + #FIXME: This might be the wrong thing to do. Some reading suggests the DMA engine + #is posted writes and the compute stream could just fire and forget here. That + #would save this sync and some stalling on the offload stream that is better off + #running ahead to the next layer to read. + if offload_stream is not None: + offload_stream.wait_stream(comfy.model_management.current_stream(device)) + comfy.model_management.cast_to(xfer_dest, device=pin.device, non_blocking=non_blocking, stream=offload_stream, r=pin) + + #FIXME: weird offload return protocol + return weight, bias, (offload_stream, device if signature is not None else None, None) + + +def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None): # NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass # offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This # will add async-offload support to your cast and improve performance. @@ -87,22 +195,38 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if device is None: device = input.device + non_blocking = comfy.model_management.device_supports_non_blocking(device) + + if hasattr(s, "_v"): + return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype) + if offloadable and (device != s.weight.device or (s.bias is not None and device != s.bias.device)): offload_stream = comfy.model_management.get_offload_stream(device) else: offload_stream = None - non_blocking = comfy.model_management.device_supports_non_blocking(device) + bias = None + weight = None + + if offload_stream is not None and not args.cuda_malloc: + cast_buffer_size = comfy.memory_management.vram_aligned_size([ s.weight, s.bias ]) + cast_buffer = comfy.model_management.get_cast_buffer(offload_stream, device, cast_buffer_size, s) + #The streams can be uneven in buffer capability and reject us. Retry to get the other stream + if cast_buffer is None: + offload_stream = comfy.model_management.get_offload_stream(device) + cast_buffer = comfy.model_management.get_cast_buffer(offload_stream, device, cast_buffer_size, s) + params = comfy.memory_management.interpret_gathered_like([ s.weight, s.bias ], cast_buffer) + weight = params[0] + bias = params[1] weight_has_function = len(s.weight_function) > 0 bias_has_function = len(s.bias_function) > 0 - weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream) + weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream, r=weight) - bias = None if s.bias is not None: - bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream) + bias = comfy.model_management.cast_to(s.bias, None, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream, r=bias) comfy.model_management.sync_stream(device, offload_stream) @@ -110,6 +234,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of weight_a = weight if s.bias is not None: + bias = bias.to(dtype=bias_dtype) for f in s.bias_function: bias = f(bias) @@ -131,14 +256,20 @@ def uncast_bias_weight(s, weight, bias, offload_stream): if offload_stream is None: return os, weight_a, bias_a = offload_stream + device=None + #FIXME: This is not good RTTI + if not isinstance(weight_a, torch.Tensor): + comfy_aimdo.model_vbar.vbar_unpin(s._v) + device = weight_a if os is None: return - if weight_a is not None: - device = weight_a.device - else: - if bias_a is None: - return - device = bias_a.device + if device is None: + if weight_a is not None: + device = weight_a.device + else: + if bias_a is None: + return + device = bias_a.device os.wait_stream(comfy.model_management.current_stream(device)) @@ -653,8 +784,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def _forward(self, input, weight, bias): return torch.nn.functional.linear(input, weight, bias) - def forward_comfy_cast_weights(self, input): - weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + def forward_comfy_cast_weights(self, input, compute_dtype=None): + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype) x = self._forward(input, weight, bias) uncast_bias_weight(self, weight, bias, offload_stream) return x @@ -664,6 +795,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec input_shape = input.shape reshaped_3d = False + #If cast needs to apply lora, it should be done in the compute dtype + compute_dtype = input.dtype if (getattr(self, 'layout_type', None) is not None and not isinstance(input, QuantizedTensor) and not self._full_precision_mm and @@ -682,7 +815,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec scale = comfy.model_management.cast_to_device(scale, input.device, None) input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale) - output = self.forward_comfy_cast_weights(input) + + output = self.forward_comfy_cast_weights(input, compute_dtype) # Reshape output back to 3D if input was 3D if reshaped_3d: diff --git a/comfy/pinned_memory.py b/comfy/pinned_memory.py new file mode 100644 index 000000000..650e27a10 --- /dev/null +++ b/comfy/pinned_memory.py @@ -0,0 +1,30 @@ +import torch +import comfy.model_management +import comfy.memory_management + +from comfy.cli_args import args + +def get_pin(module): + return getattr(module, "_pin", None) + +def pin_memory(module): + if module.pin_failed or args.disable_pinned_memory or get_pin(module) is not None: + return + #FIXME: This is a RAM cache trigger event + params = [ module.weight, module.bias ] + size = comfy.memory_management.vram_aligned_size(params) + pin = torch.empty((size,), dtype=torch.uint8) + if comfy.model_management.pin_memory(pin): + module._pin = pin + else: + module.pin_failed = True + return False + return True + +def unpin_memory(module): + if get_pin(module) is None: + return 0 + size = module._pin.numel() * module._pin.element_size() + comfy.model_management.unpin_memory(module._pin) + del module._pin + return size diff --git a/comfy/samplers.py b/comfy/samplers.py index 1989ef107..8b9782956 100755 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -9,7 +9,6 @@ if TYPE_CHECKING: import torch from functools import partial import collections -from comfy import model_management import math import logging import comfy.sampler_helpers @@ -260,7 +259,7 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens to_batch_temp.reverse() to_batch = to_batch_temp[:1] - free_memory = model_management.get_free_memory(x_in.device) + free_memory = model.current_patcher.get_free_memory(x_in.device) for i in range(1, len(to_batch_temp) + 1): batch_amount = to_batch_temp[:len(to_batch_temp)//i] input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] diff --git a/comfy/sd.py b/comfy/sd.py index b689c0dfc..12f1373c5 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -128,7 +128,7 @@ class CLIP: logging.warning("Had to shift TE back.") self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) - self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) + self.patcher = comfy.model_patcher.CoreModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) #Match torch.float32 hardcode upcast in TE implemention self.patcher.set_model_compute_dtype(torch.float32) self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram @@ -288,7 +288,7 @@ class CLIP: def load_sd(self, sd, full_model=False): if full_model: - return self.cond_stage_model.load_state_dict(sd, strict=False) + return self.cond_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic()) else: return self.cond_stage_model.load_sd(sd) @@ -665,13 +665,6 @@ class VAE: self.first_stage_model = AutoencoderKL(**(config['params'])) self.first_stage_model = self.first_stage_model.eval() - m, u = self.first_stage_model.load_state_dict(sd, strict=False) - if len(m) > 0: - logging.warning("Missing VAE keys {}".format(m)) - - if len(u) > 0: - logging.debug("Leftover VAE keys {}".format(u)) - if device is None: device = model_management.vae_device() self.device = device @@ -682,7 +675,18 @@ class VAE: self.first_stage_model.to(self.vae_dtype) self.output_device = model_management.intermediate_device() - self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) + mp = comfy.model_patcher.CoreModelPatcher + if self.disable_offload: + mp = comfy.model_patcher.ModelPatcher + self.patcher = mp(self.first_stage_model, load_device=self.device, offload_device=offload_device) + + m, u = self.first_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic()) + if len(m) > 0: + logging.warning("Missing VAE keys {}".format(m)) + + if len(u) > 0: + logging.debug("Leftover VAE keys {}".format(u)) + logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype)) self.model_size() @@ -797,7 +801,7 @@ class VAE: try: memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) - free_memory = model_management.get_free_memory(self.device) + free_memory = self.patcher.get_free_memory(self.device) batch_number = int(free_memory / memory_used) batch_number = max(1, batch_number) @@ -816,6 +820,7 @@ class VAE: do_tile = True if do_tile: + torch.cuda.empty_cache() dims = samples_in.ndim - 2 if dims == 1 or self.extra_1d_channel is not None: pixel_samples = self.decode_tiled_1d(samples_in) @@ -871,7 +876,7 @@ class VAE: try: memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) - free_memory = model_management.get_free_memory(self.device) + free_memory = self.patcher.get_free_memory(self.device) batch_number = int(free_memory / max(1, memory_used)) batch_number = max(1, batch_number) samples = None @@ -891,6 +896,7 @@ class VAE: do_tile = True if do_tile: + torch.cuda.empty_cache() if self.latent_dim == 3: tile = 256 overlap = tile // 4 @@ -1315,7 +1321,7 @@ def load_gligen(ckpt_path): model = gligen.load_gligen(data) if model_management.should_use_fp16(): model = model.half() - return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) + return comfy.model_patcher.CoreModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) def model_detection_error_hint(path, state_dict): filename = os.path.basename(path) @@ -1403,7 +1409,8 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c if output_model: inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device) - model.load_model_weights(sd, diffusion_model_prefix) + model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device()) + model.load_model_weights(sd, diffusion_model_prefix, assign=model_patcher.is_dynamic()) if output_vae: vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) @@ -1446,7 +1453,6 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c logging.debug("left over keys: {}".format(left_over)) if output_model: - model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device()) if inital_load_device != torch.device("cpu"): logging.info("loaded diffusion model directly to GPU") model_management.load_models_gpu([model_patcher], force_full_load=True) @@ -1538,13 +1544,14 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): model_config.optimizations["fp8"] = True model = model_config.get_model(new_sd, "") - model = model.to(offload_device) - model.load_model_weights(new_sd, "") + model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=offload_device) + if not model_management.is_device_cpu(offload_device): + model.to(offload_device) + model.load_model_weights(new_sd, "", assign=model_patcher.is_dynamic()) left_over = sd.keys() if len(left_over) > 0: logging.info("left over keys in diffusion model: {}".format(left_over)) - return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) - + return model_patcher def load_diffusion_model(unet_path, model_options={}): sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True) @@ -1575,9 +1582,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m if metadata is None: metadata = {} - model_management.load_models_gpu(load_models, force_patch_weights=True) + model_management.load_models_gpu(load_models) clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None - sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd) + sd = model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd) for k in extra_keys: sd[k] = extra_keys[k] diff --git a/comfy/utils.py b/comfy/utils.py index 2e33a4258..279214167 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1298,3 +1298,16 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}): state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8) return state_dict, metadata + +def string_to_seed(data): + crc = 0xFFFFFFFF + for byte in data: + if isinstance(byte, str): + byte = ord(byte) + crc ^= byte + for _ in range(8): + if crc & 1: + crc = (crc >> 1) ^ 0xEDB88320 + else: + crc >>= 1 + return crc ^ 0xFFFFFFFF diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index f66d28fc9..a9235af60 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -258,9 +258,9 @@ class ModelPatchLoader: config['broken'] = True model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config) - model.load_state_dict(sd) - model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) - return (model,) + model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) + model.load_state_dict(sd, assign=self.model_patcher.is_dynamic()) + return (model_patcher,) class DiffSynthCnetPatch: diff --git a/cuda_malloc.py b/cuda_malloc.py index ee2bc4b69..3c7c8593e 100644 --- a/cuda_malloc.py +++ b/cuda_malloc.py @@ -1,8 +1,10 @@ import os import importlib.util -from comfy.cli_args import args, PerformanceFeature +from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram import subprocess +import comfy_aimdo.control + #Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import. def get_gpu_names(): if os.name == 'nt': @@ -85,8 +87,14 @@ if not args.cuda_malloc: except: pass +if enables_dynamic_vram() and comfy_aimdo.control.lib is not None: + args.cuda_malloc = False + os.environ['PYTORCH_CUDA_ALLOC_CONF'] = "" -if args.cuda_malloc and not args.disable_cuda_malloc: +if args.disable_cuda_malloc: + args.cuda_malloc = False + +if args.cuda_malloc: env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None) if env_var is None: env_var = "backend:cudaMallocAsync" diff --git a/execution.py b/execution.py index 648f204ec..197e13f38 100644 --- a/execution.py +++ b/execution.py @@ -1,3 +1,4 @@ +import gc import copy import heapq import inspect @@ -9,9 +10,11 @@ import traceback from enum import Enum from typing import List, Literal, NamedTuple, Optional, Union import asyncio +from contextlib import nullcontext import torch +import comfy.memory_management import comfy.model_management from latent_preview import set_preview_method import nodes @@ -515,7 +518,21 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, def pre_execute_cb(call_index): # TODO - How to handle this with async functions without contextvars (which requires Python 3.12)? GraphBuilder.set_default_prefix(unique_id, call_index, 0) - output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) + + #Do comfy_aimdo mempool chunking here on the per-node level. Multi-model workflows + #will cause all sorts of incompatible memory shapes to fragment the pytorch alloc + #that we just want to cull out each model run. + allocator = comfy.memory_management.aimdo_allocator + with nullcontext() if allocator is None else torch.cuda.use_mem_pool(torch.cuda.MemPool(allocator.allocator())): + output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) + torch.cuda.synchronize() + if allocator is not None: + #FIXME: this is probably a little zealous + # Torch code comments says some stuff about not actually freeing tensors on mempool + #context release. Explicitly garbage collect now. + gc.collect() + torch.cuda.empty_cache() + if has_pending_tasks: pending_async_nodes[unique_id] = output_data unblock = execution_list.add_external_block(unique_id) diff --git a/main.py b/main.py index 37b06c1fa..52f11bfff 100644 --- a/main.py +++ b/main.py @@ -5,7 +5,7 @@ import os import importlib.util import folder_paths import time -from comfy.cli_args import args +from comfy.cli_args import args, enables_dynamic_vram from app.logger import setup_logger from app.assets.scanner import seed_assets import itertools @@ -173,6 +173,30 @@ import gc if 'torch' in sys.modules: logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.") + +has_aimdo = False + +import comfy_aimdo.control + +if comfy_aimdo.control.lib is not None: + if args.verbose == 'DEBUG': + comfy_aimdo.control.set_log_debug() + elif args.verbose == 'CRITICAL': + comfy_aimdo.control.set_log_critical() + elif args.verbose == 'ERROR': + comfy_aimdo.control.set_log_error() + elif args.verbose == 'WARNING': + comfy_aimdo.control.set_log_warning() + else: #INFO + comfy_aimdo.control.set_log_info() + + if enables_dynamic_vram(): + logging.info("DynamicVRAM support detected and enabled") + has_aimdo = True +else: + if enables_dynamic_vram(): + logging.info("No native comfy-aimdo install detected. Falling back to legacy ModelPatcher. VRAM estimates may be unreliable especially on Windows") + import comfy.utils import execution @@ -184,6 +208,15 @@ import comfyui_version import app.logger import hook_breaker_ac10a0 +import comfy.memory_management +import comfy.model_patcher + +if has_aimdo: + comfy.model_patcher.CoreModelPatcher = comfy.model_patcher.ModelPatcherDynamic + comfy_aimdo.control.init_vram_guard(comfy.model_management.get_torch_device().index) +else: + comfy.memory_management.aimdo_allocator = None + def cuda_malloc_warning(): device = comfy.model_management.get_torch_device() device_name = comfy.model_management.get_torch_device_name(device) diff --git a/requirements.txt b/requirements.txt index 8650d28ec..2574f415b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -22,6 +22,7 @@ alembic SQLAlchemy av>=14.2.0 comfy-kitchen>=0.2.6 +comfy-aimdo>=0.1.1 #non essential dependencies: kornia>=0.7.1