mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
Rename Required Models Folder
This commit is contained in:
parent
6f4b371ada
commit
8e9bcc378c
@ -4,7 +4,7 @@ from torch import nn
|
||||
from copy import deepcopy
|
||||
|
||||
from comfy_extras.facerestore.facelib.utils import load_file_from_url
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.models.common import Conv
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.model.common import Conv
|
||||
|
||||
from .retinaface.retinaface import RetinaFace
|
||||
from .yolov5face.face_detector import YoloDetector
|
||||
|
||||
@ -7,7 +7,7 @@ import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.models.yolo import Model
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.model.yolo import Model
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.datasets import letterbox
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.general import (
|
||||
check_img_size,
|
||||
|
||||
@ -0,0 +1,299 @@
|
||||
# This file contains modules common to various models
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.datasets import letterbox
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.general import (
|
||||
make_divisible,
|
||||
non_max_suppression,
|
||||
scale_coords,
|
||||
xyxy2xywh,
|
||||
)
|
||||
|
||||
|
||||
def autopad(k, p=None): # kernel, padding
|
||||
# Pad to 'same'
|
||||
if p is None:
|
||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||
return p
|
||||
|
||||
|
||||
def channel_shuffle(x, groups):
|
||||
batchsize, num_channels, height, width = x.data.size()
|
||||
channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc")
|
||||
|
||||
# reshape
|
||||
x = x.view(batchsize, groups, channels_per_group, height, width)
|
||||
x = torch.transpose(x, 1, 2).contiguous()
|
||||
|
||||
# flatten
|
||||
return x.view(batchsize, -1, height, width)
|
||||
|
||||
|
||||
def DWConv(c1, c2, k=1, s=1, act=True):
|
||||
# Depthwise convolution
|
||||
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||||
|
||||
|
||||
class Conv(nn.Module):
|
||||
# Standard convolution
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuseforward(self, x):
|
||||
return self.act(self.conv(x))
|
||||
|
||||
|
||||
class StemBlock(nn.Module):
|
||||
def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
|
||||
super().__init__()
|
||||
self.stem_1 = Conv(c1, c2, k, s, p, g, act)
|
||||
self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
|
||||
self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
|
||||
self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
|
||||
self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
|
||||
|
||||
def forward(self, x):
|
||||
stem_1_out = self.stem_1(x)
|
||||
stem_2a_out = self.stem_2a(stem_1_out)
|
||||
stem_2b_out = self.stem_2b(stem_2a_out)
|
||||
stem_2p_out = self.stem_2p(stem_1_out)
|
||||
return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1))
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
# Standard bottleneck
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class BottleneckCSP(nn.Module):
|
||||
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
y1 = self.cv3(self.m(self.cv1(x)))
|
||||
y2 = self.cv2(x)
|
||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
||||
|
||||
|
||||
class C3(nn.Module):
|
||||
# CSP Bottleneck with 3 convolutions
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
||||
|
||||
|
||||
class ShuffleV2Block(nn.Module):
|
||||
def __init__(self, inp, oup, stride):
|
||||
super().__init__()
|
||||
|
||||
if not 1 <= stride <= 3:
|
||||
raise ValueError("illegal stride value")
|
||||
self.stride = stride
|
||||
|
||||
branch_features = oup // 2
|
||||
|
||||
if self.stride > 1:
|
||||
self.branch1 = nn.Sequential(
|
||||
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
|
||||
nn.BatchNorm2d(inp),
|
||||
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.SiLU(),
|
||||
)
|
||||
else:
|
||||
self.branch1 = nn.Sequential()
|
||||
|
||||
self.branch2 = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
inp if (self.stride > 1) else branch_features,
|
||||
branch_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.SiLU(),
|
||||
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.SiLU(),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
|
||||
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 1:
|
||||
x1, x2 = x.chunk(2, dim=1)
|
||||
out = torch.cat((x1, self.branch2(x2)), dim=1)
|
||||
else:
|
||||
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
|
||||
out = channel_shuffle(out, 2)
|
||||
return out
|
||||
|
||||
|
||||
class SPP(nn.Module):
|
||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.cv1(x)
|
||||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||
|
||||
|
||||
class Focus(nn.Module):
|
||||
# Focus wh information into c-space
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super().__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||||
|
||||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
||||
|
||||
|
||||
class Concat(nn.Module):
|
||||
# Concatenate a list of tensors along dimension
|
||||
def __init__(self, dimension=1):
|
||||
super().__init__()
|
||||
self.d = dimension
|
||||
|
||||
def forward(self, x):
|
||||
return torch.cat(x, self.d)
|
||||
|
||||
|
||||
class NMS(nn.Module):
|
||||
# Non-Maximum Suppression (NMS) module
|
||||
conf = 0.25 # confidence threshold
|
||||
iou = 0.45 # IoU threshold
|
||||
classes = None # (optional list) filter by class
|
||||
|
||||
def forward(self, x):
|
||||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
||||
|
||||
|
||||
class AutoShape(nn.Module):
|
||||
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||
img_size = 640 # inference size (pixels)
|
||||
conf = 0.25 # NMS confidence threshold
|
||||
iou = 0.45 # NMS IoU threshold
|
||||
classes = None # (optional list) filter by class
|
||||
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model.eval()
|
||||
|
||||
def autoshape(self):
|
||||
print("autoShape already enabled, skipping... ") # model already converted to model.autoshape()
|
||||
return self
|
||||
|
||||
def forward(self, imgs, size=640, augment=False, profile=False):
|
||||
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
||||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
||||
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
||||
# numpy: = np.zeros((720,1280,3)) # HWC
|
||||
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
||||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||
|
||||
p = next(self.model.parameters()) # for device and type
|
||||
if isinstance(imgs, torch.Tensor): # torch
|
||||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
||||
|
||||
# Pre-process
|
||||
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
||||
shape0, shape1 = [], [] # image and inference shapes
|
||||
for i, im in enumerate(imgs):
|
||||
im = np.array(im) # to numpy
|
||||
if im.shape[0] < 5: # image in CHW
|
||||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
||||
s = im.shape[:2] # HWC
|
||||
shape0.append(s) # image shape
|
||||
g = size / max(s) # gain
|
||||
shape1.append([y * g for y in s])
|
||||
imgs[i] = im # update
|
||||
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
||||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
||||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
||||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32
|
||||
|
||||
# Inference
|
||||
with torch.no_grad():
|
||||
y = self.model(x, augment, profile)[0] # forward
|
||||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
||||
|
||||
# Post-process
|
||||
for i in range(n):
|
||||
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||
|
||||
return Detections(imgs, y, self.names)
|
||||
|
||||
|
||||
class Detections:
|
||||
# detections class for YOLOv5 inference results
|
||||
def __init__(self, imgs, pred, names=None):
|
||||
super().__init__()
|
||||
d = pred[0].device # device
|
||||
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations
|
||||
self.imgs = imgs # list of images as numpy arrays
|
||||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||
self.names = names # class names
|
||||
self.xyxy = pred # xyxy pixels
|
||||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||
self.n = len(self.pred)
|
||||
|
||||
def __len__(self):
|
||||
return self.n
|
||||
|
||||
def tolist(self):
|
||||
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
||||
for d in x:
|
||||
for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]:
|
||||
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||
return x
|
||||
@ -0,0 +1,45 @@
|
||||
# # This file contains experimental modules
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.model.common import Conv
|
||||
|
||||
|
||||
class CrossConv(nn.Module):
|
||||
# Cross Convolution Downsample
|
||||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class MixConv2d(nn.Module):
|
||||
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
||||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||
super().__init__()
|
||||
groups = len(k)
|
||||
if equal_ch: # equal c_ per group
|
||||
i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices
|
||||
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
||||
else: # equal weight.numel() per group
|
||||
b = [c2] + [0] * groups
|
||||
a = np.eye(groups + 1, groups, k=-1)
|
||||
a -= np.roll(a, 1, axis=1)
|
||||
a *= np.array(k) ** 2
|
||||
a[0] = 1
|
||||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||
|
||||
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
||||
@ -0,0 +1,235 @@
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import yaml # for torch hub
|
||||
from torch import nn
|
||||
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.model.common import (
|
||||
C3,
|
||||
NMS,
|
||||
SPP,
|
||||
AutoShape,
|
||||
Bottleneck,
|
||||
BottleneckCSP,
|
||||
Concat,
|
||||
Conv,
|
||||
DWConv,
|
||||
Focus,
|
||||
ShuffleV2Block,
|
||||
StemBlock,
|
||||
)
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.model.experimental import CrossConv, MixConv2d
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.autoanchor import check_anchor_order
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.general import make_divisible
|
||||
from comfy_extras.facerestore.facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
export = False # onnx export
|
||||
|
||||
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||
super().__init__()
|
||||
self.nc = nc # number of classes
|
||||
self.no = nc + 5 + 10 # number of outputs per anchor
|
||||
|
||||
self.nl = len(anchors) # number of detection layers
|
||||
self.na = len(anchors[0]) // 2 # number of anchors
|
||||
self.grid = [torch.zeros(1)] * self.nl # init grid
|
||||
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
||||
self.register_buffer("anchors", a) # shape(nl,na,2)
|
||||
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
||||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||
|
||||
def forward(self, x):
|
||||
z = [] # inference output
|
||||
if self.export:
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i])
|
||||
return x
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i]) # conv
|
||||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
if not self.training: # inference
|
||||
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||
|
||||
y = torch.full_like(x[i], 0)
|
||||
y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid()
|
||||
y[..., 5:15] = x[i][..., 5:15]
|
||||
|
||||
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
|
||||
y[..., 5:7] = (
|
||||
y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
|
||||
) # landmark x1 y1
|
||||
y[..., 7:9] = (
|
||||
y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
|
||||
) # landmark x2 y2
|
||||
y[..., 9:11] = (
|
||||
y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
|
||||
) # landmark x3 y3
|
||||
y[..., 11:13] = (
|
||||
y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
|
||||
) # landmark x4 y4
|
||||
y[..., 13:15] = (
|
||||
y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
|
||||
) # landmark x5 y5
|
||||
|
||||
z.append(y.view(bs, -1, self.no))
|
||||
|
||||
return x if self.training else (torch.cat(z, 1), x)
|
||||
|
||||
@staticmethod
|
||||
def _make_grid(nx=20, ny=20):
|
||||
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10
|
||||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): # model, input channels, number of classes
|
||||
super().__init__()
|
||||
self.yaml_file = Path(cfg).name
|
||||
with Path(cfg).open(encoding="utf8") as f:
|
||||
self.yaml = yaml.safe_load(f) # model dict
|
||||
|
||||
# Define model
|
||||
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
|
||||
if nc and nc != self.yaml["nc"]:
|
||||
self.yaml["nc"] = nc # override yaml value
|
||||
|
||||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||
self.names = [str(i) for i in range(self.yaml["nc"])] # default names
|
||||
|
||||
# Build strides, anchors
|
||||
m = self.model[-1] # Detect()
|
||||
if isinstance(m, Detect):
|
||||
s = 128 # 2x min stride
|
||||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||
m.anchors /= m.stride.view(-1, 1, 1)
|
||||
check_anchor_order(m)
|
||||
self.stride = m.stride
|
||||
self._initialize_biases() # only run once
|
||||
|
||||
def forward(self, x):
|
||||
return self.forward_once(x) # single-scale inference, train
|
||||
|
||||
def forward_once(self, x):
|
||||
y = [] # outputs
|
||||
for m in self.model:
|
||||
if m.f != -1: # if not from previous layer
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.save else None) # save output
|
||||
|
||||
return x
|
||||
|
||||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||
m = self.model[-1] # Detect() module
|
||||
for mi, s in zip(m.m, m.stride): # from
|
||||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||
|
||||
def _print_biases(self):
|
||||
m = self.model[-1] # Detect() module
|
||||
for mi in m.m: # from
|
||||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
||||
print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
||||
|
||||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||
print("Fusing layers... ")
|
||||
for m in self.model.modules():
|
||||
if isinstance(m, Conv) and hasattr(m, "bn"):
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
delattr(m, "bn") # remove batchnorm
|
||||
m.forward = m.fuseforward # update forward
|
||||
elif type(m) is nn.Upsample:
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
return self
|
||||
|
||||
def nms(self, mode=True): # add or remove NMS module
|
||||
present = isinstance(self.model[-1], NMS) # last layer is NMS
|
||||
if mode and not present:
|
||||
print("Adding NMS... ")
|
||||
m = NMS() # module
|
||||
m.f = -1 # from
|
||||
m.i = self.model[-1].i + 1 # index
|
||||
self.model.add_module(name=str(m.i), module=m) # add
|
||||
self.eval()
|
||||
elif not mode and present:
|
||||
print("Removing NMS... ")
|
||||
self.model = self.model[:-1] # remove
|
||||
return self
|
||||
|
||||
def autoshape(self): # add autoShape module
|
||||
print("Adding autoShape... ")
|
||||
m = AutoShape(self) # wrap model
|
||||
copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes
|
||||
return m
|
||||
|
||||
|
||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"]
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
try:
|
||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||
except:
|
||||
pass
|
||||
|
||||
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in [
|
||||
Conv,
|
||||
Bottleneck,
|
||||
SPP,
|
||||
DWConv,
|
||||
MixConv2d,
|
||||
Focus,
|
||||
CrossConv,
|
||||
BottleneckCSP,
|
||||
C3,
|
||||
ShuffleV2Block,
|
||||
StemBlock,
|
||||
]:
|
||||
c1, c2 = ch[f], args[0]
|
||||
|
||||
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in [BottleneckCSP, C3]:
|
||||
args.insert(2, n)
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
||||
elif m is Detect:
|
||||
args.append([ch[x + 1] for x in f])
|
||||
if isinstance(args[1], int): # number of anchors
|
||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace("__main__.", "") # module type
|
||||
np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
@ -0,0 +1,47 @@
|
||||
# parameters
|
||||
nc: 1 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# anchors
|
||||
anchors:
|
||||
- [4,5, 8,10, 13,16] # P3/8
|
||||
- [23,29, 43,55, 73,105] # P4/16
|
||||
- [146,217, 231,300, 335,433] # P5/32
|
||||
|
||||
# YOLOv5 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 2-P3/8
|
||||
[-1, 9, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 4-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
|
||||
[-1, 1, SPP, [1024, [3,5,7]]],
|
||||
[-1, 3, C3, [1024, False]], # 8
|
||||
]
|
||||
|
||||
# YOLOv5 head
|
||||
head:
|
||||
[[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 5], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 12
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 3], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 16 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 13], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 19 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 9], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 22 (P5/32-large)
|
||||
|
||||
[[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -0,0 +1,45 @@
|
||||
# parameters
|
||||
nc: 1 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# anchors
|
||||
anchors:
|
||||
- [4,5, 8,10, 13,16] # P3/8
|
||||
- [23,29, 43,55, 73,105] # P4/16
|
||||
- [146,217, 231,300, 335,433] # P5/32
|
||||
|
||||
# YOLOv5 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
|
||||
[-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
|
||||
[-1, 3, ShuffleV2Block, [128, 1]], # 2
|
||||
[-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
|
||||
[-1, 7, ShuffleV2Block, [256, 1]], # 4
|
||||
[-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
|
||||
[-1, 3, ShuffleV2Block, [512, 1]], # 6
|
||||
]
|
||||
|
||||
# YOLOv5 head
|
||||
head:
|
||||
[[-1, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, C3, [128, False]], # 10
|
||||
|
||||
[-1, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 2], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, C3, [128, False]], # 14 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [128, 3, 2]],
|
||||
[[-1, 11], 1, Concat, [1]], # cat head P4
|
||||
[-1, 1, C3, [128, False]], # 17 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [128, 3, 2]],
|
||||
[[-1, 7], 1, Concat, [1]], # cat head P5
|
||||
[-1, 1, C3, [128, False]], # 20 (P5/32-large)
|
||||
|
||||
[[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
Loading…
Reference in New Issue
Block a user