mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-09 05:40:49 +08:00
Merge 7d600fe114 into 4f3f9e72a9
This commit is contained in:
commit
91f59c5d8e
@ -9,12 +9,13 @@ import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import repeat
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.patcher_extension
|
||||
|
||||
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
|
||||
from comfy.ldm.flux.layers import EmbedND, timestep_embedding, DoubleStreamBlock, SingleStreamBlock
|
||||
|
||||
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
||||
from comfy.ldm.chroma.layers import (
|
||||
Approximator,
|
||||
ChromaModulationOut,
|
||||
)
|
||||
from .layers import (
|
||||
NerfEmbedder,
|
||||
@ -25,7 +26,26 @@ from .layers import (
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChromaRadianceParams(ChromaParams):
|
||||
class ChromaRadianceParams:
|
||||
# Fields from ChromaParams (now independent)
|
||||
in_channels: int
|
||||
out_channels: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
in_dim: int
|
||||
out_dim: int
|
||||
hidden_dim: int
|
||||
n_layers: int
|
||||
txt_ids_dims: list
|
||||
vec_in_dim: int
|
||||
# ChromaRadiance-specific fields
|
||||
patch_size: int
|
||||
nerf_hidden_size: int
|
||||
nerf_mlp_ratio: int
|
||||
@ -39,7 +59,7 @@ class ChromaRadianceParams(ChromaParams):
|
||||
nerf_embedder_dtype: Optional[torch.dtype]
|
||||
use_x0: bool
|
||||
|
||||
class ChromaRadiance(Chroma):
|
||||
class ChromaRadiance(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
@ -47,7 +67,7 @@ class ChromaRadiance(Chroma):
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
if operations is None:
|
||||
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
|
||||
nn.Module.__init__(self)
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = ChromaRadianceParams(**kwargs)
|
||||
self.params = params
|
||||
@ -176,6 +196,155 @@ class ChromaRadiance(Chroma):
|
||||
# flatten into a sequence for the transformer.
|
||||
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
|
||||
|
||||
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
|
||||
# This function slices up the modulations tensor which has the following layout:
|
||||
# single : num_single_blocks * 3 elements
|
||||
# double_img : num_double_blocks * 6 elements
|
||||
# double_txt : num_double_blocks * 6 elements
|
||||
# final : 2 elements
|
||||
if block_type == "final":
|
||||
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
|
||||
single_block_count = self.params.depth_single_blocks
|
||||
double_block_count = self.params.depth
|
||||
offset = 3 * idx
|
||||
if block_type == "single":
|
||||
return ChromaModulationOut.from_offset(tensor, offset)
|
||||
# Double block modulations are 6 elements so we double 3 * idx.
|
||||
offset *= 2
|
||||
if block_type in {"double_img", "double_txt"}:
|
||||
# Advance past the single block modulations.
|
||||
offset += 3 * single_block_count
|
||||
if block_type == "double_txt":
|
||||
# Advance past the double block img modulations.
|
||||
offset += 6 * double_block_count
|
||||
return (
|
||||
ChromaModulationOut.from_offset(tensor, offset),
|
||||
ChromaModulationOut.from_offset(tensor, offset + 3),
|
||||
)
|
||||
raise ValueError("Bad block_type")
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control = None,
|
||||
transformer_options={},
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
# distilled vector guidance
|
||||
mod_index_length = 344
|
||||
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
|
||||
# guidance = guidance *
|
||||
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
|
||||
|
||||
# get all modulation index
|
||||
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
|
||||
# we need to broadcast the modulation index here so each batch has all of the index
|
||||
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
|
||||
# and we need to broadcast timestep and guidance along too
|
||||
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
|
||||
# then and only then we could concatenate it together
|
||||
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
|
||||
|
||||
mod_vectors = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.double_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if i not in self.skip_mmdit:
|
||||
double_mod = (
|
||||
self.get_modulations(mod_vectors, "double_img", idx=i),
|
||||
self.get_modulations(mod_vectors, "double_txt", idx=i),
|
||||
)
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"],
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args.get("transformer_options"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": double_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img,
|
||||
txt=txt,
|
||||
vec=double_mod,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask,
|
||||
transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.single_blocks)
|
||||
transformer_options["block_type"] = "single"
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if i not in self.skip_dit:
|
||||
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args.get("transformer_options"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": single_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
return img
|
||||
|
||||
def forward_nerf(
|
||||
self,
|
||||
img_orig: Tensor,
|
||||
@ -285,6 +454,13 @@ class ChromaRadiance(Chroma):
|
||||
eps = 0.0
|
||||
return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps)
|
||||
|
||||
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, guidance, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
@ -332,4 +508,3 @@ class ChromaRadiance(Chroma):
|
||||
if hasattr(self, "__x0__"):
|
||||
out = self._apply_x0_residual(out, img, timestep)
|
||||
return out
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user