Merge branch 'master' into assets-redo-part2
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run

This commit is contained in:
Jedrzej Kosinski 2026-01-30 23:09:25 -08:00 committed by GitHub
commit 96020c2cc7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 735 additions and 91 deletions

View File

@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "9"
default: "11"
# push:
# branches:
# - master

View File

@ -13,6 +13,7 @@ from torchvision import transforms
import comfy.patcher_extension
from comfy.ldm.modules.attention import optimized_attention
import comfy.ldm.common_dit
def apply_rotary_pos_emb(
t: torch.Tensor,
@ -835,6 +836,8 @@ class MiniTrainDIT(nn.Module):
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
orig_shape = list(x.shape)
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_temporal, self.patch_spatial, self.patch_spatial))
x_B_C_T_H_W = x
timesteps_B_T = timesteps
crossattn_emb = context
@ -882,5 +885,5 @@ class MiniTrainDIT(nn.Module):
)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)[:, :, :orig_shape[-3], :orig_shape[-2], :orig_shape[-1]]
return x_B_C_Tt_Hp_Wp

View File

@ -1146,6 +1146,20 @@ class ImageCompare(ComfyTypeI):
def as_dict(self):
return super().as_dict()
@comfytype(io_type="COLOR")
class Color(ComfyTypeIO):
Type = str
class Input(WidgetInput):
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
socketless: bool=True, advanced: bool=None, default: str="#ffffff"):
super().__init__(id, display_name, optional, tooltip, None, default, socketless, None, None, None, None, advanced)
self.default: str
def as_dict(self):
return super().as_dict()
DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {}
def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]):
DYNAMIC_INPUT_LOOKUP[io_type] = func
@ -1252,23 +1266,6 @@ class NodeInfoV1:
price_badge: dict | None = None
search_aliases: list[str]=None
@dataclass
class NodeInfoV3:
input: dict=None
output: dict=None
hidden: list[str]=None
name: str=None
display_name: str=None
description: str=None
python_module: Any = None
category: str=None
output_node: bool=None
deprecated: bool=None
experimental: bool=None
dev_only: bool=None
api_node: bool=None
price_badge: dict | None = None
@dataclass
class PriceBadgeDepends:
@ -1497,40 +1494,6 @@ class Schema:
)
return info
def get_v3_info(self, cls) -> NodeInfoV3:
input_dict = {}
output_dict = {}
hidden_list = []
# TODO: make sure dynamic types will be handled correctly
if self.inputs:
for input in self.inputs:
add_to_dict_v3(input, input_dict)
if self.outputs:
for output in self.outputs:
add_to_dict_v3(output, output_dict)
if self.hidden:
for hidden in self.hidden:
hidden_list.append(hidden.value)
info = NodeInfoV3(
input=input_dict,
output=output_dict,
hidden=hidden_list,
name=self.node_id,
display_name=self.display_name,
description=self.description,
category=self.category,
output_node=self.is_output_node,
deprecated=self.is_deprecated,
experimental=self.is_experimental,
dev_only=self.is_dev_only,
api_node=self.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
)
return info
def get_finalized_class_inputs(d: dict[str, Any], live_inputs: dict[str, Any], include_hidden=False) -> tuple[dict[str, Any], V3Data]:
out_dict = {
"required": {},
@ -1585,9 +1548,6 @@ def add_to_dict_v1(i: Input, d: dict):
as_dict.pop("optional", None)
d.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict)
def add_to_dict_v3(io: Input | Output, d: dict):
d[io.id] = (io.get_io_type(), io.as_dict())
class DynamicPathsDefaultValue:
EMPTY_DICT = "empty_dict"
@ -1748,13 +1708,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
# set hidden
type_clone.hidden = HiddenHolder.from_v3_data(v3_data)
return type_clone
@final
@classmethod
def GET_NODE_INFO_V3(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
info = schema.get_v3_info(cls)
return asdict(info)
#############################################
# V1 Backwards Compatibility code
#--------------------------------------------
@ -2099,6 +2052,7 @@ __all__ = [
"AnyType",
"MultiType",
"Tracks",
"Color",
# Dynamic Types
"MatchType",
"DynamicCombo",
@ -2107,12 +2061,10 @@ __all__ = [
"HiddenHolder",
"Hidden",
"NodeInfoV1",
"NodeInfoV3",
"Schema",
"ComfyNode",
"NodeOutput",
"add_to_dict_v1",
"add_to_dict_v3",
"V3Data",
"ImageCompare",
"PriceBadgeDepends",

View File

@ -1,11 +1,8 @@
from __future__ import annotations
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field, conint, confloat
from pydantic import BaseModel, Field
class RecraftColor:
@ -229,24 +226,24 @@ class RecraftColorObject(BaseModel):
class RecraftControlsObject(BaseModel):
colors: Optional[list[RecraftColorObject]] = Field(None, description='An array of preferable colors')
background_color: Optional[RecraftColorObject] = Field(None, description='Use given color as a desired background color')
no_text: Optional[bool] = Field(None, description='Do not embed text layouts')
artistic_level: Optional[conint(ge=0, le=5)] = Field(None, description='Defines artistic tone of your image. At a simple level, the person looks straight at the camera in a static and clean style. Dynamic and eccentric levels introduce movement and creativity. The value should be in range [0..5].')
colors: list[RecraftColorObject] | None = Field(None, description='An array of preferable colors')
background_color: RecraftColorObject | None = Field(None, description='Use given color as a desired background color')
no_text: bool | None = Field(None, description='Do not embed text layouts')
artistic_level: int | None = Field(None, description='Defines artistic tone of your image. At a simple level, the person looks straight at the camera in a static and clean style. Dynamic and eccentric levels introduce movement and creativity. The value should be in range [0..5].')
class RecraftImageGenerationRequest(BaseModel):
prompt: str = Field(..., description='The text prompt describing the image to generate')
size: Optional[RecraftImageSize] = Field(None, description='The size of the generated image (e.g., "1024x1024")')
n: conint(ge=1, le=6) = Field(..., description='The number of images to generate')
negative_prompt: Optional[str] = Field(None, description='A text description of undesired elements on an image')
model: Optional[RecraftModel] = Field(RecraftModel.recraftv3, description='The model to use for generation (e.g., "recraftv3")')
style: Optional[str] = Field(None, description='The style to apply to the generated image (e.g., "digital_illustration")')
substyle: Optional[str] = Field(None, description='The substyle to apply to the generated image, depending on the style input')
controls: Optional[RecraftControlsObject] = Field(None, description='A set of custom parameters to tweak generation process')
style_id: Optional[str] = Field(None, description='Use a previously uploaded style as a reference; UUID')
strength: Optional[confloat(ge=0.0, le=1.0)] = Field(None, description='Defines the difference with the original image, should lie in [0, 1], where 0 means almost identical, and 1 means miserable similarity')
random_seed: Optional[int] = Field(None, description="Seed for video generation")
size: RecraftImageSize | None = Field(None, description='The size of the generated image (e.g., "1024x1024")')
n: int = Field(..., description='The number of images to generate')
negative_prompt: str | None = Field(None, description='A text description of undesired elements on an image')
model: RecraftModel | None = Field(RecraftModel.recraftv3, description='The model to use for generation (e.g., "recraftv3")')
style: str | None = Field(None, description='The style to apply to the generated image (e.g., "digital_illustration")')
substyle: str | None = Field(None, description='The substyle to apply to the generated image, depending on the style input')
controls: RecraftControlsObject | None = Field(None, description='A set of custom parameters to tweak generation process')
style_id: str | None = Field(None, description='Use a previously uploaded style as a reference; UUID')
strength: float | None = Field(None, description='Defines the difference with the original image, should lie in [0, 1], where 0 means almost identical, and 1 means miserable similarity')
random_seed: int | None = Field(None, description="Seed for video generation")
# text_layout
@ -258,5 +255,13 @@ class RecraftReturnedObject(BaseModel):
class RecraftImageGenerationResponse(BaseModel):
created: int = Field(..., description='Unix timestamp when the generation was created')
credits: int = Field(..., description='Number of credits used for the generation')
data: Optional[list[RecraftReturnedObject]] = Field(None, description='Array of generated image information')
image: Optional[RecraftReturnedObject] = Field(None, description='Single generated image')
data: list[RecraftReturnedObject] | None = Field(None, description='Array of generated image information')
image: RecraftReturnedObject | None = Field(None, description='Single generated image')
class RecraftCreateStyleRequest(BaseModel):
style: str = Field(..., description="realistic_image, digital_illustration, vector_illustration, or icon")
class RecraftCreateStyleResponse(BaseModel):
id: str = Field(..., description="UUID of the created style")

View File

@ -6,6 +6,30 @@ class SubjectReference(BaseModel):
images: list[str] = Field(...)
class FrameSetting(BaseModel):
prompt: str = Field(...)
key_image: str = Field(...)
duration: int = Field(...)
class TaskMultiFrameCreationRequest(BaseModel):
model: str = Field(...)
seed: int = Field(..., ge=0, le=2147483647)
resolution: str = Field(...)
start_image: str = Field(...)
image_settings: list[FrameSetting] = Field(...)
class TaskExtendCreationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(..., max_length=2000)
duration: int = Field(...)
seed: int = Field(..., ge=0, le=2147483647)
resolution: str = Field(...)
images: list[str] | None = Field(None, description="Base64 encoded string or image URL")
video_url: str = Field(..., description="URL of the video to extend")
class TaskCreationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(..., max_length=2000)

View File

@ -12,6 +12,8 @@ from comfy_api_nodes.apis.recraft import (
RecraftColor,
RecraftColorChain,
RecraftControls,
RecraftCreateStyleRequest,
RecraftCreateStyleResponse,
RecraftImageGenerationRequest,
RecraftImageGenerationResponse,
RecraftImageSize,
@ -323,6 +325,75 @@ class RecraftStyleInfiniteStyleLibrary(IO.ComfyNode):
return IO.NodeOutput(RecraftStyle(style_id=style_id))
class RecraftCreateStyleNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="RecraftCreateStyleNode",
display_name="Recraft Create Style",
category="api node/image/Recraft",
description="Create a custom style from reference images. "
"Upload 1-5 images to use as style references. "
"Total size of all images is limited to 5 MB.",
inputs=[
IO.Combo.Input(
"style",
options=["realistic_image", "digital_illustration"],
tooltip="The base style of the generated images.",
),
IO.Autogrow.Input(
"images",
template=IO.Autogrow.TemplatePrefix(
IO.Image.Input("image"),
prefix="image",
min=1,
max=5,
),
),
],
outputs=[
IO.String.Output(display_name="style_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd": 0.04}""",
),
)
@classmethod
async def execute(
cls,
style: str,
images: IO.Autogrow.Type,
) -> IO.NodeOutput:
files = []
total_size = 0
max_total_size = 5 * 1024 * 1024 # 5 MB limit
for i, img in enumerate(list(images.values())):
file_bytes = tensor_to_bytesio(img, total_pixels=2048 * 2048, mime_type="image/webp").read()
total_size += len(file_bytes)
if total_size > max_total_size:
raise Exception("Total size of all images exceeds 5 MB limit.")
files.append((f"file{i + 1}", file_bytes))
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/recraft/styles", method="POST"),
response_model=RecraftCreateStyleResponse,
files=files,
data=RecraftCreateStyleRequest(style=style),
content_type="multipart/form-data",
max_retries=1,
)
return IO.NodeOutput(response.id)
class RecraftTextToImageNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
@ -395,7 +466,7 @@ class RecraftTextToImageNode(IO.ComfyNode):
negative_prompt: str = None,
recraft_controls: RecraftControls = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False, max_length=1000)
validate_string(prompt, strip_whitespace=False, min_length=1, max_length=1000)
default_style = RecraftStyle(RecraftStyleV3.realistic_image)
if recraft_style is None:
recraft_style = default_style
@ -1024,6 +1095,7 @@ class RecraftExtension(ComfyExtension):
RecraftStyleV3DigitalIllustrationNode,
RecraftStyleV3LogoRasterNode,
RecraftStyleInfiniteStyleLibrary,
RecraftCreateStyleNode,
RecraftColorRGBNode,
RecraftControlsNode,
]

View File

@ -2,9 +2,12 @@ from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.vidu import (
FrameSetting,
SubjectReference,
TaskCreationRequest,
TaskCreationResponse,
TaskExtendCreationRequest,
TaskMultiFrameCreationRequest,
TaskResult,
TaskStatusResponse,
)
@ -14,11 +17,14 @@ from comfy_api_nodes.util import (
get_number_of_images,
poll_op,
sync_op,
upload_image_to_comfyapi,
upload_images_to_comfyapi,
upload_video_to_comfyapi,
validate_image_aspect_ratio,
validate_image_dimensions,
validate_images_aspect_ratio_closeness,
validate_string,
validate_video_duration,
)
VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video"
@ -31,7 +37,8 @@ VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations"
async def execute_task(
cls: type[IO.ComfyNode],
vidu_endpoint: str,
payload: TaskCreationRequest,
payload: TaskCreationRequest | TaskExtendCreationRequest | TaskMultiFrameCreationRequest,
max_poll_attempts: int = 320,
) -> list[TaskResult]:
task_creation_response = await sync_op(
cls,
@ -47,7 +54,7 @@ async def execute_task(
response_model=TaskStatusResponse,
status_extractor=lambda r: r.state,
progress_extractor=lambda r: r.progress,
max_poll_attempts=320,
max_poll_attempts=max_poll_attempts,
)
if not response.creations:
raise RuntimeError(
@ -940,6 +947,540 @@ class Vidu2StartEndToVideoNode(IO.ComfyNode):
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class ViduExtendVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ViduExtendVideoNode",
display_name="Vidu Video Extension",
category="api node/video/Vidu",
description="Extend an existing video by generating additional frames.",
inputs=[
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"viduq2-pro",
[
IO.Int.Input(
"duration",
default=4,
min=1,
max=7,
step=1,
display_mode=IO.NumberDisplay.slider,
tooltip="Duration of the extended video in seconds.",
),
IO.Combo.Input(
"resolution",
options=["720p", "1080p"],
tooltip="Resolution of the output video.",
),
],
),
IO.DynamicCombo.Option(
"viduq2-turbo",
[
IO.Int.Input(
"duration",
default=4,
min=1,
max=7,
step=1,
display_mode=IO.NumberDisplay.slider,
tooltip="Duration of the extended video in seconds.",
),
IO.Combo.Input(
"resolution",
options=["720p", "1080p"],
tooltip="Resolution of the output video.",
),
],
),
],
tooltip="Model to use for video extension.",
),
IO.Video.Input(
"video",
tooltip="The source video to extend.",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="An optional text prompt for the extended video (max 2000 characters).",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Image.Input("end_frame", optional=True),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model", "model.duration", "model.resolution"]),
expr="""
(
$m := widgets.model;
$d := $lookup(widgets, "model.duration");
$res := $lookup(widgets, "model.resolution");
$contains($m, "pro")
? (
$base := $lookup({"720p": 0.15, "1080p": 0.3}, $res);
$perSec := $lookup({"720p": 0.05, "1080p": 0.075}, $res);
{"type":"usd","usd": $base + $perSec * ($d - 1)}
)
: (
$base := $lookup({"720p": 0.075, "1080p": 0.2}, $res);
$perSec := $lookup({"720p": 0.025, "1080p": 0.05}, $res);
{"type":"usd","usd": $base + $perSec * ($d - 1)}
)
)
""",
),
)
@classmethod
async def execute(
cls,
model: dict,
video: Input.Video,
prompt: str,
seed: int,
end_frame: Input.Image | None = None,
) -> IO.NodeOutput:
validate_string(prompt, max_length=2000)
validate_video_duration(video, min_duration=4, max_duration=55)
image_url = None
if end_frame is not None:
validate_image_aspect_ratio(end_frame, (1, 4), (4, 1))
validate_image_dimensions(end_frame, min_width=128, min_height=128)
image_url = await upload_image_to_comfyapi(cls, end_frame, wait_label="Uploading end frame")
results = await execute_task(
cls,
"/proxy/vidu/extend",
TaskExtendCreationRequest(
model=model["model"],
prompt=prompt,
duration=model["duration"],
seed=seed,
resolution=model["resolution"],
video_url=await upload_video_to_comfyapi(cls, video, wait_label="Uploading video"),
images=[image_url] if image_url else None,
),
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
def _generate_frame_inputs(count: int) -> list:
"""Generate input widgets for a given number of frames."""
inputs = []
for i in range(1, count + 1):
inputs.extend(
[
IO.String.Input(
f"prompt{i}",
multiline=True,
default="",
tooltip=f"Text prompt for frame {i} transition.",
),
IO.Image.Input(
f"end_image{i}",
tooltip=f"End frame image for segment {i}. Aspect ratio must be between 1:4 and 4:1.",
),
IO.Int.Input(
f"duration{i}",
default=4,
min=2,
max=7,
step=1,
display_mode=IO.NumberDisplay.slider,
tooltip=f"Duration for segment {i} in seconds.",
),
]
)
return inputs
class ViduMultiFrameVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ViduMultiFrameVideoNode",
display_name="Vidu Multi-Frame Video Generation",
category="api node/video/Vidu",
description="Generate a video with multiple keyframe transitions.",
inputs=[
IO.Combo.Input("model", options=["viduq2-pro", "viduq2-turbo"]),
IO.Image.Input(
"start_image",
tooltip="The starting frame image. Aspect ratio must be between 1:4 and 4:1.",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Combo.Input("resolution", options=["720p", "1080p"]),
IO.DynamicCombo.Input(
"frames",
options=[
IO.DynamicCombo.Option("2", _generate_frame_inputs(2)),
IO.DynamicCombo.Option("3", _generate_frame_inputs(3)),
IO.DynamicCombo.Option("4", _generate_frame_inputs(4)),
IO.DynamicCombo.Option("5", _generate_frame_inputs(5)),
IO.DynamicCombo.Option("6", _generate_frame_inputs(6)),
IO.DynamicCombo.Option("7", _generate_frame_inputs(7)),
IO.DynamicCombo.Option("8", _generate_frame_inputs(8)),
IO.DynamicCombo.Option("9", _generate_frame_inputs(9)),
],
tooltip="Number of keyframe transitions (2-9).",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(
widgets=[
"model",
"resolution",
"frames",
"frames.duration1",
"frames.duration2",
"frames.duration3",
"frames.duration4",
"frames.duration5",
"frames.duration6",
"frames.duration7",
"frames.duration8",
"frames.duration9",
]
),
expr="""
(
$m := widgets.model;
$n := $number(widgets.frames);
$is1080 := widgets.resolution = "1080p";
$d1 := $lookup(widgets, "frames.duration1");
$d2 := $lookup(widgets, "frames.duration2");
$d3 := $n >= 3 ? $lookup(widgets, "frames.duration3") : 0;
$d4 := $n >= 4 ? $lookup(widgets, "frames.duration4") : 0;
$d5 := $n >= 5 ? $lookup(widgets, "frames.duration5") : 0;
$d6 := $n >= 6 ? $lookup(widgets, "frames.duration6") : 0;
$d7 := $n >= 7 ? $lookup(widgets, "frames.duration7") : 0;
$d8 := $n >= 8 ? $lookup(widgets, "frames.duration8") : 0;
$d9 := $n >= 9 ? $lookup(widgets, "frames.duration9") : 0;
$totalDuration := $d1 + $d2 + $d3 + $d4 + $d5 + $d6 + $d7 + $d8 + $d9;
$contains($m, "pro")
? (
$base := $is1080 ? 0.3 : 0.15;
$perSec := $is1080 ? 0.075 : 0.05;
{"type":"usd","usd": $n * $base + $perSec * $totalDuration}
)
: (
$base := $is1080 ? 0.2 : 0.075;
$perSec := $is1080 ? 0.05 : 0.025;
{"type":"usd","usd": $n * $base + $perSec * $totalDuration}
)
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
start_image: Input.Image,
seed: int,
resolution: str,
frames: dict,
) -> IO.NodeOutput:
validate_image_aspect_ratio(start_image, (1, 4), (4, 1))
frame_count = int(frames["frames"])
image_settings: list[FrameSetting] = []
for i in range(1, frame_count + 1):
validate_image_aspect_ratio(frames[f"end_image{i}"], (1, 4), (4, 1))
validate_string(frames[f"prompt{i}"], max_length=2000)
start_image_url = await upload_image_to_comfyapi(
cls,
start_image,
mime_type="image/png",
wait_label="Uploading start image",
)
for i in range(1, frame_count + 1):
image_settings.append(
FrameSetting(
prompt=frames[f"prompt{i}"],
key_image=await upload_image_to_comfyapi(
cls,
frames[f"end_image{i}"],
mime_type="image/png",
wait_label=f"Uploading end image({i})",
),
duration=frames[f"duration{i}"],
)
)
results = await execute_task(
cls,
"/proxy/vidu/multiframe",
TaskMultiFrameCreationRequest(
model=model,
seed=seed,
resolution=resolution,
start_image=start_image_url,
image_settings=image_settings,
),
max_poll_attempts=480 * frame_count,
)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class Vidu3TextToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Vidu3TextToVideoNode",
display_name="Vidu Q3 Text-to-Video Generation",
category="api node/video/Vidu",
description="Generate video from a text prompt.",
inputs=[
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"viduq3-pro",
[
IO.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16", "3:4", "4:3", "1:1"],
tooltip="The aspect ratio of the output video.",
),
IO.Combo.Input(
"resolution",
options=["720p", "1080p"],
tooltip="Resolution of the output video.",
),
IO.Int.Input(
"duration",
default=5,
min=1,
max=16,
step=1,
display_mode=IO.NumberDisplay.slider,
tooltip="Duration of the output video in seconds.",
),
IO.Boolean.Input(
"audio",
default=False,
tooltip="When enabled, outputs video with sound "
"(including dialogue and sound effects).",
),
],
),
],
tooltip="Model to use for video generation.",
),
IO.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation, with a maximum length of 2000 characters.",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model.duration", "model.resolution"]),
expr="""
(
$res := $lookup(widgets, "model.resolution");
$base := $lookup({"720p": 0.075, "1080p": 0.1}, $res);
$perSec := $lookup({"720p": 0.025, "1080p": 0.05}, $res);
{"type":"usd","usd": $base + $perSec * ($lookup(widgets, "model.duration") - 1)}
)
""",
),
)
@classmethod
async def execute(
cls,
model: dict,
prompt: str,
seed: int,
) -> IO.NodeOutput:
validate_string(prompt, min_length=1, max_length=2000)
results = await execute_task(
cls,
VIDU_TEXT_TO_VIDEO,
TaskCreationRequest(
model=model["model"],
prompt=prompt,
duration=model["duration"],
seed=seed,
aspect_ratio=model["aspect_ratio"],
resolution=model["resolution"],
audio=model["audio"],
),
max_poll_attempts=640,
)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class Vidu3ImageToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Vidu3ImageToVideoNode",
display_name="Vidu Q3 Image-to-Video Generation",
category="api node/video/Vidu",
description="Generate a video from an image and an optional prompt.",
inputs=[
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"viduq3-pro",
[
IO.Combo.Input(
"resolution",
options=["720p", "1080p", "2K"],
tooltip="Resolution of the output video.",
),
IO.Int.Input(
"duration",
default=5,
min=1,
max=16,
step=1,
display_mode=IO.NumberDisplay.slider,
tooltip="Duration of the output video in seconds.",
),
IO.Boolean.Input(
"audio",
default=False,
tooltip="When enabled, outputs video with sound "
"(including dialogue and sound effects).",
),
],
),
],
tooltip="Model to use for video generation.",
),
IO.Image.Input(
"image",
tooltip="An image to be used as the start frame of the generated video.",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="An optional text prompt for video generation (max 2000 characters).",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model.duration", "model.resolution"]),
expr="""
(
$res := $lookup(widgets, "model.resolution");
$base := $lookup({"720p": 0.075, "1080p": 0.275, "2k": 0.35}, $res);
$perSec := $lookup({"720p": 0.05, "1080p": 0.075, "2k": 0.075}, $res);
{"type":"usd","usd": $base + $perSec * ($lookup(widgets, "model.duration") - 1)}
)
""",
),
)
@classmethod
async def execute(
cls,
model: dict,
image: Input.Image,
prompt: str,
seed: int,
) -> IO.NodeOutput:
validate_image_aspect_ratio(image, (1, 4), (4, 1))
validate_string(prompt, max_length=2000)
results = await execute_task(
cls,
VIDU_IMAGE_TO_VIDEO,
TaskCreationRequest(
model=model["model"],
prompt=prompt,
duration=model["duration"],
seed=seed,
resolution=model["resolution"],
audio=model["audio"],
images=[await upload_image_to_comfyapi(cls, image)],
),
max_poll_attempts=720,
)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class ViduExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
@ -952,6 +1493,10 @@ class ViduExtension(ComfyExtension):
Vidu2ImageToVideoNode,
Vidu2ReferenceVideoNode,
Vidu2StartEndToVideoNode,
ViduExtendVideoNode,
ViduMultiFrameVideoNode,
Vidu3TextToVideoNode,
Vidu3ImageToVideoNode,
]

View File

@ -0,0 +1,42 @@
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
class ColorToRGBInt(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="ColorToRGBInt",
display_name="Color to RGB Int",
category="utils",
description="Convert a color to a RGB integer value.",
inputs=[
io.Color.Input("color"),
],
outputs=[
io.Int.Output(display_name="rgb_int"),
],
)
@classmethod
def execute(
cls,
color: str,
) -> io.NodeOutput:
# expect format #RRGGBB
if len(color) != 7 or color[0] != "#":
raise ValueError("Color must be in format #RRGGBB")
r = int(color[1:3], 16)
g = int(color[3:5], 16)
b = int(color[5:7], 16)
return io.NodeOutput(r * 256 * 256 + g * 256 + b)
class ColorExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [ColorToRGBInt]
async def comfy_entrypoint() -> ColorExtension:
return ColorExtension()

View File

@ -56,7 +56,7 @@ class EmptyHunyuanLatentVideo(io.ComfyNode):
@classmethod
def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples":latent})
return io.NodeOutput({"samples": latent, "downscale_ratio_spacial": 8})
generate = execute # TODO: remove
@ -73,7 +73,7 @@ class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo):
def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput:
# Using scale factor of 16 instead of 8
latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent})
return io.NodeOutput({"samples": latent, "downscale_ratio_spacial": 16})
class HunyuanVideo15ImageToVideo(io.ComfyNode):

View File

@ -2432,7 +2432,8 @@ async def init_builtin_extra_nodes():
"nodes_wanmove.py",
"nodes_image_compare.py",
"nodes_zimage.py",
"nodes_lora_debug.py"
"nodes_lora_debug.py",
"nodes_color.py"
]
import_failed = []