mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-12 15:20:51 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
9baf36e97b
3
.github/ISSUE_TEMPLATE/config.yml
vendored
3
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,5 +1,8 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: ComfyUI Frontend Issues
|
||||
url: https://github.com/Comfy-Org/ComfyUI_frontend/issues
|
||||
about: Issues related to the ComfyUI frontend (display issues, user interaction bugs), please go to the frontend repo to file the issue
|
||||
- name: ComfyUI Matrix Space
|
||||
url: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
|
||||
about: The ComfyUI Matrix Space is available for support and general discussion related to ComfyUI (Matrix is like Discord but open source).
|
||||
|
||||
@ -19,25 +19,29 @@ def manual_stochastic_round_to_float8(x, dtype):
|
||||
)
|
||||
|
||||
# Combine mantissa calculation and rounding
|
||||
mantissa = abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0
|
||||
mantissa_scaled = mantissa * (2**MANTISSA_BITS)
|
||||
# min_normal = 2.0 ** (-EXPONENT_BIAS + 1)
|
||||
# zero_mask = (abs_x == 0)
|
||||
# subnormal_mask = (exponent == 0) & (abs_x != 0)
|
||||
normal_mask = ~(exponent == 0)
|
||||
|
||||
mantissa_scaled = torch.where(
|
||||
normal_mask,
|
||||
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
||||
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
||||
)
|
||||
mantissa_floor = mantissa_scaled.floor()
|
||||
mantissa = torch.where(
|
||||
torch.rand_like(mantissa_scaled) < (mantissa_scaled - mantissa_floor),
|
||||
(mantissa_floor + 1) / (2**MANTISSA_BITS),
|
||||
mantissa_floor / (2**MANTISSA_BITS)
|
||||
)
|
||||
result = torch.where(
|
||||
normal_mask,
|
||||
sign * (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + mantissa),
|
||||
sign * (2.0 ** (-EXPONENT_BIAS + 1)) * mantissa
|
||||
)
|
||||
|
||||
# Combine final result calculation
|
||||
result = sign * (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + mantissa)
|
||||
|
||||
# Handle zero case
|
||||
zero_mask = (abs_x == 0)
|
||||
result = torch.where(zero_mask, torch.zeros_like(result), result)
|
||||
|
||||
# Handle subnormal numbers
|
||||
min_normal = 2.0 ** (-EXPONENT_BIAS + 1)
|
||||
result = torch.where((abs_x < min_normal) & (~zero_mask), torch.round(x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS))) * (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)), result)
|
||||
result = torch.where(abs_x == 0, 0, result)
|
||||
return result.to(dtype=dtype)
|
||||
|
||||
|
||||
|
||||
@ -644,40 +644,46 @@ class ModelPatcher:
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
memory_freed = 0
|
||||
patch_counter = 0
|
||||
unload_list = []
|
||||
|
||||
for n, m in list(self.model.named_modules())[::-1]:
|
||||
if memory_to_free < memory_freed:
|
||||
break
|
||||
|
||||
for n, m in self.model.named_modules():
|
||||
shift_lowvram = False
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
unload_list.append((module_mem, n, m))
|
||||
|
||||
unload_list.sort()
|
||||
for unload in unload_list:
|
||||
if memory_to_free < memory_freed:
|
||||
break
|
||||
module_mem = unload[0]
|
||||
n = unload[1]
|
||||
m = unload[2]
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
|
||||
if m.weight is not None and m.weight.device != device_to:
|
||||
for key in [weight_key, bias_key]:
|
||||
bk = self.backup.get(key, None)
|
||||
if bk is not None:
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, bk.weight)
|
||||
self.backup.pop(key)
|
||||
if m.weight is not None and m.weight.device != device_to:
|
||||
for key in [weight_key, bias_key]:
|
||||
bk = self.backup.get(key, None)
|
||||
if bk is not None:
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, bk.weight)
|
||||
self.backup.pop(key)
|
||||
|
||||
m.to(device_to)
|
||||
if weight_key in self.patches:
|
||||
m.weight_function = LowVramPatch(weight_key, self)
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
m.bias_function = LowVramPatch(bias_key, self)
|
||||
patch_counter += 1
|
||||
m.to(device_to)
|
||||
if weight_key in self.patches:
|
||||
m.weight_function = LowVramPatch(weight_key, self)
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
m.bias_function = LowVramPatch(bias_key, self)
|
||||
patch_counter += 1
|
||||
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
memory_freed += module_mem
|
||||
logging.debug("freed {}".format(n))
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
memory_freed += module_mem
|
||||
logging.debug("freed {}".format(n))
|
||||
|
||||
self.model.model_lowvram = True
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
|
||||
Loading…
Reference in New Issue
Block a user