mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
Merge branch 'comfyanonymous:master' into feature/preview-latent
This commit is contained in:
commit
9e998d5195
@ -1,4 +1,4 @@
|
||||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor
|
||||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils
|
||||
from .utils import load_torch_file, transformers_convert
|
||||
import os
|
||||
import torch
|
||||
@ -6,7 +6,8 @@ import torch
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
config = CLIPVisionConfig.from_json_file(json_config)
|
||||
self.model = CLIPVisionModelWithProjection(config)
|
||||
with modeling_utils.no_init_weights():
|
||||
self.model = CLIPVisionModelWithProjection(config)
|
||||
self.processor = CLIPImageProcessor(crop_size=224,
|
||||
do_center_crop=True,
|
||||
do_convert_rgb=True,
|
||||
|
||||
@ -10,6 +10,7 @@ from .diffusionmodules.util import checkpoint
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
|
||||
from comfy import model_management
|
||||
import comfy.ops
|
||||
|
||||
from . import tomesd
|
||||
|
||||
@ -52,7 +53,7 @@ def init_(tensor):
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
self.proj = comfy.ops.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
@ -65,14 +66,14 @@ class FeedForward(nn.Module):
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
nn.Linear(dim, inner_dim),
|
||||
comfy.ops.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(inner_dim, dim_out)
|
||||
comfy.ops.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -154,12 +155,12 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim),
|
||||
comfy.ops.Linear(inner_dim, query_dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -251,12 +252,12 @@ class CrossAttentionDoggettx(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim),
|
||||
comfy.ops.Linear(inner_dim, query_dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -349,12 +350,12 @@ class CrossAttention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim),
|
||||
comfy.ops.Linear(inner_dim, query_dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -407,11 +408,11 @@ class MemoryEfficientCrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
@ -456,11 +457,11 @@ class CrossAttentionPytorch(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
@ -601,7 +602,7 @@ class SpatialTransformer(nn.Module):
|
||||
stride=1,
|
||||
padding=0)
|
||||
else:
|
||||
self.proj_in = nn.Linear(in_channels, inner_dim)
|
||||
self.proj_in = comfy.ops.Linear(in_channels, inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
||||
@ -609,13 +610,12 @@ class SpatialTransformer(nn.Module):
|
||||
for d in range(depth)]
|
||||
)
|
||||
if not use_linear:
|
||||
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
||||
in_channels,
|
||||
self.proj_out = nn.Conv2d(inner_dim,in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0))
|
||||
padding=0)
|
||||
else:
|
||||
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
||||
self.proj_out = comfy.ops.Linear(in_channels, inner_dim)
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
|
||||
17
comfy/ops.py
Normal file
17
comfy/ops.py
Normal file
@ -0,0 +1,17 @@
|
||||
import torch
|
||||
|
||||
class Linear(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
|
||||
if bias:
|
||||
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, input):
|
||||
return torch.nn.functional.linear(input, self.weight, self.bias)
|
||||
@ -273,7 +273,8 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
max_total_area = model_management.maximum_batch_area()
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
|
||||
if "sampler_cfg_function" in model_options:
|
||||
return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
|
||||
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
|
||||
return model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
11
comfy/sd.py
11
comfy/sd.py
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import contextlib
|
||||
import copy
|
||||
import inspect
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
@ -313,8 +314,10 @@ class ModelPatcher:
|
||||
self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}
|
||||
|
||||
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
||||
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
||||
|
||||
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
||||
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
||||
else:
|
||||
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
||||
|
||||
def set_model_patch(self, patch, name):
|
||||
to = self.model_options["transformer_options"]
|
||||
@ -1152,9 +1155,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
else:
|
||||
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
||||
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
return (ModelPatcher(model), clip, vae, clipvision)
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig
|
||||
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
|
||||
import torch
|
||||
import traceback
|
||||
import zipfile
|
||||
@ -38,7 +38,8 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
if textmodel_json_config is None:
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
||||
self.transformer = CLIPTextModel(config)
|
||||
with modeling_utils.no_init_weights():
|
||||
self.transformer = CLIPTextModel(config)
|
||||
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
|
||||
@ -310,7 +310,6 @@ class PromptExecutor:
|
||||
else:
|
||||
self.server.client_id = None
|
||||
|
||||
execution_start_time = time.perf_counter()
|
||||
if self.server.client_id is not None:
|
||||
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
|
||||
|
||||
@ -358,12 +357,7 @@ class PromptExecutor:
|
||||
for x in executed:
|
||||
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
||||
self.server.last_node_id = None
|
||||
if self.server.client_id is not None:
|
||||
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
|
||||
|
||||
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
||||
gc.collect()
|
||||
comfy.model_management.soft_empty_cache()
|
||||
|
||||
|
||||
def validate_inputs(prompt, item, validated):
|
||||
|
||||
13
main.py
13
main.py
@ -3,6 +3,8 @@ import itertools
|
||||
import os
|
||||
import shutil
|
||||
import threading
|
||||
import gc
|
||||
import time
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.utils
|
||||
@ -28,15 +30,22 @@ import folder_paths
|
||||
import server
|
||||
from server import BinaryEventTypes
|
||||
from nodes import init_custom_nodes
|
||||
|
||||
import comfy.model_management
|
||||
|
||||
def prompt_worker(q, server):
|
||||
e = execution.PromptExecutor(server)
|
||||
while True:
|
||||
item, item_id = q.get()
|
||||
e.execute(item[2], item[1], item[3], item[4])
|
||||
execution_start_time = time.perf_counter()
|
||||
prompt_id = item[1]
|
||||
e.execute(item[2], prompt_id, item[3], item[4])
|
||||
q.task_done(item_id, e.outputs_ui)
|
||||
if server.client_id is not None:
|
||||
server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id)
|
||||
|
||||
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
||||
gc.collect()
|
||||
comfy.model_management.soft_empty_cache()
|
||||
|
||||
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
||||
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
import { app } from "/scripts/app.js";
|
||||
import { $el } from "/scripts/ui.js";
|
||||
import { api } from "/scripts/api.js";
|
||||
import {app} from "/scripts/app.js";
|
||||
import {$el} from "/scripts/ui.js";
|
||||
|
||||
// Manage color palettes
|
||||
|
||||
@ -24,6 +23,8 @@ const colorPalettes = {
|
||||
"TAESD": "#DCC274", // cheesecake
|
||||
},
|
||||
"litegraph_base": {
|
||||
"BACKGROUND_IMAGE": "",
|
||||
"CLEAR_BACKGROUND_COLOR": "#222",
|
||||
"NODE_TITLE_COLOR": "#999",
|
||||
"NODE_SELECTED_TITLE_COLOR": "#FFF",
|
||||
"NODE_TEXT_SIZE": 14,
|
||||
@ -77,6 +78,8 @@ const colorPalettes = {
|
||||
"VAE": "#FF7043", // deep orange
|
||||
},
|
||||
"litegraph_base": {
|
||||
"BACKGROUND_IMAGE": "",
|
||||
"CLEAR_BACKGROUND_COLOR": "lightgray",
|
||||
"NODE_TITLE_COLOR": "#222",
|
||||
"NODE_SELECTED_TITLE_COLOR": "#000",
|
||||
"NODE_TEXT_SIZE": 14,
|
||||
@ -191,7 +194,7 @@ app.registerExtension({
|
||||
const nodeData = defs[nodeId];
|
||||
|
||||
var inputs = nodeData["input"]["required"];
|
||||
if (nodeData["input"]["optional"] != undefined){
|
||||
if (nodeData["input"]["optional"] != undefined) {
|
||||
inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"])
|
||||
}
|
||||
|
||||
@ -232,12 +235,9 @@ app.registerExtension({
|
||||
"id": "my_color_palette_unique_id",
|
||||
"name": "My Color Palette",
|
||||
"colors": {
|
||||
"node_slot": {
|
||||
},
|
||||
"litegraph_base": {
|
||||
},
|
||||
"comfy_base": {
|
||||
}
|
||||
"node_slot": {},
|
||||
"litegraph_base": {},
|
||||
"comfy_base": {}
|
||||
}
|
||||
};
|
||||
|
||||
@ -266,7 +266,7 @@ app.registerExtension({
|
||||
};
|
||||
|
||||
const addCustomColorPalette = async (colorPalette) => {
|
||||
if (typeof(colorPalette) !== "object") {
|
||||
if (typeof (colorPalette) !== "object") {
|
||||
app.ui.dialog.show("Invalid color palette");
|
||||
return;
|
||||
}
|
||||
@ -286,7 +286,7 @@ app.registerExtension({
|
||||
return;
|
||||
}
|
||||
|
||||
if (colorPalette.colors.node_slot && typeof(colorPalette.colors.node_slot) !== "object") {
|
||||
if (colorPalette.colors.node_slot && typeof (colorPalette.colors.node_slot) !== "object") {
|
||||
app.ui.dialog.show("Invalid color palette colors.node_slot");
|
||||
return;
|
||||
}
|
||||
@ -301,7 +301,11 @@ app.registerExtension({
|
||||
}
|
||||
}
|
||||
|
||||
els.select.append($el("option", { textContent: colorPalette.name + " (custom)", value: "custom_" + colorPalette.id, selected: true }));
|
||||
els.select.append($el("option", {
|
||||
textContent: colorPalette.name + " (custom)",
|
||||
value: "custom_" + colorPalette.id,
|
||||
selected: true
|
||||
}));
|
||||
|
||||
setColorPalette("custom_" + colorPalette.id);
|
||||
await loadColorPalette(colorPalette);
|
||||
@ -350,7 +354,7 @@ app.registerExtension({
|
||||
if (colorPalette.colors.comfy_base) {
|
||||
const rootStyle = document.documentElement.style;
|
||||
for (const key in colorPalette.colors.comfy_base) {
|
||||
rootStyle.setProperty('--' + key, colorPalette.colors.comfy_base[key]);
|
||||
rootStyle.setProperty('--' + key, colorPalette.colors.comfy_base[key]);
|
||||
}
|
||||
}
|
||||
app.canvas.draw(true, true);
|
||||
@ -380,7 +384,7 @@ app.registerExtension({
|
||||
const fileInput = $el("input", {
|
||||
type: "file",
|
||||
accept: ".json",
|
||||
style: { display: "none" },
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
onchange: () => {
|
||||
let file = fileInput.files[0];
|
||||
@ -403,17 +407,25 @@ app.registerExtension({
|
||||
|
||||
for (const c in colorPalettes) {
|
||||
const colorPalette = colorPalettes[c];
|
||||
options.push($el("option", { textContent: colorPalette.name, value: colorPalette.id, selected: colorPalette.id === value }));
|
||||
options.push($el("option", {
|
||||
textContent: colorPalette.name,
|
||||
value: colorPalette.id,
|
||||
selected: colorPalette.id === value
|
||||
}));
|
||||
}
|
||||
|
||||
let customColorPalettes = getCustomColorPalettes();
|
||||
for (const c in customColorPalettes) {
|
||||
const colorPalette = customColorPalettes[c];
|
||||
options.push($el("option", { textContent: colorPalette.name + " (custom)", value: "custom_" + colorPalette.id, selected: "custom_" + colorPalette.id === value }));
|
||||
options.push($el("option", {
|
||||
textContent: colorPalette.name + " (custom)",
|
||||
value: "custom_" + colorPalette.id,
|
||||
selected: "custom_" + colorPalette.id === value
|
||||
}));
|
||||
}
|
||||
|
||||
return $el("div", [
|
||||
$el("label", { textContent: name || id }, [
|
||||
$el("label", {textContent: name || id}, [
|
||||
els.select = $el("select", {
|
||||
onchange: (e) => {
|
||||
setter(e.target.value);
|
||||
@ -427,12 +439,12 @@ app.registerExtension({
|
||||
const colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId);
|
||||
const colorPalette = await completeColorPalette(getColorPalette(colorPaletteId));
|
||||
const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string
|
||||
const blob = new Blob([json], { type: "application/json" });
|
||||
const blob = new Blob([json], {type: "application/json"});
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: colorPaletteId + ".json",
|
||||
style: { display: "none" },
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
});
|
||||
a.click();
|
||||
@ -455,12 +467,12 @@ app.registerExtension({
|
||||
onclick: async () => {
|
||||
const colorPalette = await getColorPaletteTemplate();
|
||||
const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string
|
||||
const blob = new Blob([json], { type: "application/json" });
|
||||
const blob = new Blob([json], {type: "application/json"});
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: "color_palette.json",
|
||||
style: { display: "none" },
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
});
|
||||
a.click();
|
||||
@ -496,15 +508,25 @@ app.registerExtension({
|
||||
return;
|
||||
}
|
||||
|
||||
if (colorPalettes[value]) {
|
||||
await loadColorPalette(colorPalettes[value]);
|
||||
let palette = colorPalettes[value];
|
||||
if (palette) {
|
||||
await loadColorPalette(palette);
|
||||
} else if (value.startsWith("custom_")) {
|
||||
value = value.substr(7);
|
||||
let customColorPalettes = getCustomColorPalettes();
|
||||
if (customColorPalettes[value]) {
|
||||
palette = customColorPalettes[value];
|
||||
await loadColorPalette(customColorPalettes[value]);
|
||||
}
|
||||
}
|
||||
|
||||
let {BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR} = palette.colors.litegraph_base;
|
||||
if (BACKGROUND_IMAGE === undefined || CLEAR_BACKGROUND_COLOR === undefined) {
|
||||
const base = colorPalettes["dark"].colors.litegraph_base;
|
||||
BACKGROUND_IMAGE = base.BACKGROUND_IMAGE;
|
||||
CLEAR_BACKGROUND_COLOR = base.CLEAR_BACKGROUND_COLOR;
|
||||
}
|
||||
app.canvas.updateBackground(BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR);
|
||||
},
|
||||
});
|
||||
},
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
<link rel="stylesheet" type="text/css" href="lib/litegraph.css" />
|
||||
<link rel="stylesheet" type="text/css" href="style.css" />
|
||||
<script type="text/javascript" src="lib/litegraph.core.js"></script>
|
||||
<script type="text/javascript" src="lib/litegraph.extensions.js" defer></script>
|
||||
<script type="module">
|
||||
import { app } from "/scripts/app.js";
|
||||
await app.setup();
|
||||
|
||||
21
web/lib/litegraph.extensions.js
Normal file
21
web/lib/litegraph.extensions.js
Normal file
@ -0,0 +1,21 @@
|
||||
/**
|
||||
* Changes the background color of the canvas.
|
||||
*
|
||||
* @method updateBackground
|
||||
* @param {image} String
|
||||
* @param {clearBackgroundColor} String
|
||||
* @
|
||||
*/
|
||||
LGraphCanvas.prototype.updateBackground = function (image, clearBackgroundColor) {
|
||||
this._bg_img = new Image();
|
||||
this._bg_img.name = image;
|
||||
this._bg_img.src = image;
|
||||
this._bg_img.onload = () => {
|
||||
this.draw(true, true);
|
||||
};
|
||||
this.background_image = image;
|
||||
|
||||
this.clear_background = true;
|
||||
this.clear_background_color = clearBackgroundColor;
|
||||
this._pattern = null
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user