mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-10 21:42:37 +08:00
Merge branch 'comfyanonymous:master' into feature/settings
This commit is contained in:
commit
9ef244e374
@ -156,10 +156,10 @@ class SDXLRefiner(BaseModel):
|
||||
|
||||
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
||||
flat = torch.flatten(torch.cat(out))[None, ]
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
@ -180,11 +180,11 @@ class SDXL(BaseModel):
|
||||
|
||||
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([target_width])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([target_height])))
|
||||
out.append(self.embedder(torch.Tensor([target_width])))
|
||||
flat = torch.flatten(torch.cat(out))[None, ]
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
17
comfy/sd.py
17
comfy/sd.py
@ -223,13 +223,28 @@ def model_lora_keys(model, key_map={}):
|
||||
counter += 1
|
||||
counter = 0
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
for b in range(24):
|
||||
clip_l_present = False
|
||||
for b in range(32):
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
|
||||
|
||||
#Locon stuff
|
||||
ds_counter = 0
|
||||
|
||||
21
nodes.py
21
nodes.py
@ -148,6 +148,25 @@ class ConditioningSetMask:
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class ConditioningZeroOut:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning": ("CONDITIONING", )}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "zero_out"
|
||||
|
||||
CATEGORY = "advanced/conditioning"
|
||||
|
||||
def zero_out(self, conditioning):
|
||||
c = []
|
||||
for t in conditioning:
|
||||
d = t[1].copy()
|
||||
if "pooled_output" in d:
|
||||
d["pooled_output"] = torch.zeros_like(d["pooled_output"])
|
||||
n = [torch.zeros_like(t[0]), d]
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class VAEDecode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -1350,6 +1369,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
|
||||
"LoadLatent": LoadLatent,
|
||||
"SaveLatent": SaveLatent,
|
||||
|
||||
"ConditioningZeroOut": ConditioningZeroOut,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user