Merge branch 'comfyanonymous:master' into bugfix/extra_data

This commit is contained in:
Dr.Lt.Data 2023-07-03 13:33:23 +09:00 committed by GitHub
commit 9f07df828c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 45 additions and 16 deletions

View File

@ -45,6 +45,8 @@ jobs:
sed -i '1i../ComfyUI' ./python310._pth
cd ..
git clone https://github.com/comfyanonymous/taesd
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable

View File

@ -37,6 +37,8 @@ jobs:
sed -i '1i../ComfyUI' ./python311._pth
cd ..
git clone https://github.com/comfyanonymous/taesd
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable_nightly_pytorch
mv python_embeded ComfyUI_windows_portable_nightly_pytorch

View File

@ -16,11 +16,14 @@ if model_management.xformers_enabled():
import xformers
import xformers.ops
# CrossAttn precision handling
import os
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
from comfy.cli_args import args
# CrossAttn precision handling
if args.dont_upcast_attention:
print("disabling upcasting of attention")
_ATTN_PRECISION = "fp16"
else:
_ATTN_PRECISION = "fp32"
def exists(val):
return val is not None

View File

@ -245,6 +245,8 @@ def unload_model():
n.cpu()
current_gpu_controlnets = []
def minimum_inference_memory():
return (768 * 1024 * 1024)
def load_model_gpu(model):
global current_loaded_model
@ -272,7 +274,7 @@ def load_model_gpu(model):
model_size = model.model_size()
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - (512 * 1024 * 1024)): #only switch to lowvram if really necessary
if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
current_loaded_model = model
@ -332,19 +334,19 @@ def unload_if_low_vram(model):
return model
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED:
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_offload_device():
if args.gpu_only or vram_state == VRAMState.SHARED:
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_device():
if args.gpu_only or vram_state == VRAMState.SHARED:
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
@ -358,7 +360,7 @@ def vae_device():
return get_torch_device()
def vae_offload_device():
if args.gpu_only or vram_state == VRAMState.SHARED:
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
@ -458,7 +460,7 @@ def is_device_cpu(device):
return True
return False
def should_use_fp16(device=None):
def should_use_fp16(device=None, model_params=0):
global xpu_available
global directml_enabled
@ -482,10 +484,27 @@ def should_use_fp16(device=None):
return True
props = torch.cuda.get_device_properties("cuda")
if props.major < 6:
return False
fp16_works = False
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
#when the model doesn't actually fit on the card
#TODO: actually test if GP106 and others have the same type of behavior
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
#FP32 is faster on those cards?
#FP16 is just broken on these cards
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
for x in nvidia_16_series:
if x in props.name:

View File

@ -1122,6 +1122,12 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
def calculate_parameters(sd, prefix):
params = 0
for k in sd.keys():
if k.startswith(prefix):
params += sd[k].nelement()
return params
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
sd = utils.load_torch_file(ckpt_path)
@ -1132,7 +1138,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
model = None
clip_target = None
fp16 = model_management.should_use_fp16()
parameters = calculate_parameters(sd, "model.diffusion_model.")
fp16 = model_management.should_use_fp16(model_params=parameters)
class WeightsLoader(torch.nn.Module):
pass

View File

@ -14,10 +14,6 @@ if os.name == "nt":
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
if __name__ == "__main__":
if args.dont_upcast_attention:
print("disabling upcasting of attention")
os.environ['ATTN_PRECISION'] = "fp16"
if args.cuda_device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
print("Set cuda device to:", args.cuda_device)