mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-26 22:30:19 +08:00
Merge branch 'master' of github.com:comfyanonymous/ComfyUI
This commit is contained in:
commit
a31e5f216d
@ -1,6 +1,6 @@
|
|||||||
# This file is automatically generated by the build process when version is
|
# This file is automatically generated by the build process when version is
|
||||||
# updated in pyproject.toml.
|
# updated in pyproject.toml.
|
||||||
__version__ = "0.3.56"
|
__version__ = "0.3.57"
|
||||||
|
|
||||||
# This deals with workspace issues
|
# This deals with workspace issues
|
||||||
from comfy_compatibility.workspace import auto_patch_workspace_and_restart
|
from comfy_compatibility.workspace import auto_patch_workspace_and_restart
|
||||||
|
|||||||
@ -637,7 +637,7 @@ class ContinuousTransformer(nn.Module):
|
|||||||
# Attention layers
|
# Attention layers
|
||||||
|
|
||||||
if self.rotary_pos_emb is not None:
|
if self.rotary_pos_emb is not None:
|
||||||
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
|
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=torch.float, device=x.device)
|
||||||
else:
|
else:
|
||||||
rotary_pos_emb = None
|
rotary_pos_emb = None
|
||||||
|
|
||||||
|
|||||||
@ -1,6 +1,10 @@
|
|||||||
#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
|
#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
from typing_extensions import override
|
||||||
|
|
||||||
|
from comfy_api.latest import ComfyExtension, io
|
||||||
|
|
||||||
|
|
||||||
def loglinear_interp(t_steps, num_steps):
|
def loglinear_interp(t_steps, num_steps):
|
||||||
"""
|
"""
|
||||||
@ -19,25 +23,30 @@ NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.694615152
|
|||||||
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
|
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
|
||||||
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
|
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
|
||||||
|
|
||||||
class AlignYourStepsScheduler:
|
class AlignYourStepsScheduler(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls) -> io.Schema:
|
||||||
return {"required":
|
return io.Schema(
|
||||||
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
node_id="AlignYourStepsScheduler",
|
||||||
"steps": ("INT", {"default": 10, "min": 1, "max": 10000}),
|
category="sampling/custom_sampling/schedulers",
|
||||||
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
inputs=[
|
||||||
}
|
io.Combo.Input("model_type", options=["SD1", "SDXL", "SVD"]),
|
||||||
}
|
io.Int.Input("steps", default=10, min=1, max=10000),
|
||||||
RETURN_TYPES = ("SIGMAS",)
|
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
],
|
||||||
|
outputs=[io.Sigmas.Output()],
|
||||||
FUNCTION = "get_sigmas"
|
)
|
||||||
|
|
||||||
def get_sigmas(self, model_type, steps, denoise):
|
def get_sigmas(self, model_type, steps, denoise):
|
||||||
|
# Deprecated: use the V3 schema's `execute` method instead of this.
|
||||||
|
return AlignYourStepsScheduler().execute(model_type, steps, denoise).result
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def execute(cls, model_type, steps, denoise) -> io.NodeOutput:
|
||||||
total_steps = steps
|
total_steps = steps
|
||||||
if denoise < 1.0:
|
if denoise < 1.0:
|
||||||
if denoise <= 0.0:
|
if denoise <= 0.0:
|
||||||
return (torch.FloatTensor([]),)
|
return io.NodeOutput(torch.FloatTensor([]))
|
||||||
total_steps = round(steps * denoise)
|
total_steps = round(steps * denoise)
|
||||||
|
|
||||||
sigmas = NOISE_LEVELS[model_type][:]
|
sigmas = NOISE_LEVELS[model_type][:]
|
||||||
@ -46,8 +55,15 @@ class AlignYourStepsScheduler:
|
|||||||
|
|
||||||
sigmas = sigmas[-(total_steps + 1):]
|
sigmas = sigmas[-(total_steps + 1):]
|
||||||
sigmas[-1] = 0
|
sigmas[-1] = 0
|
||||||
return (torch.FloatTensor(sigmas), )
|
return io.NodeOutput(torch.FloatTensor(sigmas))
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
|
||||||
"AlignYourStepsScheduler": AlignYourStepsScheduler,
|
class AlignYourStepsExtension(ComfyExtension):
|
||||||
}
|
@override
|
||||||
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||||
|
return [
|
||||||
|
AlignYourStepsScheduler,
|
||||||
|
]
|
||||||
|
|
||||||
|
async def comfy_entrypoint() -> AlignYourStepsExtension:
|
||||||
|
return AlignYourStepsExtension()
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "comfyui"
|
name = "comfyui"
|
||||||
version = "0.3.56"
|
version = "0.3.57"
|
||||||
description = "An installable version of ComfyUI"
|
description = "An installable version of ComfyUI"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
authors = [
|
authors = [
|
||||||
@ -19,7 +19,7 @@ classifiers = [
|
|||||||
|
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"comfyui-frontend-package>=1.25.11",
|
"comfyui-frontend-package>=1.25.11",
|
||||||
"comfyui-workflow-templates>=0.1.73",
|
"comfyui-workflow-templates>=0.1.75",
|
||||||
"comfyui-embedded-docs>=0.2.6",
|
"comfyui-embedded-docs>=0.2.6",
|
||||||
"torch",
|
"torch",
|
||||||
"torchvision",
|
"torchvision",
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user