mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-17 08:52:34 +08:00
Convert Chroma Radiance nodes to V3 schema.
This commit is contained in:
parent
731a892a31
commit
a3e5850c8b
@ -1,127 +1,138 @@
|
||||
from typing_extensions import override
|
||||
|
||||
import torch
|
||||
|
||||
import comfy.model_management
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
import nodes
|
||||
|
||||
class EmptyChromaRadianceLatentImage:
|
||||
def __init__(self):
|
||||
self.device = comfy.model_management.intermediate_device()
|
||||
class EmptyChromaRadianceLatentImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="EmptyChromaRadianceLatentImage",
|
||||
category="latent/chroma_radiance",
|
||||
inputs=[
|
||||
io.Int.Input(id="width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input(id="height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input(id="batch_size", default=1, min=1, max=4096),
|
||||
],
|
||||
outputs=[io.Latent().Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||
"height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "go"
|
||||
|
||||
CATEGORY = "latent/chroma_radiance"
|
||||
|
||||
def go(self, *, width, height, batch_size=1):
|
||||
latent = torch.zeros((batch_size, 3, height, width), device=self.device)
|
||||
return ({"samples":latent}, )
|
||||
def execute(cls, *, width: int, height: int, batch_size: int=1) -> io.NodeOutput:
|
||||
latent = torch.zeros((batch_size, 3, height, width), device=comfy.model_management.intermediate_device())
|
||||
return io.NodeOutput({"samples":latent})
|
||||
|
||||
|
||||
class ChromaRadianceLatentToImage:
|
||||
def __init__(self):
|
||||
self.device = comfy.model_management.intermediate_device()
|
||||
|
||||
class ChromaRadianceStubVAE:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> dict:
|
||||
return {"required": {"latent": ("LATENT",)}}
|
||||
|
||||
DESCRIPTION = "For use with Chroma Radiance. Converts an input LATENT to IMAGE."
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "go"
|
||||
|
||||
CATEGORY = "latent/chroma_radiance"
|
||||
|
||||
def go(self, *, latent: dict) -> tuple[torch.Tensor]:
|
||||
img = latent["samples"].to(device=self.device, dtype=torch.float32, copy=True)
|
||||
img = img.clamp_(-1, 1).movedim(1, -1).contiguous()
|
||||
img += 1.0
|
||||
img *= 0.5
|
||||
return (img.clamp_(0, 1),)
|
||||
|
||||
class ChromaRadianceImageToLatent:
|
||||
def __init__(self):
|
||||
self.device = comfy.model_management.intermediate_device()
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> dict:
|
||||
return {"required": {"image": ("IMAGE",)}}
|
||||
|
||||
DESCRIPTION = "For use with Chroma Radiance. Converts an input IMAGE to LATENT. Note: Radiance requires inputs with width/height that are multiples of 16 so your image will be cropped if necessary."
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "go"
|
||||
|
||||
CATEGORY = "latent/chroma_radiance"
|
||||
|
||||
def go(self, *, image: torch.Tensor) -> tuple[dict]:
|
||||
if image.ndim == 3:
|
||||
image = image.unsqueeze(0)
|
||||
elif image.ndim != 4:
|
||||
def encode(cls, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
|
||||
device = comfy.model_management.intermediate_device()
|
||||
if pixels.ndim == 3:
|
||||
pixels = pixels.unsqueeze(0)
|
||||
elif pixels.ndim != 4:
|
||||
raise ValueError("Unexpected input image shape")
|
||||
dims = image.shape[1:-1]
|
||||
dims = pixels.shape[1:-1]
|
||||
for d in range(len(dims)):
|
||||
d_adj = (dims[d] // 16) * 16
|
||||
if d_adj == d:
|
||||
continue
|
||||
d_offset = (dims[d] % 16) // 2
|
||||
image = image.narrow(d + 1, d_offset, d_adj)
|
||||
h, w, c = image.shape[1:]
|
||||
pixels = pixels.narrow(d + 1, d_offset, d_adj)
|
||||
h, w, c = pixels.shape[1:]
|
||||
if h < 16 or w < 16:
|
||||
raise ValueError("Chroma Radiance image inputs must have height/width of at least 16 pixels.")
|
||||
image = image[..., :3]
|
||||
pixels= pixels[..., :3]
|
||||
if c == 1:
|
||||
image = image.expand(-1, -1, -1, 3)
|
||||
pixels = pixels.expand(-1, -1, -1, 3)
|
||||
elif c != 3:
|
||||
raise ValueError("Unexpected number of channels in input image")
|
||||
latent = image.to(device=self.device, dtype=torch.float32, copy=True)
|
||||
latent = pixels.to(device=device, dtype=torch.float32, copy=True)
|
||||
latent = latent.clamp_(0, 1).movedim(-1, 1).contiguous()
|
||||
latent -= 0.5
|
||||
latent *= 2
|
||||
return ({"samples": latent.clamp_(-1, 1)},)
|
||||
|
||||
class ChromaRadianceStubVAE:
|
||||
def __init__(self):
|
||||
self.image_to_latent = ChromaRadianceImageToLatent()
|
||||
self.latent_to_image = ChromaRadianceLatentToImage()
|
||||
|
||||
DESCRIPTION = "For use with Chroma Radiance. Allows converting between latent and image types with nodes that require a VAE input. Note: Radiance requires inputs with width/height that are multiples of 16 so your image will be cropped if necessary."
|
||||
RETURN_TYPES = ("VAE",)
|
||||
FUNCTION = "go"
|
||||
|
||||
CATEGORY = "vae/chroma_radiance"
|
||||
return latent.clamp_(-1, 1)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> dict:
|
||||
return {}
|
||||
|
||||
def go(self) -> tuple["ChromaRadianceStubVAE"]:
|
||||
return (self,)
|
||||
|
||||
def encode(self, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
|
||||
return self.image_to_latent.go(image=pixels)[0]["samples"]
|
||||
def decode(cls, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
|
||||
device = comfy.model_management.intermediate_device()
|
||||
img = samples.to(device=device, dtype=torch.float32, copy=True)
|
||||
img = img.clamp_(-1, 1).movedim(1, -1).contiguous()
|
||||
img += 1.0
|
||||
img *= 0.5
|
||||
return img.clamp_(0, 1)
|
||||
|
||||
encode_tiled = encode
|
||||
|
||||
def decode(self, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
|
||||
return self.latent_to_image.go(latent={"samples": samples})[0]
|
||||
|
||||
decode_tiled = decode
|
||||
|
||||
def spacial_compression_decode(self) -> int:
|
||||
@classmethod
|
||||
def spacial_compression_decode(cls) -> int:
|
||||
return 1
|
||||
|
||||
spacial_compression_encode = spacial_compression_decode
|
||||
temporal_compression_decode = spacial_compression_decode
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"EmptyChromaRadianceLatentImage": EmptyChromaRadianceLatentImage,
|
||||
"ChromaRadianceLatentToImage": ChromaRadianceLatentToImage,
|
||||
"ChromaRadianceImageToLatent": ChromaRadianceImageToLatent,
|
||||
"ChromaRadianceStubVAE": ChromaRadianceStubVAE,
|
||||
}
|
||||
class ChromaRadianceLatentToImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="ChromaRadianceLatentToImage",
|
||||
category="latent/chroma_radiance",
|
||||
description="For use with Chroma Radiance. Converts an input LATENT to IMAGE.",
|
||||
inputs=[io.Latent.Input(id="latent")],
|
||||
outputs=[io.Image.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, *, latent: dict) -> io.NodeOutput:
|
||||
return io.NodeOutput(ChromaRadianceStubVAE.decode(latent["samples"]))
|
||||
|
||||
|
||||
class ChromaRadianceImageToLatent(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="ChromaRadianceImageToLatent",
|
||||
category="latent/chroma_radiance",
|
||||
description="For use with Chroma Radiance. Converts an input IMAGE to LATENT. Note: Radiance requires inputs with width/height that are multiples of 16 so your image will be cropped if necessary.",
|
||||
inputs=[io.Image.Input(id="image")],
|
||||
outputs=[io.Latent.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, *, image: torch.Tensor) -> io.NodeOutput:
|
||||
return io.NodeOutput({"samples": ChromaRadianceStubVAE.encode(image)})
|
||||
|
||||
|
||||
class ChromaRadianceStubVAENode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="ChromaRadianceStubVAE",
|
||||
category="vae/chroma_radiance",
|
||||
description="For use with Chroma Radiance. Allows converting between latent and image types with nodes that require a VAE input. Note: Radiance requires inputs with width/height that are multiples of 16 so your image will be cropped if necessary.",
|
||||
outputs=[io.Vae.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls) -> io.NodeOutput:
|
||||
return io.NodeOutput(ChromaRadianceStubVAE())
|
||||
|
||||
|
||||
class ChromaRadianceExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
EmptyChromaRadianceLatentImage,
|
||||
ChromaRadianceLatentToImage,
|
||||
ChromaRadianceImageToLatent,
|
||||
ChromaRadianceStubVAENode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> ChromaRadianceExtension:
|
||||
return ChromaRadianceExtension()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user