updated the hunyuan moe forward

splitted the forward statement between ready and pending experts
This commit is contained in:
Yousef Rafat 2025-12-01 22:58:53 +02:00
parent 76e14d69b2
commit a58133f188
3 changed files with 63 additions and 39 deletions

View File

@ -669,6 +669,8 @@ class HunyuanMoE(nn.Module):
self.moe_lru = moe_lru self.moe_lru = moe_lru
def forward(self, hidden_states): def forward(self, hidden_states):
# do the forward statement over the already loaded experts to give time for the pending experts
# makes the gpu not sit idle
if not INIT_MOE: if not INIT_MOE:
torch.cuda.set_device(0) torch.cuda.set_device(0)
else: else:
@ -696,50 +698,68 @@ class HunyuanMoE(nn.Module):
else: else:
tokens_padded = dispatched_input[used_indices] tokens_padded = dispatched_input[used_indices]
def compute_expert_outputs(experts_list, tokens_padded, device):
l1, l2 = [], [] l1, l2 = [], []
for i in used_indices: for m in experts_list:
expert = self.experts[i] l1.append(m.gate_and_up_proj)
if isinstance(expert, (asyncio.Future, concurrent.futures.Future)): l2.append(m.down_proj)
expert = expert.result()
expert = expert.to(device)
l1.append(expert.gate_and_up_proj)
l2.append(expert.down_proj)
compute_device = hidden_states.device W1 = torch.stack([m.weight.to(device) for m in l1], dim=0)
l1 = [m.to(compute_device) for m in l1]
W1 = torch.stack([m.weight for m in l1], dim=0)
del l1
W1_T = W1.transpose(1, 2) W1_T = W1.transpose(1, 2)
x = torch.bmm(tokens_padded.to(device), W1_T)
del W1
x = torch.bmm(tokens_padded, W1_T)
del W1_T, tokens_padded
x1, x2 = x.chunk(2, dim=2) x1, x2 = x.chunk(2, dim=2)
gated = x1 * F.silu(x2) gated = x1 * F.silu(x2)
l2 = [m.to(compute_device) for m in l2] W2 = torch.stack([m.weight.to(device) for m in l2], dim=0)
W2 = torch.stack([m.weight for m in l2], dim=0)
del l2
W2_T = W2.transpose(1, 2) W2_T = W2.transpose(1, 2)
del W2
out_padded = torch.bmm(gated, W2_T) out_padded = torch.bmm(gated, W2_T)
del W2_T return out_padded
while not enough_vram(3*(1024 ** 3)): out_parts = {}
event = self.moe_lru.last_offload_event ready_indices, pending_indices, pending_futures = [], [], {}
if event is not None and not event.query():
time.sleep(0.001)
combine_weights_used = combine_weights[:, used_indices, :] for i in used_indices:
expert = self.experts[i]
if isinstance(expert, asyncio.Task) or isinstance(expert, asyncio.Future):
if expert.done():
self.experts[i] = expert.result()
ready_indices.append(i)
else:
pending_indices.append(i)
pending_futures[i] = expert
else:
ready_indices.append(i)
ready_pos = [used_indices.index(i) for i in ready_indices]
pending_pos = [used_indices.index(i) for i in pending_indices]
combined_output = torch.einsum("suc,ucm->sm", if ready_indices:
combine_weights_used.type_as(out_padded), ready_experts = [self.experts[i] if not (isinstance(self.experts[i], asyncio.Task) or isinstance(self.experts[i], asyncio.Future))
out_padded else self.experts[i].result()
) for i in ready_indices]
tokens_for_ready = tokens_padded[ready_pos]
out_ready = compute_expert_outputs(ready_experts, tokens_for_ready, device)
for idx_pos, expert_idx in enumerate(ready_indices):
out_parts[expert_idx] = out_ready[idx_pos:idx_pos+1]
del x, x1, x2, gated, out_padded for i in pending_indices:
expert = self.experts[i]
if isinstance(expert, asyncio.Future):
loaded_expert = expert.result()
self.experts[i] = loaded_expert
if pending_indices:
pending_experts = [self.experts[i] for i in pending_indices]
tokens_for_pending = tokens_padded[pending_pos]
out_pending = compute_expert_outputs(pending_experts, tokens_for_pending, device)
for idx_pos, expert_idx in enumerate(pending_indices):
out_parts[expert_idx] = out_pending[idx_pos:idx_pos+1]
out_list_ordered = [out_parts[i] for i in used_indices]
out_padded_all = torch.cat(out_list_ordered, dim=0)
combined_output = torch.einsum("suc,uco->so", combine_weights, out_padded_all)
del out_padded_all, out_list_ordered, out_parts
combined_output = combined_output.reshape(bsz, seq_len, hidden_size) combined_output = combined_output.reshape(bsz, seq_len, hidden_size)

View File

@ -1339,7 +1339,7 @@ class HunyuanImage3(supported_models_base.BASE):
latent_format = latent_formats.HunyuanImage3 latent_format = latent_formats.HunyuanImage3
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
state_dict["text_encoders.wte"] = state_dict["model.model.wte"] self.wte_sd = state_dict["model.model.wte"]
state_dict.pop("model.model.wte", None) state_dict.pop("model.model.wte", None)
model = model_base.HunyuanImage3(self, device = device) model = model_base.HunyuanImage3(self, device = device)
@ -1349,6 +1349,8 @@ class HunyuanImage3(supported_models_base.BASE):
return model return model
def clip_target(self, state_dict={}): def clip_target(self, state_dict={}):
clip = comfy.text_encoders.hunyuan_image.HunyuanImage3
clip.embed_wte = self.wte_sd
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_image.HunyuanImage3Tokenizer, comfy.text_encoders.hunyuan_image.HunyuanImage3) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_image.HunyuanImage3Tokenizer, comfy.text_encoders.hunyuan_image.HunyuanImage3)
class HunyuanImage21(HunyuanVideo): class HunyuanImage21(HunyuanVideo):

View File

@ -7,9 +7,11 @@ import os
import re import re
class HunyuanImage3TextEncoder(torch.nn.Module): class HunyuanImage3TextEncoder(torch.nn.Module):
embed_wte = None
def __init__(self): def __init__(self):
super().__init__() super().__init__()
self.wte = torch.nn.Embedding(133120, 4096, 128009) self.wte = torch.nn.Embedding(133120, 4096, padding_idx = 128009)
self.wte.data = self.embed_wte
def forward(self, x): def forward(self, x):
out = self.wte(x) out = self.wte(x)
return out, torch.empty_like(out) return out, torch.empty_like(out)