Merge branch 'master' into feat/api-nodes/bria-rmbg
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Build package / Build Test (3.11) (push) Waiting to run
Build package / Build Test (3.10) (push) Waiting to run
Build package / Build Test (3.12) (push) Waiting to run
Build package / Build Test (3.13) (push) Waiting to run
Build package / Build Test (3.14) (push) Waiting to run

This commit is contained in:
Jedrzej Kosinski 2026-02-15 15:46:07 -08:00 committed by GitHub
commit a5c65ab84c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 629 additions and 48 deletions

105
app/node_replace_manager.py Normal file
View File

@ -0,0 +1,105 @@
from __future__ import annotations
from aiohttp import web
from typing import TYPE_CHECKING, TypedDict
if TYPE_CHECKING:
from comfy_api.latest._io_public import NodeReplace
from comfy_execution.graph_utils import is_link
import nodes
class NodeStruct(TypedDict):
inputs: dict[str, str | int | float | bool | tuple[str, int]]
class_type: str
_meta: dict[str, str]
def copy_node_struct(node_struct: NodeStruct, empty_inputs: bool = False) -> NodeStruct:
new_node_struct = node_struct.copy()
if empty_inputs:
new_node_struct["inputs"] = {}
else:
new_node_struct["inputs"] = node_struct["inputs"].copy()
new_node_struct["_meta"] = node_struct["_meta"].copy()
return new_node_struct
class NodeReplaceManager:
"""Manages node replacement registrations."""
def __init__(self):
self._replacements: dict[str, list[NodeReplace]] = {}
def register(self, node_replace: NodeReplace):
"""Register a node replacement mapping."""
self._replacements.setdefault(node_replace.old_node_id, []).append(node_replace)
def get_replacement(self, old_node_id: str) -> list[NodeReplace] | None:
"""Get replacements for an old node ID."""
return self._replacements.get(old_node_id)
def has_replacement(self, old_node_id: str) -> bool:
"""Check if a replacement exists for an old node ID."""
return old_node_id in self._replacements
def apply_replacements(self, prompt: dict[str, NodeStruct]):
connections: dict[str, list[tuple[str, str, int]]] = {}
need_replacement: set[str] = set()
for node_number, node_struct in prompt.items():
class_type = node_struct["class_type"]
# need replacement if not in NODE_CLASS_MAPPINGS and has replacement
if class_type not in nodes.NODE_CLASS_MAPPINGS.keys() and self.has_replacement(class_type):
need_replacement.add(node_number)
# keep track of connections
for input_id, input_value in node_struct["inputs"].items():
if is_link(input_value):
conn_number = input_value[0]
connections.setdefault(conn_number, []).append((node_number, input_id, input_value[1]))
for node_number in need_replacement:
node_struct = prompt[node_number]
class_type = node_struct["class_type"]
replacements = self.get_replacement(class_type)
if replacements is None:
continue
# just use the first replacement
replacement = replacements[0]
new_node_id = replacement.new_node_id
# if replacement is not a valid node, skip trying to replace it as will only cause confusion
if new_node_id not in nodes.NODE_CLASS_MAPPINGS.keys():
continue
# first, replace node id (class_type)
new_node_struct = copy_node_struct(node_struct, empty_inputs=True)
new_node_struct["class_type"] = new_node_id
# TODO: consider replacing display_name in _meta as well for error reporting purposes; would need to query node schema
# second, replace inputs
if replacement.input_mapping is not None:
for input_map in replacement.input_mapping:
if "set_value" in input_map:
new_node_struct["inputs"][input_map["new_id"]] = input_map["set_value"]
elif "old_id" in input_map:
new_node_struct["inputs"][input_map["new_id"]] = node_struct["inputs"][input_map["old_id"]]
# finalize input replacement
prompt[node_number] = new_node_struct
# third, replace outputs
if replacement.output_mapping is not None:
# re-mapping outputs requires changing the input values of nodes that receive connections from this one
if node_number in connections:
for conns in connections[node_number]:
conn_node_number, conn_input_id, old_output_idx = conns
for output_map in replacement.output_mapping:
if output_map["old_idx"] == old_output_idx:
new_output_idx = output_map["new_idx"]
previous_input = prompt[conn_node_number]["inputs"][conn_input_id]
previous_input[1] = new_output_idx
def as_dict(self):
"""Serialize all replacements to dict."""
return {
k: [v.as_dict() for v in v_list]
for k, v_list in self._replacements.items()
}
def add_routes(self, routes):
@routes.get("/node_replacements")
async def get_node_replacements(request):
return web.json_response(self.as_dict())

View File

@ -1,13 +0,0 @@
import pickle
load = pickle.load
class Empty:
pass
class Unpickler(pickle.Unpickler):
def find_class(self, module, name):
#TODO: safe unpickle
if module.startswith("pytorch_lightning"):
return Empty
return super().find_class(module, name)

View File

@ -20,7 +20,7 @@
import torch
import math
import struct
import comfy.checkpoint_pickle
import comfy.memory_management
import safetensors.torch
import numpy as np
from PIL import Image
@ -38,26 +38,26 @@ import warnings
MMAP_TORCH_FILES = args.mmap_torch_files
DISABLE_MMAP = args.disable_mmap
ALWAYS_SAFE_LOAD = False
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
if True: # ckpt/pt file whitelist for safe loading of old sd files
class ModelCheckpoint:
pass
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
def scalar(*args, **kwargs):
from numpy.core.multiarray import scalar as sc
return sc(*args, **kwargs)
return None
scalar.__module__ = "numpy.core.multiarray"
from numpy import dtype
from numpy.dtypes import Float64DType
from _codecs import encode
def encode(*args, **kwargs): # no longer necessary on newer torch
return None
encode.__module__ = "_codecs"
torch.serialization.add_safe_globals([ModelCheckpoint, scalar, dtype, Float64DType, encode])
ALWAYS_SAFE_LOAD = True
logging.info("Checkpoint files will always be loaded safely.")
else:
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
# Current as of safetensors 0.7.0
_TYPES = {
@ -140,11 +140,8 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if MMAP_TORCH_FILES:
torch_args["mmap"] = True
if safe_load or ALWAYS_SAFE_LOAD:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
else:
logging.warning("WARNING: loading {} unsafely, upgrade your pytorch to 2.4 or newer to load this file safely.".format(ckpt))
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:

View File

@ -14,6 +14,7 @@ SERVER_FEATURE_FLAGS: dict[str, Any] = {
"supports_preview_metadata": True,
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
"extension": {"manager": {"supports_v4": True}},
"node_replacements": True,
}

View File

@ -21,6 +21,17 @@ class ComfyAPI_latest(ComfyAPIBase):
VERSION = "latest"
STABLE = False
def __init__(self):
super().__init__()
self.node_replacement = self.NodeReplacement()
self.execution = self.Execution()
class NodeReplacement(ProxiedSingleton):
async def register(self, node_replace: io.NodeReplace) -> None:
"""Register a node replacement mapping."""
from server import PromptServer
PromptServer.instance.node_replace_manager.register(node_replace)
class Execution(ProxiedSingleton):
async def set_progress(
self,
@ -73,8 +84,6 @@ class ComfyAPI_latest(ComfyAPIBase):
image=to_display,
)
execution: Execution
class ComfyExtension(ABC):
async def on_load(self) -> None:
"""

View File

@ -2030,6 +2030,68 @@ class _UIOutput(ABC):
...
class InputMapOldId(TypedDict):
"""Map an old node input to a new node input by ID."""
new_id: str
old_id: str
class InputMapSetValue(TypedDict):
"""Set a specific value for a new node input."""
new_id: str
set_value: Any
InputMap = InputMapOldId | InputMapSetValue
"""
Input mapping for node replacement. Type is inferred by dictionary keys:
- {"new_id": str, "old_id": str} - maps old input to new input
- {"new_id": str, "set_value": Any} - sets a specific value for new input
"""
class OutputMap(TypedDict):
"""Map outputs of node replacement via indexes."""
new_idx: int
old_idx: int
class NodeReplace:
"""
Defines a possible node replacement, mapping inputs and outputs of the old node to the new node.
Also supports assigning specific values to the input widgets of the new node.
Args:
new_node_id: The class name of the new replacement node.
old_node_id: The class name of the deprecated node.
old_widget_ids: Ordered list of input IDs for widgets that may not have an input slot
connected. The workflow JSON stores widget values by their relative position index,
not by ID. This list maps those positional indexes to input IDs, enabling the
replacement system to correctly identify widget values during node migration.
input_mapping: List of input mappings from old node to new node.
output_mapping: List of output mappings from old node to new node.
"""
def __init__(self,
new_node_id: str,
old_node_id: str,
old_widget_ids: list[str] | None=None,
input_mapping: list[InputMap] | None=None,
output_mapping: list[OutputMap] | None=None,
):
self.new_node_id = new_node_id
self.old_node_id = old_node_id
self.old_widget_ids = old_widget_ids
self.input_mapping = input_mapping
self.output_mapping = output_mapping
def as_dict(self):
"""Create serializable representation of the node replacement."""
return {
"new_node_id": self.new_node_id,
"old_node_id": self.old_node_id,
"old_widget_ids": self.old_widget_ids,
"input_mapping": list(self.input_mapping) if self.input_mapping else None,
"output_mapping": list(self.output_mapping) if self.output_mapping else None,
}
__all__ = [
"FolderType",
"UploadType",
@ -2121,4 +2183,5 @@ __all__ = [
"ImageCompare",
"PriceBadgeDepends",
"PriceBadge",
"NodeReplace",
]

View File

@ -64,3 +64,23 @@ class To3DProTaskResultResponse(BaseModel):
class To3DProTaskQueryRequest(BaseModel):
JobId: str = Field(...)
class To3DUVFileInput(BaseModel):
Type: str = Field(..., description="File type: GLB, OBJ, or FBX")
Url: str = Field(...)
class To3DUVTaskRequest(BaseModel):
File: To3DUVFileInput = Field(...)
class TextureEditImageInfo(BaseModel):
Url: str = Field(...)
class TextureEditTaskRequest(BaseModel):
File3D: To3DUVFileInput = Field(...)
Image: TextureEditImageInfo | None = Field(None)
Prompt: str | None = Field(None)
EnablePBR: bool | None = Field(None)

View File

@ -1,31 +1,48 @@
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api.latest import IO, ComfyExtension, Input, Types
from comfy_api_nodes.apis.hunyuan3d import (
Hunyuan3DViewImage,
InputGenerateType,
ResultFile3D,
TextureEditTaskRequest,
To3DProTaskCreateResponse,
To3DProTaskQueryRequest,
To3DProTaskRequest,
To3DProTaskResultResponse,
To3DUVFileInput,
To3DUVTaskRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_file_3d,
download_url_to_image_tensor,
downscale_image_tensor_by_max_side,
poll_op,
sync_op,
upload_3d_model_to_comfyapi,
upload_image_to_comfyapi,
validate_image_dimensions,
validate_string,
)
def get_file_from_response(response_objs: list[ResultFile3D], file_type: str) -> ResultFile3D | None:
def _is_tencent_rate_limited(status: int, body: object) -> bool:
return (
status == 400
and isinstance(body, dict)
and "RequestLimitExceeded" in str(body.get("Response", {}).get("Error", {}).get("Code", ""))
)
def get_file_from_response(
response_objs: list[ResultFile3D], file_type: str, raise_if_not_found: bool = True
) -> ResultFile3D | None:
for i in response_objs:
if i.Type.lower() == file_type.lower():
return i
if raise_if_not_found:
raise ValueError(f"'{file_type}' file type is not found in the response.")
return None
@ -35,7 +52,7 @@ class TencentTextToModelNode(IO.ComfyNode):
def define_schema(cls):
return IO.Schema(
node_id="TencentTextToModelNode",
display_name="Hunyuan3D: Text to Model (Pro)",
display_name="Hunyuan3D: Text to Model",
category="api node/3d/Tencent",
inputs=[
IO.Combo.Input(
@ -120,6 +137,7 @@ class TencentTextToModelNode(IO.ComfyNode):
EnablePBR=generate_type.get("pbr", None),
PolygonType=generate_type.get("polygon_type", None),
),
is_rate_limited=_is_tencent_rate_limited,
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
@ -131,11 +149,14 @@ class TencentTextToModelNode(IO.ComfyNode):
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
return IO.NodeOutput(
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
f"{task_id}.glb",
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
),
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
),
)
@ -145,7 +166,7 @@ class TencentImageToModelNode(IO.ComfyNode):
def define_schema(cls):
return IO.Schema(
node_id="TencentImageToModelNode",
display_name="Hunyuan3D: Image(s) to Model (Pro)",
display_name="Hunyuan3D: Image(s) to Model",
category="api node/3d/Tencent",
inputs=[
IO.Combo.Input(
@ -268,6 +289,7 @@ class TencentImageToModelNode(IO.ComfyNode):
EnablePBR=generate_type.get("pbr", None),
PolygonType=generate_type.get("polygon_type", None),
),
is_rate_limited=_is_tencent_rate_limited,
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
@ -279,11 +301,257 @@ class TencentImageToModelNode(IO.ComfyNode):
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
return IO.NodeOutput(
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
f"{task_id}.glb",
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
),
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
),
)
class TencentModelTo3DUVNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TencentModelTo3DUVNode",
display_name="Hunyuan3D: Model to UV",
category="api node/3d/Tencent",
description="Perform UV unfolding on a 3D model to generate UV texture. "
"Input model must have less than 30000 faces.",
inputs=[
IO.MultiType.Input(
"model_3d",
types=[IO.File3DGLB, IO.File3DOBJ, IO.File3DFBX, IO.File3DAny],
tooltip="Input 3D model (GLB, OBJ, or FBX)",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.File3DOBJ.Output(display_name="OBJ"),
IO.File3DFBX.Output(display_name="FBX"),
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.2}'),
)
SUPPORTED_FORMATS = {"glb", "obj", "fbx"}
@classmethod
async def execute(
cls,
model_3d: Types.File3D,
seed: int,
) -> IO.NodeOutput:
_ = seed
file_format = model_3d.format.lower()
if file_format not in cls.SUPPORTED_FORMATS:
raise ValueError(
f"Unsupported file format: '{file_format}'. "
f"Supported formats: {', '.join(sorted(cls.SUPPORTED_FORMATS))}."
)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv", method="POST"),
response_model=To3DProTaskCreateResponse,
data=To3DUVTaskRequest(
File=To3DUVFileInput(
Type=file_format.upper(),
Url=await upload_3d_model_to_comfyapi(cls, model_3d, file_format),
)
),
is_rate_limited=_is_tencent_rate_limited,
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj"),
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
await download_url_to_image_tensor(get_file_from_response(result.ResultFile3Ds, "image").Url),
)
class Tencent3DTextureEditNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Tencent3DTextureEditNode",
display_name="Hunyuan3D: 3D Texture Edit",
category="api node/3d/Tencent",
description="After inputting the 3D model, perform 3D model texture redrawing.",
inputs=[
IO.MultiType.Input(
"model_3d",
types=[IO.File3DFBX, IO.File3DAny],
tooltip="3D model in FBX format. Model should have less than 100000 faces.",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Describes texture editing. Supports up to 1024 UTF-8 characters.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd": 0.6}""",
),
)
@classmethod
async def execute(
cls,
model_3d: Types.File3D,
prompt: str,
seed: int,
) -> IO.NodeOutput:
_ = seed
file_format = model_3d.format.lower()
if file_format != "fbx":
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
validate_string(prompt, field_name="prompt", min_length=1, max_length=1024)
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit", method="POST"),
response_model=To3DProTaskCreateResponse,
data=TextureEditTaskRequest(
File3D=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
Prompt=prompt,
EnablePBR=True,
),
is_rate_limited=_is_tencent_rate_limited,
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb"),
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
)
class Tencent3DPartNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Tencent3DPartNode",
display_name="Hunyuan3D: 3D Part",
category="api node/3d/Tencent",
description="Automatically perform component identification and generation based on the model structure.",
inputs=[
IO.MultiType.Input(
"model_3d",
types=[IO.File3DFBX, IO.File3DAny],
tooltip="3D model in FBX format. Model should have less than 30000 faces.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.6}'),
)
@classmethod
async def execute(
cls,
model_3d: Types.File3D,
seed: int,
) -> IO.NodeOutput:
_ = seed
file_format = model_3d.format.lower()
if file_format != "fbx":
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part", method="POST"),
response_model=To3DProTaskCreateResponse,
data=To3DUVTaskRequest(
File=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
),
is_rate_limited=_is_tencent_rate_limited,
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
)
@ -293,6 +561,9 @@ class TencentHunyuan3DExtension(ComfyExtension):
return [
TencentTextToModelNode,
TencentImageToModelNode,
# TencentModelTo3DUVNode,
# Tencent3DTextureEditNode,
Tencent3DPartNode,
]

View File

@ -43,7 +43,6 @@ class SupportedOpenAIModel(str, Enum):
o1 = "o1"
o3 = "o3"
o1_pro = "o1-pro"
gpt_4o = "gpt-4o"
gpt_4_1 = "gpt-4.1"
gpt_4_1_mini = "gpt-4.1-mini"
gpt_4_1_nano = "gpt-4.1-nano"
@ -649,11 +648,6 @@ class OpenAIChatNode(IO.ComfyNode):
"usd": [0.01, 0.04],
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
}
: $contains($m, "gpt-4o") ? {
"type": "list_usd",
"usd": [0.0025, 0.01],
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
}
: $contains($m, "gpt-4.1-nano") ? {
"type": "list_usd",
"usd": [0.0001, 0.0004],

View File

@ -33,6 +33,7 @@ from .download_helpers import (
download_url_to_video_output,
)
from .upload_helpers import (
upload_3d_model_to_comfyapi,
upload_audio_to_comfyapi,
upload_file_to_comfyapi,
upload_image_to_comfyapi,
@ -62,6 +63,7 @@ __all__ = [
"sync_op",
"sync_op_raw",
# Upload helpers
"upload_3d_model_to_comfyapi",
"upload_audio_to_comfyapi",
"upload_file_to_comfyapi",
"upload_image_to_comfyapi",

View File

@ -164,6 +164,27 @@ async def upload_video_to_comfyapi(
return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type, wait_label)
_3D_MIME_TYPES = {
"glb": "model/gltf-binary",
"obj": "model/obj",
"fbx": "application/octet-stream",
}
async def upload_3d_model_to_comfyapi(
cls: type[IO.ComfyNode],
model_3d: Types.File3D,
file_format: str,
) -> str:
"""Uploads a 3D model file to ComfyUI API and returns its download URL."""
return await upload_file_to_comfyapi(
cls,
model_3d.get_data(),
f"{uuid.uuid4()}.{file_format}",
_3D_MIME_TYPES.get(file_format, "application/octet-stream"),
)
async def upload_file_to_comfyapi(
cls: type[IO.ComfyNode],
file_bytes_io: BytesIO,

View File

@ -655,6 +655,7 @@ class BatchImagesMasksLatentsNode(io.ComfyNode):
batched = batch_masks(values)
return io.NodeOutput(batched)
class PostProcessingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:

View File

@ -0,0 +1,103 @@
from comfy_api.latest import ComfyExtension, io, ComfyAPI
api = ComfyAPI()
async def register_replacements():
"""Register all built-in node replacements."""
await register_replacements_longeredge()
await register_replacements_batchimages()
await register_replacements_upscaleimage()
await register_replacements_controlnet()
await register_replacements_load3d()
await register_replacements_preview3d()
await register_replacements_svdimg2vid()
await register_replacements_conditioningavg()
async def register_replacements_longeredge():
# No dynamic inputs here
await api.node_replacement.register(io.NodeReplace(
new_node_id="ImageScaleToMaxDimension",
old_node_id="ResizeImagesByLongerEdge",
old_widget_ids=["longer_edge"],
input_mapping=[
{"new_id": "image", "old_id": "images"},
{"new_id": "largest_size", "old_id": "longer_edge"},
{"new_id": "upscale_method", "set_value": "lanczos"},
],
# just to test the frontend output_mapping code, does nothing really here
output_mapping=[{"new_idx": 0, "old_idx": 0}],
))
async def register_replacements_batchimages():
# BatchImages node uses Autogrow
await api.node_replacement.register(io.NodeReplace(
new_node_id="BatchImagesNode",
old_node_id="ImageBatch",
input_mapping=[
{"new_id": "images.image0", "old_id": "image1"},
{"new_id": "images.image1", "old_id": "image2"},
],
))
async def register_replacements_upscaleimage():
# ResizeImageMaskNode uses DynamicCombo
await api.node_replacement.register(io.NodeReplace(
new_node_id="ResizeImageMaskNode",
old_node_id="ImageScaleBy",
old_widget_ids=["upscale_method", "scale_by"],
input_mapping=[
{"new_id": "input", "old_id": "image"},
{"new_id": "resize_type", "set_value": "scale by multiplier"},
{"new_id": "resize_type.multiplier", "old_id": "scale_by"},
{"new_id": "scale_method", "old_id": "upscale_method"},
],
))
async def register_replacements_controlnet():
# T2IAdapterLoader → ControlNetLoader
await api.node_replacement.register(io.NodeReplace(
new_node_id="ControlNetLoader",
old_node_id="T2IAdapterLoader",
input_mapping=[
{"new_id": "control_net_name", "old_id": "t2i_adapter_name"},
],
))
async def register_replacements_load3d():
# Load3DAnimation merged into Load3D
await api.node_replacement.register(io.NodeReplace(
new_node_id="Load3D",
old_node_id="Load3DAnimation",
))
async def register_replacements_preview3d():
# Preview3DAnimation merged into Preview3D
await api.node_replacement.register(io.NodeReplace(
new_node_id="Preview3D",
old_node_id="Preview3DAnimation",
))
async def register_replacements_svdimg2vid():
# Typo fix: SDV → SVD
await api.node_replacement.register(io.NodeReplace(
new_node_id="SVD_img2vid_Conditioning",
old_node_id="SDV_img2vid_Conditioning",
))
async def register_replacements_conditioningavg():
# Typo fix: trailing space in node name
await api.node_replacement.register(io.NodeReplace(
new_node_id="ConditioningAverage",
old_node_id="ConditioningAverage ",
))
class NodeReplacementsExtension(ComfyExtension):
async def on_load(self) -> None:
await register_replacements()
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return []
async def comfy_entrypoint() -> NodeReplacementsExtension:
return NodeReplacementsExtension()

View File

@ -2264,6 +2264,7 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
if not isinstance(extension, ComfyExtension):
logging.warning(f"comfy_entrypoint in {module_path} did not return a ComfyExtension, skipping.")
return False
await extension.on_load()
node_list = await extension.get_node_list()
if not isinstance(node_list, list):
logging.warning(f"comfy_entrypoint in {module_path} did not return a list of nodes, skipping.")
@ -2435,6 +2436,7 @@ async def init_builtin_extra_nodes():
"nodes_lora_debug.py",
"nodes_color.py",
"nodes_toolkit.py",
"nodes_replacements.py",
]
import_failed = []

View File

@ -1,4 +1,4 @@
comfyui-frontend-package==1.38.13
comfyui-frontend-package==1.38.14
comfyui-workflow-templates==0.8.38
comfyui-embedded-docs==0.4.1
torch

View File

@ -40,6 +40,7 @@ from app.user_manager import UserManager
from app.model_manager import ModelFileManager
from app.custom_node_manager import CustomNodeManager
from app.subgraph_manager import SubgraphManager
from app.node_replace_manager import NodeReplaceManager
from typing import Optional, Union
from api_server.routes.internal.internal_routes import InternalRoutes
from protocol import BinaryEventTypes
@ -204,6 +205,7 @@ class PromptServer():
self.model_file_manager = ModelFileManager()
self.custom_node_manager = CustomNodeManager()
self.subgraph_manager = SubgraphManager()
self.node_replace_manager = NodeReplaceManager()
self.internal_routes = InternalRoutes(self)
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = execution.PromptQueue(self)
@ -887,6 +889,8 @@ class PromptServer():
if "partial_execution_targets" in json_data:
partial_execution_targets = json_data["partial_execution_targets"]
self.node_replace_manager.apply_replacements(prompt)
valid = await execution.validate_prompt(prompt_id, prompt, partial_execution_targets)
extra_data = {}
if "extra_data" in json_data:
@ -995,6 +999,7 @@ class PromptServer():
self.model_file_manager.add_routes(self.routes)
self.custom_node_manager.add_routes(self.routes, self.app, nodes.LOADED_MODULE_DIRS.items())
self.subgraph_manager.add_routes(self.routes, nodes.LOADED_MODULE_DIRS.items())
self.node_replace_manager.add_routes(self.routes)
self.app.add_subapp('/internal', self.internal_routes.get_app())
# Prefix every route with /api for easier matching for delegation.